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N ERE 2 56 31T, BEDO RS2 B E L CHmMISEIN TV D b OO, EBRZMREEX

TN TELT, rsOZLEVTAHT

R

O X, BEE S HICEKET 5B 0 OB A YIS 2 7201, EEmEREIZ ISV T
B O BT OZROHE AW L OB O dh i £ — 2 > MEFUZE SO TR I E N2 b
DTHD, 28, EQU2NTEMERH LWL TR +2ICHERTHLHETHY, EuaT 40
B EREO R [FI S O g RE Tl Eq(1.2.9) L W 3l S 5% % 4 (Eq.(1.2.10)) & E ST
Eq(1.2.11) 725, AL TIE Eq(1.2.1D)IC X 2B REER % 5 £ KL+ 5,

r=mit{r,r,7)
n=1-11x-L
;

hy 1

0p“0p

r,=1-1.1x

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)

(1.2.10)



ruﬂ_Z% (1.2.11)
’ >h 2.
ZIZT, b BERAEORS, lp: BAREOACFRTEA~ORER SO, hgy : BARHEROSHE

Wi~ E SO, b YEBEOBETIM OR S, Th: YK O EBEOR FiiE T

B, Tho: FOEE SO, m: OOSIETHS,

B) BEYOBEERRMEERRE Y

F Al FAEIT 51T D 1t ) BE DA A WIS 1 IXEAMBA O JE 1 (BEqu(1.2.13)) KLY
Eq.(1212)0bEEIND, 72720, FEMBHOEK v 2 04 LLFOHEIZIRD, £72, 2O’
ST EH RS AE S AL D BE O FRMERIPE I3 2 B DI L 2R THh 5,

r'=1-1.25r, (1.2.12)
hy -1,

7, = 1.2.13

s =\ 7 (12.13)

ZIZT, b BNEEAT A RO BT O ORI, B0 A5 e
DO DOFEO LR TH 5,

—J5, Wit FIEED W AW T D AREER 121X BEq.(1.2. 140 bRESND, 22T, A&
ST AMWINREEE hoh’, T2, HOEILEEOLEZED LD LEED B, 272
L, ZOFRENEOEERT DM IIBED | DI F1EE & Arde D28 L R D H/A5TH Y, it
RO DA ETHEE L, 1 MOMIEE & Z 272 0 GA I Y CTldien 2 & DS HEITEEIC
KV SN TN D,

r,'=1-max wﬁlﬁ&;ﬁuﬁi (1.2.14)
il oorR

Tz, BHEOBOEHE AT HEEZOWTIIFERMERZ BB L CTE 7z 1 OB 0 s Aled
FEIE, 2TORAMAEET 20 E 272 4% (Figl.24@Z M) L, 2 0EOm
BeFLWEBEZAL, REAMOEOMEELWELAT 2B E 20T ik (Fig1.24
OZI) NEZHNL0, BARNEONME, K&ES, JSIMEEEESEZ /0288 L7z LCt)
RLEDEHWARENDH D, ZHUTOWTE, FilAIX Fig1.2.5 IR L 212, R F MmO
ARNT Y FOBROAEREZZE L THWT 2 &, EEOBR ML A3 28368 A OB
B E ERDTRWERIZHE SN, T70bb, Eq(1.2.15)% 2T 256121, A
B EMS A SN D Z & THAMOEBIIANTH L & LTHRET S (Fig.1.2.50b)2 2 M),
ZOFRMEEME L2WGEEITE, BO2aE LisEolckt LTHEET S (Figl.2.5()2 &),
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RC &# M REE DB M i S ZBE3 D M KIS B3 2 iP5

1215 hio 1=1m

(1.2.15)

(a) Considered as enveloped openings

Fig.1.2.4 Equivalent open
|

— Y b
| -+ ||
" i
i |

_ i [

— 1Y 1=
i i

(a) Ineffective wall between openings

— EX) — — EY — N
TH e T \ + S Shs
hi |k P LI LS i ol
L /// \\\ +_ lri—lz _+ l
e
— i — i+ b
I I
holo=h1l1 holo=h1l1+ h2l2 (Eq.(1.3.9))

(b) Considered as opening with the
equivalent sectional area

ings 4
— [
- U LE=

i i

| |

i P

wel] | ik

| ol |
.y i
— ES) g

i i

Fig.1.2.5 Examples for equivalent opening

(b) Effective wall between openings



C) BE#ma v ) — MEREYOMERDMELE - RIfEHR Y

M A2 W A2 31T 2 A B O ARRE O A WrR 1L RC HHED B MK 1 8L rn &[]
BRIZ, MERH OMPEEREO W AUWRE 2 RE L, BERO ISR 2 0o mEO k=R L v R
SNHBAEICESWVZKBEEZE L ETRETDILOTH S, 2O AEIIC X S
IHMEIEE y IR L v ko 5,

y=1-n (1.2.16)

n:max{ Zhi.li,zli} (1.2.17)

- - Zhhfl‘ b ssmmnme, b BOEoES, b HOSES Tho (Fiel2.6 BH).

£z, FHBH A JELEA 0.4 2 A D HEIITMAAES S BEL U THbd, AR & BE 721340
BERPEAE L LT D . T OB, MhEEN —ER SR TH D & S IIMEHER VTR DGE 1 H 5,

—’—

-t he
hi +_ _+ h

4 b
t— 10—
—e
| |
+ Ly $

Fig.1.2.6 Wall with multiple openings

—75, THEZBCIZ 2 RZWN TR THD 2L, £72id, HEEBRLD TEAWRENRE S
S IR 2 E OMEVER 72 EE TlE VW2 LA E A BB L, Eq.(1.2.17)0 BRI L T D
N L VBRI TS, LALAEND, HHRRDIC X 58 ABHRE DK T 23
BTERVE S RGAITIE, B0 S ST X 2E80A B U 72 i = RE O K AR S REIC A2 U
DREOF AW EFHE L TR TEDORAM N ZAMTE L Z L 2R T DR EDHIEITIY
IS5 LS ST D I,
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D) INEF - (BILIC & DR EEIRIRER O

/NEF - IR B IZHEMREE 2 MR, O ORE SDOAHRLT, IR, (LER I OEEDE
BOHEYNCEE TE D X0 RIEMIS S 2T 2 BER O M RE D b SRR r, ZHEL T

AV

Fig.1.2.7 (27”9 X 5 1A B O MHEEEE OB IZ A U 2 O OEFUIAHE 1 L 2 B8 DA 4
CHO0VEIN A EEERICAELDRIDOVEIIN B IR SIS, 2055, £OOVE L B I
MIPE~DEEL RIETZ L2325, 2D L& > TFigl27 1Rt X9 ZRERicB VTR
JERES SR S, 2K AICHE S L CnD LD ERE L, Eq.(1.2.18)I12 X 2 5 (K8
REFET D,

> A
_ &4 1.2.18
=T (1.2.18)

TIT, S BEROARD OUEINERME & 457 L L= b X OS5 KT 5B O [l
I, Al BEROTRTCH 5.

A B Ae
=\|IRi7

- -
Fig.1.2.7 Defination for Ae®

|
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RC 3 JE it ZEEE O B O i S B3 B M 7R 2 B3 B iF 9T
F1E

123 HOEEOHEBEMNEROBREZRMCLSIFROMEROEAMBRERERETE

A B AT EREE O AWk BRI FUE L T, BRI & - THBI S A OMEBER RO 5R
FEORELTRDDFIETHY, B AMOMEEN SIHEORKRBEZ 2 ThEE L TWD,

A) BEa vy ) — FERYOPMERII R MR EH D

EIPEFESE DCIIMPEREICBE 0 23 2356 OB AW EHIATE L ITHERERH 12 201 TIT WY,
B O R RE & AR T 2 7o OMhEER AR DIREE 2 Z N Z R T 5, T72b b, A DR
O AWHEFIRE 7, 13 Bq(1.2 1R L 512, BIRMOHBERS X O AWRE 7, 38 L O
JEREAN D HBERT X FEDR A WIHREE Vie & JEBH DM EERE O AUWiRER (Eq.(1.2.3) LvZznz
NHERIHL, Eboiine 325,

V.=V, +V, (1.2.19)

=L, AEMAOMEREDES hy, b7 ABIOT —FHEOEMEER S LB L O LT
Fig.12.8 IZ" T X 9 20 A DHEED R S by BEOEE Lowey Loww & LT, TRZO X I IT
BET D,

ho +he  (515RMAN)

ww = { - (1.2.20)
ho + h.  (JEAGEHD
lywa = { bvar +D° (51500 (1.2.21)
Lvac + Alye  (FEAEMD
lwwb::{let+-D (%I%%FD (12.22)
Lope + AL, (JEAGEMRD)

Z 2T, he: BAO RIS EREGAS (FET7ITIRNLE) F TOERE, he: BAO T 6 THE
e (ETIIRNALE) £ TOBBE, Loy Lae 1 7 — FHEREICA D2 MEER & THIEMIE X OEHE
BIBER OB D& SFENIRE TOREE, L b7 AHEICH 22 thEER & CTHIEMBER OB O
A DAENSE TORE, Lue: N7 AMEICH RN 20 filBE R & CIEMERIBERR A S AN &
TORE, Al Alw : BEROBEZE I OH S ThH D,
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B) BHLICEIEMRA Iy MIE DK AROMERODREEE 2

B OIE, BIOORIR « A0E - a5 L U EERE O F8 19192 %154 & L7 FEM
FRATIC S BB DMEEED/XT A MY » Z AT 24TV, BE ANLE O 2 b)Y Y 34 s RE A AL
DOAHTELMNBLIOERA N T v FOBRICKIETEEL BRI LI- L & bIT, 7— T
HEASW- #2248 O ERE O AWK RRE OB EELZ IR L,

FEM MRS, AR OMEREOEAM N ERET DA M7 v FOE X LUK
MO 28 AT, Bl OALECH 7 I £ 59 E 2 OBER CEERE IS U T kT 5
HAARD HIND, T — T HEEIZIE DN BBER O ABHEITE T L LD R 2 EE L7
A B O ERRE OB AWIRRDTRE Qw13 Eq.(1.2.23)127~8F & 912 Eq.(1.2.24)2 453 < JEAFE Ml B
&R, B KO IRMAhEEST SO HE AWK RRE ORI E T2, £z, av 7
U— NORZRERE v % EQ(1.225IC KV EETHZ LT, MEEO FEPEERK (227
U— N 1 hEMETRE, AR A S, diiF s JORER L) OZ LS AR IC KIE T
BrBETDHENARETHL I LERRLTND,

n+l1

O, =2.0. (1.2.23)
i=1
Q, =v-0-cosb, -sinf-0.5/ 1, (1.2.24)
v=-0.0160,-0.16 M +0.36 N +0.27-p, +1.23 (1.2.25)
OD bDo ‘

ZIZT, on: O, 6 BERTHIRE LEEMA M7 v NOME, L, BERE, 6 B, po:
BERITRAG L Cd D, 7235, Eq(1.2.24)TlE b 7 ABEIC X o B2 B3 52 & & L,
F72, AER X OMEEC BV T Fig 1,29\ & 5 IO S SAEFHOEMREA ST v b
NZENZNR SN TS LD EIRET D,

F£ 72, FEM fENTHRE SR> B ARBREIZ B W TG RO AW NITEES 2 b o & L, A
FECITMEED K 2R U THIBEO AR AW BN E(L T 2B A 55 OIS L, #sERIC
L o TEMEMFED & VW ST DL DN -T2, £ 2T, BEOHKLD-
DIZ, JEMEA T > MEEOBRIZIIMEE & BRI ISR 2 ENENDOEMA b7 v M EJRH
THEET D HEER LU, T7bb, [EMHRE & JERERIHEE TiX Fig.1.2.9b)C "3 L 9 I2En
FNOR I ZEMpBE = I @Sz 72 B C, fiBER S LAUFEVOAFRI LRI NG
HEIRCIEMEA N7 v BRSO LE LIIRETH D,
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(a) Assumption for proposed shear resisting model in wall panel

FOsE < HEREOEATR k5 v FERAR

N\

—

<£ﬁmmﬁﬁmiﬁm\
B WRECIR LSy M EFEDTER
L }'.'.'.'.'.'.'.'.'.'J —1 _:

SEoEEICESRA SlaRAIEIEERE L&

(b) Assumption of boundary column

Fig.1.2.9 Simplified shear resistant model for shear walls proposed by Sakura M. et al?¥
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RC 3 JE it ZEEE O B O i S B3 B M 7R 2 B3 B iF 9T
F1E

i)
It

C) BENESICEDHBNEMK

SCHK 25) TIE Eq.(1.2.26)-(1.2.28)12 7% L7243 IS M= A IV CH B Dt ERE O & A Wik JRyii
£ % BR O /e A OMEE A Z HE DR RIREE OFn X 0 BT 5 7O RS M A R Uiz, BERESIC
LB HETIE, WA XD 53R OMEEZ 1T 2B E B ET D720, FHRAT X BEDOK
% Fig.1.2.10 2”7 K O ICHEL oW 2/t (BER S) Frica®lL <, JARXEZE L+
L AW RITRE R Z VT, ZORMEEAKKRRE & Lz (Eq.(1.2.26)~(1.2.28)),

0,=0,,+9, +0.IN (1.2.26)

0.053p22 (F, +18
quw - { ptwe ( ) 0 85\[ pwh : O-why } ’ te . jw (1227)

JM/(0d,)+0.12

0.053 p, 2 (F. +18) —
uc = ~ + 0'85 pCW{,’ .UCW' 'bce 'jce 1'2'28
{\/M/ (0d,,)+0.12 Y (1228
ZZT, po BOBIRERFRLE (%), pw: ZOVAWRG L UMD, d: BAEZIEY, pae :
BEMERD OB IEERFH L (%), pwn : BEOMRA L UMD, dy : BEFZhEW (=0950), de.: HEH
)‘jjvtj:b\ (*095D); ]w . ;!:FLT‘jj EP‘LPFEEEEHE (:7dw/8), ]ce : E@F\C‘jj EP’L‘FHﬂEE%E (:7dce/8) To
50

} Qsuc
B t] -
é/ Qsuw

bce=B-t /

Fig.1.2.10 The Concept of Eq.(1.2.26)

SCHR 25) ToR T2 BRI X 2547 B O RE O & AU Wik R Bl 2 31 L 75 21, %K
B0 2 b ORBRIR & PR - BB R BR IR &l G & L7 #PH TIX, HAWRE 2R T 2 NER S
Z ohg & LT2b DI hy & LT2b D & HARTHERPIOBREBREN L 725 2 &, EA N DR
Bz Do b ESR TS (Figl21l(@xsR), £72, ‘ﬁ@fﬁ#%ﬂ%@%ﬁt%ﬁﬁ%ﬁ%k
LA T, SANIREZEETL2NEESE by & LTEY, Figl2ll(b)xA5 E1Z
ERNFE STV AR RSN T,
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20 20
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o fml 1.5 Eﬂ =15
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& i 7 b .of W o 8
I 42010 S B 210 o
& & £ 8
Ex 8 B2 %
d ~> FH 05 2 =Hos °
e e
0.0 00
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TAMTRE R RE,
Bl T 5 RE 2 H L
(d-1) PEERE hw & L1158

A MR R RE,
F 5 LA
(-2 MEREho & L1158

A MR AR L
iy o AL
(d-3) PEEE hw & LEEThenn & #0
(a) One-story shear wall with single opening

20

—
[4,]

A W FE SEER
il SR R
o pe L,
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00 05 10 15 20
TA MR R E
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() MBFEHOEAMBERICHE
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(b) Muliti-story shear wall with openings
Fig.1.2.11 Evaluation result with Eq.(1.2.26) 2%
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RC 3 JE it ZEEE O B O i S B3 B M 7R 2 B3 B iF 9T
F1E

1.3 RC EEMEEOMEMREICET 2EEEFDME
131 #HEHFANZEIT L2EBMEROHMEHFERE (2007~2010)

oA - B S 1913 SqIBH O bk A [Rl— & L7z RC WEBH DEERE DWW T, B O -
P - EEz A5 & Ui friosim 526k & 920 U, AEEriR, JBRERAE, 2R X O AW
M 7178 & R EMER %%@@ﬁbtoﬁﬁmiﬁy3l;T?iQEGEEV®RCL@ )
BT L HEEMERED FEHM a2 8E LIEHARBEORLRL2 O THY, EROK 13 27—

@%@Hﬁﬂ%ﬁoﬁ%%WMAMBEi@WD%WMOH%DEKQQﬁ%%“@%W%
B AJEE 035 TH D, £, RABRIE WOI~WO3 R 2 @ TH-7=DIcxt LT, ZDOMmoiER
IX23EE LTS, 2B, T XTORBRAKOLNE (150mm) (FEEE S (80mm) @ 1.875 %
L7z,

Fig.1.3.1 (Z4 iR BR IR O fif B —Z5 I BAFR X O ABEEMER 278 LT 5, B OALE 256
Th 556 GRBRIK WOI~WO04) TIE, #lififH s X 2k X UKt i o 22 8 1%
FEA RN, —F, ﬁf%u%ﬁ#é A (GRBRIA WOS5 5 X1 WO6) (ZIdasEMIRE &
OV K I J A E T #for 7 1112 %%#E%kﬁé F72, BIOALE OB T L0 BERIES
@ﬁﬁhéwﬁﬁﬁﬁét@,%Wﬂ#ﬁm#é@f%~x/b TERNELD, LoT, &
HiBA O JE L 23 [F— T dh o T Bl AALE S B 7e D AT IIHEE MR I 2N A L D,
ik,%ﬁf@%ﬁ%%%kmﬁ&%@A%%%ﬁ&@ﬁ%@%%@#é&,ﬁ%m
WOI~WO6 [Z 3T, M2 W AL DI K 5 E Tl AW R E O 2 FRRA(Eq.1(1.2.1))
ERALTWDLZ bbb o T, FHEMEDFERIE A RIEISE/ N L iR & otz —F, /D
B - fA N R HREXZ W56 T, FHRMEIEFERME LR RIF 2R 2R LTV D,
ik,ﬁ%%“@%mﬂkwfi JAIR mean 2 (Eq.1(1.2.2)) (Z2&ffBH O & 4 (Eq.(1.2.12))
2K DR y (Equ(1.2.11)) % 3 U CHRIE S D8 AW o EE 23 SEBR{E 4 18/ NG 3 2 )
#ﬁ%ﬂto#ﬁ,d%-ﬁﬁﬂ LA REXTITERME 2 RIEE B < Gl C X 7223, %
JEA B O MHERC B W TS ERSE AR 45 TSNS LIRE Lz 2 &I E i e
ﬁbfiﬁ&ﬁﬁ@%ﬁﬂpﬂﬁféﬁw ENBHDHZ EBRLE,

PLboZ & Jv, mBH O JE A2 WA B O ERREE O AWM R E OB EX, 2o
& A2 D3, FOTFREEIX 0 LIXEWVEE,
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Fig.1.3.1 Experimentation of RC shear walls with multi-openings by Suzuki K. and Sakurai M.,

et al
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132 FHAMNMREY S ERMEEOHMEFREER (2008~2010)

