Osaka University Knowledg

Design and analysis of structure-preserving
Title schemes for parabolic partial differential
equations with dynamic boundary conditions

Author(s) |EBEft, EEE

Citation | KPfrRKZ, 2021, B1HEX

Version Type| VoR

URL https://doi.org/10.18910/82279

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University



Design and analysis of structure-preserving schemes
for parabolic partial differential equations with
dynamic boundary conditions

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2021

Makoto Okumura






Journal articles

. M. Okumura, A stable and structure-preserving scheme for a non-local Allen—Cahn equa-
tion, Jpn. J. Ind. Appl. Math., 35 (2018), 1245-1281.

. M. Okumura and D. Furihata, A structure-preserving scheme for the Allen—-Cahn equation

with a dynamic boundary condition, Discrete Contin. Dyn. Syst., 40 (2020), 4927-4960.

Preprint

. M. Okumura, T. Fukao, D. Furihata, and S. Yoshikawa, A second-order accurate structure-
preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition,
preprint arXiv:2007.08355 [math.NA] (2020), 1-32.

Report

o BN B RRHEAERL Allen—Cahn SFERIT R4 2 BEBZE 9 BRIBGEIZ & 2 FERGIE K O
JEAFX—L, 8539 mIFRELHEAEGE TR I F—WEE, 2017 £ 11 A, 49-58.

International Conference Presentations

. M. Okumura, A linear and structure-preserving scheme for a non-local conservative Allen—
Cahn equation, The 12th AIMS Conference on Dynamical Systems, Differential Equations
and Applications, Taipei (Taiwan), July 2018.

. M. Okumura, A structure-preserving scheme for the Cahn—Hilliard equation with a dy-
namic boundary condition, Equadiff 2019, Leiden (Netherlands), July 2019.

. M. Okumura, Structure-preserving schemes for PDEs with dynamic boundary conditions,
BHHRZBEERZEZ G BUA A& 2, Shanghai (China), November 2019.

. M. Okumura, Recent results on the structure-preserving scheme for the Allen—Cahn equa-
tion with a dynamic boundary condition, KAAS seminar, Karlstad (Sweden), June 2020.

Domestic Conference Presentations

C BN B ARREIRAER Allen—Cahn JFRE RT3 2 BEEZ 29 8B B0E 1T & B IERRIE K OV
AT —L4, B39 EREAFIEAE T2 IS —, B, 20174H£9 H.

PR BB AR Allen-Cahn J5RERUT S 2 5K 2 BB AL BERZS 20 B B 0GR A & —
LITDWT, 56 43 BT R AR A2, B, 2017 £ 12 H.

. BAY E#3E Nonlinear and linear DVDM scheme for the conservative non-local Allen—
Cahn equation, HAF 2 2018 FEEEL, HE, 2018 4E 3 H.

. Bk E3%3E ) Error estimate for a structure-preserving scheme for a conservative non-local
Allen—Cahn equation, New Japanese-Polish Joint Project on: Mathematical Modellings
and Analyses for Free Boundary Problems, %, 2018 4 6 H.

BN E¥EE B DIERFEMN S EREEER Allen-Cahn AR T 2 P RE R1FE A ¥ —
I, HE R OBUERE & Z D JEL 2018, KB, 2018 4£ 7 A.

. BN E3%3E ) A linear and structure-preserving scheme for a conservative Allen—Cahn equa-
tion with a time-dependent Lagrange multiplier, £ 8 [BIFE{HE R 2t I +—@ KUE,
WAL, 2018 4 8 H.

BN EESE NFINEEARSA N2 B 1 5 Caginalp system (25X 3 A FEERIFEA F— L4, HA
i FHECHL 2 2% 2018 AR AR 22, B4, 2018 4E 9 H.



10.

11.

12.

13.

14.

BN B, 55 NFNEIREM N ORMD SRS SEERFEA T —LIZOWT, B

44 MR AR E S, o, 2018 £ 12 H.

- BN EESE, RIS E M S Allen-Cahn AT T 2 HIERIEZ F— L, HAR

¥ 2019 FEES KA, 2019 F 3 H.

Bk BEE EE RS, BBERSM 2R U 72 Cahn-Hilliard AR 2 HERFE A
F— I, 5 A8 MIBUERENT > R Y T L (NAS2019), f&H:, 201946 A.

Bk e, PR B, B RS, &I A =, BIBES SR T @ Cahn-Hilliard #2302
I MERAFE A F — L DR & ffffr, 98 6 [ KA 2 X —, K47, 2019 6 .

A B R HS, B KT, &)1 8=, Recent advances in the structure-preserving
scheme for the Cahn—Hilliard equation with a dynamic boundary condition, Workshop on
Mathematical Methods and Applications with Nonlinear Evolution Equations, T%£, 2019
-8 H.

B BaEse, TR Bk, BRI KT, )1 A=, BB S fF 2 £ 5 CahnHilliard R259
B IIERAFEA X — LD DWW T, HASHEEE 2 2019 FEE R, AT, 2019 4£9 H.

BN B, R ®, B Ky, S A=, S ENEISRSME R TO Cahn-Hilliard /i
AT D ERF A F — L O AR, HARY 2 2019 FEMFRAEDR2, A, 2019
H9H.



Design and analysis of structure-preserving
schemes for parabolic partial differential
equations with dynamic boundary conditions

Department of Pure and Applied Mathematics,
Graduate School of Information Science and Technology,
Osaka University
Makoto Okumura

January, 2021






Contents

§3

1 Introduction 1
2 Preliminaries 4
3 A non-local Allen—Cahn equation 10
§1 Introduction . . . . . . .. L 10
§2  Proposed scheme . . . . . .. ..o 13
§3  Stability of the proposed scheme . . . . . . . ... ... 0oL 16
§4  Existence and uniqueness of the solution to the proposed scheme . . . . . . 17
§5  Error estimate for the proposed scheme . . . . . . . . ... ... ... ... 26
§6  Computation examples . . . . . . . . . ... 34
6.1 Numerical solutions . . . . . . . . . . . ... 35
6.2 Conservative property . . . . . . . . .. ... 37
6.3 Dissipative property . . . . . . . . ... 38
4 The Allen—Cahn equation with a dynamic boundary condition 40
§1 Introduction . . . . . . . . ... 40
§2  Proposed scheme . . . . . . . .. ... 42
2.1 Preparation . . . . . . .. .. 42
2.2 Proposed scheme . . . . . . . .. ... ... . 44
§3  Stability of the proposed scheme . . . . . . . .. ... ... L. 45
§4  Existence and uniqueness of the solution to the proposed scheme . . . . . . 46
§5  Error estimate . . . . . . . ... 56
§6  Computational examples . . . . . . . . . ... Lo 70
6.1 Computation example 1 . . . . . . ... . ... ... ... ... . 71
6.2 Computation example 2 . . . . . . .. ... ... L. 71
6.3 Computation example 3 (Numerical results for the Neumann bound-
ary condition) . . . . ... Lo 72
6.4 Computation example 4 (Numerical results for the Neumann bound-
ary condition) . . . . . ... 73
5 The Cahn—Hilliard equation with a dynamic boundary condition 74
§1 Introduction . . . . . . . ... 74
§2  Proposed scheme . . . . . .. ... 76
2.1 Preparation . . . . . . ... .. 76
2.2 Proposed scheme . . . . . . .. .. ... 77

Stability of the proposed scheme . . . . . . . . . .. ... L. 79



§4

Existence and uniqueness of the solution to the proposed scheme . . . . . .

§5  KError estimate . . . . . .. ..o
§6  Computation examples . . . . . . . . ...
6.1 Computation example 1 . . . . . . .. ... .. ...
6.2 Computation example 2 . . . . . .. .. ... 0oL
6.3 Computation example 3 . . . . . .. .. ... oL
6.4 Computation example 4 (Numerical results for the Neumann bound-
ary condition) . . . .. ... Lo
6 Summary
Acknowledgements
Bibliography
A Program codes
§1 A structure-preserving scheme for a non-local Allen—Cahn equation
§2 A structure-preserving scheme for the Allen—Cahn equation with a dynamic
boundary condition . . . . . .. ...
§3 A structure-preserving scheme for the Cahn—Hilliard equation with a dy-

namic boundary condition . . . . .. . ... Lo

117

118

119

124

. 125



Chapter 1

Introduction

In this thesis, we aim at improving structure-preserving schemes for problems un-
der boundary conditions, including time derivatives, which are called dynamic bound-
ary conditions. Thus, we have worked on the design and the analysis of structure-
preserving schemes for the Allen—-Cahn equation and the Cahn—Hilliard equation, clas-
sified as parabolic partial differential ones. For each target problem, we have designed
appropriate structure-preserving schemes and have obtained the theoretical results, i.e.,
the L*°-boundedness, the solvability, and the error estimate of the schemes. We have es-
pecially obtained the result of improving the spatial accuracy of the structure-preserving
schemes for the problems under dynamic boundary conditions.

Recently, initial-boundary-value problems of partial differential equations with dy-
namic boundary conditions are actively studied mainly by the European research team
9,12-21,33-35, 39,42, 46-49, 54, 55, 58]. It is often difficult to solve complicated partial
differential equations describing nonlinear phenomena analytically. Thus, the numerical
analysis, which solves them numerically, is important. In the numerical analysis for par-
tial differential equations, we discretize the equations, which are continuous systems, and
replace them with discrete systems based on discrete approximations (henceforth called
schemes), which are then solved. Although numerical computations for partial differen-
tial equations are not simple, structure-preserving numerical methods are expected to
be effective for difficult problems to solve numerically, such as the Cahn—Hilliard equa-
tion [8], which describes phase separation phenomena. Throughout this thesis, structure-
preserving means that the scheme inherits the conservative property such as mass con-
servation or the dissipative property such as energy dissipation. In fact, Furihata and
Matsuo have designed a structure-preserving scheme for the above equation with the
Neumann boundary condition using the discrete variational derivative method (DVDM),
the structure-preserving numerical method developed by Furihata and Matsuo, and the
scheme has realized the fast and stable computation [29-31]. We remark that the his-
tory of numerical computation of problems with dynamic boundary conditions is short
and that, in particular, there are almost no results of structure-preserving schemes for
the problems with dynamic boundary conditions. Actually, in [28], Fukao, Yoshikawa,
and Wada proposed a structure-preserving scheme based on DVDM for the following
one-dimensional Cahn—Hilliard equation:

{ O = 0p in (0,L) x (0, 00),
p= 0+ F'(u) in (0,L) x (0,00),

under the dynamic boundary condition and the Neumann boundary condition:



{ 0w(0,t) = Opu(z,t)|,_y, Ow(L,t) =— Oyu(z,t)|,_, in (0,00),
axp(xvt>’x:0 = a’vp(x»t)‘x:L =0 in (0,00).

Their proposed scheme inherits mass conservation law and energy dissipation law from
the original problem. However, they use a forward difference as an approximation of an
outward normal derivative on the boundary, and as a result, the scheme is only first-order
accurate in space. Thus, we aim to improve structure-preserving schemes for the prob-
lems with dynamic boundary conditions and start with the Allen—Cahn equation [1] that
is easier to handle than the Cahn—-Hilliard equation. First, to understand the idea of de-
signing a structure-preserving scheme by DVDM, we have designed a structure-preserving
scheme for the Allen—Cahn equation with a non-local term proposed by Rubinstein and
Sternberg [56] under the Neumann boundary condition. Next, based on the above idea of
designing the structure-preserving scheme, by improving the discretization of energy and a
summation-by-parts formula, which are important in DVDM, we have designed structure-
preserving schemes for the Allen—-Cahn equation and the Cahn-Hilliard equation under
dynamic boundary conditions, which approximate the boundary conditions by a standard
central difference. Moreover, we have obtained the desired results to improve the spatial
accuracy by approximating the boundary conditions with the central difference.

The rest of this thesis proceeds as follows. In Chapter 2, we introduce the basic
notations, known facts, commonly used formulas. In Chapters 3-5, we propose structure-
preserving schemes for the target problems and obtain the theoretical results, i.e., the
L*>-boundedness, the solvability, and the error estimate for each of the proposed schemes.

In Chapter 3, we study a non-local Allen—Cahn equation [56]. Our proposed scheme
inherits the mass conservation and the energy dissipation from the original equation.
Furthermore, regarding the error estimate, we did not find any previous studies that
gave rigorous proof of this, and related previous studies have only confirmed numerically
[41,43,69]. On the other hand, we have rigorously proved that our scheme is second-
order accurate in space and time, respectively. The contents of this chapter have been
published under the title “A stable and structure-preserving scheme for a non-local Allen—
Cahn equation” on pages 1245-1281 of volume 35, number 3 of the journal “Japan Journal
of Industrial and Applied Mathematics,” DOI: 10.1007/s13160-018-0326-8 [51].

In Chapter 4, we study the Allen—-Cahn equation with a dynamic boundary condi-
tion. By modifying the discretization of energy and the summation-by-parts formula,
which are important in DVDM, we design a structure-preserving scheme for the prob-
lem and use a central difference as an approximation of an outward normal derivative
on the boundary. In the previous results [29,31], to show the solvability of the discrete
variational derivative scheme, Furihata imposed the assumption that we need to take a
sufficiently small time mesh size depending on the space mesh size. Whereas, in our
study, we show it under only the smallness assumption of the time mesh size without any
space mesh size restriction by using the energy method [28,67,68]. Besides, we prove
that our scheme is second-order accurate in space and time, respectively. The results
in this chapter are based on joint research with Daisuke Furihata. Moreover, the con-
tents of this chapter have been published under the title “A structure-preserving scheme
for the Allen—-Cahn equation with a dynamic boundary condition” on pages 4927-4960
of volume 40, number 8 of the journal “Discrete and Continuous Dynamical Systems,”
DOI: 10.3934/deds.2020206 [52]. This is a pre-copy-editing, author-produced PDF of an
article accepted for publication in “Discrete and Continuous Dynamical Systems” fol-
lowing peer review. The definitive publisher-authenticated version “M. Okumura and



D. Furihata, A structure-preserving scheme for the Allen—Cahn equation with a dynamic
boundary condition, Discrete Contin. Dyn. Syst., 40 (2020), 4927-4960” is available online
at: https://www.aimsciences.org/journal /1078-0947/2020/40/8.

In Chapter 5, we study the Cahn-Hilliard equation with a dynamic boundary condi-
tion. Similarly to the way of designing the scheme for the Allen—Cahn equation with a
dynamic boundary condition, we also design a structure-preserving one, which approxi-
mates an outward normal derivative on the boundary by a central difference for the target
problem. Although we need to show the regularity of some matrix in the proof of the
solvability, Fukao et al. did not even touch it in [28]. In contrast, we show the regu-
larity of the matrix using the fact that we can decompose a quintuple diagonal matrix
that constitutes the matrix into a product of two triple diagonal matrices. Moreover, we
show that our proposed scheme is second-order accurate in space, although the previous
structure-preserving one by Fukao et al. is first-order accurate [28]. This chapter con-
tains the results of the preprint [53]. Moreover, the contents of this chapter have been
published under the title “A second-order accurate structure-preserving scheme for the
Cahn—Hilliard equation with a dynamic boundary condition” on pages 355-392 of vol-
ume 21, number 2 of the journal “Communications on Pure and Applied Analysis,” DOI:
10.3934 /cpaa.2021181. Also, this is a pre-copy-editing, author-produced PDF of an article
accepted for publication in “Communications on Pure and Applied Analysis” following
peer review. The definitive publisher-authenticated version “M. Okumura T. Fukao, D.
Furihata, and S. Yoshikawa, A second-order accurate structure-preserving scheme for the
Cahn—Hilliard equation with a dynamic boundary condition, Commun. Pure Appl. Anal.,
21 (2022), 355-392” is available online at: https://www.aimsciences.org/journal /1534~
0392/2022/21/2. Additionally, the results in this chapter are based on joint research with
Takeshi Fukao, Daisuke Furihata, and Shuji Yoshikawa.

In the last chapter (Chapter 6), we provide a summary of the results obtained in this
thesis.



Chapter 2

Preliminaries

In this thesis, we consider problems in the case of one-dimensional space. That is, we
consider the domain [0, L], where L > 0 be the length of the one-dimensional material.
We fix a natural number K. Let Az be a space mesh size, i.e., Azx := L/K, and let At
be a time mesh size. Firstly, we define basic operators to be used from now on.

Definition 2.1 (Shift operators). We define shift operators s}, s, concerning subscript
k by

spfr = ferr,  spfr= i
for all {fi}rs, € REF+25 where s € NU {0}.

Definition 2.2 (Average operators). We define average operators p, p, concerning
subscript £ by
Jo+ frem1

2

1 fi = Ir +2fk+1’

for all {fi}rts, € REFI+25 where s € NU {0}.

fy, fr o=

Definition 2.3 (Difference operators). Let us define the difference operators §;", 4, , 5,21),
and 5,9 concerning subscript k by

_ e — S _ Je — fra
+ I

., fk+1 — fr—1 @, Jern = 2fk + fra
L YV O Jr = (Az)?

for all { fi }25, € RE+1425 where s € NU{0}. Similarly, we define the difference operator
4,7 corresponding superscrlpt (n) by

f(n+1) _ f(n)

+r(n) .
0, [ A7

Definition 2.4 (Summation operator). As a discretization of the integral, we define the
summation operator Zszo ", RE+H1+2s 4 R by

K K-1
1 1
E = §f0 + E fr + ifK for all {f}rts € REH+2 where s € NU {0}.
k=1



For later use, we next define the difference quotient.

Definition 2.5 (Difference quotient). Let © be a domain in R. For a function F' € C*(2)
and &, n € €, we define the difference quotient dF'/d(&,n) of F at (§,n) by

aF —F@g:f(") (€ #n).
H&m | pi) (€=mn).

Definition 2.6. Let © be a domain in R. For a function F € C?(f), let us define F":

' — R by
§ iéf{(ci(dfl,:n) i d(ﬁ?)) - (dgm i dgﬁ))} I

F‘”(f? é’:; 777 ?7) :: dF dF
0,
¢ (d(f,n) - d(&ﬁ))

fzéj
for all (€7€a 77777’) S 94‘

We also define the discrete Lebesgue norm, the discrete Dirichlet semi-norm, and the
discrete Sobolev norm.

Definition 2.7 (Discrete norms). We define the discrete L>-norm |- ||z and the discrete
L2norm || - ||z by

£l = max 1l £z =

0<k<K

for all f = {fi}X, € REFL. Furthermore, for all f = {fi}5 , € RET! we define the
discrete Dirichlet semi-norm ||D f|| of f by

K-1

IDFI = | D 16F ful?Ax,
k=0
where D f is denoted by Df := {4, fk}f:_ol € RX. Also, define the discrete Sobolev norm
-1y by

1 £y = \JIIF I3 + IDFI? - for all {fihiy € R

Moreover, we describe propositions we will frequently use later.