AR D 29200%, BANJE 5y (Eq.(1.2.16)) 2% 0.4 Hifk CTH O MRER L O EIZIE S RC

EHEJE MR DU T, B A8 Heds X OBH R ECE 2 28 & Lo FrUH 2R &2 1TV, 20
FAWMIR 2R L7, JBEEMIT 6 B o fEMiEREE A9 2 P KfE RC E/dm L L, BBk
XZOHRTE3IBD 1 A% 40%A 77—V TET /ML LI RERM N & EEmEECTH D,
ABR AT Fig 132 (2R3 X 9 I EBE 0 aBRIA N1, FBRO ™ S3 (3=0.3) & L3 (3=0.46), 1R
EBR D S1 (5=0.3), M1 (5=0.34) & L1 (4=0.46), BHO N T BEE S -iBRiEk S2 (5=0.3),
L5 (#=0.46), L6 (y=0.46), F7-1%, RIER N Z¥AE (160x160mm) (2 XV iR E1T - 7= iABR
K L2 (5=0.46) B L OWEAHEM TR L 723BRIK L4 OFF 11K TH D, 2B, T XTORBRIKDZLIE
(200mm) [FEEE X (80mm) D 2.5fF L Liz,

Fig.1.3.2 CTITARBRA D EA T BIR IS K OB K IR ORI A JFOR LTS (R
BRIR L4 (2 2W TR 24T - TOR WEIRO O OEIN O A% 7~ 7) . Bl 2MRER 03 L 0T
JSECTE S AT AR TR 7 1T K o THEEMER I X OUKEIN I EZ R R b, Wetki) 7z
BhzR U7, £70, ME O EEE DY AW /B D AREEE 2 3 U CH B O EEEE O A Wi
J1 %I L7 AE S, B (Bq.(1.2.3)) &/hEF - fE50C X 2R (Eq.(1.2.17) DOfAHHE
TIFRF R R & EBRE RN BIFICRIS Lz, 72720, ZOEBERITRTRO X 9 ([ B EeEE %2
WL LIzB 2 H TSN TN D72, HEOBURME 2 FOEME RN B S 4 2 8 JE it R A 2
WL LRk 2 BT 2 MER B D,
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(c) S2, S3, L5, L6(Specimens with staggered openings) 22)
Fig.1.3.2 Experimentation of RC shear walls with multi-openings by Mori K. and Doi M., et al
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1.3.3 BOETICEIIMAHEBEEROKRIEERER® (2015)

FLH O (3EE S X 7 1A O AR EICHER B 0 23 AR 1 S AL 2 R AR A xf 5 & L 7o R
AT EBR ATV, 2010 AR D RC HIHE VI T OEEAITFENE YD B MKIREE O A B & #RAE L 72,
ARERIRILHE O RC @I BT 2 EMEEZHE LI 16 A7 —1LDObL D 3K TH D, £z,
ARFEERCIL, HERBH D EEMHERE ISR T 20 L FOROMEREZ YR 5 729, Fig.1.3.3
WRT R ERAZTO—H2WV RE, HHRROERATATE HitH L SNz, 7B, =
B OFERIE TITHEMI T BEBHEIT LTHaRRTH 2 K 5 ICEREH S 7z, BBRIK WO |36
IR ChdY, BB WL ITEES S HFRORERB A2 1 5], REE W2 1L25CThs, £,
M E A TRBR A W1 B L W2 & BT hypxly,= 400x100mm T Y, RC HLYEZRBWTHEER O
(21T 5 B FARIECE 73 AV BAKS 72 5 K D aREE S iv7c, BRigds K OWEE XA — <1k (50mm)
&L, Wi L OYRIE RC HYE IR SN DR OHELHE 2 e LT\ 5,

MR O 279 2 BRIA ORI IE, B BT OO\ A MR X OV A BRI o th
FIEEENEHE L 720, B DRSO E T 2 EDRI & B X TR LT A28, Zod Ak
RS & BEO BT RS S RIS R BLES N2 o 72728, FEBREE RIS < B D ERRER 1IZRCH 1E
OB KRR A EEY, 3% E EERANCREE S iz, £/, BEESCB 0 ETOROM I HRC H
WOMEL FElo7e 2 L &R LTz, 5T, [AHAEDR MK Z M UIEA T 5 72 D121,
FETET 5 RS & 2B O )1 % BT 2 7D ORGP MNETH D Ll s s,
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Fig.1.3.3 Verification experiment of RC shear walls with door openings by Sanada Y., et al'®
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1.4 RS SICEY S AERE s OHE

1.2.2 #iCRIE L7z K 5 IZB A & S ICBE T 2 M /M IRIRER XA T O HR AL 3 JTOVRC Bl D
ICBWTIRRINTWD, LM LARRL, BTiEE U THEINERE NV QI HEALOB A &
SUZBET DM IHRIER ho/h” (Eq(1.2.13) ZEHT2MERH D LRI TWDHD, BIEME
BEICKRI L CHEBE T SRR ERET D 2 2K E LTWDH 72w, HAITO RC HNE D L X
—RICHE R DIEBEIGOND Z LI D,

RC H#E 9CoR S 7B O i S UCBET 2 M/ ARIEE 73 (3 HER: BR 138 i T AR A o BE I o0 £ 41
i B KOO ETFOROAHIN N ZKEL TROLNTWD, KETIE, niABETS
B O BE BT DEEHIE OB AW ) Owe (Eq(1.4.1) B X OBIA ETFOROEMEE AW )
Owso (Eq.(1.42)) OHEENE, TOERRBERELEILT 5, T 2T, OQulFERKZE T
BA DR RS EE O AWTHIEJRBRE CTH 5,

<HZETEHERO B (F7ifH >

0., = %(1_,@1 ITOJ (1.4.12)
Qo = %( _170) (1.4.1b)
<FAOLETOZEOEEMmH>
0. =’Z‘_+Qf[1_zz_’;].(1+%oj (1.4.2a)
h
Q.0 =%[1—§;N1+%‘)j (1.4.2b)
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(a) Assumed behavior  (b) Shear deformation of the beam above opening

Fig.1.4.1 Concept of r3 for shear walls with single-aligned door openings

Fig.1.4.1 IZHERBA N 23 1 M O5E (n=1) OB FUEHEER s ORI SX 2R LT 5, Zh
e, UUFOMEEZFWNT, 15AOEHAZ2EE L TEREXZ2FHET D,

<RE 1> EBRHEORIEBEANNSEFEOMEEZEOH I AICE DN TEHET 5.

Q0,6 =—x (1.4.3)

<{RFE 2> FHOELDOREAICEY DESNI=EEHERDOB FHT S Mo ~DEEITEDEE
W2 T HEBAED b DL b/l E LTEET 5. 2F Y, BT AIDH SMwo 3 Eq.(1.4.4)
THEUTEZDLEDET B,

M M

(1-1,)2 /
M =—wx~ VU~ = SN =2M =—r]1-2 1.4.4
w0 4 x l/2 2 w0 w0 2 l ( )

Eq.(1.4.4) TIEBH OB ITBER S 2% 0T HALE & ARE S4L, 13 OFRE TILABEHIE o dh
FIHNIHETH D EEZ LN TS, £, BOMED PR CEEMAMHT— X > M3
LT DA LA S, RCHME D TIHBOMEET 25412 Eq(1.440)03 % T 2
LOLEZ LTV,
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RC # & FREE DB 1 i S CBI9 Dii AERRERICE 5
R

<{RFE 3> KFEMAOICLIAO0LTOROEABERIL Figl4.1 (b)ITRTERE
REHELY, (1+h)er2 &3 5,

L E=Z2SOREIC L Vi) &2 ERIbT 2, #ERB AR 1 FO5EI31T 2R i £ —
A2 hOEMIZ X BHAKFEEAKRT] (Eq(1.4.1b) 1%, Eq(143)B X Eq(44)EvEHN
%=y

<RE 4> PBHIUHRBEIBRESLELT, BLROHFBLAMABOFEEEAREH
ENELL, £z, HOLTOROEEFAMAITEBOZOE ARG AEICE DUV TEHE
ERN

T, MR O EREE O AT S O I AMNIG ST 1,12 LV, Eql45ERKT, %
7o, ZOEIC LY, AR OMERICRIT KM AREOR O ETFOROEAM T 0513,
ROV AWE S E o, 2 AV T, Eq(l.4.6)E £S5, Eq(l.4.6)L Eq.(1.4.5)2X0,
WEBOA 1 FOBAICHIT LA EFToRoaHEAN S (Eq(l4.7) #EETLHZ L
NTED,

0,=rt (1.4.5)
0,=rt(Zh-%h,) (1.4.6)
%=Q®—%%F¥ (1.4.7)

—J, BAA L TOROHEY AW Qs DAIZ K DKEEAMTT) Ouso 13, (RARHEEE

2R, KEFEAWNNZ LD (=0 XZhX0) &ROEAMINNIZ I 2N I

(=Z0pX (141)02) DFEIV AWML SE N ETFTOROEAHEE AW (Eq.(1.42b) ZRHETE
50

<{RFZE 5> FAHROMEERELEDKEMN Quold, EERIETOHITH A Qo LA ETDER
DEEBLAMN QueoDFMTH 5,

0,0 =0 0t Q\po = Qw[l _%(1 +ZTOJZZ_};’E:| =rn0, (1.4.8)

Eq.(14)ZHERBA A28 1 FIDOGEITI T DM EEE D KM 1M Ow 2777, T7b b,
e B O M EREE DM 711X, RC HENEE 3 HBEHES O AT B KO0 L ToRoA
A D RIRHZ RIS 2 SESNTWD, LML D, BAEOKEER DCifHo Lo
BB L OBEHIER O ) AR BLE e o TR, r OET St % FEl- 72 FIEEMEN
ST, 22T, BIRRIER s 28 UNEH 7 5 72 OICIIHER B D EREE OB 0 L Fick
B ROEM I L OB Iz K- ToBl S BEEE o dh P /1, 2 b oE e & 8%
HONCFHET 2 M ER S D L EX HND,
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1.5 FED

RETIIAMEOY L BRE /R LZ, £72, A0 HEHEREOMEIERICE T 2 ED
WMRARE L7~ 512, A0 EEELEC T 58 A B RIRE DB EHBEICHOW TRHE
ARTHRASN TV EEOOKBEZSIH L TELD DL L BT, RC HHERIND
HE B FARIREE 3 MRE T 2B A BEIZIS1T 2 M AT M ORER L, 2O ELHEE
IRE & B LT,
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$28F FAOSSICET M NERERDEBIESR

2.1 FL®I

ARE T, HERB D E N ERE S 5 B 0 @ S ICBE T 2 M REEE s O R E L E B &
T HEHF OIATHIE IO TE LD D, BEMIC, 133 Hi TR LEBEEORGEER D% %t
LUT I FEM fNT 2 £ht L, PEISITIREED & Y%A OIS I mE i 5 X OVl i 55
D AT TN KT D B B DWW TG L7z, £72, FEM T OfE RN G, BIA ETFTORDOHA
wﬁhMﬁkioﬁéa@ﬁW@ﬁﬁ% A v N &N D OHALDHER B 1 i 7 BE O ifif
INCRINETHEBEZMRAT 5 L & bIZ, RCHAEIR IS B DRI s (2B W THE S V72 A
B AL S0, BAEBEROEIERZ R Lz,
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2.2 BEEDRIIEERICH 175 FEM fZ47
221  fRETRREERE 19

FARBRIRIE 1.3.3 B Co L7chER S A MICHERET D HER B 0 05 a2 A L U@ EmEeE 3
K Cd 5, Table2.2.1 I[ZFRBRIKDOHEEFEMI %, Table2.2.2 122> 7 U — ~ O EHSPEZ, Table2.2.3
B OM BRI EZ 2 Z2hs L TR Y, BRI IRE L OB FEMIX Fig.1.3.3 223z
v,

Fig 2. 2.1 [ZHiATEE @ 2 m 77, AT, i 7 L— 2B L OMEEH A X TICRY 15722 /A
DAANY ¥ v FICLoTHTDN, EADAANT ¥ v XICLHIERAMENE LIRS LI
Hl S iz, Fio, HEA X TRGE ST ARBRIK T, KPS ORGREICIES A 2 7 Dff
WCHIENDOERBPRINZT2O, WA X 7HIE Fig222 (IR T X9 IClmic -y 7 vy a A
v NERT . PC #MEIC L0 B Svis, S AR TR O KRN 6 & FHRIALE & &
h=1,500mm TErL7=ZMA R (=8/h) THil#E I,

Table 2.2.1 Details of specimens

wo w1 w2
, r1 0.93 0.85
Reduction 2 - 0.75 0.65
r3 0.59 0.45
bxD (mm) 150%x150
Column Main Bars 16-D10 (pg=5.0%)
Shear Reinforcement D4@75 (pw=0.25%)
bxD (mm) 50x120
Beam Main Bars 4-D4 (p:=0.54%)
Shear Reinforcement D4@75 (pw=0.75%)
twXlw (mm) 50x1350
Wall . D4@75 staggered
Panel Wall Reinforcement (05=0.37%)
Opening Reinforcement 1-D4
Table 2.2.2 Material properties of concrete
Compressive strength Elastic modulus Strain at compressive
(N/mm?) (kN/mm?) strength (u)
wo 25.8 25.6 1,838
w1 26.5 26.3 1,993
w2 26.6 25.7 1,920
Table 2.2.3 Material properties of steel
Yield stress Elastic modulus Tensile strength
(N/mm?) (kN/mm?) (N/mm?)
D10 (SD345) 379 174 479
D4 (SD295A) 323 153 458
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(unit: mm)
Y .
T (-) 4 A (+) T
. . _ . .
§ ————— B (o) E——= )
S Hydraulic jack Hydraulic jack
§ Specimen
| L=5510 |

D:l O 1 ) [:D
=menm o 1|
PC Bars(#17)

Knuckle Joint

Specimen

Fig.2.2.2 Details of PC and knuckle joints
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2

OB S ICBET D IMEEER OB IESR

222 f@BIETIL

FEM f#HT XA Y 7 b @ TFINALJ 29% 7z, ST koot & LU, “Flis 8 & e
Ltomﬂ23Lﬁ%WWzém&Ltgiﬁﬁl%%#o2&?% By & T
ZHMERENZ e D, BMERTER Lz, A ZIREIZBT 2 HROER X OUKFED
ﬁm&%mﬁﬁé;&?ﬁilmkbkoik,%%Ti&ﬁ@ix&7’“bwm$ﬁ%¢
s, %ﬁfi%%ﬁ:EE@LX&TT%Méﬂkm¥Wuk ELL 2D KO ITER A
WU, £72, ERAZTHOPCHIEE v 7Y a Ay MIEMAaKmEEZETD N7 AHE
%kiomk%gﬁémwfﬁﬁbk(mﬁlﬂ&i%%%ﬁxmwkﬁﬂ%¢iﬂﬂwzz
B Table2.2.3 DEBIETH 5, 7272 L, fERFH D 249 25K W1 I L ORI W2 Tl
Fig2. 24 lZRENDH X 912, #MANCT X TORO E IR 2RI O OEI DR A D i
SN b, A LETOROa 7 ) — FEREOOOEINRE 6, DiEA 0313 5, (05:
a7 J— NOEMETRE) 7225 0.0IN/mm? ~ SR L, ST O AT » FIcB Wb BT
DZEIZOVHENNEC LI HIT LT,

2y Y — M4 ESOEEIG D ER TER L, ST OIALE, & L CEFENICEIRE H
L7z, 7, OOEIIEEZOVENET L Dk 0 EBH U2, “HS ) FOMEST
Kupfer & DL DNE o7, 16— OF AR B AEIE Ahmad €7 /L 2 & L, #R{kIk
% Nakamura 5 /L 30 LE LTz, £72, OOENBAERIIEMFEOL L EZERBET L3
Ko TERE LIz, SIRMDIST) —OT BRI, QDOFENREE TITMEEL, 7o a R
TA T = REERE - ATV DERE Lic, £z, a7 U — NORBREREITHR Y K

IZ X DL A ZJE LT ), OUEIIE O AWHEEE T /L IE Al-Mahaidi €7 /L %K
TE LTz, 8 OIS — O HEARIIANA U =T E7 V%, BIEFFEIZIEIE Menegotto-Pinto 7
VD EGE LTz,

BEMICAE ot i T OOEIN OB E2 B IET 572012, BEEEOE AL TAX 7 O8E%
MeIZER L, BEROOENERZH T 72, BEROOBINZEROE T IREL, EME 2 [ &
L, BlIEMAZ 2> 7 U — O OEIREEIZE L= B IS8 0T L2 BB+ 587130 L
Lic, F7z, BEROOEINER O AWHEEREIXLE - SPOREET L IDERE LTz,
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Measurement Point Stub

Concrete
" Quadrilateral Element

- T Reinforcement
' \/ Embedded model

Discrete crack model

Elastic

(a) Element replacement (W2)

Knuckle Joint
Quadrilateral Element

PC Bar
Truss Element

(b) Details between the upper stubs
Fig.2.2.3 Modeling for FEM analysis

\ T
) o (F
A 1 X i
™ ] /
N / N ,4

(a) W1 (b) W2
Fig.2.2.4 Initial cracking pattern
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Fo% BOESICBET S AIEREOETER

Table 2.2.4 Outline for analytical model for verification experiment

BRI wo | W1 | W2
2% AR TESHER
os (Mpa) 25.8 26.5 26.6
E:(GPa) 25.6 26.3 25.7
&0 (M) 1,838 1,993 1,920
s F;ﬁEIJ(;_g?@éE: Fﬁn%gz@;’é:
Oer (Mpa) 16 Z0it: Z0i:
1.6 1.6
av9)—k % 0.17
- L FEAEE Ahmad T )L
o-¢ BB A T B4 : Nakamura iE?)lz
” 2|28 LR ERETIV
8 TEE:RE- LOETIL
IR —BHE#E : Kupfer 5OETIL
VUEINEZDEAMGERSE {E1E Al-Mahaidi £T /L
BRI RIBOHRETIL
VUEINETIL WL 2 FRASTMVVEINETIL
EX HABKBEL TV Y- ERICER
o, (Mpa) 323
MEEFE (D4) E, (GPa) 1.53
v 0.3
A o, (Mpa) 379
) ¥4 (D10) | E. (GPa) 1.74
v 0.3
o-¢ Bk bi-linear €T JL
MEIREHE S ZBRA
B Y & 1E Menegotto-pinto €T JL
2% 2HIRNRESR
g, (Mpa) 1176
MRS E. (GPa) 2.01
PC % 0.3
o-¢ Bk bi-linear €T JL
MEIREHE S HZBIKR
EREYE & 1E Menegotto-pinto T JL
2% 4 Bim
BlRET JE e8] Rl {4
AE T 5| R4 RITHLEZERLI-ETIL
VUEINED ARG ERSE ILHE-FHOREETIL
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Fig.2.2.5 |ZfRHTHE R & SR OBIBREO i 2R~ d, £72, R TIIFTIcB VT
7 U — MEFZOBAIZ XV PRFE R ARRZREIL R S TR REX TR LTS, &RBRIE O T
fERILFERICB O TR X Z R KM ARG SN E A R=0.5%rad £ TOHMY A 7 VicE
T B R AR HE T E T,

Fig.2.2.6 |2 R=0.5%rad DA 7 VA& T HEZ I 1T B MRS R & 2Bk R OB ERILO ik %
AT, AT OMYAER T, EROBVIELETNITZ=2 2 U — MEREOIS IR E L
bOEERT 5, SERBIKOMNTERZ 2D L, MFECRA LT OOEl, BERIZHA
LB ABOOE N, BLOHEBORRECE T 580 ETOROBERIITERKF &
—FHLTW5,
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Fig.2.2.5 Comparisons between experimental and analytical shear force-drift angle

relationships
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Fig.2.2.6 Comparisons between experimental and analytical cracking patterns (R=0.5%rad)
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224 FBEAEZROEBEEAMODO#ERE

SCHk 13NN L2 SEBRAE R TIE, B0 E TFTOROW AWIEEE L BEFO i EERE L, 3Bk
ROREEREEIT 3 128 DH8E EAERIES L72ns, r ORBEMIIIXBE 0 FIEZ 23050 & ek
BRAR D e K 71 & KEBI @B RFEAM L7z, AFCIE, MR O mEEERBR IR T s 0fE T
5Wﬁ@@ﬁﬁﬁ®ﬁl%%%ﬂuﬁékb,WM%ﬁ#%W%%DLT®W®ﬁﬁﬁEm
NBLOREZEREBOAMTE— X 2 hEZN D OHLIER B 0 E R ERE Ol )12 & IF

RBEET D,

Fig.2.2.7 \[ZfENTHE RN SR L2 R=0.5%rad &*— 7 B £ TIZBW T A L TFToREs &
OEEE OB AW D OHER %, Fig2.2.8 12 1 B ORBRIE W1 26 & LR EMAKE %
NENART, MREROART 58 AW NEERBRIEITIER T 5400 P, BERERO#F£— 2
b My BEOBHO ETFTORZROAHMEAW ) Qx OHIFE—AL FOHFVAEVEZE LT
Eq.Q2. )X v EH L=

nhilMW,. nﬁ<ink -(xlj +x, )> (2.2.1)
p=—i 4t k
2h 2h

ZIZT, omy: BOAER, o BAO—FIHT-0 OB, M, AL G TeREIETO T E— X
N, O : O ETFORO EREFHR) AWM, xp xy: O ETOROFLN SIS OREE
DETOERE, h: BRBREOEESTH S,
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Fig.2.2.7 Transition of shear force contributions
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Fig.2.2.8 Modeling for Eq. (2.2.1)

Eq.22.D)D%F 1 HIZMM: 2 &M OEITE— 2> M0 A& 5 FAM I Z R LT\ 5, [A
KXFOMITE—A L b My ld, MWFEZ SRR T 2207 U — NEER & S EHR OFhE
He WEICHEEA L, FERLFELE0CEOELHOEMAZ R CRE L, —7,
Eq.Q2.1D)DFH 2HIIF A L N OROE AW 1 &0 & O MEEEIZ/ER T 2 KFEH MO AW/
ERLTWD, FEEOWEAWT Qu B0 ETFTORO a7 Y — FEZROW AW ) I
HEERCDZEICk-THEHE L,

Fig22.9 \ZBH E FOZIMERT 28 hE L O AW HhoGeHEOHES 279, B LT
PANERT 2 AW OGFHEOHER 255 &, 1 FIB NEBR IR W1 Tl R=0.375%rad O #far
TA 7z, 2 5B OEEBRIE W2 OGNS T D58 0 BT DR TiX R=0.5%rad O#firt-1 7 /L
(CEAMNOIRT AR SN D 00, MBRIEE ©IZH A LT OO AW /)13 R=0.5%rad
DO A 7 VETEULDEEHREEL TWD Z ENbn5, £, RIEATEh0E
FHEDOHER 2 25 &, WaBRIR & b ISEREE I TE AT 1 27 L ORELTICEEW NS 2 61h 2338
oD,

Fig.2.2.7 (O REH O BT AW ) OWER 2 45 &, MRk & & IZHAT 1 7 L OHEITIC
RV, SR A2 3 2 72 EE (LIt%, BlaRMIEE) OB AW IITHEINT 2BMRA b b,
—J5, FEAMERE A AT 240 (DI, FEMEIIERE) 36 X OV Bz DA 18 A 135 | R IAEE D
D & AR THAIIERWVE CHR T 2250 bhvd, SIaRMEEL, BR L TORIIEM
THEAMTI L0 G O BIEEN MER T 2 b 0o (BEDO-AHE S ORI Fig2.2.10 # &),
HIFE— A2 MCHFSTHUREEHENSZ O EroEmWEAR D E A Lz, ERHEE T,
A ETORIEMNT AR &80 & O EMEE D 2MERNT 2 b 00, thiFE—2 2 MIH
B 2R &R D7 N2 E DRV AW 2 A Lz, 72, BBRIK W2 o RBEL, #§
it A 7V OBEITIZEWE A BT ORITHERT 28 AW 1 & 890 6 5 FEMHE ) 23R 2 (2 H N
THHOO, EMEMEE LRI E— A > MCFST 2R &8V 7202 En b AT A

Wr D DMED > T,
- 40 -



C EHMMFREEDBR H i SAZBI3 2 M KRS B3 o 05
28 Bl SIS DI MEEER OB IESR

WIT, FENTRE RS L OVRC BLYEIC R S D i MEE T B BEDE R OA R AW Iz o0
T4 5, RC HUED K EH OMEM /1% Eq.(1.4.1a)F X OV Eq.(1.4.2a)(ZJAIR mean =X
(Eq.(1.2.2)) Z MW/ O M EEE WO O AWK HRE (322kN) Z#RA L THEE LT,
Fig2.2.7 %45 &, BOOFEIZHD & F maERRIZI T RC HAEDTRET 5 Mt /) 1T fRHTHE
ROWEAW ) OEFHEE B> TRV, BEERRO#h i ) 0&FHEO M KEHE N EHE Th 5,
AR O K 9B A BT ORI ER ) O8I LY R=0.5%rad DOHfi¥ A 7 MIZFE N TH RC
BYEDIET D) & FREOT AW N EZAM L TEBY, FERMIMETRAELT Ty, =
NEOREREZRA L, BEORIEFER D TR LR O i EEERBR AT RC B 1D
R B PHRIBER s OARE T 2 M) 003 KFEAM o0 J R T EERER I AR E 5 2 T e+
D LWL, RECIXBEIER o B P T ) ORI A B L 72 BE D IRER 2 R R T 5,
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Fig.2.2.9 Transition of total axial and shear forces applied to beams
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Fig.2.2.10 Transition of axial forces applied to wall bottoms
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2.3 FOSSICXEHEREDEBIES

B FARICE 73 (XHER B O & W= EE O BEMI o #h it /136 L OB 1 T o R oA AW
HEREL TROLNTWD, LOLARNRG, 224 HilZR Lz & 512 FEM #1238 1) 2 BEH
HOAFE AW L RC BLHEOET 2 M) & X TREICEVMEZ R Lz, Ko TC, B
PRI A A 3 2 BEIIE 0 il TN /13 6% 58 9~ 5 #h P i ) OARBR S (LT, IKBERE) o %
AWTEHMIT 22 & 245, £/, BIAETFORIERCHEOEE T 58 AW/ & FFRED
F AW 2 RFE LEET DEAARD DN Z LD, AFZETIIRC HEDOEET H A =X
LEERT L LT 5,

231 EREIEROOERFTH A

BERIER 0 i VT T ) OARWUREL o 2555 D R0, Bl IS X o THBI S 7= BED g ) % 4y
Wi 5, AR OBEOHRROMF 1%, SLTFOMREEZHNT, B 00RAZEEL CGHYE
T 5, Fig23.1 2 m A0 oFHOE (720, BEOEL=0 & LTEET ) 1281 2 EEHES
O {FT ) ORI A A R,

O MR OO AW /) O IXHNTR ) M, BREOR AWM L, £z, #Fm) M,
VESCHER SHZ R END Eq.R3.1N)TET I ENTE D,

0.5 0.5N)-1,
0. - M, (a o,+05)a,0,+ ) 23.1)
>h >h

ZIT, a MREEMHOEMIERE, o : AAETFOBRRIBE, Za, : BERH SWEE, o BE
R DIRARTREE, 1, : FEHVLFEEEBETH 2,

@ B O mp HNOLE, it EEE XA AL R R 1, 35 K ORERER OWrimAE N B B S b,
@ EWish ) N IZEA OAFEF OLE I Z NN N2 SMERT 5,
@ =7V — b OART B EMNEINIEED ERE S & L < X OLEICER 3 5,

® FEFEFF O 5 R ITFED Fsig, E.%%ﬁéﬁ%@él%ﬁjji?ﬂ%m Tk o THEBEIS N BERREE 6
LA D)2 WZEFR L TERA L, ZNENBREEIZEL TV D,

© BAWE o D HFTR S ~D 2T RC HLYE & FIERIZEE D2 1) 2 B DR O A FHE nilo
Dt mplo/l & LTHEET D, 7205, BOWE O n,HE 0 % H 3 2 it EEREO #7138
BHOMEREE & LT 1-ml/l 5 & 725,
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— Openings

(I=0)
ao Ci awdw G
Oyl awOw avwOw | Awuw_ (U nn+1
T nn+1 H7 Nn+1 G nn+1 l
f v f
MW1 \T/‘ u Mwi Mwnh+1
g’ lu/(nn+1) lu/(nn+1) lu/(nn+1) g

Fig.2.3.1 Concept of evaluating flexural strength of walls with multi-openings

Fig.2.3.1 O 5| SEABERIES O Wi | 13RS/ D BB aw,, BEGERS O BIES Sawe/(ut1)E X
OBEMIEROERME S C1 (=NR2+awy+Zawoy! (nitl)) PMER LT 5, ZOfMO5IRMBENS § & H
DEEFS JOVEMEMIRE 2 A7 2 BEDMEBIZBERERT D5 13R ) Zawo/(mirt1)33 K OVEAE I O [ E
HGEABLTWS, 22T, EMA G, EMAEETIX N2+Zawo/(nit]), BRRIZEEENT-
BECIX Zawow/ (mitl) & 725,

PLEOARE & 0 BERRES o #7010, 5I3RMIEED Eq.(2.3.2), B mIcEeE L iziEds X OVEAMEMR
BES Bq.(2.3.3) & 720, HERBE O M EREE O R dh T ) OB FHEDS Eq.(2.3.4) & 72 5,

. . .l
Mwl — Cl _ 05 . Zawo-w . lw . (1 _ nh 10 j — 1 . MW _ nh zawawlw . (1 _ nh 0 ) (232)
n+1 ) n, +1 I n, +1 2(n, +1) I

Mw,:(o.s.zawaw}. Ly (1_”'11'10)_ ! .Z"w"wlw.(l_”’fl‘)) (2.3.3)

n, +1 nh+1‘ _nh+1 2(nh+1) [

oy =M .[1_”’1'10) (2.3.4)

BEHIER O #& SR80 2 488 U CHEE L7z Equ2.3.4)1% RC HYEIZ/R S5 BERES o #h i /)
FHE (7 19.26) DERUEXTRIIND Z LD D,
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232 ERHIEROHER T MERIRE o DIRE

AR U7z & 902, SIaRMIEE RS 3 OBH DBk v 7= BE O BRI VR 5 2 JEME 70 1 i o 1A 181
IR T2 EARUE LTz, Z OACEIERENR O M AN ER Y £ < —ARAY 72 HEBR 1 it REAE ©
BLEMIT D EE X DD, Fig2.3.1 O 5| SR AL L7 OFFAEIS K - TEEW I O+
H;mb\F%ﬁﬁiﬁﬁMﬁﬁH#é LANL7R28 B, BEWTR OEMEITEME AR 20 2 L5
ORI L, 55 R EHRBE OIS H DR BEq.Q.3. 2R SN D L/ (1) &
THLS 25, £2°C, BEOIIAENT 2EM ) CHIRES 1 2T 2BEROEMEEE S D, O
HLLEIAER T2 b0 L ET S (Fig23.2), 22T, HEROEMRE S D, IZBEE ¢ &
U 72 JEREIR O T Aeg | ZAUFEDWriki A bxD & Zfli7e H O LKE L, Eq.(2.3.5D X 5 ITEFRT 5,

H?iﬁn‘?ﬁ“

4,=b-D=D,-t = D,=b-Dl (2.3.5)

PLEX 0, (REIRE o 1ZBE OIC & » THOBIS B E Sk U C LR oIS A E A2 & 58
L2858 oIS LR O R U TERT D, Eq.2.3.6)ZEEHIER O dh i i 1) OIKRREL o
%i—\”a‘o

< BERES D b VTN ) OARIBAREL 0>

L/, +1)=D 2 _1,-D,(n,+1)2 (2.3.6)

1, /(n, +1) I,

5| BEAEE 0 I 77 D B T L/ (it DI o & 38 U CRElE S 40, 5 3RMIBERIS o T ) M 3
LT E—A L MZEDHAMT) Qun (X EQRINDICLVREEIND,

M, S M, - 200, (1—"”0] (2.3.7a)
n, +1 Z(n +l) [
, M'1 a n,->aoc,l n, -1,
w : e | ] — 2.3.7b
Qun = Shoon +1 [Q 2(n, +1)- Zh] ( i ( )

-44 -



RC 3 JE it ZEEE O B O i S B3 B M 7R 2 B3 B iF 9T
F2wE BOEIICHET M AEBROEIER
Iw
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(nw+1) Equivalent
*at Jy aw oOw C,, Column
(nn+1) /
1 | 4 |
b 7 f t
! D f
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1 : Equivalent column with identical cross-sectional area of the boundary column (=bxD)

i1 . Equivalent cross-sectional area to the equivalent column

Fig.2.3.2 Modeling for a

—J5, JEMEBESR X OB Do B £ BRI IS U D IR o0 Bl P 70 M, (ZEERERR 0 5158 7 23 i
FE—AY MZFH LTS (Eq.23.7), 2D OBETIE, BERERT OBIIRIAV/ N W=D, 5]
SRAEED & O TN ) DIRBUILERNE B X b D, L LRRL, T b ORED T
N~DFHIXBIRMEE & LR TEM/NS <, FHIRA~DOEEIN NS, Lo T, Rofikkk
ZHME LT EqQQ3.7)DBERRS O M /) My iZ a U5 Z & & Lz, Eq.(2.3.8)IZJEAE
BEFS L OBH DT E AL/ BEIZ 31T DR O Wi ) My, 36 KO£ — 2 > M X 58 Ak
11 Q' wmi 7R T,

M' = o . zawo-wlw . 1_ nh ) lO (2383)
"o, +1 2(n, +1) [
' M,, a >a,o,l ny -l
=W . woww | ] 2.3.8b
Qs Sh ;%+12@wn)zh( l j ( )

Eq.(2.3.7)8B LT Eq.(2.3.8) L v, BEHERO T I OEF Muw B X OHFE—2 2 M2 XD
BT O wmo 1X Eq(2.3.9)E LTETZLENTE S,

M@=§ﬁf_zaﬂk,@_ﬂjq (2.3.92)

=i A I

0, =L 2L [y 1l (2.3.9b)
>h  n,+1 /
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233 HtREAOZHY HMEEOREREE

Eq.(2.3.10)(Z it B 1 it B EE O ACE I Q'wo 2, Equ(2.3. 1D BH HKIE ey 2777,
Eq.(2.3.10)3 XY Eq.2.3. 1) 0% 1 BIEEHE O QM) 0 F 54, 5 2 HIIFAA BT
DO /W 71 DT 5-% Z 0 E el L T\ 5,

<EIEFH >

—o - )| b b Zh
_QW{1 %+4<@ a)[nh Zj+@+}) 2h>} (2.3.10)

R @_a)_L_é.+@+i)ZZg 2.3.11)
n, +1 n, I L) Xh

Fig.2.3.3 IZFRBRIKD RC HLHED 13 OFEET DM T1, $-ET D pewrs DIEET D11, 2.2.3 i
T/ L7e FEM fEHTIC B W TRIE R KM /1122 L 72 R=0.5%rad O &' — 7 FEORHTHRER, L O
FBRFE RO B KN %2 N FHoRT, Table 2.3.1 ICHRBEROIET M OFFEREZZN
ZHrd, 22T, RC HHED rs DEHMICBEST DM NIX 1.4 HlZrRT Bq.(l4.D)B LD
Eq(1.42)DfER %, LT D pewrs DEESMIZAEE T DM /115 2.3.2 HilZ”T Eq.(2.3.8b)F L
Eq.(2.3.9b)DfER %, ZHEMIAET M /11X Eq(142) DR 22Tz, 7=, FKX
HC A D B D ERE O SRIIRE O, 1 2.2.4 i & FIERIZIAIR mean OFER (322kN) % H
Wz,

FER LTZ pewrs DI RC HHIED 13 DA & LL~T, 1 5B D3RBR IR TIE 0.16, 2 FIBH O RBRIA
W2 Tl 013 R Sz, TORER, BB LT s OREM /X, 1 FIBHOERE W1 ik
140kN, 2 F1BA OERERIATIZ 105kN L 720, SEBRFER & BAFIZEE LT,

PR LT pewrs 3 KOV FEM fIRHT O SAERGA O AHEEAMNNTE B T2 &, BIRMABEERT D
B TR ARG SR O B VW ) & B TR <, TERARIBE RIS o dl R 1 XA RS S o A
AW E AR TRVWVEZ R Lic, ZAu, TR T a BT ORICERT 2 &AM
£ 0 SIRMEE Z B 5k /23, JEMGEE =R I MER T 5720 Th D, Lo Ledi s, BE
H o T/ O AFHER L OB 0 BT OO AWK ) O/ FHEILE RIS R LS
LTW5, LLEXY, R LT pewrs & FO TR SR O FHRAE SLIHER B O R EE O i Kt /)
BLOBHO LTS EEBEHE OAHE AW ZFEE R FHEFTRETH 5,
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Beam O 3F m 2F m 1F
Wall (+Column) O Left Middle m Right
200 T T . 200 T T .
g W1 12 W2
o o
S 150} 18 150} .
< <
%] 1 @«
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< 100F 1 < 100F
i) 9o
E E
T 50F 1% 50- .
< <
8 18
0 1 1 1 0 | | i 1
oufs FEM  TEST s newfs FEM TEST
Fig.2.3.3 Verification of newrs
Table 2.3.1 Comparisons between rz and newrs
(@) rs
Unit: Q r Quwmo Qwso Qwo Qexp
kN oxp 3 Total | Left | Mid. | Right | Total | Single (kN) /Qwo
w1 145 | 0.59 150 | 75 - 75 40 13 190 0.76
w2 96 0.45 93 31 31 31 53 9 146 0.66
(b) newl’3

Unit: Q r Q’WMO QWBO Q Qexp
kN e | newl3 TTotal | Left | Mid | Right | Total | Single “O 1 /Qwo
w1 145 | 0.43 100 | 95 - 5 40 13 140 1.04
w2 96 0.32 52 48 2 2 53 9 105 0.92
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2.4 FED

ARFE T, (XU DICHEER NEEHERED FEM @217\, B0 R T o%kds X ORI O
BHUSHZMRET L, £72, RCBIHEDR DERIER r MEE S DM & el L7z, KIZ, RCHIYE
DB PRIBER 73 123\ THEGE S 4072 HR HEHEARS 2 B L oo, HiEIR B D e i R A oD B D AR
Dk AL &R AT,

oz LT ICR,

1) HEEBH OMEREICR T 28 0 B TFOZRITERAAOEITICHE O LA OEKIZEL Y r 38
ETHKEOR AW EAHE LT,

2) SIERMIFEDSEL Y 1< BEE, BHO ETOROTAW N EHYE S SIRMIPMER T2 D0,
HIFE— A MG T OB ENZ N &b, mWEAMDZAE L, —7F,
JEMEFEAS TR D FF < BERS L OB DNIZEeE N2 REIR, RO AWM &850 & 5 R/ 25E
MT2600, iFE—A 2 MIFET DEEREHENDRNZ LG, AT 2RI
Koz,