Proposition 2.1. The following equality holds:

K-1 K K

1

3 <§ filda 4 kax> => "fidx forall {fi}i, € RN
k=0 k=1

k=0

Proof. For all {f;}= , € RE™ we have from the direct calculation that

1 K—-1 K 1 K-1 1 K
_ o "
5 (;; ez + ; kaa:) = Sfola + ; feldo + 5 freAw = }; frlAz.



Since proofs of the following lemmas can be found in [31], we omit them.

Proposition 2.2 (Summation of a difference [31, Propositon 3.1]). Let us denote fx — fo
by [fx]&. The following fundamental formula holds:

K
>l e = (o £l
k=0

Proposition 2.3 (Second-order summation by parts formula [31, Propositon 3.3]). The

following summation by parts formula holds:

o - B K
3 0E56) (500) + OER) (o) s, S (5 1) g

2
k=0 k=0

<@nﬂ@%rw@nn@%qK

K
| forall { filit! e RFHS,

* 2

0
for all {fi}rtt, {grtit?t, € RE+S,

Proposition 2.4 (Second-order summation by parts formulas). The following summation
by parts formulas hold:

S )G g AT = — S0P fgde + (05 filaslt (2.1)
k=0 k=0
> (6 f) Gr g Az = =3 (67 f) g + [(57 fi)grld (2.2)
k=1 k=1

for all {fy i, {gntit?!, € REFS,

Remark 2.1. The left-hand side of (2.1) and the left-hand side of (2.2) appear to be
different, but they are the same. In fact, by direct calculation, we can see that

K K K—1
> O fr) () Az =" (6 frm1) (0 grmr) Az =Y (57 fu) (6 g) Az (2.3)
k=1 k=1 k=0
Proof. For all {fi}7', {gr}it", € RE*F3 we obtain from the direct calculation that
K—1 KL g g
+ + _ k+1 = Jk Gk+1 — Gk
k=0 k=0
K—

1 K-1
Jir1 = Ji _ka+1_fk

M)~

K-1
Ji fk_lgkAx -y fk(—i—Al kagkAx
k=0

2" Ay 7

I S L/ SN ) [ SYN e
e (AZE)Q 9k A.f 9K AZE gJo
K-1

(6 F)grnAz + (05 ful,_)9x — (85 Fil,_y)90

I
I

= (687 ) gz + (8 fo) gl

B
Il
o



In the same way as the above calculation, we have

= ka_fk 19k — Gk—1
g:l(&;fk)((?;gk)ﬁx = kZﬂ Ax Ar D7
K K
B R N
— kg_l (Ax)? gLAr — kg_l (Az)? gr—1Ax
K K-1
o e Jea Je1 — fr
T mE T
K

B Jer1 — 2/ + fr1 Jrv1— fx J1— Jo

|
|
M1

(67 f) g Az + (6F fil o )ax — (55 ful,_y)90

K
= =62 f) gz + (6] fi) gl

B
Il
—

These complete the proof. Il

Corollary 2.1 (Second-order summation by parts formula). The summation by parts
formula holds as follows:

N

K

(5+fk) (5;:_gk) Ar = — Z” <5l<f>fk> gLAx + [<5I<cl>fk) gk]:

0 k=0

b
Il

for all {fi}iy, {gr}isly € REFS,

Proof. For all {fi}2, {gr}7=", € REF3 summing (2.1) and (2.2) and dividing by 2,
we have

!

=

-1

M

K
(67 fr) (6 g) AHH‘Z (65 fr) (67 gx) Az }

{

By (2.3), we transform the left-hand side of (2.4) as follows:

e
Il

0

N

-1

DN —

( fk) grAx + Z ( fk) gkAx} + % { [(@ka) gk]é( + [(5[:101@) gk]é(} .

(2.4)

il

0

K-1 K-1
1
5{2 (55 fr) (65 gx) Aa:+2 (5 fr) (05, 9x) } > (6 f) (05 gx) A

k=0 k=1 k=0

Next, by Proposition 2.1, we transform the right-hand side of (2.4) as follows:

7



From the above, we obtain

K-1 K
S 68 5) (o) A== (52 1) oedsr + [ (57 5) o]
k=0 k=0
This completes the proof. n

Proposition 2.5 (Discrete Sobolev inequality [67, Proposition 2.2]). We define a constant
C;, as follows:

V14402 +1

CL = oL
Then, the following inequality holds:
£l < Co I fll 7 for all {fi}iy € RFF (2.5)
Proof. We can obtain (2.5) from the proof by Yoshikawa [67]. O

Proposition 2.6 (Discrete Poincaré~Wirtinger inequality [31, Lemma 3.3]). For all f =
{fiH<, € RET! the following inequality holds:

K 2

fim g S e

k=0

<L|Df|* (=0,... K). (2.6)

Proof. We can obtain the discrete Poincaré-~Wirtinger inequality (2.6) from the proof by
Furihata and Matsuo [31]. O

Let Q be a domain in R. We give several lemmas necessary for the proof of the
existence and uniqueness of the solution. Since proofs of the following lemmas can be
found in [67], we omit them.

Lemma 2.1 ( [67, Lemma 2.4]). If F € C?(Q), then I € C(Q*). Moreover, we have

dF dF ;
5%<d@nﬁ’kd@nw>'§i§ﬂfw“”

F"(Sf;n,ﬁ)‘ < sup sup
n,nEQ €N

for all (,€,1,7) € !

Lemma 2.2 ( [67, Proposition 2.5]). Assume that F € C?(f2). For any &, & n, ieq,
we have

dF T T




Lemma 2.3 ( [67, Lemma 2.3]). The following inequality holds:

ID(FIl < I Fllzs IDgll + liglics D

for all £ = {/itl0 9 = {g}o € RN, where fg = { fign} € R

The following lemma follows from the same argument as Lemma 2.6 in [67].

Lemma 2.4 ( [28, Lemma 3.3 (2)]). Assume that F € C3(Q). For any f; = {fix}i,,
o= {fortieos F3 = {fontieo: F1 = {fartiy € RETL all the elements of which are in
), we have

IDE"(fr. foi £, Fa)|| < %gggw’"(s)\ @D +2 DL +ID S5 +IDF)-



Chapter 3

A non-local Allen—Cahn equation

In this chapter, as mentioned in Chapter 1, to understand the idea of the discrete vari-
ational derivative method (DVDM) [29], we design a structure-preserving finite difference
scheme for a non-local Allen—-Cahn equation that describes a process of phase separation
in a binary mixture based on DVDM. Our proposed scheme inherits characteristic prop-
erties, mass conservation, and energy dissipation from the original equation. Besides, we
show the stability, the existence, and the uniqueness of the solution to the scheme. We
also prove the error estimate for the scheme. Computation examples demonstrate the
effectiveness of the proposed scheme.

g1 Introduction

Allen and Cahn introduced the Allen—Cahn equation as a model for antiphase domain
coarsening in a binary alloy [1]. It has been applied to various problems, for example,
phase transition [1,10], image analysis [4,23,44], and motion by mean curvature [2,3,24,
26,38,40,50]. Let L > 0 be the length of the one-dimensional material. In this chapter, we
study the following initial-boundary value problem for a non-local Allen—-Cahn equation
introduced by Rubinstein and Sternberg [56]:

2
Oou = 8%u + 6—7;(1 —w?) + X in (0,L) x (0,00),

1 [r2 (3.1)
A= —Z/O 6—2(1 —u®)dz  in (0, 00),
under the Neumann boundary conditions:
Opu(z,t)|,_o = Opu(z,t)|,_, =0 forallt>0. (3.2)

The unknown function w: [0, L] x [0,00) — R is an order parameter, which is the con-
centration of one of two components in a binary mixture. The parameter 0 < ¢ < 1 is
related to the thickness of the interface layer, which can develop in parts of the solution
with a steep gradient.

Rubinstein and Sternberg introduced the equation (3.1) as a model for a process of
phase separation in a binary mixture that conserves the total mass of two species [56].
They introduced the non-local term A°, which is a Lagrange multiplier, to ensure mass
conservation (3.6). Here, we remark that the classical Allen-Cahn equation, in which

10



the non-local term A° in (3.1) is absent, does not have mass conservation. Bronsard
and Stoth proved that the equation (3.1) converges, as ¢ — 0, to the volume-preserving
mean curvature flow in a radial symmetry case [7]. Golovaty obtained a similar result
to [7] for the Allen-Cahn equation with a different non-local term [36]. Chen et al. [11]
obtained the convergence in the general case. Moreover, the equation (3.1) has been
studied analytically and numerically [5, 6,22, 59, 62, 69]. However, compared with the
number of studies of the classical Allen—-Cahn equation, there are not many numerical
results of the non-local Allen—Chan equation.

Brassel and Bretin [6] concluded that the following another non-local Allen-Cahn
equation:

( 2 1~
Deu = OPu + 8—;‘(1 — )+ SN —u?) i (0,L) x (0,00),

) —/0 2u(l — u?)dx (3.3)

c = in (0, 00),

\ /OL(l —u?)dw

has better volume-preserving properties than (3.1) in the sense that an error of the con-
servation of the volume is small. However, as Takasao [60] mentioned, (3.3) does not
have the dissipative property (3.7) of energy J. Kim et al. [41] proposed a practically
unconditionally stable scheme for (3.3), and yet they did not give the proof of the sta-
bility and the error estimate for the scheme. Zhai et al. [69] compared three methods
to approximate (3.3), including the Crank—Nicolson (CN) finite difference method, the
finite difference operator splitting (OS) method, and the Fourier spectral operator split-
ting (FSOS) method. They checked that the convergence rates of the CN scheme and the
OS scheme approach second as the mesh size becomes small and that the FSOS scheme
is second-order accurate in time through numerical computations. Nevertheless, Lee [43]
commented that their proposed schemes are not second-order accurate in time and/or do
not satisfy mass conservation. In addition, Lee [43] discretized (3.3) by a Fourier spectral
method in space and first-, second-, third-order implicit-explicit Runge-Kutta schemes
in time. Although he checked the convergence of the schemes, the convergence rate, and
that the schemes are first-, second-, third-order accurate in time respectively, through
numerical computations, he did not give the proof of them.

Thus, we propose a structure-preserving scheme for (3.1) based on DVDM. Our pro-
posed scheme inherits two characteristic properties, mass conservation (3.6), and energy
dissipation (3.7), from the original equation, whereas the DVDM scheme inherits just one
property in general. Furthermore, we prove that the solution of the scheme converges to
the one of the target equation in the sense of discrete L2-norm and that the convergence
rate is O((Ax)?+(At)?). Moreover, we prove the stability of the scheme, the existence and
the uniqueness of the solution of the scheme. Also, based on this study, we expect that
we can design a structure-preserving scheme for another non-local Allen—Cahn equation,
such as (3.3) by using DVDM. Here, we remark that there are not that many results of
the application of DVDM to partial differential equations (PDEs) with a non-local term
to the best of our knowledge.

In this chapter, as mentioned previously, we design a finite difference scheme for (3.1)
based on DVDM so that the scheme inherits the conservative and dissipative properties
such as (3.6) and (3.7) from the original equation (3.1) in a discrete sense. Here, let us

11



define the “local energy” GG and the “global energy” .J, which characterize the equation
above (3.1):

G(u, Do) = '82“| +—¥, (3.4)
J(u) ::/0 G(u, Ozu)dz. (3.5)

Then, the equation (3.1) has the following properties:

-~ / udz = 0, (3.6)

dt J(u) <0. (3.7)
DVDM is a numerical method for designing numerical schemes for PDEs with conserva-
tive and dissipative properties such as (3.6) and (3.7), and the DVDM schemes inherit
conservative/dissipative property from the original PDEs in a discrete sense. From the
perspective of numerical computation, the properties often lead us to stable computation.
Hence, if the designed schemes retain the properties in a discrete sense, they are expected
to be stable.
Also, the following property holds for global energy J:

d Lsa

u

under the boundary conditions (3.2). The notation 6G/du is the (first) variational deriva-
tive of G' concerning u. From the integration by parts and the boundary conditions (3.2),

we can show
d —J(u) = /L —0*u — zu(l —u?) ¢ Qyudw
dt o e g2 e

Therefore, we have

G 2

= —0%u — —u(l — u? .
S osu 52u< u”) (3.9)
from (3.8). We can rewrite (3.1) as follows by using (3.9):
J
Oyu = —g +A° in (0, L) x (0, 00). (3.10)

Furthermore, we obtain

L L L
As__l/ {_E_gﬁ} {/ Edwr [0, } / G e in (0,00), (3.11)
L/, ou

by the boundary conditions (3.2). Namely, we can rewrite (3.1) as

Oyu = —E + A% in (0,L) x (0, 00),

/ —dx (0, 00).

12
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Therefore, we can apply DVDM and can easily prove the conservative property (3.6) and
the dissipative property (3.7). In fact, it holds that

d [* brooa . - ("
7 i udx—/o (—E—F)\) /—d:L‘—i—)\/O dz

Lsa Lsa

where we have used (3.10) in the first equality, and (3.11) in the third equality. Moreover,
from (3.8), (3.10), and mass conservation (3.6), we can show

L5G L L L
/ —atudx = / (=0 + \°) Qpudr = —/ (Opu)?dx + )\E/ Oyudx
0 0 0

L
= —/ (Opu)?dz < 0.
0

The rest of this chapter proceeds as follows. In section 2, we propose a finite differ-
ence scheme for (3.12), whose solution satisfies the discrete versions of the conservation
property (3.6) and the dissipative property (3.7). In section 3, we prove that the solution
of the proposed scheme satisfies the global boundedness. In section 4, we prove that the
scheme has a unique solution under a specific condition. In section 5, we prove the error
estimate for the scheme. In section 6, we show that the numerical examples demonstrate
the effectiveness of the scheme.

82 Proposed scheme

In this section, we propose a scheme for (3.12) and show that it has two properties
corresponding to (3.6) and (3.7).

We define U,§") (k=-1,0,1,...,K, K +1,n =0,1,...) to be the approximation to
u(z,t) at location x = kAx and time t = nAt, where Az is a space mesh size, i.e.,
Az = L/K and At is a time mesh size. They are also written in vector as

U= U 0", U U)o U= (U0, UL U

The superscript (n) is omitted when no confusion occurs. Guess the meaning of U from
the context.

Remark 3.1. Ufrj) and U I(?J)rl are the artificial quantities and determined by the imposed
discrete boundary condition.

The concrete form of the proposed scheme for (3.12) is, for n =0, 1,. ..

Ukn+1 U(n) 5Gy ) B
A~ s, gy, AU UT) (k=0 K), »
1 = " 5Gd ( . )

A (U(”“), U(n)) —

- Az
n+1 n ’
Lk:o §<U(+)7U())k

13



where

dGyq @ Us+ Vi 2 (Up Vi Ui+ Vi
=0 | — = 1——= k=0,...,K). 3.14
(5(U, V)k k 2 g2 2 2 ( ’ ) ) ( )
The discrete boundary conditions are
SVU™M =0 (k=0,K, n=0,1,...). (3.15)

Note that these discrete boundary conditions (3.15) mean that
v —uln, v, =UP, (n=0,1,...).
Let us define a discrete local energy Gg: RE+3 — RE+! by

1 (67U + (6, UL)? 1 —U2)?
Gd,k(U) :_é(k k) 2(k k) +( 282k)

(k=0,....K). (3.16)

From Proposition 2.3 (second-order summation by parts formula), the relation between
Gq of (3.16) and 0G4/0(-,-) of (3.14) is given by

K K
Z ”GdJc (U) A$ — Z ”Gng (V) A$
k=0 k=0
Up+Vi U+ Vi) K
K 0y S p (Up=Vie) + 0y L t, (U= Vi)
= Z”& (Up—Vi) Az+ 2 2
R ICA 2 2

K K
Z”Gd,k; (U(”H)) Ax — Z "Gk (U(”)) Ax
k=0 k=0
S 0G (n+1) _ 77(n)
_ " d n+1 n
- kz_% S(U+D U™), (Uk — Uy ) Ax

1 n n n n —_ n n —_ n n K
+ 7 [ (Ul o) it (0 =) + o (U0 s (0 =) |
for n =0,1,.... Here, we show the following equality:
[5’_: (Ulin-&-l) 4 Ukn)) ’u; <U]£n+1) _ Uén))
K
+8; (U0 + U e (U - U,§”>)]O —0 (n=0,1,...). (3.17)

Since it holds from the discrete boundary conditions (3.15) that

OF + 0.\ 11n n
(%)U,ﬁ):é,i”U,g):O (n=0.1,..),
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we have 67U = 67U (n = 0,1,...). Namely, 6; (U +U™) = 6, (U 4+
U,E")) (n=0,1,...). Furthermore, we obtain

+ —
M — n 1 n
(ot 0 v

since it holds that

e _Lrsi—(L=s) sy —si _ s
Ax 2Ax 2Ax ko

That is p U™ = p UM, v, pt (O + 0 = (™ +UM) (n = 0,1,..).
Hence, (3.17) holds. Therefore, we have

K K

K
> G (U ) B =3 G (U) dr =3 sy (0607 VL) A

k=0 k=0 k=0

for n = 0,1,.... The proposed scheme (3.13) has properties corresponding to (3.6) and
(3.7), ie

Theorem 3.1. The solution of the scheme (3.13) under the discrete boundary conditions
(3.15) satisfies the following equality and inequality:

K K
S Ar=>""U" A (n=0,1,..), (3.18)
k=0 k=0
JJU) < JqU™) (n=0,1,...), (3.19)
where
K
Jd (U(n)) = Z”dek (U(n)) Ax (TL = 0, 1, .. )
k=0

We call (3.18) the discrete mass conservation and (3.19) the discrete energy dissipation.

Proof. First, we can show the discrete mass conservation (3.18) from (3.13) as follows:

k=0
K
0Gq (
=) "i— c (U®+D )
- Z { 5 (U(n+1)7 U(n))k + Aq (U U )} Az
k=0
“ 3G K
=) 7 d e (77(n+1) T7(n) "
- Z S(U+) UM )A"E"’)‘d(U U )E Az
k=0 k=0
K K
0Gyq 1 0Gy
= — " A - " Ax-L=0 =0.1...).
; § (UMD U™, T L& 5 (U UW), x (n=0,1,...)

Next, the discrete energy dissipation (3.19) can be shown as follows:

15



where we have used (3.18) in the fifth equality. O

§3 Stability of the proposed scheme

In this section, we show that, if the proposed scheme has a solution, then the discrete
L*-norm of the solution is bounded.

Lemma 3.1. The solution of the scheme (3.13) under the discrete boundary conditions
(3.15) satisfies the following inequality:

K

n) 112 1 " 4
Ut )Hﬁé < m {Z Gax (U?) Az + 6—2L} (n=0,1,...).  (3.20)

27

k=0

Proof. From the discrete energy dissipation (3.19) and the following inequality:

1
—rY? + §rY4 > 2rY? — gr forallY € R, r > 0,

we can show that

K K
Z//Gd,k (U(o)) Az > Z"Gd,k (U(n)) Ar
k=0 k=0
K <5+ U(")>2 + (5_U(n))2
1 1 2 1 4 1 \Y% Yk Yk
Sl b () o
— 2e € 2e 2 2
st o (5- )
K n — n
1 2 2 9 1 <k k ) +<k k >
> n) + 4 (U(n)> I A
—; 92 T 2 \Uk 9.2 T 2 .
stV L (- oY
K @ — 7
2 1 2 (k k>+<k k) 1 9
> s 2 " ( (n)> s
= mm{e2’ 2}; V') + 2 HVERbE
2 1 12 4
:mm{?’g}”U( )Hﬁé = (n=0,1,...)



In the above calculation, we have also used the following equality:

ZK:// (5;U;§")>2 _;_ <5;€_U;£”))2Ax ) <6;U]§"))2 An 5.21)

k=0 0

=

i

In fact, we obtain the above equality (3.21) by using discrete boundary conditions (3.15).
Therefore, (3.20) holds. O

Applying Proposition 2.5 (Sobolev type inequality) to (3.20), we can obtain the following
inequality:

Theorem 3.2. The solution of the scheme (3.13) under the discrete boundary conditions
(3.15) satisfies

K
U], <Cr % {Z”Gd,k (U"Y) Az + ;%L} (n=0,1,...).
d
min{— —}

4 Existence and uniqueness of the solution to the
8
proposed scheme

In this section, we prove that, through the fixed-point theorem for a contraction map-
ping, the proposed scheme (3.13) has a unique solution under a specific condition on At
and Azx.

To prove the existence and uniqueness of the solution to the proposed scheme, we
rewrite the scheme (3.13) as follows:

U’gn—i-l) B U]gn)

At
(n+1)\? N
(n+1) (n) U +(U
o Uy T+ U L (rmt1) | 1) < k ) ( k )
= 0 (#)Jr?((]k + U ) 1= 2
2
K [ — U(n+1)> i (U(n))
1 U U 1/ 0 . (kz k
L2 5’9( = k) SO Ul 2 A
k=0
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(b)) o))
3 [ ) - o0 o) )

by using Proposition 2.2 (summation of differences) and the discrete boundary conditions
(3.15). Namely, we obtain

u£3 €3 1 A
EUIEH__5 U(+1) AtU’g 4= 5 U + U +1+ U +{FU(")U(n+1)}k
T | XK K
n+1) (n) 41
- DU e S U a3 R U A
k=0 k=0 k=0

where the mapping Fy;m): RETL — REF! is defined by

2
Ry V= g (Ve + U0) {<w>2+ () } (k=0,....K),
for all V = {V,}5 € RETL That is, we have
1 _1leo ) _ 1L 1 1e\ym_ 1 - UOAL U("“ 1o npretIA
A 2% Azt )OS pE TR GUST S U A
k=0
+{FU(n)U(n+1 Z”{F (n)U( +1} Azx. (3.22)

In connection with the scheme (3.22), we define a mapping Ty : REH — RE+! by using
the following equation:

1 1
(Kt - §5z<f>) {Tom V1,

1 1

K
1
(2) n) § ://U(n § ://
o (ﬁt 6 ) k Le ) (Lk——[ VkA:L‘)

1
+{FU(")V}’€_EE ”{FU(n)V}k,AZE (k:O,...,K),
k=0

for all V. = {V;}E_, € RE*. Here, the operator in the equation above is defined under
the discrete boundary conditions (3.15), i.e., {Tym V}-1 = {Tyw V1, {Tumw Vs =
{TovmV k-1, qu) = Ul("), and UI(?J)FI = Ui(?ll. If the mapping Ty has a fixed-point V'*,
then V* is the solution U™V of the proposed scheme (3.13) under the discrete boundary
conditions (3.15). The matrix expression of Ty is given by

1 1 11 1 1
—I—--D WV = I+-Dy e U™ — —sUu™
(At 2 2> Tore {(At > 3 2} Le?

1 1 1 Kot
+?(I_ZS)V+<]_ES>FU(n)V fOI‘&HVER+7

18



where [ is the (K +1)-dimensional identity matrix, further, S, and Dy are (K+1) x (K +1)
matrices and defined by

1 1
-1 ... 1 =
2 2
11 11 -2 2 0
2 2 o2
Si=Ax|i i i |, Dyi= o 3
v 27 (Ax)? '
1 1 1 -2 1
g b g 0 2 -2
1 1
-1 ... 1 =
2 2

The following lemma implies that the mapping Tg ) is well-defined for all U™ e RX+1,
Lemma 3.2. The (K + 1) x (K + 1) matrix (1/At)I — (1/2)D, is nonsingular.

Proof. Eigenvalues of Dy are

T R N o

and the eigenvector xj; corresponding to the eigenvalue Ay is

:l:k:(cos(%w),cos(%ﬂ),...,COS(KkkW))T (k=0,....,K). (3.24)

Since it holds that Doz = Ay (K =0,..., K), we have

1 1 1 1 1 1 1 1

Thus, eigenvalues of (1/At)I — (1/2)D, are

11 11 k 1
- _ = - — 4+ — — > — =0,... .
AT AT AL {1 o8 (KW)} 2570 k=0 K)

The positiveness of the eigenvalues implies the nonsingularity of (1/At)l — (1/2)D,. O

Next, we prove the existence and uniqueness of the solution for the proposed scheme
by the fixed-point theorem for a contraction mapping.

Theorem 3.3. If At satisfies

Le?Ax 1 1

At < min{ ,
(L +/(K+1)(2K — 1)Ax) 9(Az +65R3)" 4 (Az +209R2)

} . (3.25)

then the mapping Ty has a unique fixed-point in the closed ball B, where
Rai= U™, Bi={veR, o]z <8R},
d d
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Proof. By the fixed-point theorem for a contraction mapping, it suffices to show that
Ty is a contraction mapping on B.
First, we prove that Tym B C B. By Lemma 3.2, we have

TirmV = 1[—117_1 1+1I+D U™
v N At 272

11\ . 1 1
(Atl—§D2> {—L—€25U<>+(I—ES)<E—2V+FUWV)} for all V € B.

We diagonalize the matrix D, as follows:
Dy = XAX
where X and A are (K + 1) x (K + 1) matrices defined by
X = (xg,@1,...,xg), A:=diag(Ao, A1,..., k),

with @ given by (3.24) and Ay given by (3.23). Since it holds that I = X X' = XTX 1
we have

11 1 1
L g xS hlvax o x (Lot x 3.26
At 27T At 2 (At 2 ) (3.26)

Similarly, we obtain

11 11 1 »
A T P (EREA TSN P

It holds from (3.26) that

(st =322) = (x(gt31)) (- 31)

Then, the matrix expression of Tg;m) is given by

-1
_ o Tr_ = 1 1 —177(n)
Tmn)V—X(AtI 2/\) {(At )I+ A}X U

1 -1 1 1
I——A — — SUY 4+ ([I—=S) =V +Frm for all B.
+X(At 5 ) { LeQSU +( i )(€2V+ U >V>} orall Ve

(3.27)
Here, we denote a matrix norm || - |2 by
2
| Al 2 := su Ll for all (K +1) x (K + 1) matrix A.
T a0 [®r
By using the following estimates:
|diag(do, dy, ..., dx— 1,dK)||Lz —Og}fz}%|dk|
1 = At (3.28)
0ShEr RN :
At 27"
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—+ =+ =N
max |AL_ €2 114 A (3.29)
0<k<K L_l)\ 2
At 27"
15[z < V(K + 1)(2K — 1)Az, (3.30)
1 1
I—=S|| <1+ —V(K+1)2K —1)Au, (3.31)
L7, L
X2 < 2V, (3.32)
2
-1
X ”Lﬁg\/_?» (3.33)
585
1Foea Villz < 51 — R (3.34)
we obtain
HTU(n)V”Lf1
1 1N (/1 1 . .
<% | (w7 -51) {(m+ %) 45| 16 10l
L3
1 1\ .
1 | (a7 50) | I
L3
L sl [T S Lv FymV
x 972l ez [T 2 + P = WVl + Fue Vi

1
(1+—> (Lol /P +4At{L8 V(E+ 12K - DAz [[U™] .

_|_

1

IN

4(1 t) Rd+4At{L12\/(K+1)(2K—1)Ax-Rd
(1+ —V(K +1)(2K — 1)Aa:) (ngJr 525 Rd>}
{(1 + At) At {L\/(K +1)(2K — 1)Az

+ (1 + — \/ +1)(2K — 1)A:c) (8 + Zﬁ}%d) H Ry

_4{1+ — {1+ V(K +1)2K — 1)Az

585
(o bvrrTmEea) (s ) |
9AtL 65 1
Actually, we show how to obtain the above estimates (3.28)—(3.34). First, we obtain
(3.28), since A\, < 0 (kK = 0,...,K), and A\g = 0. In addition, by using (3.28), the

+

;.l;
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estimate (3.29) holds. Next, we show the evaluation of the matrix norm (3.30). From the
definition of the matrix S, we have

K+1 K+1 K+1 K+1
4 2 2 4 1 9 5 1
K+1 K+1
T K—I'_]_ A K+]_ T 2 4 .. 4 2
T 2 : : : ) K+1 2 : :
S S:(Al‘) : : : : :T(ACL‘) : .
K+1 K+1
—+ K+1 .- K+1 —+ 2 4 4 2
2 2 12 - 21
K+1 K+1 K+1 K+1
4 2 2 4

Let us define a (K + 1) x (K + 1) matrix P by

12 -+ 21
4 ... 4
P = : :
2 4 4 2
1 2 2 1
Namely, it holds that
K+1
STS = T+(A‘”)2P'

Let 1 be an eigenvalue of P. Then, the characteristic polynomial of P is
det(P — pl) = (=15 'p™ (u — 4K + 2).

Thus, we obtain the eigenvalues j = 0, 4K — 2. Therefore, the largest eigenvalue of S'S

—Kil(m)%(m—z) _ !

from K > 1. Hence, we have

K +1)(2K — 1)

(Az)?

K+1)(2-1
18052 < VEISI = V3| EFDE=D a0 R ER — DA
using the following inequality:
1Al < V2 All, for all (K +1) x (K + 1) matrix A, (3.36)

where || - ||z is the matrix 2-norm induced by the euclidean vector norm. Moreover, by
using the estimate (3.30) and the triangle inequality, we obtain the inequality (3.31).
Next, we show the estimates (3.32) and (3.33). Let us define a diagonal matrix @ of order
K +1 by

1
L 0
1
Q=
1
1
0 vz
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Also, let Z be a square matrix of order K + 1 as

2
Z = \/;QXQ

Then, Z is an orthogonal matrix, i.e., Z=! = ZT. In fact, let Z = (2o, ..., zx), then

1
— ) k:OaK )

g / 2
k 1 Y K 1
nyk’ ( 3 ; )7

where

Y = : (k=0,...,K).

,m
K
y;;-yn:Z"cos(%ﬁ-k))(?os(%ﬁ-k): %K, (1§m: <
0

N

k=0

That is, {2z}, is an orthonormal basis of R**!. Thus, Z is an orthogonal matrix.
Hence, it holds from Z'Z = Z7'Z = I that ||Z|s = 1. Also, we have [|Q |, = v/2.
Therefore, by using the inequality (3.36), we obtain

K\ 4,
X1z < VX2 = V25 lQ712Q 7, < 2VEK.
Similarly, from ||Z7||; = 1 and ||Q]]> = 1, we have

2 2
XMz < V20X M2 = V2 \/;HQZTQH2 < o=

Finally, we show the evaluation of the nonlinear term (3.34). By using the following
inequality:

K 5 K K
2 2
Z "arbpAr < N Z Z b Ax
k=0 k= k=0
for all {ax g, {bk 1o such that ay, by > 0 (k = ., K), we have



K
xS {V,f + oV U™ + (Uk”))Q} Az

LY(2Y 2 o2 2 ([ ., )
= (22) (&) (VB IOV ) (V#1002 o rviise

for all V' € B. Moreover, by using Schwarz inequality, we obtain

K
> "WV UM Az

k=0

K K
<\ S mveae S (U,§">)2 Az = V3 [0, forall Ve B.

k=0 k=0

Hence, we have the following estimate:

1Y/ 2V a2 \2 2 .
1FoVIE; < (55 ) (3 ) (VI HITPI) (VI + 02211k [0]],5)

< (%)2 (éy {(8Rq)> + R2}* {(8Rq)> + R2 +2 -8Ry - Ry}

1\ [/ 2)°

Therefore, we obtain the estimate (3.34). From the assumption (3.25) on At, the following
inequality holds:

Le?Ax
9 (Az + 65R2) (L + K+ 1)(2K — 1)Ax)

52

9 (1 + 2—‘21{3) {1 + %\/(K+ 1)(2K — 1)Am}.

At <

Hence, we have

9At 65 1

From (3.35) and (3.37), we see that HTU(")V“LC% <8Ry, i.e., TymV € B. Hence, Tyym B C
B.

Next, we prove that Tym) is contractive. Using (3.27), (3.28), (3.31), (3.32), (3.33),
and the following estimate:

24



209R%

| FymV — FU(MV/HLg < Ay |V — V/HLg for all V,V' € B, (3.38)
we can show that
||TU(n)V - TU(n)V/HLQ
1 -1 ) 1 1 ) )
< 11Xl I——A 2}|X ||L3 [-=$ \= V=Vl 2+ FymV =Fym V'l 2
Ld d

1 1
<anr (1+z¢<K+1><2K—1>Ax)(; IV =Vl FoV — PVl )

2
i <1 + 2(251) <1 + %\/(K F 12K — 1)AJ:) [V =V|,, forallV,V'eB.

(3.39)

e2

Actually, we show the estimate (3.38). For all V', V' € B, we have
1FyoV = Fyo V|12

1\2K ) 5
= (2—52) »r {V,f’ + Vi (U,ﬁ"’) + VAU + (U,E")>

k=0

~ v (U)o - (Ué”))?’}z A

_ (2%2)2; " {{v,f . (v,;)?’} + (Ve = V) (U,§">)2+{V,3 - (v,;)z} U,gm] Au

0

=

1 2 2 2
= <—) Z”{VIE VAV (VP (U] + (G + V) U;m} (Vi — V)*Ar. (3.40)

2
2¢e —
Z”V2Ax = ,/ IV < w/ -8Ry forall V e B. (3.41)
max ‘U(n) < le (3.42)
ok<k | F 1=V Az '

Therefore, it follows from (3.40), (3.41), and (3.42) that

Moreover, it holds that

2
max _|Vy| < @/
0<k<K Az

Similarly, we obtain

2 1 \2 & 2 9 2 9 2 ) 2
[Fym V= Fym V|7 < (2_52) Z” Ao O4RG+ B4R + 1 OAR] + R

<\/7 8Rd+\/7 8Rd> \/: } (Vi — V)? Az

2 2

209 R2 2
(gfﬂ |V — V’HLQ for all V, V' € B.
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Hence, the estimate (3.38) holds. From the assumption (3.25) on At, the following in-
equality holds:
Le?Ax
4 (Az + 209R2) (L + /(KT 12K — 1)Ax>

52

4 (1 + 2??) (1 + %\/(K +1)(2K — 1)Aa:) |

At <

Thus, it holds that

ZVAN 209R2 1
< = d - — ) )
0< = (1 + AL ) (1 + L\/(K+ 1)(2K 1)Aa:> <1 (3.43)
Therefore, from (3.39) and (3.43), Ty is contractive. This completes the proof. O

85 Error estimate for the proposed scheme

In this section, we show an error estimate of the numerical solution of the proposed
scheme. Fix a natural number N € N. We compute U™ up to n = N by our proposed
scheme (3.13)—(3.15) and estimate the error between it and the solution to the problem
(3.2), (3.9), and (3.12) up to "= NAt. We define the error by

e = U™ —w(kAz,nAt). (k=-1,0,...,K,K+1,n=0,1,...,N),

where u is the solution of the target equation (3.12). We define an extension of u by

Ju(=a,t) (—Az <z <0),
ue,1) = {u(QL —2t) (L<a<L+Aw), (3.44)

for all ¢t € [0,7]. In what follows, we use the following special time-difference and time-
averaging operators:

f(n+%) _ f(n—%)
At ’ "

fn+3) 4 fln=3)
5 .

Moreover, for simplicity, we use the following expression ﬂ,(:) = u(kAx,nAt) from now
on. Also, 0, f(a) means 0, f(z)|

Lemma 3.3. For n =0,1,..., N — 1, the error e satisfies

1 n 2 2
pv Ul 1P Ll

1 1) 112 2 (n+1) 2
< 5 (e + leIl5;) + &

(n+3)
2

2
+]
L3

2 2
AL {Ag(U<”+1>, U™y - /\5’(”+%)} .
d

2
Ld

L4 H(5<U(n+l)’ U™y — pn+d)

26



where

(n+3) 1 1 [r2 3
AT =N (n4+ < |AL) = — — — (u—u®)dz :
2 L o € t=(n+1)At
2 3
O(frr gr) = {fk+gk (fi)” + (fu) g + fiulgw)” + (90) } (k=0,1,...,K),
g2 2 4
ntd) 2 (n+d) (n+H\?
¢k _g{uk <uk ° ) (k_()?l? aK)a
inlj ) Q(at - 5n1>>ul(cn+%) (k - 07 ]-7 .. 7K)7
& =207 — ) (k=0.1,... K)

Proof. Forn =0,1,..., N —1and k£ = 0,1,..., K, subtracting the following proposed
scheme:

5(1)U]£n+§) _ 5](3) () n+ )+¢( n+1 )_'_)\E(U n+l)’U(n))

n

from the following original equation:
1 TL n
atu]in+2) — 62 t3 )+¢( + _’_)\6,(71-1-%)
at t = (n+ 1/2)At and = = kAx, we obtain

1n
S0 = gD | Leoh | Lo

+ (s, o )—asif‘“))+(A3<U<”+”,U<“>>—Asm%)), (3.45)

Hence, we obtain the following equality from (3.45):

K
//{ (n+1) (”)) }Aaj _ Z// <5Y(Ll>€](€n+%)> <Sn1>€;(€n+%)> Azx
k=0

1
At

) () aee S ()

ntg 1 nt3 7 n n nTa € n n e(n+i
x {géi,k+2)+§£§,k“)+(¢(0';§ O~ ) 4 (G, Tl m)} Az,

M*IMN

B
Il

Here, from the discrete boundary conditions (3.15) and the definition of the extension

(3.44), we have 5k s#ﬁeém 2) 0 (k = 0,K). Therefore, from Proposition 2.3 (second-
order summation by parts formula), we obtain the following inequality:

" <5,<€2>$§ll>e,(€n+%)> (sfﬁe,&wé)) Az
0

1 n
|:<6l§:1>37<11>61(gn+2)>(SI<§1>8§11>6§€ +
0

T[]~

[ I
N——
—_
° X

|
N | —
]~
—N
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(=%
=4

[
3o
?rmf\

3

+

(I
N——

N
_|_
/N

(=%
&

V2]
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From the above, we obtain the following inequality:

K
1 2 2
2 () = () D ae
k=0
K 1
DMCL
k=0
1 n+i 1 n+ 7 n n n+i n n n+z
x g gt (BT UM o)+ G U ) - xe +é>)} A
K
< 30 (e Y A
k=0

K 2
1 1 7 7 n ) 7 A
£33 :"{2 s 2 5“ + (ol U — g0 + )+ (a(U"“),U(”))—AEW%))} Az
K K
1 n+1 2 n 2 1 (n+3) 2 1 (n+3) 2
< ZZH{(Q& )) + (elg >> }Am—l—Zkz:%//{Z (517]6 ; ) +3 ( s )
~ n4i 2 1) 2
+ (¢(U]£n+1)’ Ulgn)) _ ](f +2)> + ()\E(U(n+1), U(n)) . )\5,(n+§)) }ALE

S (e S (o a3 (Y a3 (6

k=0

K
+ 22// (QNS(U,EHH), U,En)) — ¢}(€n+§)> Ax + 2L <)\3(U(n+1)’ Uy — )\57(”_%)) |

In the second inequality, we have used the inequality ab < (1/2)(a® + b?) for all a,b € R.