3) r3 OFEET DM I3 IZEERIER O gl 1 /) O KM IZ X - THERE B 1 i =R EE 5B R oD e Kifit
N%& ElRlo7-,

4) it B A EREE O R RR A 2 ARE L, BERIES oD il T 5 B 0D R 77 0 ] e e 2 A3 % 72
D DIRTBAREL a Z1-EE LT, a (TP RIC & - THBI S FLI-BER SIT5x9 2 BT o ek 2
BRELIESGEOIS LR O L TER LT,

5) RC HIMEI R S 5 EEHES A BEIE L DD, o & FWoBEHBT o i /13 L OB 0 E R o
ROEAMT I BB LT wowrs ZIRBE LT pewrs & FIOTZHRSREE G OfE I3 B 0 D513
(I & FHER B P TR BESRER (A 0> f5 KT 36 JLONBH BB F 02 & BEJAIER o0 A AU /)
AR R FHMETE 7,
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3T HAMMIENETT AHMRFAODZAET S
EEM R D FFMIEETEERRICE D it HEREDBAREE
31 IFLsiz

55 2 BOUR LICMGERER TIE, RC HME IR S DB A& SITBET DM IHRREER s OIE D
WY, BES S TN D MER B 1 2NEE T R ALE S U EE I EREE AR L L TR, B
FHHE « JEREZ R IT WX O RFHETH Y, A L TORIEE SNTAHEE AR ik bIER
BaThoD, LinLaehb, EREOREY TIIHERR ABMRALE SN LA, —HRAARL
DEBHEHEZLNTND, £IT, AETIE, RCHIUE DNTRIND i BLORMAETRELE
ety (F5 2 FE) ORGVEZIBRGEET 720, #HERH N2 SRR E S o EmEeE (LUF,
HC 5 BA PO TN AR EE ) RUBRR 2 SR YE IO i BB D O BB LUOMAG S 228K e L, 250
BETHDN rs H3F LOHER B MEEMIREE 2 (K2 A TERROHEMT IR ATV, YRLMNEREE DAl
B, KM 36 L ORRERE 2 52,
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3.2 AERIAFTE
321  EAGHE LB

Fig.3.2.1 [ZRBRIAT IR L OB REMI 2, Fig.3.2.2 (C8B L UOREOWrE £ %, Table3.2.1 (27
BRIK OS2 iR, BRIRIZTEO RC BRI 2 EEMERE A EE L 1/4 A
TN DHLONAEER SN TEY, @S 3,000mm, 2K 1,900mm Th 5, ZlEILEEE & [F)
—O=FE 60mm & L, WiEfEs L OWIRIEL RC HIHE IR SN AR ORESE 2 35 L 5%
G U7z FEBRAEIL s LB R BLE - TPIR Th 5, s WNO IZEERH 0 BERBRIA & L, SBRIA WV1
:t%@@ﬁ#ﬁ CHERBAN 2/ T 0WBRIATH D, £72, r 2MHERBR DN EEEE O KA1 5

5 R HERIICIRAET D72, RBRIK WV4 & WVS T WVL K0 6D 28 121 fERE W
RERIKTH D, TNEEBRT LD, RBRIEAWVE TIX=EHOE22< L, RBREA wWvs TiiaeE
DORRAEI M/ LTz, EHIT, BARRE « RHER B 1 E g iR EE D A IS5 2 5 8
ERRAET 5728, BB R ERIK WV4 & WVS O i35 ME 25 X O ICHE L, Zhb 0k
BRIRGTE O F & & ZHT 570, BERIK WV 8L WV4 OB O ZRIE hoxl=700mmx200mm T
BV, HERIK WVS5 X hoxl=46Tmmx200mm T&H 5,

Table 3.2.1 (278 L7= &R OB DKJR (72720, WV4 O 3 BI3EE+2) 2+, =
ZT, on, nBLYrnOF0REL/NSVEEBITO RC HUE DT DR r LEZL TWND,
ZIT, nBIO nEEILoBREEEFEL, &8I LI NI X 2 AR K OV HfHE
DRBLEEZ T HIEBERTH D, LEBn->T, E2RBREICE TS niZRUETH S, £72, %

JECHER B D 2 Bl S 723 R IR WV B L OVWVS T, RCHRAEDR NKRERIT s 23R/ & 7
%, LFROME VD RERIR WVA 1 s 2SFRBRIA WVS ESM & 7225 K 9 ICERFEH LAY, —E%7- 0 OB
H A HBRIR WVS J 0 R&E Wiz, B OO RAEREIC X D8R n N/ MEZ R L (7272

L, %ik3 5 L 5 ICERIC X DHEEMRIT » OAEISDVFERBI S S ),
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Table 3.2.1 Specifications of specimens

WNO WV1 WvV4 WV5
] r=min.(r1, rz, rs) - 0.61 0.70 0.74
Reduction r - 0.88
ra - 0.70 | 0.76
Factor s - 067 | 0.74
bxD (mm) 180%200
Column Main bars 12-D13 (pg=4.23%) | 8-D16 (pg=4.41%)
Shear reinforcement D4@50 (pw:=0.31%)
bxD (mm) 60%180
Beam Main bars 4-D4 (p=0.29%)
Shear reinforcement D4@ 100 (pwb=0.47%)
Wall twXlw (mm) 60x1,700
Panel Wall reinforcement D4@50 staggered (ps=0.47%)
hoxlo (mm) - 700%200 | 467%200
Openin 2ho (mm) - 2100 | 1400
p g Vertical reinforcement - 3-D4 2-D4
Horizontal reinforcement - 1-D10 2-D4

pg: reinforcement ratio of column, pwc: shear reinforcement ratio of column,
pt: tensile reinforcement ratio of beam, ps: shear reinforcement ratio of wall,

pwb: shear reinforcement ratio of beam
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Fig.3.2.1 Configuration and bar arrangement of specimens (unit: mm)

250 kod 1500 \20d 250 250 ﬁod 300 lzod
2400
50125 D4@50 12-D13 (SD785)
o O O /2 T“:)»
}7 o) al|—
%I i D e E»g
\ <
D4@50, 0 0 O —«t
staggered 2% 52l 53l 52 lZ"
200
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Q
y OO
~
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(b) Column (WV4/WV5)

Fig.3.2.2 Cross-sectional details of members (unit: mm)
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3.2.2 RS

ARBRAFHEIRF O 2> 7 U — b OFRFHEEMESR T I3 F=24N/mm?, SKFFAMFRIL, MIAERS2Y D13
(SD785) F7=1% D16 (SD785), B AAEAHIEAA D10 (SD295A), & DD ELFHA D4 (SD295A)
Th D, Table322122 7 U — NOMEMGNE, Table3.2.3 I[85 OMEHEEZ T Ehrd, &
BRIA WV & RRBRIR WV4 & WVS [ZEBRO FERAFEEN R 578, REHEERE IR —CTh Y =4
FMEHLRESERLT, av 7 V- MAEOEITH TERAELSXICEIVAELLLD, RBRK

MIOPERE R © 2 T 2 B AT E BB T 5 et e LT,

Table 3.2.2 Material properties of concrete

WNO wv1 Wwv4 wv5
Compressive strength (N/mm?) 27.0 27.7 36.4 38.1
Elastic modulus (kN/mm?) 25.7 25.9 28.4 28.8

Table 3.2.3 Material properties of steel

Yield stress Elastic modulus Tensile strength
(N/mm?) (kN/mm?) (N/mm?)
WNO D4 (SD295A) 347 18.2 491
wv1 D13 (SD785) 766 18.7 1,017
Wv4 D4 (SD295A) 385 19.2 523
WV5 D10 (SD295A) 342 19.0 499
D16 (SD785) 790 20.8 1,006
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323 HAMHBRHOETE

BES R OBEM OB O AH5RATIE, 2010 AR RC #LYE DHESE DGR T IEIZIE WA BEDORREE - AW
71 Op (&> THA U 2B O BEAEROMEE ) B K OVEZEM O M F £ — 2 > MR c&
5 X9, BIOEPICAENCELE Uiz, BY D AR OB R IZBH 1 A5 500mm LA & RC HiHE
OTITHE SN TV DD, RO Z 1/4 & § 25729, Figl3231n7 L2025 125mm
LAY, AR Db & B & U < IZBEBERE O & o0 h REIRR A 48 2 72 OB & BR VA TR A7 00 A 20 i A
& L7, AREiCIE, BBE WV B XN WV4 O g OA B OmMEREZ R & LT, SR
DT8R 2 TR0 O-@D FIEICHE > THET 5.,

O BnZEROMmTE— A > MMoxrd 2 #Et

(Z_Am)(fﬁg'%Awf{J+££%i£Z%r o~ ()QD (3.2.1)

@ BAETofmhiyEe—2 v MMoxd 5 8E

2
h—nh
(h=h,,) A‘f‘%Amf' 'i———ﬁﬁ—pmf}zéL@QD (3.2.2)
V2 4n 21

v

@ BA A BB E ORI 3 2 MEd

Aﬁ+Af hy+1,

323
NN 6.23)

ZIT, Op: AR, Aqa: B OEABORD I OWEFE, A, BA H &I OHER O W
HFE (FRLD A RHEEM 2 & de), 4, : B AAHORTOWEFE (FRLD A X°REMH LS
T2), Aw : BAAAHIRO B A T#E ORER & IXRNTECH S D HEFH OWIERE, Ao : B AR B8
TIEHE ORI &3RNTER S0 D B OWEFE, n, : MEE TGS S A0, n, 0 4
PLIE CEREL T M5B 0 ORL,  py - BERROHET ORSRAL EFEL) , por + BERR OB O A58
ikt (BEfjEE) Tdh o,

At +

\§125mm

125mm 125mm

\p90mm
\\

O3 87 DA HhEEE
Fig.3.2.3 Effective area for opening reinforcement
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LUF T, #ERBA Mg iR EE R A WV 38 X OV WV4 12813 B AAfisRAl O E IV OR
—j‘o

() BEHHEAW D OREE
FHEBI O EEEEO B 0 2 S U 72 EEIFFAE AWM Q413 RC Y DITREND Eq.(3.24) 5 D
ZIRD D,

0, =max(@,,0,) (3.2.4)
Q1 :ﬂfs (3.2.5)
0,=%0,+X0, =plLf +bjlof. +0.5 f,(p, —0.002)} (3.2.6)

ZIT, I BERORES, [ EEGDREEM O, £ ar 7 ) — N OBMERY AKIET
FE, ps: BERROE AWHHIRGILL, L BEROADR S (WD H 2581 =1, ' BERDNIE
R X)), fi: BEROW AW ARG IBRIG B, o« Bl O Al R F A IR 28 5 [ RIS )
FE, pw: FEOHR (20.012), o : FHZFIC L DEEGRE (RAFERT & BEOFETIE 0=1.0 &3
%) Tohb,

F£ 72, Table 3.2.1 &V FHHEHFIO KRR 5/ TH Y, 22 HOTIEFE— A > K
TV B EGHHY AW ) Op 2155,

0, =0, x1,=154N

(i) BR O 4O E— 2 > M3 2 HE!

B O A2 A OFINENT £ — 2 > M2V T, Equ3.2.1) R S iz, A4 OB N
B G ELECHD, Lo, PRAAON DT G5 ORI Aolt, Jotic k
WRET D,

ti=1,) 0. 4,

— =31.6mm’
(Op) £ S o) ey L

HERRIZIX D4 (1 ARDH 720 OWTIEFE 14.05mm?) Z A5 &, B D58 0 B BT Ot & 1X
BN ELT) S DR O LBEARENT 3 A (331.6 mm?/14.05 mm?) EHE SN D,

(i) BAO E T OIS E— X > Moxtd 2 et
B O E TR OMIETE— A > MZOWTIE, Eq.(22)0 e Snizs, TR g
(BEfD) 1T ETH D, LEen->T, B0 ETOB O (BEH) OBrmE 4k, wEAUTLD
HET Do

I,-h o tl=hy) 4,
AWZZL@—%)j;Q) 4n, 2

=56.Tmm’

B O BESCix, SEfHI2iE D10 (1 RKdH7= 0 OWERE 71.3mm?) ZHW5 &, BOMEo T
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5 ORERD & IXBNCER RS S DR O M BEARET 1 AR (371.3mm?/56.7mm?) EEEIND, —
77, BRO TFESCIX, BER (4-D22) MNBEOMmHEE LA TH D=, BOMRo BT
W ORER EVXRNCECR SNAMEHIIARECTH D EEZ LD,

(iv) BR DA E oA MEHE Ik 2 HiEt
BR 1 BB S DA INAE 2DV TIE, Eq(323)NE SND Z & iR T 20N END D,

s, Mth o 5y 7004200

=— " x154x10° =105.7mm’
271 2%345x1900

B0 FECIE, 4,=99.43mm? (1-D10, 2-D4),  Ay=84.3mm*(6-D4) LV,
A + A, =1837Tmnt’ >105.7mn?

L7e->T, BAA EEoMMRE N D% EH &2 e 3 5,
B O FESCUIX, A4,=28.1mm? (2-D4), A,=84.3mm?*(6-D4) LY,

A+ A, =1124mn7’ >105.7mn?
L7=M-> T, B T OMIMEEI N3 2GR 20 e 7 5,
PLEX Y, #EER O EEmMEREREBRIR WV BL O WV4 (hyxl=700%200mm) <Ti%, BHO B
TOR OB IT D10 O 1 A%, B OALA TOROMRGETIZ D4 O = ANNETHS, £7-,

[FIRE 72 FIEZ T TERERIE WV (hgxl5=467%200mm) ~TIEBE O fHIRASE T 35 L O O fsRgEs & &
IZD4 D2 KNI TH D,
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33 SRERETE
3.3.1 #HArEE

Fig.3.3.1 [ZRBRIK DMV EE~DOREX &~ T, AL CTIEBEEOME B CTRE L ENIC
L DS E AP EREICENT 5 FEEHWT, RBRESEOE S0 791 12+ 5, b,
AWFFEN R 35 Emgﬁﬁ%%WNOkWWIi%ﬁ@@ﬁ%%mfrbtﬁ%%kﬂﬁuﬁﬁ
B LT DT D DRI A S T HFE L, WAZ 7% Fig3.32@InT Loty 7
YaA v &S PCHlRIC i@%%bto;HT‘Pcﬁ%i EEEOEH O g5 IUEIC
BWTHIE 1.5m & RGE L7ZIRA T 712l S5 845 (D13@100 Z7)v) OsfllM:Iz ks k%
M4 2 6-017 & L=, £7-, PCHllE L EX X TOBAILBNCH T2 VT TV AN D=0
RERIR WV4 & WVS TlX PC SR OMBICERE Ly o vy ad v hEEAKL, £, K17
L—LDOEFIZHN ERAZ T ORIRGZEE L (Fig.3.3.20)2 ),

PEAE DR % &0 TARER CIXARED EHEEZFIV T Z L2 X 0 KRBRHIZEMREICER T 5
JERGE S DN BLRA B & 72 5 K 9 ICa%FH L (Table 3.2.1 &), AEIZHlh ) 2 N2 72O B atim & L
7= (2 O XN EEEE O T STEALE S EMF RO R X2 PLICALET 5 & OREICESL), AT
T OFAFTHAT 7 L — LB LN ERAZ TR T T2 2 BOKFEF A NT % > F O faf EH O
KHEAE L 72D K Il L7, EALRHEMED R LT & U TR EGI#EIC L 2 KFET) 20kN,
40kN, 90kN @ 3 A 7 N EATo =%, Wi EAX T ONKFEEN 6 OFHEZFHMER S h
(=2,400mm, Fig.3.2.3 ZMR) TEBRUZEEMA R (=6/h) TEAMHIE L, 0.0625%rad, 0.125%rad,
0.25%rad, 0.375%rad, 0.50%rad, 0.75%rad, 1.0%rad, 1.25%rad, 1.67%rad, 2.0%rad, 2.5%rad %
1 A4 7T oh 27, =720, B OERERE WNO TiF, HAEEOREOHIRIZ X
R=0.375%rad 7> & IEH A 7 101D B2 D BFHE A & Uie, F72, HERR 0 EmEeEERBRA TIL, BID
DARTED FHEE K0 IERfrds X VAT O KMt S O 2N TRl S iz, FRBRIE T, Al
OIMINZIEFAF OIS & R TEER NSO BT 0 a7 U — MURZE SN DI HMEL
720, O ETFTOROBEHELANNIL DB LN, AEMEMOMINGHEETHZ & &
L7,
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(Unit:mm) Negative Positive

Hydraulic Jack

B [

T
7/9H=2,400——
0

- Pentagraphs restaining
= out-of-plane deformation

~—h

-

AN
s/
(a) WNO/WV1
(Unit:mm) Negative <«————— Positive
i M -
Hydraulic Jack Hydraulic Jack
H 8 7
3= :
S
N entagraphs restraining
!:'\ out-of-plane deformation
7 S S S S S S S S S S S S SSSSSSS

(b) WV4/WV5

Fig.3.3.1 Loading system

(Unit: mm)
\ Knuckle Joint ‘ |
—3 5 0— / +3 5 0—1 ﬁé’ 00‘1‘

‘ \PC Bars(6 #17) ‘ ‘

88 &
LA A
+-300+4

(a) WNO/WV/1
(Unit: mm) ‘
k30‘0ﬂ ff‘)’OO* ?“304’?
L (- ° -I
I
4 - °
‘ \—PC bars(4L23)/ ‘ ‘

(b) WV4/WV5
Fig.3.3.2 Details between stubs
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332 BIEEFE

HRRROZENLOFHAFE 4 Fig.3.3.3 (T, fRBIK WV4 & WVS [ZTEER O M3 1 5K
AN & L—FAAIFHC & 0 B Uiz, AEEBOMIEAF R UKL 8) 13 Fig.33.2 10RT
EHDEAZ T O/ E LCHBI Lz, 72, OFT A — VI ITLE % Fig3.3.4 27,
OFT BT =V I X 0B KR O R, B, BEOMIRT O OT HHE ST,

OVEIIMANC L > TALBHZBRICL VGRS, T4 71T L icxtibdT 200~ —
B =2 Lo TOCENA RIS, PHET, DOERORAREE L ONH AT v 7% FkicE
BEh, £, KA 7 LV OIEARN E— 7 B L ORI O EE A2 O CENOENR 7 7 > 7
A=A K0 RE STz,
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~==— Djsplacement transducer

@ Laser displacement sensor

700
1,350 |
i l_l’i
s s s ¥ s
—— l——— ~e——y v e
o <) A v
g') %" \ R /
B g — N——— B | \/ 8 | —
N
S S / i N E
A7 (@)
S g| = S S
§ K \‘\ /__ §
== e B e \/ 8 f—
N
o o |[IZEND
o) c) \X/ Q
I/\\ Q
7\ o
100 1700 100 100 | | 325 | 350 1025 100
(@) WNO (b) WV1
400 1030 400 1030
| > u A | = = a
S I S T
o] o]
J J J J
- e I —— =
S S
N ] N BN —
B | mm— YT/ Q)‘ B | I A C)‘
S S
S S
~ S ~ S
I I
N N
I S 1E S— iR —
r_ T R Q) L R A M Q
S 2
(&) I (o)}
w2l B : 3l il ':Eg il
100 | [300| 400 1000 100 100| 300 400 | 1000 100
] |
(c) WV4 (d) WV5