In the third inequality, we have used the following inequality:

n 2 n
(Zai> SnZa? for all ay,...,a, € R.
i=1 i=1

This completes the proof.
Lemma 3.4. The following inequality holds:

{)\Z(U(H—H), U(n)) . )\E,(n—i—é)}z Hé( n+1 U(n)) . ¢(n+%) 2

2
Ld

2
L
where (' is a constant defined by

Cy = sup |92(u—u?)|.
0<w<L
0<t<T

Proof. By using the inequality (3.46), we have
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(3.46)

2

+ ﬁ(Aa;)‘*, (3.47)
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k=0
9 (& /- | ’
< ﬁ {Z// <¢(Ulgn+1)’Uén)) ¢(n+§)> A:L'}
k=0
9 [E . L ’
R D AN —/ = (u— u¥)dz . (3.48)
L k=0 0 t=(n+1)At

Using (3.46), we have

(% //kax> = {%(fo + fr)Az + Z_ kaa:} <K {i(fo + fr)*(Az)? + Z_ fg(AI)Q}

k=1 k=1

K-1
f,?Am}

k=1

< KAx{%(fOQ—f—f?()Ax-I—

K
= LZ"f,an: for all {fi}i_, € RFHL
k=0

By using this inequality, we obtain

K 2
2 T rr(n41) pr(n) (n+3) 2\ 57 rnt1) 7r(n RN
72 {§ " <¢(Uk JUY) =9y 2 ) Arp, < ZH¢(U( Uy — glnta)

L2
k=0

(3.49)

d

Let us define

2 () 1= u<x (n + %) At) - {u(m (n + %) At) }3 for all z € [0, L.

Since u(-,t) € C2([0, L)) for any fixed t € [0, 7], it holds that ®™*+2) € C2(|0, L]). There-
fore, from the Euler-Maclaurin summation formula, we have

S b2
"o A — “(u—u?)dx
k
k=0 o €

K 1 L 1
Z"(I)(”+5) (kAzx)Az— / OO+ (z)dx

k=0 0

2 1 L
< 2. Z2(Az)?
— g2 8( :c)/o
1 L
= —(Ax)?
452( x>/0

C,L
< 4%2(&)2.

2

£2

t=(n+3)At

a§q><”+%>(x)‘ dz

dx

3§(u B uz) ‘t:(nJr%)At
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Thus, we obtain
Lo ’ 2 C?L? C?
n [+ 3 4 1 4
YAx Zu—uPd <. Az) =L (Ax):  (3.50
p{zj - [ St “>xhwﬂm}—L G (A= (an) (350)

From (3.48)—(3.50), we have (3.47). O
Lemma 3.5. The following inequality holds:

s, o) - b <4 sy (el e )

1
’53 T ; 3’
where Cy, &3, and &, are defined by
@:ﬁ%L%@M“QmM@MW}
) 2\f Cy(u{™V — ™2 (k=0,1,...,K),
) 8\[ (1+302) {( 1) q) e >} (k=0,1,...,K).

Remark 3.2. Note that C’2 is finite since the proposed scheme is numerically stable, and
the solution u satisfies u(-,t) € C°([0, L]) for any fixed ¢ € [0, 7.

Proof. We denote
HU, U - goh 31,

where I = {I; ; }}, with

By direct calculation, we can see that

3 2 2 3)
e o g () + (o) o+ o (o) + ()
BT g2 2 - 4
3 2 2 3 <
2 | iy 4 g (u,ﬂf‘“)) - (u,ﬂf‘*”) U + u Y (U,f]“) - (U,J”) |
= 2 N 4
1 n+1 (n+1 )
= (O - u)

_ Lg [(U,ﬁ'”ﬂ))i%_ (u,(:ﬂ))?’—{—{(U(”ﬂ)) ( (n+1) } e (U’gn—i-l)_ul(fn—i-l)) (U,E"))Q}
2e

]' 7 1 3 2 s s ?’l n n 2
:yyﬂkﬁwmﬂ+¢W¢wq;)+%w% >¢t¢¢5ﬂ
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for k=0,1,..., K. Namely, we have

|Ilk|<_‘ (n+1) { ( n+1‘ +U(n+1H n+1‘+‘ n-i-l‘

)]

’ + ot

‘ (n+1)

’U(n)

+‘U]£n+l ‘U n)
1
<

(n+1 2
< 82 €k <1 + 5 6C )

51(1+302)‘ CY k=01 ),

N

In the same manner, we obtain

n)

1
il < 5 (1+3C2) e (k=0,1,...,K). (3.51)

Furthermore, it holds from the direct calculation that

2 n+l ntl)3 2 ntl 1) 3
to= 2 Lo ()} 2 L (b))
3 €
2 (n+3) (n+3) (n+1) (n+1) 3
] {S;Duk: Yoy P - <5§L>U1c > + (uk ’ )
2 (nt+l)  (ntd) (n+1
=3 <sn1>uk Y-y ? ) 1-— (sfyuk

for k=0,1,..., K. That is, we have

|
N———
)
+
/N
»
S=
=3
+
N~
R‘:A
3
+
N[
+
/N
£)
+
N
——
1

2 n+i n—l—l 1y(2
|14 <5 (s — 1)l 2) ( sy sy 2 ul )
n n) (”H'l) (n)
2 () uf*D 4w | +ul”| | e
= — (s<1> — 1y, *? 1+ —_ ‘
g2 |t " 2 2
2 na L
< S (s - 1)“;& )
€
n+1 n+1 n (n+l)
1+‘u’(“+) +)“’“ ‘(H‘ +‘u’(‘“)‘ g ehP
X U
2 ‘ F
2 C2+C2 (C2+(C2
Sg‘(snv_l)( (1+ 2‘;‘ 2 | 2‘; 2—}—03)
2 1

= 5 (1+363) (80 = ™| (R =0,1,..., K).

By using the following equality:

3 2 2 3 3 — 2
a’+a b;ab +b _(azb) :(a+b)§la ) for all a,b € R,
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we obtain

3 2 3
9 ul(€n+1) RO <u,(€"+1)> + <u,(€"+1)> (n) + u,(gnﬂ) (u,(gn)> + (u,(cn)>
=)

I = E_ _
Tsi] = 2 4
3
- 3 U](;H_l) +U](€n) B u]gn+1) + ul(gn)
g2 2 2
3 2 2 3 3
) <u’(€n+1)> n (ugwrl)) u](ﬂn) + ul(€n+1) (uén)> i (ul(Cn)> <u£n+1) n u}(ﬂn))
) 2 - 4
_ e o) (e N e o1 K
——@<uk +uk><uk —uk) (k=0,1,...,K).
Thus, we get

1 n n 2\ 2 1 " a1\ 2
|I3,k|§4—52<‘ +1‘+‘ )(Ul(gﬂ)—ul(c)) §—02< ,(gﬂ) u,(c)> (k=0,1,...,K).

From the above estimates, we obtain

2
P <4Z||I||L2

1
<a{ g+ 3c? (e i+l

e
4et

Hé(U(n-&-l)j U™) — ¢t

: +4( 1+3C2)%||(s8) — Dl

n n 2
(D) — ) ot

2}
L3

2v3

2
4 1) (12 ) 112 1
= (1430 ([l + [l 73) +

12
L3
2
+35 8f(1+302)( — D)
L3
4 et 1) 112 ) 112 1
o R (P T S 2 N e
This completes the proof. Il

Lemma 3.6. The following inequality holds:

2 CiL, 4
Lﬁ) + 2et (Az) }’

where Cj3 is a constant defined by Cs := 1+ (96/¢)(1 + 3C3).

4
(- 8000 € = e+ arf (3
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Proof. From Lemma 3.3, Lemma 3.4, and Lemma 3.5, we have

1 n 2 112
At (He( Il = e )
<=

5 (e 05, + e ],)

7
i i
(n+1) n)y _ 4(n+3) 1 4
+12||GU D, U ) — g 3 T e (80)
1 48 n n) - (n+l) 2 CQ
< Suwacty} (el e + (e )+ s

Hence, we obtain the following inequality:

1 n 2 12
a7 Ul 15 = lle®117,)

1 48 . -
< {§+§(1+3(J§)2} -2]|e! +1)||L<21 + (1:1

- 2 C2L
=e’ He(”“)H;i - ( Lg) + 2154 (Az)*.
=1

This completes the proof. Il

(n—l—%)

2\ ez
A 4
Lg) * 2et (Az)

(n+%)

Theorem 3.4. Assume that the target equation (3.12) has a solution u satisfying u €
CY([0, L] x [0,T]). If At satisfies the condition (3.25) and At < 1/(2Cs), then there exists
a constant Cy such that

{Z" (U,§”> - u(k’Aa:,nAt))QAx}z < OWITeST(Ar)? + (AD?) (n=1,...,N).

k=0

Remark 3.3. This theorem means that the solution of the scheme (3.13) converges to
the solution of the target equation (3.12) in the sense of discrete L?-norm and that the
convergence rate is O((Az)? + (At)?).

Proof. From the regularity assumption of the solution wu, applying the Taylor theorem
to u, we have

(At)

(nt+3) _ 3
Slk V= (9 {(a:t (kAz,ty)”
(n+3) (A ) 4 (At) 202
2,k o a | =(z1,(n+53 )At) 8 a ’(z t)=(z2,t2)’
(n+3) 2\/_ 2
371@ = C2(At) <atu|(ac,t):(kAw,t3)> J

(n+3) \/§ 2 2 92
54,]@ 2/ _ 5—2(1 + 302)(At) @ u‘(x,t):(k:Ax,m) ,
where t1, ta, t3,t4 € [nAL, (n+1)At] and 1,29 € [(k—1)Ax, (k+1)Az] forn =0,...,N—1

and £ =0,..., K. From these results, we obtain

> e

2 ~
12 —2154L(Ax)4 < 5C?L((Az)* + (AHH? (n=0,1,...,N —1), (3.52)
d
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where Cy is defined by

2v/3 3
7—\/_02 |0yul® i;(l +3C3) ‘@QU{ :

1 4
6 |8$u g2 "

1
7Z|6Eé€u

0<z<L
0<t<T

1
V2e?

We remark that Cy is finite from the regularity assumption of the solution w. Let us
define a constant Cy by Cy := v/5Cy. From the assumption At < 1/(2C3), we have
0< 1—-2Atc%f§]_—13ﬂ23§ 1 and

~ 1
Cy:= sup max{ﬁ |8t3u

o2t}

1 ~
——— <1+ 2AtC3 =: (4. .
i, S 14280 =Gy (3.53)
Hence, by using Lemma 3.6, (3.52), and (3.53), we obtain

n 2 ~ n) |2 ~
eI}, < Ca [le™|[ + Co - AICTL((A2)* + (A1) (n=0,1,...,N ~1).

Therefore, by using this inequality iteratively, we have

][5 < Cs [l V][5 + Cs - ALCIL((A)? + (A1)*)?

< (Cy)? He““”Hig +((C5)* + Cy) - AtCTL((A)* + (At)?)?
S..
< (C3)" He(O)Hig + AICTL((Az)* + (A1) (Cs) (n=1,...,N).

Jj=1

It holds from e\’ = 0 (k =0,...,K) that le@2, = 0. Moreover, by using 1+ z < e*
d
for all z > 0, we obtain

n n n N
D (Csf =D (1+2AtC5) <) exp(j - 2AtC5) < exp(N - 2AtC5) Y 1
J=1 j=1 Jj=1 j=1

T
::PJexp (DJ'ijc%)

= N exp(2C57).
Hence, we obtain
e[, < ACIL((AT) +(A1)2)2NEOT = CRLTEST (Ax)+(AR)? (n=1,...,N).

This completes the proof. O

g6 Computation examples

In this section, we demonstrate through numerical computations that the proposed
scheme is stable and that the numerical solution of the proposed scheme is efficient.
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Moreover, we compare the proposed scheme with the Crank—Nicolson (CN) scheme. The
concrete form of the CN scheme for (3.12) is, for n =0,1,.. .,

UlEnJrl)_Ulgn) (2) U]En+1)+ U, ;En) - n+1) n) 1 = " T n+1) n)
= > +7 (U ,Uk)—zkz_% FOEuf)ae k=0, K),

where

3 3
(1) o ( (n+1)) ( (n))
- 21 (U +U Uy + (U

T2 2 2

We perform all our numerical computations by using Julia language.

6.1 Numerical solutions

The left figures show the numerical solution obtained by the proposed scheme. The
right ones show that obtained by the CN scheme.

DVDM Crank-Nicolson ——

Figure 3.1: Numerical solutions to (3.1) (¢ = 0.02) obtained by the proposed scheme and
the CN scheme with Az = 1/100 and At = 1/5000

DVDM Crank-Nicolson

Figure 3.2: Numerical solutions to (3.1) (¢ = 0.02) obtained by the proposed scheme and
the CN scheme with Az = 1/200 and At = 1/5000
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e Case 1.
Fig. 3.1 shows numerical results for ¢ = 0.02 obtained by DVDM and the CN method
with Az = 1/100 and At = 1/5000. The initial data in Fig. 3.1 is

11
u(z,0) = 0.26 + 0.07 cos(8mx) + 0.41 sin <77m;) + 0.24 cos(Tmx). (3.54)

The solution by the proposed scheme arrives at the steady-state around at t = 1.5, whereas
the one by the CN scheme is stable around at t = 4, namely, a little late time. In order
to analyze the difference in these results, we refine the space mesh size.

e Case 2.

In Fig. 3.2, we take Az by half, i.e., Az = 1/200. The result of the CN scheme
improves. Both solutions arrive at the steady-state around at ¢ = 1.5. Furthermore,
when we take a smaller space mesh size, both solutions also arrive at the steady-state
around at ¢t = 1.5. Hence, we expect that the solution by the proposed scheme is more
reliable than that by the CN scheme when the space mesh size is coarse.

When we change the initial data into another one, the results are also different from
each other. We remark that the direction of the time evolution is reverse to the previous
one.

DVDM Crank-Nicolson

/i

\)
W
MR
\\\l\\m\\\\‘:\\\\\\\\\\

% W
e i I

Figure 3.3: Numerical solutions to (3.1) (¢ = 0.03) obtained by the proposed scheme and
the CN scheme with Az = 1/100 and At = 1/1000

DVDM Crank-Nicolson

SN ‘ i > A X
NI N - VI AN
i \\“\\\“\\Q‘\“\“ = i ] 7 AT

M

\

Figure 3.4: Numerical solutions to (3.1) (¢ = 0.03) obtained by the proposed scheme and
the CN scheme with Az = 1/100 and At = 1,/2000
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e Case 3.
Fig. 3.3 shows numerical results for ¢ = 0.03 obtained by DVDM and the CN method
with Az = 1/100 and At = 1/1000. The initial data in Fig. 3.3 is

13
u(z,0) = 0.01 4+ 0.3 cos(4mzx) + 0.08 sin <?7Tl‘) (cos(4dmx) — 1) + 0.11 cos(187x). (3.55)

Both solutions arrive at the steady-state around at t = 80. However, the steady-state of
the solution by the CN scheme is different from that by the proposed scheme. As with
previous numerical examples, in order to analyze the difference in these results, we refine
the time mesh size.

e Case 4.

In Fig. 3.4, we take At by half, i.e., At = 1/2000. The result of the CN scheme
improves. The steady-state of the solution by the CN scheme coincides with that by
the proposed scheme. In addition, when we take a smaller time mesh size, the steady-
state of the solution by the CN scheme also coincides with that by the proposed scheme.
Therefore, we also expect that the solution by the proposed scheme is more reliable than
that by the CN scheme when the time mesh size is coarse.

6.2 Conservative property

Next, we confirm the conservative property. The left figures show the result obtained
by the proposed scheme. The right ones show that obtained by the CN scheme.
e Case 1.

Fig. 3.5 shows the following discrepancies:

K K
Z”U,ﬁ")Aa: - Z"U,ﬁo)Ax (n=0,1,...).

k=0 k=0

in Fig. 3.1. Theoretically, this value should be conserved. These graphs show that the
mass is conserved numerically.

1.2x1014 : 1.2x1014 ‘ ‘
DVDM —— Crank-Nicolson =—
11014+ . 1x10°14¢ 1
8x105+ 1 8x10+
6x1012 . 6x10 15
3 3
§ 4x10 15} o § 4x105}
21015+ 1 210715+
0 1 0
2105+ 1 210151
_4X10-15 | I | _4X10-15 1 1 I |
0 1 2 3 4 5 0 1 2 3 4 5

Figure 3.5: The difference between the mass of the numerical solution in Fig. 3.1 and one
of the initial data (3.54)

e Case 3.
Fig. 3.6 shows the discrepancies in Fig. 3.3. These graphs also show that the mass is
conserved numerically.
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8x10°15 ; . ; 8x10'15 : ; ‘
DVDM =— Crank-icolson =—
6x10°d . 6x1010+
410> 4x1010t
i %10 . K105+
§ 0 § 0
-2x10°15 21015+
4x10°15 4x1015 ¢
-6x10°15 6x1015}
_8X10-15 I | L L _8X10-15 ! L | |
0 20 40 60 80 100 0 20 40 60 80 100

Figure 3.6: The difference between the mass of the numerical solution in Fig. 3.3 and one

of the initial data (3.55)

6.3 Dissipative property

Lastly, we confirm the dissipative property of energy. The left figures show the result
obtained by the proposed scheme. The right ones show that obtained by the CN scheme.

800 . . . 800 . ; . :
DVDM s Crank-Nicolson
700 . 700 1
600} 600 | 1
. 5001 . 500} 1
8 8
§ 4001 § 4007 1
M 300t N300} ]
200} 200 t
100} 100} i
0 1 1 1 1 o 1 1 1 1
0.001 0.01 0.1 1 0.001 0.01 0.1 1

Figure 3.7: The discrete global energy of the numerical solution in Fig. 3.1: The
axis is on the log-scale

t

500 T T 500 T — T y

450 DVDM = | 4501 Crank-Nicolson == |

400 400+ J

350 350+ 1
£.300 £.300 1
gzso gzso - E
X200t 200t

t

time

150} |- 150} 1
100} : 100} 1
501 ] 501 .
00001 0.001 001 0.1 10 100 00001 0001 001 01 1 10 100

t

Figure 3.8: The discrete global energy of the numerical solution in Fig. 3.3: The time
axis is on the log-scale
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e Case 1.
Fig. 3.7 shows the discrete global energies:

K
Jd(U(n)) = Z”Gchk(U(n))AfL‘ (n = 0, 1, - )

k=0

in Fig. 3.1. Theoretically, this value should decrease. These graphs show that the decrease
in global energy is preserved numerically.
e Case 3.

Fig. 3.8 shows the discrete global energies in Fig. 3.3. In analogy with Case 1, these
graphs show that the decrease in global energy is preserved numerically.

From the above, we can obtain the expected results. Additionally, the results of our
scheme are better than that of the CN scheme when the mesh size is coarse.
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Chapter 4

The Allen—Cahn equation with a
dynamic boundary condition

In this chapter, as mentioned in Chapter 1, following the idea of DVDM [29] as under-
stood in Chapter 3, by modifying the discretization of energy from the conventional ones
and using the suitable summation-by-parts formula, we propose a structure-preserving
finite difference scheme for the Allen—Cahn equation with a dynamic boundary condition.
Modifying the conventional manner and using the appropriate summation-by-parts for-
mula, we can use a central difference operator as an approximation of an outward normal
derivative on the boundary condition in the scheme. Besides, we show the stability, the
existence, and the uniqueness of the solution for the proposed scheme. Also, we give
the error estimate for the scheme. Computation examples demonstrate the effectiveness
of the proposed scheme. Besides, through computation examples, we confirm that the
long-time behavior of the solution under a dynamic boundary condition may differ from
the long-time behavior of the solution under the Neumann boundary condition.

§1 Introduction

Let L > 0 be the length of the one-dimensional material. In this chapter, we study
the following Allen-Cahn equation [1]:

O = 0*u — F'(u) in (0,L) x (0,00) (4.1)
under the following dynamic boundary condition:

ou(0,t) = dyu(z,t)|,_y — F'(u(0,¢)) in (0,00), (4.2)

owu(L,t) = — Opu(z,t)|,_;, — F'(u(L,t)) in (0,00). (4.3)

The unknown function u: [0, L] x [0,00) — R is the order parameter, representing the
concentration of one of two components in a binary mixture. Moreover, F: R — R is the
potential, and F” is its derivative. For example, F' can be a double-well potential, i.e.,

F(s) = (1/4)(s* — 1) for all s € R. In this chapter, we assume that the potential F' is in
C*(R) and satisfies the following properties:

F'(0)=0, F(s)>pus®—c forall seR, (4.4)
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where p is a positive constant, and ¢ is a non-negative constant. Let us define the “local
energy” G and the “global energy” J, which characterize the equation (4.1) by

B |awu|2

G(u, Opu) := 5

+ F(u), J(u) ::/0 G(u, Oyu)dz.

We remark that the above words “local energy” and “global energy” are ones for space,
not for time, and that these “local” and “global” are different from ones of the words
“local existence” and “global existence,” which appear later. Then, the solution of the
equation (4.1) satisfies the following inequality:

% {J(u(t)) + F(u(0,1)) + F(u(L,1))} <0 (4.5)

under the boundary conditions (4.2) and (4.3).

From a mathematical perspective, the above problem (4.1)—(4.3) with an initial value
has been studied in [9,17, 21, 33,45, 58]. Here, we remark that the original problem
was considered in the two-dimensional or three-dimensional case, where the boundary
condition (4.2) and (4.3) includes the Laplace-Beltrami operator, which plays the role of
diffusion on the boundary. Calatroni and Colli proved the existence and the uniqueness of
the solution of the problem (4.1)—(4.3) with an initial value, where the Laplace-Beltrami
operator disappears on the boundary [9].

From a numerical point of view, there is a lot of study of a structure-preserving scheme
for the Allen—Cahn equation with classical (non-dynamical) boundary conditions, for ex-
ample, Dirichlet or Neumann boundary conditions (see, for instance, [26,29,37,57]). Also,
the results of a structure-preserving scheme for a non-local Allen—-Cahn equation with Neu-
mann or periodic boundary conditions can be found in [43,51,63,69]. In [67], Yoshikawa
mentioned that the merit of the structure-preserving scheme is that we automatically
obtain the stability of numerical solutions. He also mentioned that the advantage of the
structure-preserving scheme is that various strategies for the continuous case, such as
the energy method, can be applied to the scheme similarly. Actually, Yoshikawa and
co-authors applied the energy method to show the existence and the uniqueness of the
solution and the error estimate for the scheme (see [28,65-68]).

Here, we remark that there are few results for the Allen—-Cahn equation with dynamic
boundary conditions. These conditions are different from the more studied Neumann
boundary conditions, and such may give a different long-time behavior of the solution
(see Section 6 for an example). In [42], a numerical scheme for semilinear problems with
the dynamic boundary condition (4.2) and (4.3) has been considered in a finite element
approach, and the error estimate has been obtained. However, there are no results of a
structure-preserving scheme for the above problem (4.1)-(4.3) in a finite difference ap-
proach to the best of our knowledge. Meanwhile, there are some numerical studies of
the Cahn—Hilliard equation with different dynamic boundary conditions (see, for exam-
ple, [12,13] for the finite element method, [48,49] for the finite volume method, and [28] for
the finite difference method). In [28], Fukao, Yoshikawa, and Wada proposed structure-
preserving schemes for the Cahn—Hilliard equation with two different dynamic boundary
conditions in the one-dimensional case, respectively, based on DVDM. We remark that
they use a forward difference operator as an approximation of an outward normal deriva-
tive on the discrete boundary condition of the structure-preserving scheme.
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The rest of this chapter proceeds as follows. In section 2, we propose a structure-
preserving scheme for (4.1)-(4.3), whose solution satisfies the discrete version of the dis-
sipative property (4.5). In section 3, we prove that the solution of the proposed scheme
satisfies the global boundedness. In section 4, we prove that the scheme has a unique so-
lution under a specific condition. In section 5, we prove the error estimate for the scheme.
In section 6, we show that the computation examples demonstrate the effectiveness of the
scheme.

§2 Proposed scheme

In this section, we propose a scheme for (4.1)—(4.3) and show that it has a property
corresponding to (4.5).

2.1 Preparation

We define U,gn) (k=-1,0,1,...,K, K +1,n =0,1,...) to be the approximation to
u(z,t) at location z = kAx and time t = nAt, where Ax is a space mesh size, i.e.,
Az := L/K, and At is a time mesh size. They are also written in vector as U™ :=
(Uﬁ’?, Uén), - Ul((n), Ul(fll)T or UM :=( én), Ul(”)7 - UI(QI, U](;L))T. The superscript
(n) is omitted when no confusion occurs. Guess the meaning of U from the context. Let
us define two discrete local energies G, : RF+ — RE by

G1,(U) = (%;&)2 +F(U) (k=0,...,K),
Ga,(U) = (5’;2(]’“)2 +F(U) (k=0,... K),

for all U € RE*3. Note that Gik(U) are elements of vectors G (U), respectively. Fur-
thermore, we define discrete global energy Jq: RE+3 — R as follows:

K1 K

1 _

Ja(U) = 5 {Z Gl (U)Az + ) Gdyk(U)A:c} . (4.6)
k=0 k=1

From the idea of DVDM [29], we take a discrete variation to derive a structure-preserving

scheme for (4.1)—(4.3). That is, we calculate the difference Jq(U) — Jq(V) for all U,V €
RE+3. Using Proposition 2.1, we have the following lemma.

Lemma 4.1. The definition (4.6) of J4 is rewritten as follows:

SICCANNIRS
Ja(U) =) At Y 'F (k) Az for all U € RFF,
k=0 k=0
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Proof. It follows from the definitions of GdjE and Jy and Proposition 2.1 that

= 2 k=1 2
1 (52 (5F0)? K (5-U.)° 1 (KL K
25{ (kgk) A"EJ“Z(k;) Az o+ Y F(Uy)Az+ > F(U) Az
k=0 k=1 k=0 k=1
1 K-1 K K
S I DICTAISES ST N B SRS
k=0 k=1 k=0
K-1 K-1 K
- i { (6 U:)" Az + >~ (65 U)° Am} + > F (Uy) Ax
k=0 k=0 k=0
K-1 K
= % (07 U:) Az + Y "F(Up) Az for all U € R
k=0 k=0
This completes the proof. 0

By using Lemma 4.1 and Corollary 2.1, we have the following lemma.

Lemma 4.2. The following equality holds:

Ja(U) = Jo(V) = kz: {—5,9 (U’“ ; V’“) + d([;fka)} Uy — Vi) A

K
+ H(S,i” (U’“ ;r V’“) } (U, — w)] for all U,V € RE*3. (4.7)
0

Remark 4.1. This equality (4.7) is essential for the discrete dissipation of energy (The-
orem 4.1).

Proof. For all U,V € RE+3, by using Corollary 2.1, we have

il\g

Furthermore, it holds from the direct calculation that

dF

U —Vi) (k=0,....K) (4.8)
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From the above, we obtain

K-1 K
= Y {50500 - 265V} Ar + Y {F W) — F(V)} Aa

k=0 k=0

= U+ Vi dF U+ Vi K
— ") _ (2) k k . A (1) k k B

2 (B3 S o e [ (P -
This completes the proof. m

2.2 Proposed scheme

The concrete form of our scheme for (4.1) with (4.2) and (4.3) is, for n = 0,1, .. .,

(1) _ 770
Uy < Up ™ _ _5(U("ff,dU(”))k (k=0,...,K), (4.9)
Ut 0 (M > - dF 0
At k 2 o d(Ué"H), Ué"))’

U U o <M> . dF o

At k 2 o dw}({nﬂ)’ Uz(?))’

where
(n+1) (n)

5(U<nf§:iU<n>)k =5 (Uk 2+ Uy ) + d(U,E”i};, Tl (k=0,....K). (412)

Then the proposed scheme (4.9)—(4.11) has the following property corresponding to (4.5),
ie.,

Theorem 4.1. The solution to the scheme (4.9)—(4.11) satisfies
5 {Jd<U<">) + F(UM) + F(UI(?))} <0 (n=0,1,...). (4.13)

Proof. From Lemma 4.2, we have

K (n+1) ®
1 0G U -U
_ M4y _ M\ — " d k k
At {‘]d(U ) Jd<U >} - kz_o §(U(n+1),U(n)>k At Az
K
U("+1)+U(") U(”‘H)_U(")
+{5’<€1>< )T A (n=0.1,...)
0
(4.14)
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Using (4.8), (4.10), and (4.11), we calculate the boundary term on the right-hand side of
(4.14) as follows:

so (U U\ g - o
k 2 At
0
} Uén+1) . Uén)
k=0

k 2 - At k 2 - At

dF dF
= —(5; ") - 0, U = (65Us") —
Aoyt C At oy

—(5FUS)? = (67U = G F(UY) — o F(UL). (4.15)

K

Applying (4.9) and (4.15) to (4.14), we obtain

K

2

(m) =3 0Ga L2 s+
5+{Jd(U N+ FUM+F(UY )}__Hu ST T, Az — 57U = (57U,
Therefore, the inequality (4.13) holds. O

§3 Stability of the proposed scheme

In this section, we show that, if the proposed scheme has a solution, then it satisfies the
global boundedness. For the proof of the global boundedness of the numerical solution,
we use the following lemma.

Lemma 4.3. The solution to the scheme (4.9)—(4.11) satisfies the following inequality.
For n =0,1,..., it holds that

o1 {Jd(U N+ FUO) + FUD) + oL + 2)}

< —
min < —
5

Proof. From the discrete dissipative property (Theorem 4.1) and the assumption (4.4)
for the potential F', we can show

Ja(UO) + F(U) + F(UY)
> J(U™) + F(U(”)) + F(UWM)

K-
=0
K-

1
> 52 ‘5;(],5
=0

. 1 n n
> mln{ﬁ,u} {HU( )HHdl + ‘Uo

Therefore, the inequality (4.16) holds. O

JU G+ 8"

+ ’U,@

(4.16)

Aa:+Z”F "NAz + F(UM) + F(UL)

,_.

" { (U = ¢} Aw + p(US™)? = e+ p(UR)? = ¢

+ }U}?)

2}—C(L+2) (n=0,1,..).
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Applying Proposition 2.5 (Discrete Sobolev inequality) to (4.16), we can obtain the fol-
lowing global boundedness.

Theorem 4.2 (Global boundedness). The solution of the scheme (4.9) under the discrete
boundary conditions (4.10) and (4.11) satisfies the following inequality:

2

1

1

minsg —
27M

84 Existence and uniqueness of the solution to the

U™, <Cs (OO +FUM)+FUR) +eL+2)} | (n=0,1,...).

proposed scheme

In this section, using the energy method in [28,65-68], we prove that the proposed
scheme (4.9)—(4.11) has a unique solution under a specific condition on At.

Theorem 4.3 (Local existence and uniqueness). Let

1 25
R(p) := max {5 max ]F”(f)]2 , — max |F"(5)|2 + 1—8p2 max \F”’(§)|2}

l€|<2p 2 [¢[<2p le|<2p

for all p > 0. For any given U™ = {U,g”)}fj_ll € RE+3_if At satisfies

2
- )U}?

~ 2
(At)*R ((JL\/HU(n)Hgé + ‘Ué") ) <1, (4.17)

then there exists a unique solution {U,Enﬂ)}kK;fl € RET3 satisfying (4.9)—(4.11).

Proof. For any given U™ = {U,En)}kKj_ll € R**3, we define the mapping ¥: {Up}i, —
{Uk fj—ll by

Uk—_U,i")_(;ém (M>_d—F (k=0,...,K), (4.18)
At 2 d(Uy, U")
o~ U _ <U+_U”> __dF (4.19)
At E 2 )|, AU U
UK——U;?) — _ 5 (M) — L (4.20)
At ¢ 2 )|, AU UP) |

Firstly, we show that the mapping ¥ is well-defined. Let a := At/(4Ax) and § :=
At/(2(Az)?). For the purpose, we give the following matrix expression of W:

AU = f(U,U™). (4.21)
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Here the (K + 3) x (K + 3) matrix A is defined by

« 1 —«
-6 1428 =0
-6 1428 —p
A=
-6 1+28 -0
-6 1425 -
- 1 Qo

If the matrix A is nonsingular, then the mapping V¥ is well-defined. We show that A is
nonsingular. We calculate the determinant of A as follows:

detA =

o} 1 —«
-8 1428 —p
-5 1+28 —p
-8 1+28 —p
-5 1428 —
- 1 o
o} 1 0
-5 14258 =28
-3 1+28 —p
- - - (adding the first column to
-5 1+28 —p the third column)
-5 1428 —
-« 1 o
o} 0 0
1
—B 1—|—(2+a g =20
_ 1498 —
, ' , adding to the second column
b 28 b ddi h d col
: _B H.é/g y —(1/«) times the first column)
-5 1428 —
-« 1 «
1
I+ (24-)8 —28
—B 1+26 —p
(expanding by the first row)
-5 1+28 =5
-5 1425 —
-« 1 «
1
1+ (2+E 8 —283
—f 1+26 —p
(adding the (K + 2)th col-
-5 1+28 =5 umn to the Kth column)
—-26 1+28 —
0 1 «

47




1+<2+$)@ —23
-0 1+28 —p3
—a e (adding to the (K + 1)th
—B 1+25 —b column —(1/a) times the
—28 1+ (2 + 1)5 —8 (K + 2)th column)
a
0 0 o)
1+<2+é>6 28
- 1+28 —p
=a? U (expanding by the (K + 2)th

_/é 1+é/3 —B8 row).
-28 1+ (2+é>6

Here, we define (K + 1) x (K + 1) matrix B by

1+(2+é>ﬁ —28
—p 1+28 —p
-8 1+28 —p
51428
-3 1+28 -
—283 1+(2+$>6

Namely, det A = o? det B. Since « and f3 is positive, we have

vk (24 2) 8| > 1201 2> 141

Hence, B is a strictly diagonally dominant matrix. Since a strictly diagonally dominant
matrix is nonsingular, B is nonsingular, i.e., det B # 0. Therefore, we obtain

det A = a*det B # 0.

That is, A is nonsingular.

Next, we prove the existence and uniqueness of the solution to the proposed scheme
by the fixed-point theorem for a contraction mapping. From the definition of ¥ (4.19)
and (4.20), U_; and UK+1 can be explicitly written as

N - 4Nz - dF
O, =-U" 40+ 0™ - 2250, — vty - ANy ————
At d(Us, Ug™)
- - (n) m  4Az - (n) dr
— e _ _ = — —AN———
Ukt1 = Uk + Uiy — Ugiy At (Uk = Ug") xd(UK,UI(?))