Fig.3.3.3 Disposition of displacement transducer (unit: mm)
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1 Column main bars = Beam reinfocement = Opening reinfocement
» Wall vertical reinfocement = Wall horizaontal reinfocement

972

600

400

600

400

28

500 650 L 100 100
\
: El
N y
. H el H
T |
| aml AL ) | ‘ | | |
S E9)
S (=) ‘2
2 [ z
= =
N J
Tl — §  =ug = - y
| |
| N [ | | ) | ] |
S ©
S () S'_)
= s - g
= =
N J
= = | I [ N | ) | |
| (]
S
S S
™
| BT ) ) | | | ]
355 600 | 600 | 305 | | 855 | 600 \ 600 | 305 |
(@) WNO (b) WV1
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Ak

1 Column main bars

v Wall vertical reinfocement

= Beam reinfocement

= Wall horizaontal reinfocement

= Opening reinfocement

250 250 | 350
b |
-
N
S il 2
S R
2
=
L ] iy
8 —
= 2
===
- - = |
S
<
[ | nisly
1154 | 250 | 250 | 500 | 400 |98|154|
o : : | 2
(c) Wv4

500 . 350
| 1
_==I u |
. RERa 5|
T 2
R
S ~
3
S
g —
| |
e oy
T %
S S
3
[ee)
% —
| |
ot— fctaw i ol S o
|154| | 250 | 250 | 500 400 |98| 154|
48
(d) WV5

Fig.3.3.4 Disposition of strain gauges (unit: mm)
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34 BEDRKICL DM ANEHE

FRBRIEO M T HRTREIL Eq.34.) THET 5, MR NaBRIEOE AW R EIL 1.2.1 HiT
R L72JRR mean 2 (Bq.(1.2.2)) LV REE SN TE Y, MR O R R R AR 0 & A Wik Je i
JE 1T AR 0 38 R ER B SRR A 008 AW R RS O RS SR RC HRME DOKIER r (Eq.(1.2.6)) B
K ORI TIRE LT powrs (Eq.(2.3.11) ZF U CTHET D, Table3.4.1 (2K RBRIR O BIEERE

(Table3 22 B LV Table3.2.3 M) (TED S BSHOERMEFIRMO— % 4 ~7, Table3.4.1 O
BB rQu/Ome £V, T TORBRIROIIEL X3 AWIEETL & 70 5 19 ISl L7,

o My G0yht 0.5% (ay, -y )- 1y +0.5N -1,
mu — H - H 3.4.1)
ZIT, N: YR o <AEOEE S, a  EEER OEWTEE, Za, o BERGET O Wi
fH, oy : 1EJ Hazkj’? DRERTRIE, 0wy @ BERERF ORRRIRE, 1, : WA TUOREERE, H: nhm &
ThH D,
Table 3.4.1 Computed strengths
Strength reduction factors Seismic performance
r=min(r1, ra, f'3) newl’3 rQsu (kN) Qmu (kN) rQsu/Qmu new’3Qsu (kN)
WNO - - 471 877 0.54
wv1 0.61 (r3) 0.45 289 880 0.33 217
wv4* 0.70 (r2) 0.58 389 950 0.41 324
wvs 0.74 (rs) 0.58 421 947 0.44 332

* Values are for the 15t and 2™ floor.
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35 RERIER

B RERIROMTE — 2T A R % Fig3.5.118, R OMERRILO FH % Fig.3.52 ICENZERT,
F 72, Fig.3.5.1 TIEMERR 0 3ERIR WNO O AW RTREE Qq & — R8T, ZHUC &R UGt
BER 1Qw & BIERT, 1Ou BIRBFRRT, o Ow XKD — S8 THE TR, £7-, EBR
FoE LN RKm %O, ROX AMES <, BEWETOTES A TRT,

F£72, Fig3.53 IZHREBRIRICIS T 2 EBRE TREOMIEMER 2773, AT, E#ARICAE R
OVEINZERT, AWMFICECZOMENEMRT, BLXO=a 7 U — hOHEZED SR
LTENENRL TV D,

3.51  ERAOGER{A WNO

HEBH O BUBRIR WNO T, siinfdEE o R ZOHIRIC X 0 Z A R=0.375%rad 76 IEH A D D
HFH# & L7z, R=0.125%rad O#AFH A 7V Tik, ZJER TN D — @RI 20T T AN
OB U7, R=0.375%rad O#FHFY A 7L TiL, £ EAZ TS TR ZIIHIT TR
ABTOTEINE K OEMO ERX 2 7 EBER O R OO OEINNZNE A U, R O RBRK
WNO Ti¥, R=+1.0%rad DY A 7 BT, JEMAIOBER I OO ICH T a7 1
— M OEENHER S (Fig3.5.2(), MK TFRRD LN, 72, BBRIK WNO O Kl /11X
S00kN TH Y, JERAZ AW AW RTRE O IXFEBRO BRI 2 Z 2T cE 5 2 &
Lz,

O  Maximum strength
A Compression failure at the wall bottom

500F I I I T T -
400 |WINO -

S00F __ _Q=471kN Qe =500kN - 7

200 n
100 —

-100 —
-2001 .
-300 —

~400r Fig.3.5.2 1
500k 1 1 e

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
Drift angle (%rad)

Fig.3.5.1(a) Shear force-drift angle relationships

Shear force (kN)
o
B

-64 -



RC J8 i MR EE O B 1 i SAZBE 9 2 M IR B 2 05
953 F AW AT DRERDE O & A 3 DA M EREE O #AY U SRS LS I EEER OB BREE

(a) Failure of the wall bottom (R=+1.0%rad)
Fig.3.5.2 Local failure condition

Fig.3.5.3(a) Final crack patterns
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3.5.2 FAERBRA WV1

AMFFENT I 1T 2 M= BR 28 e i R BE R AR L A R L2 B B B N 0 B2 D3RG L~ 3 A A LS /)

<2 % & TR ST AR O > BT 24T - 7, RBRIK WV TiX, 2 R=+0.25%rad
DY A 7 MZEBNT, T (RAE) BLOZEHR O TRZOEAWOOERNOILIES R S,
R=+0.375%rad OH A 7 VT JgB IO =@M O FROFAMOVEIN Lo 27 U — NRFE
LAGsD, HABIC X D HRENHEE IC/ -7 (Fig3.52(b)B L), £72, R=0.75%rad DY A 7
MZEBW T B OEAMATOBERETICKIT 2227 ) — FOEEIZES MK TFRETTE
(Fig.3.5.2(d)) .

B K 7T IEH R T 183kN, A#ifar T-241kN & 5ik L, EBR OB KM /1% 312 X 2 FH5HE 289kN
EREL TS, ZOFRRICOWTIIEERD 3.7 fi TR D2, AFZETIRE LT s 12X
BRI 1 &0 BRI R AR L, ERO KM 6 LIERI TR0 E - 7228, i
it e b EREIEWEZ R 2 L AR LT,

O  Maximum and minimum strength
X  Shear failure of beams above openings
A Compression failure at the wall bottom
[ I I I I I —

500
Wv1 :

400
300 Qax=183kN

200% .......... r3qu=289kN
100 ol 3Qe,=217KN

T

T

I
|

T

-100
-200-

T

Shear force (kN)
o

Fig.3.5.2(c)

_3002 ............................................... Flg352(b) _

_400% len='241kN |
Fig.3.5.2(d

500 Fig-3.5.2(d) i

! !

-1.2 -0.8 -0.4 0.0 0.4 0.8
Drift angle (%rad)

Fig.3.5.1(b) Shear force-drift angle relationships
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R
gaA - 1
| .
bl {‘_
(c) Failure of the 3 floor beam

(b) Failure of the 2" floor beam
R=+0.375%rad

R=+0.375%rad

(d) Failure of the wall bottom (R=-0.75%rad)
Fig.3.5.2 Local failure condition

2

X

A <
\ J
\ >
/ \\\ //
\ e
[ >

Fig.3.5.3(b) Final crack patterns
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353 TEABRAO 7% LEER{K WV4

TEEBBA A 72 LEBRIK WV4 OIEEAT TlE, £ R=+0.125%rad DY A 7 MZEB W T—ERA L
o gk, “EEn EE, —EEnARICET SEERICEABOOEINSENENE T,
R=10.25%rad DY A 7 BN TEMAFEIZHIT OOFIN AR ST, R=+0.75%rad DY A 7 LT
X TEBR O EEick i a s U— REE L (Fig3.5.2(e)D 1), MK R4 L7, i<,
R=+1.0%rad O A 7 /LT @O B SR Z 712 F TOUEINAYEE L (Fig.3.5.2(e)D
i), MARKEARTF L,

AT TIE, R=—0.125%rad DY A 7 MZBWT—EI O _E5o gk, — @O0 OAM B 5
FA 2 7R, —ER AR 2RI E ABOOENAZNZEAE U, R=—0.25%rad DY
A 7 MAZEBWDTHUFEIZHTOOEIN A MR Sz, R=—0.375%rad DA 7 )L T—J@ o Lo
ROV ABOVEIN Eoa 7 U — RBETE LiG®, R=0.75%rad DA 7 MZEBWNT—ER
O _E# o " EEOW AN X DEENBEFE /2 > T2, R=—1.0%rad DA 7 )V C— @B DA DO BERK
T U — MO MK TR AL (Fig3.5.2(f) . € D%, R=1.25%rad DY A 7
JVCTJEB N O =R E BB ARMEE LTc, T72b6, B0 OAIIH D0 5T
BRIA WV & [FERICHERBI O 2585 & U7 /i OBERN EENBEHRT 4 3R & L CRER (=2 v ¥
7)) T AHEMPBIEE S,

e RIM I IXIE AR T 348kN, B #ifaf T-362kN % 5rdk L, FEBRO i KM /71388 DK 2 & 8 L
7o B AW RIREE mQu ([CEES 2o T2, ZHUT EFRROE 0 AGRBRIADY ry 2NEE 5 J BN DA
BRI <, n PEET2EBEOMEREL 2 L2 ICERT D LB 255, Table 3.2.1 12
RUTEE DT, ABRBRIKIT 2 r & FEIS 7228, 23U rs S EBRIE 2@ KR L7255 8 & IR ©
D, nEEELE w3 (X n &2 FEISTEY, EA#HN & BICEROREKIM ) & RAFICEAST S
fERN FRROBLEE T TND,
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O  Maximum and minimum strength
X  Shear failure of beams above openings
A Compression failure at the wall bottom

500F | | | | QI =348k|N

wo- Wv4 0 2 maS4BkN

300r r,Q,,=389kN § :

200 — - - newr3qu=324kN
100F oo rsQy,=411kN

-100+

-200+- Fig.3.5.2(e)

Shear force (kN)
o

-300-. . . —_— — 7
~400 ey s .
-500+ | | Quin=;362kN Aot |m =
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
Drift angle (%rad)

Fig.3.5.1(c) Shear force-drift angle relationships

i) R=+0.75%rad i) R=+1.0%rad
(e) Failure of the wall above the opening on the 2™ floor

-

(f) Failure of the wall bottom (R=-1.0%rad)
Fig.3.5.2 Local failure condition
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Fig.3.5.3(c) Final crack patterns
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354 ftE/BEORERAE WV5S

BT T, £ R=+0.0625%rad DH A 7 WIZEB W CTEMFEICHITOOE N, B0 EAETIcE
AWTOOEIN A Uz, R=+0.125%rad DY A 7 /L CT—EE IO @RI E ABTOUE N, — 8
A B o BRI ABONEN N ZENZIE Uz, R=10.5%rad DA 7 ViZB N T—BE LU
JEDBR N EEBIZE1T 2RO AW X DHEENBEEIZR Y (Fig3.52 ()8 L Uh), 270K
TAERR ST,

AT T, R=0.0625%rad OH A 7 WO CTAHBREIC#ITFTOOEIR, B O FAEICE A KO
OEIN, —BE IO B DA T DEERIZE AKTOOEILNA Uiz, R=0.5%rad DY A 7 v
TEMAD RSO BRICETA A — NOHFEICHES MK T AMRBI N,
R=—0.75%rad O A 7 /LT @B O _EERO =@ ot AWl & —JERE 0 AR OBEFR I 1) 5 =
> 7 U —bOEE (Fig3.5.2 1) IZLvmhnks {EKT L,

B KM 701 E AT C 364kN, Eflifif T-352kN Z 508k L, FEHERRBRIR WV & [FIRRIC r3 1335 D
BRI 2 BRFEM L, ewrs 12 & 0 GRS FA U S iz,

O  Maximum and minimum strength
X  Shear failure of beams above openings
A Compression failure at the wall bottom
I I I I I I —

0 R L — )

.......... r 3 qu:42 1kN
roul Qe =332KN

500
400
300
200+
100

T

T

T

T

-100
-200

T

Shear force (kN)
S

Fig.3.5.2(q)

T

-300} Fig.3.5.2(h) ]
-400- . . .
ooooooooooooooooooooooo ; eeccccccscscsccccccccccccd Flg.3.5.2(l)
-500t 1 Qm"”x_-352kN1 ! ! -
-1.2 -0.8 -0.4 0.0 0.4 0.8
Drift angle (%rad)

Fig.3.5.1(d) Shear force-drift angle relationships
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(9) Failure of the 3 floor beam (h) Failure of the 2" floor beam

(R=+0.5%rad) . (R=+0.5%rad)
B 020 B B B e e

(i) Failure of the wall bottom (R=-0.75%rad)
Fig.3.5.2 Local failure condition

|
]

i

!

I

i~
/)
y
P

Fig.3.5.3(d) Final crack patterns
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3.6 R B OB B S EBR IR (2 & 1 S IR EIB DR ET

HERBH 1 BERRBR R 2 331 D AT A R=0.25%rad 75 R=0.75%rad £ TOHA 7 L — T BD
FE, BEMER O M 25005040 & Fig.3.6.1 (2”7, [RIB T Ol s mZ5 1% Fig.3.2.6 12334 s BRI
ECH D AT BT KV HIE LTe, £7o, SHERE PR IRIZ 31T D R=+0.75%rad D
A 7 Ve — 7 FEOZETEHINS X % Fig.3.6.2 I, [FKDOZERIX Fig.3.2.5 128 LTo/KYE, $hiE
ENLEF O FERMEZ 10 5 L TRI Lo, RBREPNEOZE TR L IEER TEIH 7z 2RO UEIR
b EICERR LTz, AT, SEROLEAMIINIIT DK EEE 0 DA TR O KA R L2 H
H L, Table3.6.1ZF &DHTRT,

Fig.3.6.1 £V, fEAERERIR WV Ol 5 [0 2575340 TlE R=0.25%rad DY A 7 VLREN GBI O &
> THEI SN AR E N ENEEEET LT, Fig3.3.3 L0, TEME O 7 LEERIE Wv4 TIE
BRIR WV & B D BEO#l G 22 AL O F X 23 572 2 T2 O HE D BT T E e b DD, [l D
BN oAV ERRR 22 [ A 7R LTz, L7edoC, BBRIR WV4 & WV & [FRIERICEH N 2555 & Licif
BERRAS, N L CE—A Y MIEHIL-EE 2 b5, £72, Figld.6.2 ()8 L ObIIR Lz 2fE
AR 9% &, BRI WV4 [ 2B R=0.75%rad TITRBRIA WV & FERICBI DO o =
JEG & EEBERCASE ARG U728, A5 OBERS —EREEICHItE b o U R TERR L 2R L LRl
AR LT\, —JF, E#HM R=+0.75%rad TlE, #RERK WV4 O =ZBEOEAWOUEIND =
HBER A BB D 2 L e < BT BE A4 U CE Y (Figd.5.2(b), —JEEERDS TIEEER DA &
SOCHIT R R L2, TORER, Table 3.6.1 XY ZJBRED LD KA & Or3-0r2 (X7 BRIA
WV1 XY LNTNESNT & ZfER LT,

it/ B P ERBRIA WVS TiX, Fig.3.6.1 KV IESEHT & 612 R=0.375%rad O A 7 /L E Tl
BEN — IR [EERZE T U 7o, 2 AUITRRBR 1A WVS OB D ELE S REBRIAR WV B8 L VW4 L B
B DB FOBEROAFAEIZ L VB A ETFTOROEGED X A I v Z 88, /INEBRECIIBERKD —
(RPERHERE S 2, BT b AR SN0 EEZ BN D, BA L TFOROE ARHRHE
58 S AL72 R=0.5%rad DY A 7 L0 5 IXERERIE WV 38 XN WV4 & [RIERIC /e A BERR A E AL ALlE]
RS L=, E£72, Fig3.6.2 ()R L7z R=+0.75%rad (Z331F 5 &M TR LT IEHERBR A WV &
FIEFEETH - 7228, AH R=—0.75%rad 123\ TIZBE O AR OBER O EfRE) T — R TIE 72
< —HEROOTFTRLN, ZHUTRBRIK WVS OB O FOEEEOFIEIC LY, —EROA T
WCRBiFbar 7 ) — hOEERANE (Figl3.520)%22H) NRBRA WV L@ hozZ &R
R TH D, —J7, rs WEAZRTEEE A 72 LakBA WV4 LIl 5 &, BREIZ 0 b T AR
ROFKMINIFRRE TH -7z (Figl.5.1)B LN EZM), 72721, mBRA CIiEa#im s
5@k KO JgRER O/ OACEAER BIXIZIZRRE CTH H7Y (Table 3.6.1 /), TEMEHD OF
L2 10 BRBRIAR WVS IR WV4 & BT ZJEBER DK & 013-012 3 KON Ops-0r2 DR\ MBH
B&2R LTz, & <AIZRBRO X 9 IZHBRIA WV4 TITIEHHTICRB O CEgRED TR LIZ X 0 ZRIEED
AR & UM E o Tz,

XY, REiokste 3.5 SiCoARBREOMENR (B0 LT 0o AWk rs L ORER
HOEEE) ZHEx, SRR T 2RI U T rn ORBEITEW &l L7,
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Fig.3.6.1 Transitions of axial deformation at the wall bottoms
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(c) WV5 (Left: R=+0.75%rad, Right: R=-0.75%rad)
Fig.3.6.2 Overall deformation (10 times magnified)
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Table 3.6.1 Horizontal displacements of walls on every floor (unit: mm)

Left side wall

Right side wall

R (rad) 1stfloor | 2" floor | 3 floor | 1tfloor | 2" floor | 3 floor
JL1 JL2-011 | O3-J12 JR1 ORrR2=OR1 | OR3=OR2

wv1 5.7 8.7 7.2 6.3 8.7 7.0

+0.75% Wv4 6.4 9.5 0.5 8.9 7.0 5.1
Wwv5 4.4 9.1 4.3 7.0 7.3 7.2
wv1 -6.3 -8.6 -8.1 -5.2 -8.8 -6.8

-0.75% Wwv4 -8.0 -8.1 -5.0 -4.9 -9.1 -5.4
wv5s -7.6 -9.1 -8.1 4.7 -9.8 -7.7
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3.7 FOS S C&k HBHOEBEDREE

AR TIE, RC HME R S5 B DKBERE L OARRIZE TIRE LTz jewrs D4 EBRGFET S
7=, BIOBELE & B O R & A FE A 2 e i e S B A 2 e SR By 2R A i L 7, ARH T
1, BRIV 15O U7 AR BR 1 EE i RE RE AR (R D B KT ) IS ED VW T RC HIMEIC IS 1T 5 BR A
TKIBERE X OARRIFE THRE LT e DRHIAEE 2 MiFET D,