Hence, it is sufficient to show the existence of a (K +1)-dimensional vector U that satisfies
Ug=U (k=0,...,K). Here, we define the mapping ®: RE*l — RE+! by

OU) = {U}E, = (U (U)}E, forall U € REH,

where W, (U) is the kth element of W(U). Also, let X = {f € RETL | f|% < 4M?},
where M = |[U™|x and || f|x = \/||f||§1,1 + | fol2 + | fx|? for all f € RET. We show
d

that the mapping ® is a contraction mapping on X. If ® is a contraction mapping, ® has a
unique fixed-point V* in the closed ball X from the fixed-point theorem for a contraction
mapping. This V* is the solution U™V to the scheme (4.9)-(4.11). Firstly, we show

®(X) C X. For any fixed U € X, we have
K i _ ) (n)
o) - Z"U’“ Gt U,
d
k=0

L (gl
x (171, R

K ) K )
U, +U Uk -f- U U, + Uy
=D DR {5 Az
Z { k 2 Z 2

k= Ukan))
-~ 2
(n) (n)
D<U+U ) +H§]§:1><Uk+Uk )}U U

2 2
() |? 5 ()
- - AP U+
B 28U, U) 2 208 AU T 2

K o (n
Z Uk+U Ag
0 k; Uka ) 2

dF  Ux+UY |U0|2—’Uon

from Corollary 2.1 (Summation by parts formula), (4.18)—(4.20). Moreover, using the
Young inequality: ab < (£/2)a® + (1/(2¢))b* and the following inequality: (a + b)?
2(a* + b?), we obtain

1 ~ ||2 2
1 g™
o (el - 1oz,
Dol |ﬁK12—\U¥> RS
< — _ Ax
2AL 2AL AU U T2Al| T 2
0 )
2 2 2 ~ (n) 2
At] dF 1| Oy U™ LAt aF 1 |Ug+US
= + = +
2 \d(Uy, UMy 24t 2 3 d(Ug, U(")) 2At 2
~ ~ 2 - -~ 2
Lo s o7l [ o 4
= 2AL B 2AL + 4AL + AAL
12 2
| PR AN P 2 ir | ir |
T A 5 oyl o, T N )
4A¢ dU, UM) |2 |d(Uy, US™) AUk, UM)

49



= (100 + 0P + o o]+ oL H o™z,
4At 4At K| (T IAr 4At L
) 2
dF dF
S + (4.22)
Hd(U, UMl | d(Uy, U™ AU, UD)
Therefore, multiplying both sides of (4.22) by 4At, we get
= T2 (T2 (n)]|2 n)|? n)|?
|0, +100k+ 10 < 35 U™, + 08| + |
L3 d
ar |7 ir | ir |
(UvU ) L3 d(UOaUO ) d<UK=UK )
(4.23)
Next, using Corollary 2.1 (Summation by parts formula), we have
K-1 5 ) 5 )
Uy, +U U — Uy
D H — || pU™ g (L RO S 7 (et Rkl iy DY
s ([P0 v ) = 3 doi (P ) o (P g
K = n o~ n = n = n) 1%
__yoolsp O+ U\ O=0" | s (O U\ Ok = 07 (4.24)
il 2 At b 2 At

From (4.18), Corollary 2.1 (Summation by parts formula), the Young inequality, and the
following inequality: (a + b)? < 2(a® + b?), we estimate the first term on the right-hand
side of (4.24) as follows:

_ZK:,, 5@) Uk—FUén) Uk_Uén)AZL‘
k 2 At

k=0

)

7 (n) dF

~ K
< Kzl{ (Uk+Un)>}{5]j< dF )}Ax—i— {5]il><Uk+U’£n)>} dF
o d(Uy,, U") . AU U™M) |,
K—-1 5 m\ )2 2
<5 e (M)} 5 () | >
k=0 20t 2 2 d(Uk7Uk )
b, + U™ a1
@ [ YUk + Uy
K 2 d(U,, U™
( ks Yk ) 0
~ 112 " 2 ~ K
3 HDUH +||pUu™]| +§HD< IF > 2+ " O+ U IF
- 4Nt 2 d(U,U™) k 2 AU, U™) .
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Hence, we obtain

At dF 2
_ (n) -
a5 (| o] - 1o H) (HDUH ool )+ 5o (G5g)
~ K
Uk+U(" 0, — U™ dF
AL )
d(Ukak ) 0
Furthermore, we see from (4.19) ) that

K

)
:_{5 <Uk+Un>

Namely, we have

dF )
(Ukv Ulgn)) 0

} { ()Lp =

~ 112 2 dF 2
DUH <3 pU™|* +2(A0?2 || D [ —2 1.25
| <3| DU+ 280%) DA G oy (4.25)
Combining (4.23) and (4.25), we obtain
~ 12 2 dF 2
UH < 3|lu™ 2AL? || 1.26
o], = 31015 +2080* | 5 gy | (4:26)

All that is left to show that the right-hand side of (4.26) is no more than 4M?2. Using
Lemma 2.2 and the assumption (4.4) for F', we get the following equality:

dF dF dF 1 1 =
— — — _F//(Uk707U(n)7O>Uk + _F”(U(n)’O’ Uk’O)U(n)
AU, UY)  d(U, UMy d(0,0) 2 ' 2 k

for k = 0,..., K. Moreover, from Proposition 2.5 and definitions of X and M, the
following inequalities hold:

§0L||U(R)H~é <CM, Ul <C LUl gy <20LM

(LA (1o

Hence, from Lemma 2.1, we have

’F”(Uk,o Uk”),O)‘< max |F'(€)] (k=0,..., K),
|£|<2CLM

]F”<U,§”),0;Uk,0)\s max |F"(&)] (k=0,...,K).
|€1<2CL M

Therefore, we obtain

2

dF {1 _ 2 1= 2 2
Y| < —’F”(Uk,O;U,g”),O)‘ |Uk|2+—‘F”(U,E”),O;Uk,o)’ ‘Ué”’ }
d(Ukalgn)) 4 4

1 2
<3 o PO (P + o[} =0
2 jgj<2CLMm

o1



Thus, the following inequality holds:

2 K

dF

dF
dU, UM) ||,

d(Uk’v Ulgn))

1 2 2 2
" Ar < = max |F” < Ul + [[U™ 2) .
<5 [FOF (IU1Z + [0,

k=0

(4.28)
From Lemma 2.2, we also have

dF 1~ 1_
i | = 5 F Wi, U UL, U)SL Uk + S B (U, U U, U UL
k(d(myﬁ”)) g W, Ui Uiy, U 00 Ui+ 5 (Ui, U Uien, Un)oi Uy

for k=0,..., K — 1. Hence, it follows from the same argument as (4.27) and (4.28) that

HD (%)

Therefore, using (4.27)—(4.29), we obtain the following estimate:

2

<5 max [FQF (IDUJ? + DU, (4.29)
|§l<2CL M

2

)
max (FOP {IU)% + U7} <5 max [P M2

H dF 1
2 jgj<20m T 2 g <26
(4.30)

|| <
AU, UM~

Thus, from (4.26), (4.30), and the assumption (4.17), we conclude that

ol < 3M? +5(At)? max |F(E)]P M? < {3+ (At)’R(C, M) M? < 4M?.
X

|€|<2CL M

Namely, it holds that ®(U) = {U, }i, € X.

Next, we show that ® is contractive. For any fixed Uy, Us € X, the vector {UZ k}K =
{U(U;) }5 satisfies (4.18)—(4.20) (i = 1,2) from the definition of ¥. Subtracting these
relations, we obtain

U1,kA— Uk :5k Ulk_U2k dr o (k=0,...,K),
t AUy, U, d<U2,k>Uk )
(4.31)
M:(s Ulk‘U“ dr dr ) (4.32)
At d(Uro, U)  d(Us, US)
(~]1,K - UZ,K _ —(5 Ul k_U2 k dr ar (4.33)
N AU, UP)  d(Us g, US))

From (4.31), we have

K
AitHfjl -0, ; - %;" {5 > (Ulk - U2k>} (Upp — Uyp)A
S dF i
B " B A



Using Corollary 2.1 (Summation by parts formula), (4.32), and (4.33), we estimate the
first term on the right-hand side of (4.34) as follows:

%EK: " {5;62><01,k - UM>} (U — Usp) Az
k=

K-1
_% > {6t (O - O }2 Az + {5]{:1)(%) } (O s — T )
k=0

0
Ui v — T )2 dF dF ~ 2
<! 1’KA ) )y () ) Ui = Vo)
t dUvw,Uy)  d(Usi, UR”)

T — T )2 dF dF ~ 7
- s At - ( (n)y (n) ) o=t
d(Ul,(b UO ) d<U2,07 UO )

Hence, using the Young inequality, we obtain

1
U -U
AtH 1z

K

< _ (U1 — Uao)® ar  dF ) J J
2= At d(Ul,o,Uo(n)) d(U2,07Uo(n)) ’

- - - 1,K — VY2,
At AU, UY)  d(Usic, UL)

K
dF dF - -
" ( o) _ o) ) (Ul,k — UQJC)A-T
k=0 d(Ul,lw Uk ) d(UZkv Uk )
_ (ULO — 0270)2 n g
2At 2

dF _ dF
d(Ur0,US™)  d(Usy, US™)

- - 2
B (Urx — Uy )? n At dF B dF
24t 2 | d(Uyx, U(”)) d(Up i, UD)
2 At dF 2
U 4.35
PN ‘ 1= U H U1, @) d(Us, UM)]| 2 (4.35)
Therefore, multiplying both sides of (4.35) by 2At, we get
- ~ 2 - - - -
HUI - U, L2 + (Urp — U2,0)2 + (U1 x — U2,K)2
d
_ _dF ?
- dU, U™)  d(Uy,U™) ||,
2 2
dF dF dF dF
(n)y (n) (n)y (n) (4.36)
d<U1,07 U[) ) d(U2,07 UO ) d(Ul,K7 UK ) d(UQ,K7 UK )
Next, from Corollary 2.1 (Summation by parts formula), we have
1 o _ 2 -~ {520 ~ Ul,k — ﬁQ,kA
il L I DR C U] S v
Uiy — Uns |
1,7 5 1k — Uk
+ {512 (U1 — U2,k)} — A (4.37)
0
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Using (4.31), Corollary 2.1 (Summation by parts formula), and the Young inequality, we
estimate the first term on the right-hand side of (4.37) as follows:

Z// {5£2>((71,k . UZ,k)} Ul,kA_tUZ,k Az
0

K
=0
K
//{ ,<€2>(Ul,k_02,k ( )
1
dF dF
( Up, UMY d(U U"“)}Am
Lks Y ) ( 2,k Y )

J —
< - Z {@j(ﬁm - U2k>} { y
( Na dF > “
)

k=0
(n)y (n)
d(Ul,kv Uk: ) d(UZ,kv Uk

o

<

k=0

d
O

F dF
N o R
(Ul,kak d(UZ,k)Uk )
+
(

+

{800 - T }

0

1 ~ ~ 112 At dF dF
< |pw - H g [§5) -
= 2At H (U -l +5 H (d(Ul,U(”)) d(Ug,U(”)))

K
~ ~ dF dF
{5;1>(U1,k - UQ,k)} ( (n) - (n) )
AUk, Ug")  d(Uar, Uy™)

Thus, from (4.32) and (4.33), we have

2

+

0

2 2

Lo

‘D (A

< 2+ At D dF B dF
2At 2 AU, UM)  d(U,UM)

01k—(~]2k dr dF ’
{5 UJM_UM)}{ At +<d(U1k,U ))_d(Uka’U’gn))H

0
2 dF 2
d Ul, ) CZ(UQ7 U(n))
~ 2 1
]}

2
2 k:O}

U =2 At dF
<o |p@ -0 +5F
< 5 |P@ -0 + 5 H (d U.U d(Ug,U(”)))

+

T 9AL HD U2)
1

2

That is,
2

|p@. - ) S < (A2

(4.38)

D dF B dF
AU, U™) ~ d(Uy, U)
Therefore, using (4.36) and (4.38), we obtain

2

P dF
AU, UMW)~ d(U,, UM)

Hﬁl - ﬁ2‘ 1 < (At)?

(4.39)

b
Using Lemma 2.2, we get the following equality:

dF dF 1_ . .
(n)y N QF”(UL’??UZ’C;UIE )7UI£ ))<Ul,k_U2,k) (k=0,...,K).
AUk, Up”)  d(Uszp, U,™)

(4.40)
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Since it holds from Proposition 2.5 and the definition of X that
Uil < ColUillgy <200M (i = 1,2),
by using Lemma 2.1, we get

‘F”(Ul,ka Uz,k; U/En)a U;E"))

< max |[F'(€)] (k=0,...,K). (4.41)
[§l<2CL M

From (4.40) and (4.41), we obtain

2

dF dF
d(ULkaUlin)) d(U2,k7U1§n))

IN

1
10 |F" () Ui g —Usi* (k=0,... K). (4.42)
l¢|<2CL M

Hence, the following inequality holds:

P dF
AU, UMW)~ d(U,, UM)

2

max [F"(€)[* | Uy~ Ua|js (4.43)

2 Ale<20m

Furthermore, using (4.40), (4.41), Proposition 2.5, Lemma 2.3, and Lemma 2.4, we have

D dF B dF
dU,, UM™)  d(Uy,,U™M)

1 _
< {1 @ o v U)W - U]

2

-~ 2
+ U = Uslly - | DF" (0, Uy U, U |}

IN

1 2 _ )
= max |[F'(O) | DU, — Uy)|* + 7L U, — UQH% |DF"(U,, Us; U™, U™)||
[§l<2CL M

1 /"
<5 max [F"€)] DU - U,)||”

+ =L max [P (|DUL|| + | DU + || DU™||)* Uy — Us|)%

1
5 max [F"(©)]° |ID(U — )| +7 CLM2 max |[F"( |Uy = s[5 (4.44)
|§1<2CL M |€|<2C L M

Thus, from (4.42)-(4.44), we obtain

dF dF 2 1
. < - F// + C M2 F/// 2}
Hd(UbU(”)) d(Us, UM™) || ~ {2 ‘§|§;%§M| @F t |ewl<nzg}§M‘ ©

< UL — Uf% - (4.45)
Applying (4.45) to (4.39), we conclude that

@)~ 2@ = |81 - T < (aeyR (Cord) U1 - Tl
Since it holds that from the assumption (4.17) on At that
0 < (AR (éLM) <1,
the mapping & is contraction into X. This completes the proof. O
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Theorem 4.4 (Global existence and uniqueness). Let Cj be the square root of the right-
hand side of (4.16), i.e.,

1
(1
min ¢ —
o H

If At satisfies (At)2R(CCy) < 1, then there exists a unique solution {U }X*1 (n € N)
satisfying (4.9) with (4.10) and (4.11).

Cy = {1+ FUP) + FUR) + (L +2)}

Proof. Since {[|[U|%, + U 24U 23/2 < ¢y from Lemma 4.3, there exists a unique
d

solution UM satisfying {|[UM %, + UV 2 4 UL 2}2 < €. Repeating the procedure,
d
we have completed the proof. O]

§5 Error estimate

In this section, we show an error estimate. We also use the energy method in [28,65-68].
Fix a natural number N € N. We compute U™ up to n = N by our proposed scheme
(4.9)—(4.11) and estimate the error between it and the solution to the problem (4.1)—(4.3)
up to T' = NAt. Let u be the solution to the problem (4.1)—(4.3) with an initial value
satisfying u € C3([0, L] x [0,T]). Then, we extend the solution u in [0, L] x [0,7T] to @ in
(—Axz, L+ Az) x [0,T] as follows:

3
u(—x,t) + 2x0,u(0,t) + %aiu(o,t), (—Az <z <0),
w(x,t) = u(z,t), O0<z<L),
73
w(2L — x,t) + 2(x — L)O,u(L,t) + %@i’u@, t), (L<xz<L+ Ax)

for t € [0,T], where 0, f(a) means 0, f(z)|,_,. From the direct calculation, we can check
@€ C3((—L,2L) x [0,T]). Furthermore, we can also check that if u € C*([0, L] x [0,T7),
then u € C*([~Az, L + Ax] x [0,T]). Moreover, we define the error by

e = U™ —a(kAz,nAt) (k=-1,0,....K,K+1,n=0,1,...,N).
For the sake of simplicity, let us use the expression ﬂ,(c") = a(kAz,nAt) from now on.
Also, the expression 0 f; means 0;, fi|,_,, where the symbol * denotes +, (1), or (2). Then,
the following lemma and theorem hold:

Lemma 4.4. Let u be the solution to the problem (4.1)—(4.3) with an initial value sat-
isfying u € C3([0, L] x [0,T7]). Then, we obtain the following equations on the error:

) e (ap ar

w0 k),
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6(()71-1—1)_6&71) 6 (n+1)+eén) - dF - dF
At 2 AU Uy d(ug™ ul?) (4.47)

n n-‘,—%
+f1(0 )+5§0 ) @Eo ),
eggﬂ)—e%) _ 5}: ( (n+1)+e(n)> B dF dF )
At 2 AU UL d(ule™ ul) (4.48)
n+2 n+%
e gl )

forn=20,1,..., N — 1, where &, &, &3, and &4 are defined as follows:

D _ o)

n+ —Uu

(rs) _ gulte) - S (k=0,. K,

D 4 o
n+2 ( k +u ) 82 (n+2) (kZZO,...,K),
dF
/ —

53]9 _F ) d( ’(;H_l) u](cn)) (k_07 -aK)a
1 ~ (n+1) ~(n) el
&“Wzé”ci—§EL>—mé*” (k = 0,K).

Proof. For any fixed n =0,1,..., N —1, from the definition of e, (4.1), (4.9), and (4.12),
we have

€](€n+1) _ el(gn) Ukn+1 U(n (n—l—%)

(n+1) (n)
n+i
(41 4 )

_ Up — — U

At At At

— O X
U ol dF (n+3) (n+3)y, o(7+3)
:5(2> k k o _agu —|—F/( n )+§ 2
()
> )
+

U(n+1) U(n) (n+1 (n) (n+1) (n) il
:5](;)( k +Ug _5]<€2> +uk +5’<€2> AUy _azulg +3)

2 2 2
AF dF dF (nt3)y, ((n+3)
_ _ +F(u, 2)+E,
d(U’gn_i_l)’ U]gn)) d(ulgn+1)’ ul(cn)) d(ulgn-‘rl)’ u](c?’b)) k 1,k
(N (o
) ooy
+£1(n+2)+§2(n+2)+€3("+2) (k:L’K_l) (449)

We show that the above equality (4.49) holds at k = 0, K. We remark that the equation
(4.1) holds in the interior of the domain (0, L) only. Hence, we cannot apply the equation
(4.1) directly in the calculation of (4.49) on the boundary. Therefore, we consider points
slightly inside from the boundary of the domain, and we take the limit of them to show
that (4.49) holds at £ = 0, K. For any ¢ € (0, 1), let

605 = U0 —u(eAz,nAt), e% = U(n) u((K —e)Az,nAt) (n=0,1,...,N).
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Furthermore, for n =0,1,..., N — 1, let

n+1 n n+1 n
(+) ) W i) o () g —u&&
l,e . At ) 1,K—e * K )
n+1 (n+1)
”+2 : ( ) 82 (n+2)7 27;:25 — 5 UK e + ) 62 ( )’
dF n+2 ) , ( % dF
535 F ) d( S:n_H) ugn))a 3,K—¢ - F ) d(u%ﬁl) ug{) )
In the same manner, as (4.49), we have
6877:‘—1) — 6((]”8) 6<2> 6[()?:_1) + e(()ng) dF dF
- A+ % 9 - n n)y n n
At 2 AU Ug") dE ul) (4.50)
(n+3) | (nt3) | (n+3)

+£15 +£2€ +§3 )

) — e 502 ) el dF dF
At 2 AU U)W ) (451

(1) | (rr) | ()

Tar e Tl T8k

From the smoothness assumption of u, letting € tend to 0 in (4.50) and (4.51), we have

6,(€n+1) — 6,(:) . 5<2> (n+1) —+ 6,(:) dF dF
A 2 AU ) du™ ul)

n+% n+% n-‘r%
+€1(,k >‘|'€2(,k )+§§,k ) (k=0,K).
Next, from (4.2) and (4.10), we obtain

n+1 n n—+1 n n+1 n
(()+) E)):U(§+)_U0)_au("+%)+au("+%)_u(()+)_ug))
At At o o At
(n+1)__p7(m)
Us" ™ +U, dF (n+1) (ntdy, (ntd)
= 5[ =0 o_)- —Oyug P HF (ug )
’ : R v
U U swfa v (@i o )
— Yk k k 20
2 2 2
dF dF dF (n+ (n+3)
- + - + F'(uy )+§ ’
AU, U5 (g ) () "
_sofe ey dF dF
L2 AUy, Uy d(ug™, uf?)
n+i n+
vele ey 1 ey