Table 3.7.1 3 X O Fig.3.7.1 IZ&RBRIKD F KM ) O & AWTHERTREE D FHEAE 1300, 730,
newt3Quu D IS, F 72 [FIFR CTIEAB 0 & SIS X D IRBEROFHEE & FEBRIE rrg O E A DE TR
T 22T, BHORIRER ORI g (XHER B O RBRIR DR KI ) Ores % $EBH O 5B IR D e K it
71 Owwo CBRLTZETH D, 72721, AR O & MR ARBRIE CIIpphaE, L<icary 27 —ho
JEAETRE (2 e K 1ON/mm? B DBRE 238 572 (Table3.2.2 35 X O Table 3.2.3 1), MR O
BRAR DI KM T Qo (&M EHBREEIZHS < JRIRK (Eq.(1.2.2) I L2 EAMREDOA B E T 5
Eq.3.7.)DMiEfR%k u (Table3.7.2) #F| L5 L L LT,

1= 9., (3.7.1)

WNO = su

22T, wOw : A B O RBRIK DR EHRE 2 W T2 AR TR, wvoQs : BEBH D FERIA D4R
SR Z W2 AW RTRE Th D,
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Table 3.7.1 Comparisons of strength and reduction factor
AlJ Standards 2010
TEST Eq.(1.2.9) Eq.(1.2.77) Proposed
Qrest HWNOqu r r r3Qsu| Qrest/ r r'’3Qsu| Qrest/ r newr3Qsu  QTest/
(kN) | (kN) "™ ] (kN) | rsQsu | "3 | (KN) | P3Qsu | "™ (KN) | newrsQsu
(+)] 183 0.36 0.63 1.28 0.84
wv1 O | 241 506 048 0.61| 292 083 0.30| 143 769 0.45| 217 BEEIEE
(+)] 348 0.59 0.85 1.18 1.07
wv4 ) 362 589 067 0.74| 411 086 0.53| 296 129 0.58| 324 BEEVES
()] 364 0.60 0.86 1.20 1.10
wv. ) | 352 603 058 0.74| 421 084 0.53| 303 776 0.58| 332 7106
Table 3.7.2 Correction coefficient y
wvQsu (kN) wnoQsu (KN) u
wv1 476 (0:=27.7N/mm?) 471 1.01
Wwv4 554 (0:=36.4N/mm?) _ 2 1.18
WV5 568 (G.=38.1N/mm?) (0c=27N/mm’) 1.21
Oc: compressive strength.
Positive loading: BWV1 @WV4 AWV5
Negative loading: OWV1 OWV4 AWV5
————110%r ————110%r ————110%r-
w00 ] Sz
— 300k 7 90% - 300k 0% ool 0%
\E: r':| % o i % |:| i
& 2001 . 1 & 2008 " 1 & 200¢ A -
100}- 4 100F A 1 10f .
. . 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
I 3qu (kN) r'3qu (kN) newr3qu (kN)
(@) rs (b) rs (C) newrs

Fig.3.7.1 Comparison of calculated and observed strength
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371 RCHEMKHOSTICEAT 5 HERE rs

128 THRIBLIZL DT, RCHEITREIND nlEEq129)LVEEINTEY, EERH LN
X TR IR CHILEGICEMT 5, £70, ©uT ¢ O ERESC RO B E R CX
Eq.(1.2.10) X Y 5l SN AR A 1ZE B S N3 Eq.(1.2.11) (28 LB KRR % 3 & 72 %, Table
37.IR LT IE/AHURIZ 31T 2 B AARIBER O FEBRE rrew 13, FEHERBRIK WV 23 0.36/0.48, THED
BA 072 LakBRIK WV4 28 0.59/0.61, HEE/INE OERERIK WVS 238 0.60/0.58 Toh o7, r3 &I %
L, WTNORBRIKTEH rn ZRKIBICTRIZHEREZ R LT, T205 rnll#ED FHEM rQ. Xt
R OB IR O B Kt 7] Oree 2 KIBIZ LBl > TH 0 (Fig.3.7.1(a)), AEBER CTIZWTHhoRE
B RBR KOS 1 OBE L B L ZEAE LZICHL 00D BT, s 1XFEBRIEZ KIFIZE AT
i L7z, 2L, 3.72HiCHih4 2 &K 912 Fig3.4.1 128 LTz & 9 IC&HERBE 0 E il EEE R BR A
DFKI IR IZBR OB OBESG O JEMEIR S BENIZIES AVIAA TS ZENEREB X DN,

—J7,  r3 X DM AIEEM 1300 1E Fig3.7.1 )R L 9 I2T _RTORBRIED KM ST O
ZFEo72h, & ACHRBRIK WV OB 2 Kt 7] Qg & 1.69 {5/ NMIFHE L7z, Z
AU IR 72 AR EOBERROE— A > MEHLZ BT 2 3 OEICRR L TEB Y, A5 THh
P ENTHABIRTIIE#EAR X 7R TH 5729, MIVKEEEZE NI L-EE X 5D,

3.72 EHEBOBITE—2 2 MERZRE LT newrs

F 2 BETHRE LT wewrs TIE, RCHIEITRENTE 3 OFRE ST- A EERE 2 KR L oo, BE
HoET—A v MEFLAEE U TRl L 7=, Table3.7.1 (ZH T DAMIE TR LT powrs & EBRIE iy
T D &, pewrs (TARVERABRIR WV OEHHAT I T 1.26 % reg &2 LRl 72723, £ OfhIZE
DT penrs (X g EBER—F LTS, F£72, Fig3.7.1 (IR T L DI, ewrs (Z X DN EHHAE
newl 305 [ ZFRBRIAR WV1 O EMNZIB W TEBROH KM Oy 20 EEI S 7203, £ O TIEERO
BRI ) 240 10% OREZEN TR C &, 130w (Fig3.7.1(a) &HANTERERIELG LT,

LI EOREE D, BEfF0 RC HLYEC X DIKIEE 7y (3HERBR 0 E M ERE Ot /) %+ 15l ©
ERVWEENRHL L EBMER TE L, — T, pewrs VD & ARE TR UTHER B O HE R EE
FRERIR D FEBR OB KM ) % RAFCFHET 2 Z & N TE T2,
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3.8 FED

ARETIE, MERAAZ 1 FNRARE S W EEmRERREZ b 12, FAARELRASS
N7 D PR 2 e QU B SRR & S L, AREEMRIR, AR ), RRUBRIA O kg @ A ol
R Lo, E72, EREI VG LI AHER B 1 M R RE R (R D s RIi /1I2 55T, RCH
HED S B DRI L O 2 B TR A U7 B DRIER o DRFATREEEIZ SV TR L7,

AWFFETHR LN AIT TRRO®EY TH D,

1) FEERBRIR WV 36 LOTEEBH O 72 LEBRIA WV4 TiX, R=0.25%rad O/NEKEN G OIZ XL -
THBEIS NI EA OBER N ZNENEHEETE LTV D Z E MR ST, —, HEE/NB 0k
R WVS TIEBI D E FICBERDSFAET D Z L2 LY, BIO ETFTOROBEINEIE L, /NERIIEE
JERACREWTE O3 PR EE L7223, BR A LT OROBENHETT D & & HITHERIE WVI, Wv4 &
[T BEMR D[RR AE) 2 7~ L 72,

2) r3 A7 ERERIAR WV4 & 3RBRIA WVS CI, TEEBA O 72 LaBRiA WV4 I XTESEE 0 & 0 3R IR WVS
L HEARTE R DK TETE BN Dro 7208, BIDEIZ 2303 O 3l akBR IR O e Kifit /11 X [FIRR
EThHhDHIEEMR LT,

3) AREIR L7CHER B A misREE Tk, ERBREOmEEENE (B0 LT RO AWEER X
OEEHFT O EEE) 13 RC HIED r3 1B 2ME L MNREET 2 2 L2 FRITHER LTz, nic
& % BRI SRR D F KM /) %2 6 R L, ARFIE TIRE LT ewrs IZ X D FHREIZEREZ B
IFICEHBCE 5 2 & AfERd LT,

4)  EBGHRITEED B KR rry 2 RCHHED B DK 3 & BT 2 &, r IXEBRIE rrw &
WG L7z, —J7, SR EOBEREROE— A v MESUZ BT 2 73 1IXERIE reg &2 TIE
ST, FRYERBRIR WV O IER 1 361T £ & A B J5) 8 BE 0 SEBR A A KR I/ ekl L 72,

5) Ak THRET S U RBRIE D X5 (2B A BRIMAEDS 2O ISR 2 ARUE L7235 601 L CHRERD
EOMTE—A > MEPUE LB U7 s 13, S HERBE P HE M EREE BRI 351 2 B 1 AR
RO FEBRME rres 2 RC HLIEDARINR (T L ~KERE L <R L 72,

-80 -



RC HJB MHEEEE OB M i S ZBE 3 2 M M IRIsER I B4~ B AR5
HA4E FEMATICL B 2 L—3 3 o EREBEREOMEE

FAE FEMBEITIZEL BT I aL—2 3V EMARBEORT

4.1 [FLHIC

%3 FETIE, FERBID S 1 FNCRAERLE S 7= Bk 2 s C ik HJER 0 oA 8B L OB 0
B AEEE L, s DV LWELZR 2 B OB E OMER B DB R OB A e L, 72, E
BR L0 15 5 1L 7- A HER B O T R SR B R 0D J KT /712 ST RC BLYE DIz % B DK
BB L ORI TIRE LTS s OFHIFEE 2 BMGE L=, TOREE, BIOERE & N& I
3 BT RIER 3 NEE T 2 MER B O EREE O i 1L 5288 00 Fe Kt 70 % 8 AT L,
newt3 (2 K D FHREIXERIE A RAFICFHMICE 2 Z &R ENT,

—J57C, it B O R RE O A 31T 2 FE AR IR BE O MRRT 5 XL ONER B 1 23R
BENIENZ 31T DIS TR IO R T R EZ A DN T ORER D D, £ T, RETIEHEE
B 0138 R i RS R O A S MEREREME O RBUCE T 5 SR 2 B+ 2 Z L 2 HME LT, 63
TR LT FEBR A2 R G Rt FEM MRAT 2 5806 L, JERERE, AERIRIE & OWERKIE o> 268
DR DET ALIS X OMBRE 7 AARERI O 2 4 PEIC OV TRETT 2, £72, WL IREE
D ML OIS SRR FS K OV AR RUEL SR O ¥ AW IS x4 5 % 512 DV TREHT 5.
FEM fiffr OFE R0, A ETOROAHREAM B X O E2 &GO BT — A R &
ZID OB HREER O 289 HIEREOM N RETHEEZP ST 5,
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4.2 R &

FEM FENTIZIZILA Y 7 K @ FINAL® % 7o, ST I —kocfiifr & L, & <icav 27 U —Fh
BRI OW TR FERIG T 2 E LT, Figd.2.1 (2 FEM fi#thT D 7= 8 O BR IR D B4y EX $
FOBERGEMZRT, FEBRCIERRAEO EIICHRE L EA DA X TICE LW ELZEH S &
72N, RN CITERIED /R A X 7 TR SN AKEEN L5 UL 72D K I Lz,
72, Figd22 IRT L IICERICB W T A X 7TRICERE Sz PC SR TS M e WrimfE 2 A
T M7 AERERNVTEBL L, 72720, BB WNO B XU WVILIZEBWT, PC SiEH
DFy Iy adr MIv sy XRELTET MELTZ,

a7 Y — MIAEHRWARERCER L, B, 27V — MOOUEIIET VIZIEE
ROVENET MLV REL LT, £70, BEREICAE UZHFOOENEBET 572012, BE
O E FAX T OfMEER A IZERL, MBOOENERZHRT 7, #HIco20 T,
BER, WBLOHIXOMITEOIALSHE L a7 ) — NEENIZERER L=, 7,
FEEROEFHBLOFAMBAHIL2HRA NI AERTERLTHY, =27V — MO
DO EZFIL 4R T A VEREEGER L L TET LT,
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Stub(Elastic)

PC Bar (Truss Element)

—

Concrete

(Quadrilateral Element)

L Main bar

= & opening reinforcement

(Truss & Line Element)

Wall reinforcement

& shear reinforcement

(Embedded model)

Discrete crack model

Elastic

Fixed

Fig.4.2.1 Modeling for FEM analysis

PC Bar
(Truss Element)

3501 350+

300+

+300—+

Knuckle Joint
(Quadrilateral Element)

(a) WNO/WV/1

PC Bar
(Truss Element) +-300-¢

(b) WV4/WV5
Fig.4.2.2 Details between the stubs
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4.3 MEETIL
AECIE, HEE B 0EE M ER: D — Rt FEM AT TRW =M BHE AN W TR,
431 aVHy—+rETIL

a7 ) — MINDBEZTERE L, OUENITEZERNIC—REICHM L, FEELOVE R
FFNNC LV EHR U, 8IS ST OREESARE Kupfer H D% 26t~ 7=,

<BA-VFHER>

&= OFHBIROEREHIC SV T, Figd3 IR &L 518, EMUORT) LR &L
Ahmad 7L (Eq.(4.3.1)~ (43.6) %, #K{LkZ R EL 207 U — MR Ko TR
P % Nakamura 7L 0L L7z (Bq.437)~ (43.10)), F72, OUENIEGIZERAS
MOLILERBET L DTk TEBLTHEY, 27 U — b OERHRE KRR 213
Eq.43.1)THET 5,

EFH (|| <|e,|) : BIE Ahmad EF L

N4 x+(p-1)-x*) 0,

43.1
1+(4-2)-X+D-X* @3.1)
4L (43.2)
EP
x== (4.3.3)
gP
2
p-200_| E, (4.3.4)
o E, -1
0.77
o, = 0{1 + s[U—Pj } (4.3.5)
B
o 1.8
g, = 81{—”] (4.3.6)
o-B

Z T, op: JERETREE, ep: JEMETRIERFONT A, Ep: Y VR ¥ (=op/ep), op : M EZEE L
T BRI, ep : ARSI DOOT Fx, Ep : I KIS R OFEIRRRANIE (=opep) TS,
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RC # B MHEEEE OB M i S ZBE 3 2 IR 12 B9~ B 9T
HA4E FEMEATIC L B 2 2 L—3 3 o EREBEEOMEE

it (|e|2‘.9p‘) . Nakamura &5 )L

oo le-z) 43.7)
£, —¢€,

&, =2G—"B—50 (4.3.8)
GB 'Leim

G, =8380, (4.3.9)

&,=¢,/2 (4.3.10)

ZIT, Gep: EMRERT R —, Ly : BHETESCEFMES TH D,

[Efasd AR B AR
A =2, +1.45n (<0.95) (4.3.11)
A =0.74--22 (4.3.12)
’ 2600
p=20"%c (50) (4.3.13)
O-B
Gy =2.10)" - Bo, (>0) (4.3.14)

TIT, Aps MR AWISTIRBE O FERE SR AR I, n « ARVEMEIS I, ooc @ BRAHIE
REFIFIZZ 7 V— FOEBELE T S 2L OITKLEREMEEIG ), Py S5 TH 2,

4+ Compressive stress

G,g/L
/// /7};/// » Strain

Fig.4.3.1 Compression model for concrete
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F7z, BIEMIOE T — O ABEMRIL, Figd 32 IR T LI ICOVEINREE TITHMEL L,
OOEINBEZOBILIBIIHNES DET NV DERE LIz, LRROET VT2 U — FOFY
S IO B BIfR & A L ICBIfR 72 <, BRI ERIRERT /N T A —% ¢ ZEHAL,
Eq.(43.15)TE L7z, AWFFETIZc=04 L LTCT vy a v AT 4 7= 055 E LT,

gC}" ‘
o, :GC{—J (4.3.15)

ZZT, o¢: = I — }‘ODEHE}:[{;).], Ocr . UU%’J%%EFE\ﬁ, Eer © UU%’J“%%H#@I’Z:&Q
FIEOT 7, & OVEINEITOT 2 (OURNEEZLFEHOTH), o EHRRERT T
A—=HTHD,

+ lensile stress

o 0 . Cracking o=g.0

C=0.4

C=1.0

* Tensile strain

Fig.4.3.2 Tension model for concrete
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< ERESFE>
eV UGS T30 2 BRI R & Bl 23 1 Db 2B 2 BE L7 RE S
DIRET HHET V3 A L7 (Figd.3.3),

E ~ CRA : B (RleE3E-1 MBIRAHED o )
C ~ I/ : LREER (RCTHNEERD
R ~ CH : 2KHEAR (AROBUEIIMRFTRED a )
¢ — SR BER(RCTHERE)

ERGRE ) 1 — BIEM : Db NRAE THEA
L ! g
FEaln P EMEIIES
£ : A 5 ORHMLAS
C : R & B R AR DA
MRiratiR R . EaLATEALAS
i BHEEE 1 RERICENNBER DK
FEERY zf EfHOTH

(a) Compression
G ~ LR : A (A RC-HNSIRBIED o, 1)
L ~ HE : 25Ebs (L THIKE SR

L — K : B (AL THIK M)
i, i i
KRR 1. gEmE (QUDhRE) K
1 G : AR S OB R
Liiz ﬁﬁﬂﬂ&ﬁﬁﬁﬂﬁ@ﬁﬂ
R it R: ERERES
H H . BlEBUT A
(b) Tension
Bh
. UDUbhi BIEEM
Gy e
2
9<\ VTS
H, Hy
TR
e et e e s
= ‘J‘ ot LC" ol T 1 : BRI ERAR D S FERE S/ TR~ OBITH
iR

K : MBS 5 5 ERARE AN OB TR
Ho— 7 ofSehi (=) TRINER

a) 3RMTOCHNEICEEHICBT T 258

B pusbi J - C: 2R (R CHIME )
PP AN C— K: 2Kl (SKidAC— 2SI~ DA iR L)
; AR T K — L:RHSesm@ GRKCHIb )
I
FERR
firoeasd
EIH 214' 3 Frtem
el B
c e Tl S
JE i EL R AR
E

9 |

by ESEHAD 5 OMEEIC I BT T 288
(c) Between compression and tension
Fig.4.3.3 Hysteresis model for concrete 33
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G, /G,=0.4(¢, c.,)

0.4}|...

» Shear strain

Fig.4.3.4 Shear transfer model

<HAMRERE>

O OEINE O AWHEET T V1T Fig.5.3.4 12779 Al-Mahaidi €5 /L 39 & 50E LT,

G, __04 (4.3.16)
GO gt/gcr

Z :VC‘\, Gcr: U@%”ﬂ?&@“@j%\/%ﬁﬁ”‘fﬁ, G() g “/7 U — ]\@ﬁh[ﬂ‘ﬁaﬁ‘lﬁffﬁiﬁ, ot U\U\‘%”ﬂ
FAEGRDOOTE, o VUBHELZOTHTH S,
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B, BEMIELE A X T OBEFITE U OVENOFEE EE T D012, BEMEERICER OO
FINERZFRT 72, BEROOBINERIL, JEMRUEZRIE L, 5lEME =227 Y — hOOUEIR
PRIEIZEE L2 RICER ORI LEBET 287 L ¥E L (Figd3.5), BEBROOEINEE D
OOEILHE OF AWHREZRAEIZ L - FUIOREE TV O%E LT,

ol Yield point of steel
\

\
I

> > >

/4 V Crack displacemef;t

Fig.4.3.5 Steel slippage model
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432 HEBETIL

HRFIZOWTIE, BER, WA X OHIX oA DIALER & L CEBNIZERER L7,
o, WO —OTHBERE NS Y =T ET AL L, BRENS OV TIIERE « SR o
BT HBMERBERZ R TR Y, BRBITEMENBEEA DN TOIRIEE L 2D, SO
M0 = LIS T OJEIERFEIEL Clampi £ D#EZE3 5 & IE Menegotto- Pinto &7 /L *0& )& L 72

(Fig.4.3.6),

< EHERR>

18.5¢ ..

o gt L R=20-—me (4.3.17)
o, g, i1+‘€/8,, , 0.00015+¢,,,

(I_H)(g gl)
lotel E—¢ 2&
( 7o l)zH( e 1)+ Ry R (4.3.18)
y C () Je=e)
2£y

DT, o BIRHE, o BRIFOTL, H: OFRIHEE, o @ KB LIk O 2
b,

Stress

/

/ Strain

Fig.4.3.6 Hysteresis model for steel
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F7o, BT TIIAEEM T b T AEBTER LD, IR T SE O OEINERE T
FOVENEDSIRIG N 2F L EFR LT, Figd3 TIrnTEfHmE a7 ) — FOMOMEIRT)
— TR, RIEODOET AL L, FRMNEIRT w330 DITR S DA EFIRBE &
L, S RMAEISHREDOT YT 1.0mm &GE LTz, 7z, #0IRUSHD PRI D45 —

T BROEIEE T VI HRE T L2 LT,

Bond Stress Bond Stress

1, maximum bond stress

—

" Slip

1.0 2.0  Slip (mm)
(a) Bond stress versus slip relationships (b) Hysteresis model

Fig.4.3.7 Bond-slip model

-91 -



RC B M ERE OB O & S (284 A it/ RIER I B4 B AR5
HA4E FEMATICL B 2 L—3 3 o EREBEREOMEE

Table 4.3.1 Outline for analytical model
BRI WNO | WVl | Wv4a [ Wvs
2R 4 EiRTFEICHER
os (Mpa) 27.0 27.7 36.4 38.1
Ec (GPa) 25.7 25.9 28.4 28.8
MR €co(M) 2067 2077 2199 2222
ocr (Mpa) 1.71 1.74 1.99 2.04
v 0.17
< Al - + R {E1E Ahmad €T /L
7=k o-¢ BB A T &1, : Nakamura €7 )L
- —_ LR ERETIL
) TR HEETIL (c=0.4)
IRIR AR Z 8 EHE : Kupfer bDETIL
VUEINE DA ERSSE {&1E Al-Mahaidi ET JL
B RBOHBETIL
VUEINETIL M 2 AMSHVUVEINETIL
2R 2R RER
MEFE o, (Mpa) 766 790
(FEH) E. (GPa) 187 208
MR o, (Mpa) 347 385
Z-4E 5, B (D4) E. (GPa) 182 192
(WEG R M o, (Mpa) 347 342
(D10) E. (GPa) 182 190
o-¢ Bk bi-linear €T JL
FRIREXE & A ZBRA
BT & IE Menegotto-pinto T JL
2% HAskmELTaV Y —FERICER
] e o, (Mpa) 347 385
B - MR Es (GPa) 182 192
AW FEE AR o-¢ Bk bi-linear €T JL
FRIKE#E IS ZBIKR
FE {&IE Menegotto-pinto €T JL
22X | T&é%i?é |
y v (MPa) 6.3 6.4 7.7 7.9
BEELLE Smax (mm) 1.0
AWM T—s BE% RABAGDETIL
B AR TAEICHESR
BEfR & JE &1 Rl{A
TRA T 5| 548 RFHELEZEELEZETIL

VUEINERDEAMGERE

WWH-FHIOREETIL
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4.4 FETIRR ERBRERO LR
441 FE-ZERABRREBIRKR

Fig.4.4.1 \ZH KM/ %2 3649 5 VA 7 )V £ TOMEHNTHE B & LB R 0 BIREE) O el 274,
F7z, R TIEERGER & RIS ROR KM RE2OT, ricksncar sz J—h
BROBALIZ LV KGR R ARREI e o TR 2 x T CORd, RRERS &, ik
T % fif EE—ZE A AR 1L SEBR IS B T A IIAMER L ORI D &2 LS A D2 ENTE T, 12
2L, ARBRIK WV 2O\ TIE R=+0.25%rad DA 7 /W FW THENT T K T 234 U,
R=+0.375%rad DY A 7 VAT W THRKM ) 2R L7203, BRI T ERER & n—5L
TW5b, F£7-, TEERE D7 LEBRIA WV4 [ZoWTUE, R=+0.5%rad DY A 7 VI THEHT T
TR0 BHNCHEDN AT, BRI IE IR R A /Nl Lz, ZhuE, M cix g n L
HICBITORBIOBEROEENER L BB E LI ENFERREZEZLND

(Fig.4.4.1(c)OALE - O1),

F 7o, FREBRIR DO LA R=10.5%rad |23 1T 2 BRI BT 2 FlR & g O Lk % Fig.4.4.2
W7, £7o, FMOKAZa 7 ) — BEIEIICE L2 ER L2 R LTV D, TR RIS
BRI & i U CHREBOFANOCAIETH D b o0, ERICEIT 2T O0ENE L0 A
WroodElh, BR B TOROBEERWZ MR RFICHI LT,
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Shear force (kN)

Shear force (kN)

Test — Analysis O Maximum and minimum strength\
T T T T T T T T T T T T
4501 1t .
3001 1t .
1501 1t .
0 S
-150F 1t .
-300F 1t .
WNO wv1
-450¢, ! L L L [ N | | ! | 1]
-0.50 -0.25 0.00 0.25 050 0.75 1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Drift angle (%rad) Drift angle (%rad)
(a) WNO (b) WV1
T T T T T T T T T T
4501 1F 8
3001 1F 8
1501 1F 8
0 <
-150F 1F 8
-300F 1F 8
wv4
-450__, ! L L L i I | | ! | 1]
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Drift angle (%rad) Drift angle (%rad)
(c) Wv4 (d) Wv5

Fig.4.4.1 Comparisons between the experimental and analytical

shear force-drift angle relationships
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N I

= RANS 2 A
Test = <X
VAR %
P RS N £
/~ R 1SRNV Vi o
= = RS
1 - ] A\’

S H
e §\ i #e
= T =
T & HE 24 LEEEI
£ TiE S i
N %
R ¥ A //W
5 S rA
Ly
S
s
b e NSNS o A AR
S A Z ]
5 e e Hr S A R R e
S~ it / //;/x,rm «-;i
S T
; it ALt i
FEM . = =
2 A e
S =k s
MR S —
RERIEIIL, e
e — ? % s
s = s A
s ¥
o
== ==
[ el s 5
- i z&%&s-«~
= 2 k
= xé_. o5 Kf' o —
T s -
-
N
s s, 3
| cng %

(a) WNO (b) WV1 (d) WV5

m  Element arriving at its compressive softening region

Fig.4.4.2 Comparisons between the experimental and analytical cracking patterns at R of +0.5%rad
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442 FERESOMEHS DD T

EyM3 WK RBRIRIZH T D R=£0.125%rad 7> & R=+0.5%rad % T D F2BRAE 35 K OV S 1

BT DAEBERIE DORERR IS S 54 DLl &, Figd.4.4 (24 RBRIKOFEBERIES O O3 0l B AL &
%%n%nmﬁoit,myA3@l¢_¢; BT D AMITEER ORRIRE 2 RS, FERIZE
VT D HERS OIS TS O IR & se AR T L LE L, OTAROHIEM L 0 HH L
2o FET2, FRNTICIST DI OIS NEFBROBPENLE & [FNLE T o 2 B ER O E H G /)T
b, 72720, BREBRIE WV B0 WV4 138 OB FICEER D 272D, S0 A5 & eI o 38
FLLZeWHi & LT,

FEHTHE RN F6 1 DAERERIE DS ) 0401, W OB &R U C B R & [RRk el &
AL TWD, Figd.4.3 (a)? DIZa LR AEBR A WNO T, A6 RN md-> THIRIG
TIMBLEWHEL TR0, BERERSS — (R E— A > MIIERHIL TV D Z E D3R T & 72,
MERBA A EBR A WV1 B8 L0 WV4 TiE, A3 L0 H R 00 5B RIS &> TH#l
éﬂkEﬁ@EﬁukwT,%%METiE@E%T%%Kﬁ,%D%@Eﬁffﬁmﬁ%%ﬂ
ZTNAMLTEY, JEMFAEECIXFEOIMAF5 CHEMEIS /), B OEROBER; CHIRIS 1% 2 hZEh
BHL, EAOBERNENZIHITE— A ML TS Z L3R TE 7, —F, MR/
B A RRIA WV5 TlE, R=+0.5%rad |Z351F 2 fEfH IS 10 AR FBV TRBRIA WV B8 LTV WV4 &
RIS, BHOIC X o> THEIS N AGRERD N ENRERETE LR R T/, 72720
RERIE WVS [V NETEREIZ B CRER IR D — %iﬂﬁ%éﬂé@ﬁﬂﬁ%hto;niﬁ%%
WVS OB O @ S0EEBRIR WV BEL O WV4A LV /hE <, BINE T OBEROIFEIZ L W ZDH
BOEA I IHEL, BEEEITE O FRMERE SN0 L EZ BD,

VORI LY, AT VIZH 3 B Om LIZEROZRE) MR EFICHEL, B UTE
Bt R FEL L7 &I LT,
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---®-- Test —O0—Analysis

» With the development of lateral drift angles

R=+0.125%rad R=+0.25%rad R=+0.375%rad R=+0.5%rad
i) WNO
-450
0 500 1000 1500 1900 |0 500 1000 1500 1900 500 1000 1500 1900 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
— 450
“g 300 -
S 150 [ SS— ) :
e ~ .’.
i) WV1 <,,-15o
300 ® ..
-450
500 1000 1500 1900 |0 500 1000 15001900 |0 500 1000 1500 1900 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
__ 450 . ..
g300f | gl R 1 T L I - S s I - S S
S1508pn 0 8 .
S 0 O
i) WVv4 :’:,3.150 x
2300
®.450 R
0 500 1000 1500 1900 |0 500 1000 1500 1900 |0 500 1000 1500 1900 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
o'.’, ” ””””
iv) WV5 VAT
-450
0 500 1000 1500 19000 500 1000 1500 1900 |0 500 1000 1500 1900 |0 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)

(a) Positive loading (=)
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» With the development of lateral drift angles

R=-0.125%rad R=-0.25%rad R=-0.375%rad R=-0.5%rad
— 450
NE 300 = e
550 & S, Al Ly
2, e . 1 A e o
= O— o
i) WV1 @150
=-300
-450
0 500 1000 1500 1900 | 0 500 1000 1500 1900 |0 500 1000 1500 1900, 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
P T e e I e —— > ..
©c e... Iy B ¥ o T _
. ’ ) S
ii) W4 o o o | /
. ..»" |
500 1000 1500 1900 | o 500 1000 1500 1900 500 1000 1500 1900 0 500 1000 1500 7900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
i) WV5
450
0 500 1000 1500 19000 500 1000 1500 1900 |0 500 1000 1500 19040 500 1000 1500 1900
Wall width (mm) Wall width (mm) Wall width (mm) Wall width (mm)
(b) Negative loading (€)
Fig.4.4.3 Comparisons between the experimental and analytical stress distribution in steels at the wall bottom
Strain gauge [ -Strain gauge
. | BN ] ] | . [l
i 1 I | il Y D G G|
20.5 304.5 650 T 600 T 304.5 20.5 2315448 250 250 500 400 98154 23
(a) WNO/WV1 (b) WV4/WV5

Fig.4.4.4 Disposition of strain gauges (unit:mm)
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4.5 RERIS SR BE
451 ®wIMNERASDE

Fig.4.5.1 \Z&AA R=20.5%rad O VA 7 NV E— 7RI D27 U — NOfKx/NERT
AR ot BERR O ERBR IR WNO T, Fig4.5. 1)1 & 5 & Lo 2 & 76 )s & ERER O
FEMVERATUT(Z 20T CIEMEA b7 » RSB ST\ D, —J5, Figd.5.1 D(b)~(d)iZx LIzfitE
B O g RE R B D/ NEIS W AT 2 A5 &, —JEB KO EH N EEics i 2228 WTIE
AHE D 6T EWIEREIS DENAE T TEY, BOmHOBRIZE W TEZEI LT, FFIZ,
MR/ N O RERIE WVS TlE, BAnE SRR 283 ERE WV SO &mI™ M52
ETRY @EmWEREIS B 0 ORIZB W TIRZE I,

F 7, HERBR D EERRER R O ERTRZ IS T AR J10A T, Bl DRAELS & 0 fiERBE D
JE TN EERE D ZEMBE DR S N0, FERIBE D BR 1 BRRHIER 00 At /1 BE 1T e X v K<,
JEAE S EE S FEANBE D B A 2 T A3 7 B4 JE OB A A 08 U C A IEE ORI 2 s 2
SNLHEMAMER LT, —F, AHEMRECIE, HMEED EXZ TEH 6 A MIBERET O 278 &
FAMEEREES O FERERNZ 2T THEMA N7 v N OB R T X 7=,

(N/mm?)

4

lig | o
| _ i

(a) WNO WV (d) WV5

Fig.4.5.1 Comparisons of minimum principle stress contours (at R =+0.5% rad)
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452 ZEREZROABEAMDOH#TS

3.7 BN L2 BH 0@ S B3 A VIR ORGERE R Clk, ER L V5o - &/
3 T B B R BR AR D de Kifif 701% RC BLYE DB AW RIRIE Q0 ICES o T, — T,
newts & AV D & EBROFKIM ) % B85 £ BIFIZRHET 5 2 LS TETD, e IS X D15
B onr3On [ FFEHERBR A WV O IEMNZ IV TEBRO KM 200 LR~ 7- 2 & 2R T
&, ZORRZGNTT D720, AR TITHER B O HEE MR 2 AR 2 A SR O AHE
MBS % 223 iR L2 FIEICES W T 5,

Fig4.52 [ZKHRBRIKICH T 2B HIEEE BIA L TORB XOELADRE) O/ AW D
BT 2 MBS A2 7R3, AR O AT 28 AWM TR IEITIER 54471 P, BEMR
OIFE—RA > N My (=1~2) BLOROEHEAMT) Oy (j=1~4) OEIFE—X 2 FOF
DEWEEE LT Eq@s5. DL EH L,

2 4
M, %:ij ~(x,j +x,j)

P= ST + ST (4.5.1)

2T, xy Xy IO ETOFBOROFLI DAL OBERLE TOAIERE, Sh: B
DIMNRES TH D,

Eq.(4.5.1)D% 1 Tk 2 & B O FE— A » R ESIV A HIFAM N ZR LTV 5D,
ZOHFT, BEHEROMITE— A Y N My XMREEZ SRR OB ICB T 5 a7 U — hEE L
SR ER OB F IS EICHE AR D, FER LML S RO ELMOEREA R U CRE
Lo —7, EqA.5.1)0% 2 HIZB O E TR AW L8106 5 MHEREICIER T 5 K E )
MOFAW 1 ER LTS, FEOZOEAWT] Oy 1ZBAN ETORFRhpa 7 ) — MNESE
DEAWIEEICWEEZR D 2 LIk THRE LT,
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RC HE M ERE DR O & S (2B D A ERERIC B 2 AF5E
4T FEMMNTIC L DY 2 L—3 3 v St AREER OMEE

A Center of gravity

V|

\ M1 MuA\_J \ M1 Maw2\_J

(a) Wv1 (b) WV4
Fig.4.5.2 Modeling for Eq.(4.5.1)
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Fig.4.5.3 1T Eq.(4.5.1)% W THEE L7 &SRRIBIZHB T LA R=+0.75%rad &' — 7 FFE T
DOEMERESTE OARE AM OB 2t £, FRICIE rn OBE O FRER G O T
AT, Z2C, BIRAMEAA T DEEA SRS (ERT « AABE, sk AMEE) &, i
MR A3 D REZ EMIRE (IERU « A WEE, Al « Z2MIEE) & EFRT D, Figds31TR-L
Tofe A OREFR OA A AW ) OHER Tix, ARRREIZIST 2 51 aRIEE D& AW ) 1 3w
YA 7 NV OEATITEONBEINT B A B3, JEMEE O AHEE AW I35 EREED &
& AT BTARY M A R EF L TV DB 03 lERE STz, ZAuE, FIRMIBE Cldhif £ — A
Y MNCHFESTHMREERENE L, [EMMEE IRt — A 2 MCHS T DR EN D 72 <,
REM IR0 Th D, —J5, ERMRHCIT 2 EBEOAMEAWINT —EOMAERFFL, 5lik
TEE DB RS EAEHIEE X 0 AR N 2 E DD, ZTHIEBERT 5 X 5 IC5RMEEDBER
SR OREICEVENZ SRR LTV,

Beam: B Roof mm 3F 2F =3 1F
Wall (with column): T3 Left M Right
480 T T T T T 480

2 ool WV1 g
R 1 e L B 4002
3 &
E e e +320%
s =1
£ 2401 . | e B - fffffffffffffffffffffffffffffff — 2403
= H . N | e N n >
g ool R
N NN T N

| | | | | m 0

0.25 -0.375 0.5 -0.75 I35 05 0375 0.25
Drift angle(%rad)
(@) WV1
480 : : : : : 480

4001
SB20 | 1 +320 €

-240——. ————— . ————— . ————— . I ————— I ————— I—240§
A0 SRR B 160 %

-0.25 -0.375 -0.5 -0.75 I3 0.5 0375 0.25 0
Drift angle(%rad)
(b) WV4
480 T T T T T 480

worWVS - 400 §

)
320F ] B . ————————————— - 4320 &
220F 000 - I —————————— 240 §

T
i
N
(@)
S
LJUO

Contribution of shear(kN)

8
=
—

|

8

(\>1)1eBYS JO

Contribution of shear(kN)

S
160 Fﬁ ffffffffffffffffff - SR e e — 160 %
SoF == e AT v mme 80 X
0 mm L w 111 TI— |1 1| Ay ] 0 =
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Fig.4.5.3 Transitions of shear resistance contributions
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Fig.4.5.4 Comparison of the shear resistance contribution for maximum and minimum strength

Table 4.5.1 Verification of reduction factors

unitkN WVi WV Wvs

FEM new!’3 I3 FEM newl’3 r3 FEM newl’3 I3
Quio———2— 138 | 213 | 2— 160 | 248 —20—| 164 | 254
Quso 92— 79 | 79 1T 163 | 163 | —S5=— 167 | 167
Qeem———220— 217 | 292 |3TE 324 | 411 | 32— 332 | 421
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8 1) =0 EARE) DOREFLETORESTHY, ARBFFE T - 7R B 0 E R ERE O IE#
FZEBWTIX Iy =500mm, B=500/850=0.59 &7¢%, Fi=, BEHRROAMA AW ) O A FHE
(Eq.(2.3.9b)) 2B ZF UIAERE newrs-f DAEET DMt /& LT Figd 5.5 - LTV 5D,
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KOMNTHRER 2 TR D5HMENTE 72, —F, 452 BiTHREIE L7 XK 21T pewrs DARET DB O