Similarly, from (4.3) and (4.11), we have

6%+1) — egg) . 5<1> (n+1) + 6%) dF dF
Ao : AU U dud )

+§("+%) +§(n+1) (n+ )

1,K 3,K 4K
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Therefore, (4.46)—(4.48) holds. O

Theorem 4.5. Assume that the problem (4.1)—(4.3) with an initial value has a smooth
solution u that satisfies u € C3([0, L] x [0,T]). Denote the bounds by

|

Ny <o max {[U*]

0<n<N

ul| b <G (152)
d

0<n<N
Also, let

Cp:=2{C2C F"()"+ F"(¢ . 4.53
pi=2{ €20 max [P + max P (0 (4.59

Then, the following inequality holds:
1

‘e(;(zﬂ)

{1-(1+Cp)At} {”e(nﬂ)Hi}l + ’e[()nJrl) 2 N
d

(n) |12 (n) (n)]? (n+3) _ _
< {1+ (1+Cp)At}< e HH5+ eg”| +lew’| &+ 24K (n=0,1,...,N —1),
where
2 2 2 2 2
n+i n"r% n+ n—l—% n-+
5<+2>:={£§ | el et +{£§ ) 5§o> §K)}
Hy
2 2
n+% n n+=
+{ D ey el }+ {640 +leliV } (1.59)
Hd
Proof. For any fixed n =0,1,..., N — 1, using (4.46), we obtain
1 n 2 12
o ([l VI, ~ e]12,)
B zK: ,,e(”“) e (D) on )A
2
k=0
ZK:"{ o ( <”+1)+e,§))} (”+1)+€§@)A
2 2
k=0
2, et el dF dF () (D) (o)
- - +&0 Y HE, Y Y p A
3 { (d(Ué”*”ﬂé“’) Al

(4.55)

From Corollary 2.1 (Summation by parts formula), we calculate the first term on the
right-hand side of (4.55) as follows:

i//{ < n+1)+€](c ))}elgn+1)+el(€n) Ay HD(e(n+1)+e(n))
2 2

k=0
sofe <n+1> Tel (n) egm) +€§g")
k 2 2

2

K

_|_

(()4.56)
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From (4.47), (4.48), the Young inequality, and the inequality: (3, a;)> <n > aZ, we
estimate the boundary term on the right-hand side of (4.56) as follows:

K
s e e Ve e
2 2
n+1) (n) n n
o €x —|eK _eg(+1)+e§() dF _ dF _€(n+%>_ §(n+é>+ §<n+%)
2At 2 d(UI(?H), UI(?)) d(ugéﬂ),ug?) 1,K 3,K 4K
2 2
n+1) ) " .
- € —|€o _e(() +1)—|—e((3) dF B dF —E(H%)— g(n—‘,-%)_ g(n+%)
Al 2 \0f 0 of)  awf ag)) T T
2 2 2 2
eénﬂ) ‘eén) ]43*” — ’e%‘)
< — _
- 2At 2At
2 2
n e(()n+1)+e(()”) +1 dF B dF _§(n+%)_§(n+%)_ £n+%)
n n n 1,0 3,0 ,0
2 @) g, ug?)

: 2
+ M _{_1 dF B dF _€(n+%)_€(n+%>+€<n+%)
2 4 d(UI(?'H)’ UI(?)) d(ug?—kl), u%)) 1,K 3,K AK

2 2 2 2 2 2 2 2
e((]nJrl) _ eén) g?ﬂ) _ ’6%) eén+1) n e(()n) 6%+1) n ‘e%)
< — _
= A I * 2 * 5
2
dF dF ()| [ D] [ (d)
_'_ _ + 2 + 2 + 5 2
d(l—]én+1)7 Uon)> d(u(()n+1)7 ugn)) 1,0 3,0 4,0
ar daF [ L) D] )]
+ — o I I P I T (4.57)
d(U[(?Jrl), U}({?Z)) d(ug?—‘,—l)? ug:?)) 1LLK 3, K 4, K

Similarly, we also estimate the second term on the right-hand side of (4.55) as follows:

K (n+1) | (n)
//ek; +€k dF dF (n+%) (n+%) (n+%>

N B +¢ +£ +¢ Ax
]gz; 2 { (d(Ulgn+1), Uk(:n)) d(ul(cn+1)’ 'LL](:L)) 1,k 2.k 3.k

K (n+1) | () ?
< //<€k + e, ) Az
k=0

2
1%{ ( ar dr ) () ) o)\
+7 - n . " n +€1,k ’ +§2,k ’ +£3,k ’ Az

1= AU o) d™ u)
n 2 n 2
eV + (e

- 2

2

dF dF
AU UMY du+), um)

2
Ld

£(n+%)

1

(4.58)

i

T Hs§

2
Ld

2 2
41
+ HQS" :)
Lf1 L(Qj
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Therefore, we see from (4.55)—(4.58) that

1 1) 12 2
= (e V11 = lle®17:)
2 2 2 2

D e+ 4 eM || ‘eénﬂ) - ‘6(()”) ‘G%H) - ‘63?)
a 2 2AL a 2At

1 nt1) ||2 (t))|* | mn]? | L n)||2 > | m]?
+§{He( DY e e L 2 e, e[ + |

2
H dF dF 2 . dF dF
d(U(n—H)7 U(n)) d(u(n—&-l)’ u(n)) 13 d(Uén+1), Uén)) d(u(()nJrl)’ uén))
dF dF (nr 1) || (nt1) (ns2) [

+ - v - = +411& + &0 | Tk’

AU U di i) {

2 2 2 2 2 2
nti nti nti nti nti n+i
+ 62( 2) _|_ {‘ €§ 2) + é‘?g’o 2) + :S’K 2) } _|_ { é‘ZE,O 2) _|_ £7K 2) }'
L3 L}
(4.59)
Next, using Corollary 2.1 (Summation by parts formula), we have
n+1 n) (|2
oy (HD @~ D)
(n+1 n+1 n
L (e e (=),
F At

k=0

K n n+1 n n+1 n+1 n)1E

oyl )+e() G 01 Sl 1 S RS

j At k 2 j At '
k=0 0

Applying (4.46) and Corollary 2.1 (Summation by parts formula) to the first term on the
right-hand side of (4.60), we obtain

K n . .
— Zu 52 ( e <‘3;(C " eé ) _ efﬁ )Ax
‘ 2 At
n+1) 0
+e dF dF (n+d) e+l (ntd)
D3 - R AL A
kZ:; { k ( 2 d((]’in—l—l)7 Ulgn)) d( (n+1)7uk ) 1,k 2.k 3,k
K—-1 m+D) @ 1 - -
o {@?(gk 2+€k >} [5:{< (nc-lkllj N (jj ) >_51(77:’_2)_52(,k+2)_€:§,k+2>} .
k=0 AU, U7)  d(u, 7 uy,)

k
K
sofer el L A A
k D) d(U,gn+l),U,§n)) d(UgHD,U;(C ) 1,k 2,k 3,k .

(4.61)
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Using (4.61), the Young inequality, and the inequality: (31, a;)> <n > i, a?, we get

K n+1 n n+1 n
_Z// 5@ 6;(€+)+€,(§) e,(€+)—e,(€)Ax
— " 2 At

2

+1K_1[5+{( dF i ) () o) €w}
n k n M~ n n TSk T S2k T S3k
4= AU 0 d(ud ulY)

n+1) (n) dF dF L L ) K
a5 - SN AR A
s AU UMyt uy ) | ],
e(nJFl) + e(”) 2 dF dF 2
= HD< 2 )H + D(d(U(”“) Q) _d(u<n+1>,u<n>))

(1)’ :
+ || D&, D£2 DE

K
5O et 4 e dF dF (b)) (+d) (D)
A2 A0 aa) e e

Thus, we have

+

+

| Det 0~ || De]
2At

H ( (n+1) +e(n))

-

2

D dF dF
+ d(U (n+1) U(n)) d<u(n+1) u(n))

K 2

(nt1) _ () ) ) 1K
d% "% ar _ dF _nr3) g(”ﬁ) B §(n+§) .
At d(U,ﬁ”*D, U,i”)) d(ugz-i-l)’ ul(:)) Lk 2,k 3,k 0

From (4.47), (4.48), and the Young inequality, we estimate the above boundary term as
follows:

K
s0(Cx ey 0 e,(f“)_e,(f)+ dF dF ) f(n%)—f(n%)
k 2 At d(U(n+1) U()) d( (n+1) un) 1,k 2.k 3.k 0
(nt1) |\ )? n+1
eg _Tte ) e
) e )
(1), (m\)? (1) |
€ +e
_ {%D( 0 - 0 )} B {5I<€1> )} 540 520 ))

(n+4)]” 2
2,0

] :

o

n+2

< 4,K

_|_
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Namely, we have

o (1D - [Det
<= ie ) ’ng >‘d<g<nf§ u<”;>) *‘Dfﬁ"*@
+HD€§n o HD£§ I+ ) el 4D 4|l (4.62)

Combining (4.59) and (4.62), we obtain

1 1) 112 "2
e (e, le,)

2 2 2 2
< ‘e((]n—i-l) eén) ’6%-&-1) _ ’eg?)
= 2AL a 2AL
1 1) |12 (n+1) (n+1) 1 2 (n) (n)|?
+§{He( D+ [ el S e, e+ et
2
H dF dF 2 . dF dF
d(U(n-{-l)7 U(n)) d(u(n—&—l)’ u(n)) ﬁ(} d(l—jo(nJrl)7 Uén)) d(u[()nJrl)7 uén)>
2
dF dF
ey — | (P (4.63)
AU "7 U”)  duge 7 uye)
Multiplying both sides of (4.63) by 2At, we get
(10 {0 et e
< (1+At){\}e(”)||zé+‘eg) +‘e§’;) }
) 2
L 9AY H dF dF dF dF
U (n+1) U(n)) d(u(nJrl)’u(n)) ﬁé d(Uén+1) Uon)) d( én-&-l)7 (()n))
2
+ (nfll; my (nfll; | (2000, (4.64)
dUg ", Ug’)  dug " ug’)
Next, it follows from Lemma 2.2 that
dF dF 1F1/<U(n+1)’ (n+1). Ukn), k)) (n+1)

AU UMy dutY a2

1=
+ (U,gm, ™ ), u,gn+1>) O (k=0,... K).
(4.65)

From the assumption (4.52), using Lemma 2.1, we have

HF,,( n+1) (n+1); U(n), u™ < Cpa, F”(U(n), u(n); U(n+1) (n+1 ||LOo < Cpg,

(4.66)

lzz
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where Cp; (i = 2, 3) is defined by
Cp; := max ‘Fz) ©)] (i=2,3).

[€1<C2
Hence, we obtain
dF dF ? C? 2 2
D e D | S ;”2(@;"“) + e,ﬁ")> (k=0,...,K). (4.67)
dU7 00 duy T u”)
Thus, we have
ar dF > Ofy 2 )
_ S F2 (n+1) (n)
Hd(U(n+l)7U(n)) d (w1 M) L2§ 7 <He HLg—i-He HL(%)' (4.68)
d
Next, using (4.65) and Lemma 2.3, we obtain
ar il U ). ) () 0D

HD<d(U(n+1),U(n))_d(u(n+1 )H ‘HD(F (U, a0 U™, ™) etV |

+§HD(F” U(n (n). Un+1 n+1) )”
<1 HDF//(U(nJrl), w0 U u(n)) | |et+D ||Loo
HF//( n+1) u(n-i—l) U(n HLoo HDe(n—‘rl H
e
1, -
R T PR )
(4.69)

From the assumption (4.52), using Lemma 2.4, we get

HDF// (U(”+1)7 u(n—I—l); U(n)) u(”)) H < % (201 + 201 + 01 + 01) 0101413. (470)

Similarly, it holds that
|DF" (U™, u™; U ul )| < C1Cpys. (4.71)
Therefore, applying (4.66), (4.70), and (4.71) to (4.69), we obtain

2

< €3, (el + [}

D dF dF
AU, UMY d(ul+D), uM)

+ Gy (D™ + [ De|) . (4.72)

Combining (4.68) and (4.72), we have

2

dF dF
AU UM d (ur+), um) i

d

n2 7L2
< G2k, (e + [le]7)
n2 TL2
+CEy ([l 15, + 1e™117,)
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Furthermore, using Proposition 2.5, we get the following estimate:
20 (e + e} ) < CECECE, (e 5y + [le™ 15 ) -

Thus, we have

2

Cr 1 o .
< = (Il + le®l5) - (73)

dF dF
d (U (n+1) U(n ) d (u(n—l-l)’ u(n))

Therefore, using (4.67) and (4.73), we obtain

dF dF
d(Uén+1), Uon)) d(u(()n+1)7 U(()n))

) (hel +

{1—(1+Cr)At} {He<n+1>uf~{é + ]eg"+1>f + ey

H dF dF ‘ 2
+

AU U®)  dur+D u)

7l
Hy
2

dF dF
Ul oy dl Y, ul)

+
(U

< L (heroily +
g

Applying (4.74) to (4.64), we obtain

(n+1)
0

2
(n+1)
+ ‘

el 2) } . (4.74)

eén)

ki

} T onse(nh).

|

2
e(()") + ‘e%)

< {1+ (1+Cp)At} {He(n)Hfﬁ + ‘

This completes the proof. O

Corollary 4.1. Assume that the problem (4.1)-(4.3) with an initial value has a smooth
solution w that satisfies u € C°([0, L] x [0,T]). In the same manner, as Theorem 4.5,
denote the bounds by (4.52). If At satisfies

1
At < ——, 4.75
3(1+Cp) (4.75)

then there exists a constant C' independent of £ and m such that

et

<O ((Az)*+ (At)*) (n=1,...,N).

[
Proof. If 0 < At < 1/(3a) for all a > 0, then two following inequalities hold:

14+ aAt 1 3
<1+3aAf — <2 4.
| Zanr SR T AT S ) (4.76)

From (4.75), using Theorem 4.5 and (4.76), we obtain

He(n—i_l)”;ﬂ i ‘egn—f—l) 2
d

2
+ ’eﬁ?*”‘ <{1+3(1+ Cr)At} {He<”>

Iy +
Hy

+3ate(mta) (n=0,1,....,N - 1). (4.77)
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Let C3 := 1+ 3(1+ Cpr)At, and by using (4.77) repeatedly, we obtain

2

e, + Je] + |

2 2
e I o SRl

2
+ ’6%72)

< C? {He(nQ)”?qé + ‘68%2)

2 1 1
} T 32+ 4 3ape(r1+d)

<oy {He<0>||;dl T e

2 2 n , -
+ |e?] } +3a: S g el
j=1

=3A¢ > 07t (n=1,...,N),

J=1

where the last equality holds from e(® = 0. Since it holds that 1 < Cs, using the following
inequality: 1+ x < exp(z) for all x > 0, we get

; T
CITt < ON = 14301+ Cp)ALYY <exp {N - 3(1+ CF)N} = exp {3(1 + Cp)T}
for y =1,..., N. Therefore, we obtain

i < 3Atexp{3(1+ Cpr)T} ig("—ﬂ*é) (n=1,...,N). (4.78)

J=1

2
ey +|e7] -+ [e”

Next, we estimate . Let us define

az‘+j v

oxt ot

M, (v) == max{

i (x,t) €0, L] x [O,T]} for all i, j € Z.
Firstly, we consider &,. For any = € [0, L], applying the Taylor theorem to @, there exists
0, € (0,1) such that

a(z, (n + 1)At) + a(x, nAt)
2

e (o 2) ) B0 e o ) ) e 52) ) 4

Substituting KAz (k =0, K) into x in (4.79), we obtain

(n+1) | ~(n)
5;1><u,(~c + Uy, > _ &cugw%)

2

1 2 101 1201 L
_ 5,<€1>ﬂ£”+2)+(A1? 5Iil><a2a( +—3 )+8,521~L/E+ 2 )) _azu( +2)

t %k k
o 101 1201
5}3(@3@,&* : )>‘+ el >>D (k =0, K).

<

5 Ii 1) a}(;”f 3) —9, u]g:”* 3)

N (Alé)2 ( 5}<€1>(
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Here, we consider the case of k = 0. For any t € [0, T, from the definition of @, we have

(Az)’

u(—Az,t) = u(Ax,t) — 2A20,u(0,t) — O2u(0, ). (4.80)

Hence, substituting (n + 1/2)At into ¢ in (4.80), we get

1 1 ’“’(n+%) _ (n+ ) 1
5}21%(()”*5) . agcug’“”ra) _ % QA:: 1 _ axu(()”ﬁ)

1 -l ntl 3 L
DR Ao M M
- 2Ax — Oatig
Azx)?
S ( 6) M370('LL).

Also, for any ¢ € [0, T], using the definition of @ again, the following equality holds:
2~ 2 2 (Az)® 5
Oru(—Ax,t) = 0;u(Ax,t) — 2A20;0,u(0,t) — Tat 0ou(0,1). (4.81)

Hence, substituting (n + (1 4 60,)/2)At into ¢ in (4.81), we obtain

146, 82a(”+1ie ) i -(n+151) 146, (Ax) 120
521) (agagn-‘r 5 )) _ t Y1 QAxt _1 :atzaxugn-‘rT) 8283 (+ )

Therefore, we get

e Ax)?
o <8t2~(() e ))‘ < Mip(u) + (87) M3 (u).

Hence, we conclude that

(n+1) ~(n) nal
5lil>( 2+ ) . aru]g +2)

for £ = 0. In the same manner, the above equality holds in the case of k = K, too. From
the assumption (4.75) for At and the following inequality: 1+ Cr > 1, we get

(Az)*
6

(At)*
8

. (A2 (Aa)’

Mg’o (U) +

MLQ(U) +

1 1
At< —— < = < 1. 4.82
(1+CF) ( )

Thus, we obtain the following estimate:
~(n+1 ~(n
(n+3) ><u£ -+ >) g )
2 vk

4,k = 515:1
S (A$)2 (éMg’o( )—|— M3 2( )) + (A8t) M1,2<u) (]{J == 0, K)

48
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Next, we consider €. Substituting kAz (k= 0,..., K) into z in (4.79), we obtain

~(n+1 ~(n i
(5l<€2> (u,g + )—i-u,(g )> —8§u,gn+§)
2
1 il 2 1401 e 1201
:522)&1?4‘2)_83%& +2) _'_%{522)(@2&]24- )) +(5 (8,5211](€+ = ))} (k:(),...,K).
(4.83)

For any ¢t € [0,7] and k = 0,..., K, applying the Taylor theorem to @, there exists
0, € (0,1) such that

a((k + DAz, 1) — 2a(kAx, ) + a((k — 1Az, 1)
(Az)?