BT OROEFA AW IETRE R 28/ NI D BRI DS 8 D720, ewrs-f DRET D1
SEBR O Fe KM 7 2 001 N2 22 BN F I3 DM 238 %
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Fig.4.5.5 Verification of reduction factors newrs considering of 8
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TOROAME AW OGFHEIL s OFRET DM NTERE L7223, foh OREHIE O/ A
Wr ) DB FHEE 1 OFET DI INCE S oo Tz, & IS, EHn R LIRS oA Ak
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—77, BRGS0 1999 iR RC BIUE DCrX, MHEREEDBEM L DG L OO S/ Wi
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ERRILESAIL, LTeR o T, ZHAHOWmfE & i/ MBS DR/ NEE b RELD LD BTz,
LL, %3%?%%%Ltio Z, RC HYE DZI51T 550 1\ SR 23R s CIEBA 1
BROBENHI3ICEMGANIRPICTE D (B Z0E, HREARR T Sivis) SRR, BE RO ZA
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M AIDNERKFEN SN AGERH D EN RSN TE T, 29 LRI ET5E, Znbo
SRR ST, s OREM DA BEENCHBL END Z & ZRIRFIRIE LTz,

Z 2T, ARETIIHEER NEEMEREICB T rn OBEMHEZ KBS L 2R R 57
W, 53 B CR Lo fE iR AR 2 it G R OlRds L OB AR OBER OE (T2 b5
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5.2 INT A RNy Y BITDAE

1999 FEift RC BLE 2 CoR S VTR RE D BENED 0 %36 K ORED Fo/ N FE & e/ MERIC R
DHHELIRUE - Table 5.2.1 12, /XT A N U v 7 fifHTZ540% Table 5.2.2 IZELE 41”7, Table5.2.2
(R TIRAERLE T LI Fig.5.3.1 OBROE D, 1999 4R RC HIUE DO HESERLE A3 5 & 9
(2, ZAEAS 130mm, BHOESOFEOWHERA 24,600mm? (=1FxH 1\ =150mmx164mm) & L 7=fiF
WresvThd, 72720, M NRBRIEOMITET /L WNOB TIXB 023 a7z, ZigD %
130mm & L7ZfiffrET7 v Ch b, 72k, ZHMET VKT 50 ETORONER OB O
OO Z bR < G 4 EORBRIKET L (LU, BiEET L) ER—ThbH, TO
b, AMNTIZE T DA EHEMEIZATE &[RRI Table 3.2.2 38 X OF Table 3.2.3 DE % AV 7=,

Table 5.2.1 Recommendation for beam and column dimensions
Cross-sectional area 2st/2 >24,600mm?
Minimum diameter > /st/3 and =2t 2128mm

s: wall length of the shorter side (=820mm), t: wall thickness (60mm)

Table 5.2.2 Analytical parameter

. Width and depth of columns
Beam width beside openings
Standard model 60mm 60x60mm
Beam-column model 130mm 150%x164mm
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DEKIMMINTAE BT nQu lZIFE L, UL, HI3IFECTHRHLZX DI, EEE
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NERRTE 7272, ZOFRRIZOWTRETCHOird %,

-111 -



RC E M AREE OBE 1 = SAZBE3 2 M IR 2 B89~ 5 i 5
55 MR 5 P AR O R R B D ohT

Shear force (kN)

Section A-A’

Standard | Beam-column
A= A= A A= mde! model

=
1 T l T I T
0
0
B T__ _._TB’ B L,_ _—1 B‘ B L_ _,_TBI' B L_ L | __TB'
| | | | L
e L A A Beam width:
o e WNO/ WNOB Wv1/WviBC Wv4/ Wv4BC Wvs/ WV5BC 60mm Beam width:
(]'3 D:Cl D:I:I :l:ij D:I:I I:I:i:l D:I:I I:I::l Column depth: 130mm*
model/
§ 60mm
b Beam-column Column depth:
B odel (Fa B—— [(HE B—— [(HE B——— 164mm®*
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Fig.5.3.1 Comparisons between the hysteresis loops from parametric analyses
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Table 5.3.1 Comparisons between the FEM analysis results and design calculations

Standard model Beam-column model
wv1 Wwv4 wv5 WwVv1BC WV4BC WV5BC
r3Qsu (kN) 292 411 421 292 411 421
Qrewm (kN) + 190 317 354 252 368 402
FEM - 263 326 389 316 388 449
Qeen/ 1:Q + 0.65 0.77 0.84 0.86 0.90 0.95
FEM/ [3%su - 0.90 0.79 0.92 1.08 0.94 1.07
+: positive loading, -: negative loading
Table 5.3.2 Comparison of the shear resistance contributions
for maximum and minimum strength
unitkN| WV1 |WV1BC| rQsu Wv4 |WV4BC| r3Qsu WV5 |WV5BC| r3Qsu
+ 86 100 112 137 109 153
Qo190 202 | 27% [ 202 | 263 | 2*8 | 124 | 221 | %%*
+| 102 146 197 224 242 248
Quso g | 774 | 77 112 720 | 163 246 | 216 | 167

+: positive loading, -: negative loading
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Fig.5.3.2 Transitions of shear resistance contributions of beam-column model
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Fig.5.3.3 Concept of wall shear resistance (Single aligned openings)
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Fig.5.3.4 Verification of correlation factor 8 applied to r3
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(a) Configuration and bar arrangement of specimen (b) Sectional details of column
Fig.6.2.1 Details of specimen WV6 (unit: mm)

Table 6.2.1 Specifications of WV6

bxD (mm) 180x200
Column Main Bars 8-D10 (pg=1.58%)
Shear Reinforcement D4@50(pw=0.31%)
bxD (mm) 60x180
Beam Main Bars 4-D4 (pt=0.29%)
Shear Reinforcement D4@ 100 (pw=0.47%)
Wall twxlw (mm) 60%1,700
Panel Wall Reinforcement D4@50 staggered (ps=0.47%)
loxho (mm) 200x467
Opening Vertical reinforcement 2-D4
Horizontal reinforcement 2-D4

Table 6.2.2 Computed strengths of WV6

Ultimate strength (kN) Shear margin
r3Qsu | newr3Qsu mu | 13Qsw/Qmu | new!3Qsu/Qmu
Based on design strength of materials 276 217 | 180 1.54 1.21
Based on strength from material testing 353 278 196 1.80 1.42

Table 6.2.3 Material properties of WV6 (unit: N/mm?)

Compressive strength

Elastic modulus

Concrete 38.2 28.8x10°
Yield strength Elastic modulus Tensile strength
Steel D4 (SD295A) 385 1.92x10° 523
D10 (SD295A) 342 1.90x10° 499
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Fig.6.3.1 Shear force-drift angle relationship of WV6

Shear force (kN)
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Fig.6.3.4 Transitions of axial deformation at the wall bottoms (WV6)
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(a) R=+0.75%rad (b) R=-0.75%rad
Fig.6.3.5 Overall deformation of WV6 (10 times magnified)

Table 6.3.1 Horizontal elongation of beams on every floor (mm)

2 floor 3 floor Roof top

R (rad) JL1-OR1 J12-OR2 J13-OR3
wvs -2.6 -0.7 -3.6
+0.75% W\V6 7.9 0.7 0.4
wv5s -3.0 -2.2 -2.6
-0.75% W\V6 2.1 0.9 0.4
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Fig.6.4.1 Assumption of strength-drift angel relationship for walls®
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The study on the strength reduction factor related to opening height

for RC multi-story shear walls
Abstract

Reinforced concrete (RC) multi-story shear walls are often adopted as an efficient structural element
in the construction of buildings for resisting lateral force. However, it is inevitable to place openings in
the buildings for architectural requirements, which may significantly affect the structural performance of
shear walls. Putting importance on clarifying the effect of door opening on the seismic performance for
multi-story RC shear walls and developing the sophisticated structural design method for RC buildings,
a series of experimental and analytical studies was performed in this study in order to improving a strength
reduction factor r; related to opening height for RC multi-story shear walls adopted in the AlJ standard

for Structural Calculation of Reinforced Concrete Structures since 2010.
The dissertation consists of seven chapters as follows:

Chapter 1 introduces the background and objective of this study. Meanwhile the abstract of previous
research on estimation method of shear ultimate strength for multi-story RC shear walls with openings
was summarized, and the calculation assumptions of the strength reduction factor 3 in AlJ standards were

organized.

Chapter 2 aims at improving the strength reduction factor r3 in the AlJ standard, and two-dimensional
FEM analyses were conducted for the previous verification experiments of 73. As a result, the flexural
resistances of the partial walls divided by the openings were overestimated by r3;, while the shear
resistances of the beams between the openings agreed with those by r3;. Therefore, a new strength
reduction factor newz was proposed on the basis of a flexural strength reduction index o for this type of
wall. Consequently, the estimations for the shear ultimate strengths of the above specimens using ,ewr3

showed good agreements with the experimental strength reductions.

In Chapter 3, additional verification of strength reduction factors r3 and ,.wr3 were conducted with 4
four multi-story RC shear wall specimens with different disposition and height of door openings based
on a control 1/4 scale specimen with eccentrically-aligned door openings on every floor. As a result, it
has been demonstrated experimentally that estimations using w73 showed better agreements with the

experimental results than those using 73 in the AlJ standard.

Chapter 4 describes the two-dimensional FEM analyses for the specimens shown in Chapter 3 based
on the analytical model used in Chapter 2. The advantages of proposed strength reduction factor .73 over
r3 in the AlJ standard was verified additionally according to the analytical results. In addition, the potential

issue of ,.wr3 was identified and it was indicated particularly that the eccentric disposition of openings
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may cause the overestimation of ,.,73 in some cases. Therefore, a correction index S was proposed to

considering the effect of eccentrically-disposed openings and its effectiveness was also verified.

In Chapter 5, a series of FEM analyses was conducted based on specimens shown in Chapter 3 by
enlarging beam and column dimension around openings recommended in obsolete AlJ standard, for
proving the extension effect of beam/column dimensions with regard to the strength reduction factor r;3
and clarifying its application condition. As a result, the effect of beam dimensions for specimens with no
openings can be neglected while the extension of beam/column dimensions improved the strength for
specimen with openings significantly. On the other hand, the eccentric disposition of openings resulted in
the overestimation of r3 for some of the specimens with beam/column dimensions, while the adopt of
correction index £ proposed in Chapter 4 enabled the estimations of .73 lower than analytical results for

all specimens.

In Chapter 6, an assurance design for predominant flexural yielding of another RC shear wall specimen
was made by using the proposed newr3s With the shear margin of approximately 1.2. Consequently, the

effectiveness of newr3 for the assurance design was verified experimentally.

Chapter 7 summarizes the main conclusions of this study and suggestions for the further research.
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H M EREE Ot AVWTREE 36 K OV A BTIAIIE 295 2 & TRl D, L L7235, 1.3.3 i
T L7 BE S S 5 N IE R 2 MiER B P s Mt REE O ZEFE R TIE, BRIC k> TikEn R
O AW S EEIE O & b _TRINCAE T S Z &5 30 15IZR S 7= fERBE nE g
MHEREEDIBE T DA & B D Z LV RSN, 2D &b, B OREEEZ AW TiE T
DR VAR B O SE R T AR BE O ) s X OV 2 S U FE Ml STV 2R W ATREME RN & 5 & 5
bbb,

Z 2T, AETIT 1.3.3 fHi O LB EORRREER TH 72 MR BRI A fiER B 11z
Lo THBEIS IR, AR & BEds K OV SEREIC BT 5 4 £ 7 L D BRI S AT 24T
FENTHS J OVEBRFE RO IEe ) HIRE LT E o T T L OF 2 EE R~ T,
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Fig. B1.2.1 (CRBRIRDENTET V2~ T, MTE T 3R L OOl % 38 5 #A 1Z iE
B U7z, BESAM ORBEIIE RN SR T = A AEE TIE L, REH ORBEIEE 82 5B 0
S E TITRGE Lo, 7238, & o fa Bl i 7 18 L XSt s | AR E L 7=

FBRTITRBRIAE D FEICERE LA DA Z TIT% LW AW 2B S48, f#T TIER
RRZ 2 DA B 7 TR E VI AL OB L FE L < 72D X O ICEME R Lz, Fiz,
FERIZEBWT A X THICERIE L7z PC SRIT 22 Wi 2 A M B3R ICER L, F v 7
NVaAry MIEAATKVET ML, WREMIT—E oA ERFEE LS Lz, 2,
FERTICIZINH OIERIE 7 L— AREEfRT Y 7 b U = 7 2 L7z BY,

PC and knuckle joint = Rigid zone PC and knuckle joint
See details in Figure 18(c) Pz : Length of plastic zone See details in Figure 18(c)
/ N t : Thickness of the walls / N
=yrrp= 41 T = 17 o =4 ”,
=(1 ( =1 2 ( 3) 2
Teomssvzssess SEEE TS E P
v i . \/ \
% i /'x‘\ | Mutti-Spring % /‘\\ /'X‘v -Multi-Spring
o= 1, | C = o /\ - / .
=1 ! =1 2 -(3). [ =2
sl ek Gl ek e fl s

SSE==z=ses T =) E D=0 =0
|7\'2 __One-component—— | % %One—component % \
shear spring Il shear spring I

ZE=S =0 ZaE =) Fo S| [Zh=

TTES TS IEs U VB
\ D@a ) D%ﬂ \ D%D

ZE=2 ZZzez= g2 2Es Eo (Zh==

S S S S S S S SS s S/ S S s S S S S s S S / S S S SSS

(a) W1 b) W2

(c) PC bars and knuckle joints

Fig.B1.2.1 Analytical models
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Vo770 (LLF, MSET/V) BITEE L7z, FigBl.22 £FEMICEIT5 MS 7 /LVOHEE
SrElZR L, FRPORLGIE FigBlL2 1 (TR G EThERHIE L TnWD, £/, MS £7
WSV 232 7 U — b Sds L OB /SR O BHERHIZ FigB1.23 1079, v 27 J—Fh
DIEST—OF ZBIR O BRI S D3 (Eq.(B1.2.1) BITHIL L, #ILBKIE Darwin-Pecknold
EFFNBINCEIVERTCER L, £, 850 1— 0T A B8%1% Bi-linear 7 /L& L7-,
7285, MS EFAOWMMIRE SICOWTIE, BEHM CIE STk BSICHESXBEIE X + 0 2.5 5L
L, M CIEEROBERRICLVBEOEES ho 12 & L,

5-D13 D4 5-D13 D4
| BN 1] @cel®] | [ [1][1[1
2-D13 2-D13
(1) Wall with boundary column (W1) (2) Wall with boundary column (W2)
D4 §>2-D4
(3) Wall without boundary column (W2) (4) Beam (W1 & W2)

Fig.B1.2.2 Modeling of member cross sections for MS models

v

VI EC 4£C Ey
“[0.56/0,

(a) concrete (b) steel

Fig.B1.2.3 Stress-strain relationships of concrete and reinforcement for MS models
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B.2.3 HEHFAMNRETIL

AR O AR L BN R T L TR LT, B AT O ST R % Fig B1.2.4 ITRT,

BESIA I, B ABTOOEINIRE S8 L O B S 2 TS e T8 Y U =7 2k
FH L, & WP XEPERIPED 0.001 5 & Uiz, B AWOOENIERE O, 13 35 /178 (Eq.(B1.2.2))
NZE->THREL, OUFVRERE AVWTOT HEE 9, 13N Eq(BL23)C K W ED Tz, HAMHE
JHIREE Oy 13 1.2.3 B ONR L7 E BN (Eq.(1.2.26) & HEF L7z, B AWK RIREER DL
T ol Z3CHR 1) 2512 0.004rad & E L7z,

; 1
ch =@yo; + O-To-obD; (B122)
y. =0, [GA, (B1.2.3)

2T, ¢ MRE(=1.0), or: 227 U — R OBIERE (=0.33yopN/mm?), gy : il S,
k: Wi RARER (=1.5), d : S OBERE, a/D 7 AR, G a7 ) — ko AW
PERREL, A, HAWA B CH 5,

ZEATIE, BN L TFOSERZEOEAWIEEL FEL9 2% 72912 Fig.B1.2. 4R MK T
EEBE LNV V=TT L L, BEETVIX Takeda €7 /L BOZEIN LT, Q. 1ZBERRAL &
[FERIC IS A T X0 B Uc, B ABNKERRE IS ViR and b7 R - 7—F 1
W X D AWK RTREE V, (Eq(B1.2.4)) THML, yu bIRERIZ 0.004rad &5 Lz, 7=,
HAMHERTRAIZE LTk, HAMERA » BV THEAM DR ERICRD O EE LTz,
AFRTIX, D yold FigB1.2.5 \Z/R T FREEREASE & RIS Pa0Ic B L, 2 2°C, ARsEmkes
TR D RIS A 1 Fig.B1.2.6 1239 L D ICEBRICBW TN E TR a7 U — bR
B L 72> 77 Ro=0.5%rad & {E L7, 3725, FigB1.2.5 1V p=2xRoxL/lo DEARRE D,
BRI W1 Tl po= 0.0455rad, BRI W2 Tl 90=0.0305rad & 725,

V,=min(V,;;V,2:V.3) (B1.2.4)
5p,,.0
Vul = :upweawybeje + [VO-B - pw; - }bTDtan 0 (B125)
Avo g + DPweO oy
Viz = fbeje (B1.2.6)
A
Vs = V;"B b, j., (B1.2.7)
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t Shear force t Shear force
qu ........................... ......... B KO
aK,
Q,
2% -y
VQGF VQSU
(a) Walls (b) Beam
Fig.B1.2.4 Restoring force characteristics for one-component shear springs
Qbsu
2R, 1 P = £

r= - =9.1R, Ca

0 Qbsu :
' !Qbsu ’ f\Q'?_ﬂ‘ro
bsu
RO ] - Qbsu i Io
B sl | b |
l.=456 =100 l.=456 Ro s’ -
Center of
—8 e " gravity
\JMWU UMWH ‘\_) Mwu \—}MWU
(a) W1
2R, !
(= % =6.1R,
0
’ besu ’ Qbsu ’
N g pe r """ -
Ro —| Qbsu | |D Qbsul - |
R 1o [ o770 =303 =100 | 1=1001=303]
Center of
‘ i —a [ ) e
T Moo Mua O Muu UMWU u Muwu u Mwu

(b) W2
Fig.B1.2.5 Failure mechanism
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Fig.B1.2.6 Damage condition of beams (R=0.5%rad)
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B.3 fEMTHER
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WTBIFEKRMANEE SN R=0.5%rad D& A 7 /L F TOEBREEEOVIBMINER &

NN ) A E & <R

A L7,

|o Analytical beam degradation e Experimental beam degradation|
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Shear force (kN)
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— Test

— Analysis

-180

-240
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Fig.B1.3.1 Shear force vs. drift angle relationships
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WO AR Z R L TWD, MRBRAE B2, ZRAOEKRICHEWEFMOMORKE 72
0, FRHTAERIZEBRER MR B L TS Z R R TE T,

V1-2

V2-3

%460—T—520—T

V1-3

o0y sy
V4-2 V3-2
v2-2 V1-2
V4-3 V3-3
| 0 vo-sl| Bvr-3

o-mmmm— Displacement gauge

(a) W1

o-mmmm— Displacement gauge
(b) W2
Fig.B1.3.2 Experimental measurement of vertical displacements along door openings
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(d) 2nd Floor in W2

Fig.B1.3.3 Axial deformation vs. drift angle relationships
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