— Pa(kAx,t)

_ (Ax {08a((h + 6) A, 1) + O%((k — 6) A, 1)} (4.84)

It holds from the definition of @ that d2u(z,t) = dtu(—=x,t) for all z € [-Az,0). Hence, we
have 0}i(—0,Ax, t) = Otu(fAx, t). Similarly, we obtain d2u((K + 62)Axz,t) = Ota((K —
02) Az, t). Namely, substituting (n + 1/2)At into ¢ in (4.84), we get

((Ax)?
5[{{2>a£n+§) . 8§U£n+§) = (AQ‘Z) aﬁ ’gj_;r;) + 84 ’EW;;Q)) 7 (k — 17 o ’K _ 1)7
ALC n
( ) = gty E(t,?), (k = K).

\

Hence, we conclude that

(Ax)?

5’<§2>ﬂ£”+§) o a2u(”+§) 5

Yk S

M4’0(U) (k:zO,,K)

In the same manner, as described above, we have

5 (a? (“iel))‘ < Myo(u) + AxMya(u) (k=0,... K). (4.85)

In fact, for any ¢t € [0,7] and k = 0, ..., K, applying the Taylor theorem to 9%a, there
exists 03 € (0, 1) such that

B2a((k + 1)Ax, t) — 20%a(kAx, t) + 02a((k — 1) Az, 1)
(Az)?

= % {0207 a((k + 03) A, t) + 0207 u((k — 03) Az, t)} . (4.86)

It holds from the definition of @ that 0202u(x,t) = 0202u(—mx,t) + 220203u(0,t) for all
€ [-Az,0). Hence, we have

O20}u(—0s Az, t) = 0207u(03Ax, ) — 203A2072u(0,1).
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In the same manner, we obtain
O20FI((K + 03) A, t) = O207u((K — 03) Az, t) + 203A2070%u( K Az, t).

Namely, substituting (n + (1 £ 6,)/2)At into t in (4.86), we get

140, 140,
(gropad ) ogneapond™ ), k=0,
- n+1i261 ot LEOL u:al
5;62)(61;2“]2 )) = (8281:2 1£+J9r 2 >+8§at2 ( 'g )) : (kzl,--.,K—l),
120, FREL
8283 j(anrg ’ )+ 03 Az020>u 2 )7 (k= K).

Therefore, we conclude that

1+6¢
52 (33 (n 1 ))‘ < Mos(u) < Mas(u) + AcMaa(u) (k=1,...,K —1),

@) (g2 (r+551) _
oy | Oruy < Mss(u) + AxMss(u) (k=0,K).

Thus, we have (4.85). Hence, using the Young inequality and the following inequality:
(At)* < (At)? obtained by (4.82), we obtain

nt3 2) - (n+3) 5 (n+3) (At)2 N 5~ (n+52
0] < |s@al ) ey +T{5 (a ( ))‘ +|6f (a (n >>'}
< (Aé) Myo(u) + (A;) M2,2(U)+WM372(“>
< (Alg) Myo(u) + (Agt) M2,2(U)+%M3,2(U)+ (Alé) M3 9(u)
< (@0 (15 Maalw) + 35 Maa)) + (A §Maalw) + 1o Maalu) ).

Similarly, we see from the Taylor theorem that

gfj’,@*%) < CMys(u)(At)? (k=0,...,K),

(v+3)

3.k

< C{CraMya(u) + Crz (Mo1(w)*} (A (k=0,...,K).

As a remark, throughout this proof, we need the reader to keep in mind that the meaning
of C' changes from line to line, whereas C' always denotes those constants. From the
regularity assumption of the solution w and the potential F', we see that Cr; (i = 2,3)
and M; ;(u) (4,7 € Z,0 < i+ j <5) are bounded. Thus, we obtain following estimates:

‘g}"*ﬁ < Cy((Ax)* + (A2 (k=0,... K, i=1,2,3), (4.87)
ﬁ*%) < Ou((Az)?+ (AY?) (k=0,K), (4.88)
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where () is a constant. In the same manner, we obtain

st < o((An + (ADD) (k=0,.. K -1, i=123).  (489)

Therefore, using (4.87) and (4.89), we have
2 K K-

=3k Z
] k=

Hy k=0
From the above estimates (4.87), (4.88), and (4.90), we have

gf”%) 5*5 Aa:' <207L((Az)*+(At)?*)? (i=1,2,3).

(4.90)

¢(3) <3202 (L + 1)((Ax)® + (A1) + 2 202((Ax)? + (At)?)>
<1003 (L + 1) ((A2)* + (AH*)?* (n=0,1,...,N —1).
Therefore, from (4.78), we obtain

n

e el H[ef?] < BAexp {301 + CRITY10C3(E + 1)((A0)? + (A2 31
< 30C2(L + D]exp{3(1 + Cr)TH((Az)? + (A1)?)? - % N

= 3003 (L + DT [exp{3(1 + Cp)T}((Az)* + (At)?)?
forn=1,...,N. That is,

\/||e<n>||§~{é + |6+ |

Here, let us define a constant C' by

(" < 0, /30(L 1T {exp{g(l + CF)TH (Az)? + (A1)?).

C = CCi/30(L +1)T [exp {2(1 + CF)TH .

Hence, we conclude from Proposition 2.5 that

el < Colle®™llzy < CADP +(AD) (n=1,...,N).

This completes the proof. n

g6 Computational examples

In this section, we demonstrate through computation examples that the numerical
solution of the proposed scheme is efficient and that the scheme inherits the dissipative
property from the original problem in a discrete sense. We consider the following dynamic
boundary condition:

{sexatum, t) = Opul(w, )], — F'(u(0,1)),
EexOyu(L,t) = — Opu(z,t)|,_, — F'(u(L,t)), in (0,77,

where e, is a positive constant. We choose K = 100 and fix L = 1 so that Az = 1/100.
On the other hand, we choose T and At depending on the situation. We fix the parameter
€ex = 10. Also, we consider the nonlinear function F(s) = (v/4)(s* — 1)2, where we fix
the parameter v = 100.

(4.91)
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6.1 Computation example 1

As the initial value, we consider
u(z,0) = ag + a1 cos(5mx) + ag sin(8mz) + ag cos(27x),

where we choose ag = 0.02, a; = —0.05, a = —0.008, and az = 0.01. Also, we choose
N = 6000 and fix "= 0.6 so that At = 1/10000. Figure 4.1 shows the time development
of the solution to (4.1) with (4.91) obtained from our scheme. Figure 4.2 shows the time

development of Jy(U™)+ F(US™)+ F(UM). We call Jo(U™)+ F(UM™)+ F(UL) “total
energy” from now on. This graph shows that the energy decreases numerically.

DBC — 80

DBC
70}

0.5 60
U o > 50F

-0.5 2
-1 g 40+

w 30Ff
06555, — 20t
202G 04 U° 10t

0

0 0.1 0.2 0.3 0.4 0.5 0.6
t

Figure 4.1: Numerical solution of (4.1) with Figure 4.2: Time development of total en-
(4.91) obtained by our scheme ergy

6.2 Computation example 2

As the initial value, we choose
u(z,0) = exp{—500(x — 0.5)?}.

Also, we choose N = 700 and fix 7' = 0.7 so that At = 1/1000. Figure 4.3 shows the time
development of the solution to (4.1) with (4.91) obtained from our scheme. Figure 4.4
shows the time development of total energy. This graph shows that the energy decreases
numerically.

" bBC —— |

TS
)&\\\\\\M‘\&N\\\\\\

{my

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t

Figure 4.3: Numerical solution of (4.1) with Figure 4.4: Time development of total en-
(4.91) obtained by our scheme ergy

As stated in the Introduction, our study for the dynamic boundary condition dif-
fers from previous studies for non-dynamical boundary conditions such as the Neumann
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boundary condition. Since there is a term of the time derivative on the boundary in (4.1)
with (4.91), it is natural that the long-time behavior of the solution may differ from that
to (4.1) with the Neumann boundary condition. In order to assure that the difference
occurs, we present the numerical examples of our structure-preserving scheme for (4.1)
with the Neumann boundary condition (see next subsection for details).

6.3 Computation example 3 (Numerical results for the Neu-
mann boundary condition)

In order to verify that the difference in the long-time behavior of the solution occurs,
we present the numerical examples for (4.1) with the following inhomogeneous Neumann
boundary condition:

Opu(,t)],_g — F'(u(0,)) = 0,
{— dpu(z,t)],_;, — F'(u(L,t)) =0, in (0,77, (4.92)

in the same setting as Subsections 6.1 and 6.2. We remark that the solution to (4.1)
with (4.92) also satisfies the dissipative property (4.5). Since there are no results of
the numerical computation in the same setting as the previous subsections in previous
studies, we carry out the numerical computation by the following structure-preserving
scheme. The concrete form of our structure-preserving scheme for (4.1) with (4.92) is as
follows: forn =0,1,...,

n+1 n n+1 n
At k 2 d<Uk(:n+1)7 U]g")) S
510 (Ué”“) + Ué“) o aF
k n SN
2 o AT U
dF

o ()

Figure 4.5 shows the time development of the solution to (4.1) with (4.92) obtained from
our scheme. Figure 4.6 shows the time development of total energy. This graph also
shows that the energy decreases numerically.
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Figure 4.5: Numerical solution of (4.1) with Figure 4.6: Time development of total en-
(4.92) obtained by our scheme ergy
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6.4 Computation example 4 (Numerical results for the Neu-
mann boundary condition)

The setting is the same as Computation example 2. Figure 4.7 shows the time devel-
opment of the solution to (4.1) with (4.92) from our scheme. Figure 4.8 shows the time
development of total energy. This graph also shows that the energy decreases numerically.
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Figure 4.7: Numerical solution of (4.1) with Figure 4.8: Time development of total en-

(4.92) obtained by our scheme ergy

As can be seen from Figure 4.1, Figure 4.3, Figure 4.5, and Figure 4.7, the solution
to (4.1) with (4.92) arrives at a different state from that to (4.1) with (4.91). Thus, the
results assure that the difference in the long-time behavior of the solution occurs.
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Chapter 5

The Cahn—Hilliard equation with a
dynamic boundary condition

In this chapter, as mentioned in Chapter 1, similarly to designing a structure-preserving
scheme for the Allen—Cahn equation with a dynamic boundary condition in Chapter 4, we
propose a new structure-preserving finite difference scheme for the Cahn-Hilliard equa-
tion with a dynamic boundary condition based on DVDM [29]. As in the case of the
Allen—Cahn equation, by modifying the discretization of energy and using an appropriate
summation-by-parts formula, we can use a central difference operator as an approximation
of an outward normal derivative on the discrete boundary condition of the scheme. In ad-
dition, we show that our proposed scheme is second-order accurate in space, although the
previous structure-preserving scheme proposed by Fukao—Yoshikawa-Wada [28] is first-
order accurate in space. Also, we show the stability, the existence, and the uniqueness
of the solution for our proposed scheme. Computation examples demonstrate the effec-
tiveness of our proposed scheme. Especially through computation examples, we confirm
that the solution obtained by our proposed scheme is more reliable than that by the
Fukao—Yoshikawa-Wada scheme when the space mesh size is coarse.

§1 Introduction

Let L > 0 be the length of the one-dimensional material. In this chapter, we study
the following Cahn—Hilliard equation [8]:
{ O = O%p in (0, L) x (0, 00), (5.1)
p=—y0iu+ F'(u) in(0,L) x (0,00), (5.2)
under the dynamic boundary condition and the homogeneous Neumann boundary condi-
tion:

0u(0,t) = Opu(z,t)|,_, in (0, c0), (5.3)
owu(L,t) = — Oyu(x,t)|,_; in (0, 00), (5.4)
Opp(z,t)|,_y = Oup(z,t)|,_, =0  in (0,00). (5.5)

The unknown functions w: [0, L] x [0,00) — R and p: [0, L] x [0,00) — R are the order
parameter and the chemical potential, respectively. Moreover, v is a positive constant.
Furthermore, F: R — R is a potential, and F” is its derivative. For example, F' can be a
double-well potential, i.e.,
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F(s) = T4 T2 forallse R,
4 2

where ¢ and r are positive constants. Throughout this chapter, we assume that the

potential F' is bounded from below. Let us define the “local energy” G and the “global

energy” J, which characterize the equations (5.1)—(5.2), as follows:

G(u, Oyu) := % |0,ul? + F(u), (5.6)
J(u) = /0 G(u, Ozu)dz. (5.7)

Also, let us define the “mass” M as follows:

M(u) = /0 e (5.8)

Then, the solution of the equations (5.1)—(5.2) satisfies the following properties:

d
— M (u(t)) =0, (5.9)
d

CI(u(t)) = ~10(0, ) ~ 2|0 L, 1) ~ /0 0up(a, )2z < 0, (5.10)

under boundary conditions (5.3)—(5.5). In this chapter, we design a structure-preserving
finite difference scheme for (5.1)—(5.5) based on DVDM. As mentioned in Chapter 4,
in [67,68], Yoshikawa has mentioned that the merits of the structure-preserving scheme
are that we often obtain the stability of numerical solutions automatically and that various
strategies for the continuous case, such as the energy method, can be applied to the scheme
similarly. Actually, Yoshikawa and co-authors have applied the energy method to show
the existence and the uniqueness of the solution and the error estimate for the numerical
scheme (see [28,65-68]).

From a mathematical perspective, the problem (5.1)—(5.5) with initial conditions has
been studied in [14-16, 18-20, 32, 34, 35,46, 47, 54,55, 64]. First, in the case of F(s) =
(q/4)s*—(r/2)s% Racke and Zheng [55] have proved the global existence and uniqueness of
the solution to the problem, and Priiss et al. [54] have obtained the result on the maximal
LP-regularity and proved the existence of a global attractor. Also, Wu and Zheng [64] and
Chill et al. [15] have proved the convergence of the solution of the problem to equilibrium
as time goes to infinity. Moreover, various results of the existence, the uniqueness, and the
regularity of the solution, the existence of a global attractor, the convergence to steady
states, and the optimal control have been obtained under more general assumptions on
the nonlinearities in [14, 16, 1820, 34, 35,46, 47]. Especially, Gal [32] has compared the
problem under other dynamic boundary conditions with that under our target dynamic
boundary conditions. Here, we remark that in these papers, the problem is considered
in the multi-dimensional case, where the boundary conditions (5.3) and (5.4) include the
Laplace—Beltrami operator, which plays the role of diffusion on the boundary.

From a numerical point of view, there are some numerical studies of the Cahn—Hilliard
equation with dynamic boundary conditions (see, for example, [12-14, 28, 39, 48, 49]).
In [12,39], Cherfils et al. and Israel et al. have considered the finite element space semi-
discretizations of the problem in the two-dimensional or three-dimensional case and proved
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the error estimate. Moreover, the results of the unconditional stability of fully discrete
schemes based on the backward Euler scheme for the time discretization, and the conver-
gence of the solution to a steady-state have been obtained. See also [14] for other numerical
results. Besides, Cherfils and Petcu have obtained the results of the problem with other
dynamic boundary conditions by a finite element approach [13]. In addition, Nabet has
performed an interesting analysis of the problem in the two-dimensional case using the
finite-volume method and proved the convergence of the numerical solution [48]. She
also has given the error estimate in [49]. More specifically, she has proved the first-order
convergence in the sense of the H'-norms. In [28], Fukao et al. have already proposed a
structure-preserving scheme for (5.1)—(5.5) based on DVDM in the one-dimensional case.
We remark that they use a forward difference operator as an approximation of an out-
ward normal derivative on the discrete boundary condition of their scheme and that their
scheme is first-order accurate in space. In DVDM, it is essential how to discretize the
energy which characterizes the equation. Modifying the conventional manner and using
an appropriate summation-by-parts formula, we can use a central difference operator as
an approximation of an outward normal derivative on the boundary. Moreover, we show
that our proposed scheme is second-order in space.

The rest of this chapter proceeds as follows. In Section 2, we propose a structure-
preserving scheme for (5.1)—(5.5), whose solution satisfies the discrete version of the con-
servative property (5.9) and the dissipative property (5.10). In Section 3, we prove that
the solution of the proposed scheme satisfies the global boundedness. In Section 4, we
prove that the scheme has a unique solution under a specific condition. In Section 5,
we prove the error estimate for the scheme. In Section 6, we show that computation
examples demonstrate the effectiveness of the scheme. We also mention the suggestion
on comparison of long-time behaviors between the dynamic boundary condition and the
Neumann boundary one.

§2 Proposed scheme

In this section, we propose a structure-preserving scheme for (5.1)—(5.5) and show that
it has two properties corresponding to (5.9) and (5.10).

2.1 Preparation

Let K be a natural number. We define U,E"’ (k=-1,0,1,..., K, K+1,n=0,1,...)
to be the approximation to u(z,t) at location x = kAz and time t = nAt, where Ax
is a space mesh size, i.e.,, Ax := L/K, and At is a time mesh size. They are also
written in vector as U™ = (U™, ... UM or UM = (U(,’?,UO"),...,U}?,U}Q‘L)T.
The superscript (n) is omitted when no confusion occurs. Guess the meaning of U from
the context. Let us define two discrete local energies G(jf: RE+3 5 REFL by

G (U) === (6t U + F(U)  (k=0,...,K),

N[220 2

GipU) =26, Up)? + F(U) (k=0,...,K),
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for all U € RE*+3. Note that Gik(U) are elements of vectors G (U), respectively. Fur-
thermore, we define discrete global energy Jq: RE+3 — R as follows:

Ja(U) == % {Z G;k(U)AHZG;k(U)Az}. (5.11)

k=1

Also, we define a discrete mass My: RET1H25 5 R by

K

My(U) = Z”UkAx for all U € R¥ ™25 where s = 0, 1.

k=0
Remark 5.1. We remark that we construct a structure-preserving scheme for (5.1)—(5.5),
which we can use a central difference operator as an approximation of an outward normal
derivative on the boundary conditions by adopting the above discrete global energy Jy
and using another summation-by-parts formula (Corollary 2.1).

From the idea of DVDM [31], we take a discrete variation to derive a structure-
preserving scheme for (5.1)—(5.5). That is, we calculate the difference J4(U) — J4(V') for
all U,V € RE+3. For the purpose, we use the following lemmas. All the proofs can be
found in Lemma 4.1 and Lemma 4.2 and here omitted.

Lemma 5.1. The definition (4.6) of J4 is rewritten as follows:

K-1 K
JaU) = 3 2 (57 U)" Do+ Y "F (Ui Ax for all U € RF,
k=0 k=0

Lemma 5.2. The following equality holds:

@)~ 24v) = 3 Lot (D) 4 AP vy e

2
k=0

Uy + Vi K
+ {7{5,S>< ’“; k)}(Uk—Vk)} for all U,V € RE*. (5.12)
0

Remark 5.2. This equality (5.12) is essential for the discrete energy dissipation (Theorem
5.1).
2.2 Proposed scheme

The concrete form of our scheme for (5.1)—(5.5) is, for n = 0,1, ...,

U]ETH_I) . U]En)

N =69 P"M (k=0,... K), (5.13)
o+ o dF
QAN y/j Rt L T Y k=0,...,K), 5.14
k k 2 d<U]£n+1)’ U}gn)) ( ) ( )
n+1 n n+1 n
At k 2 ’ '
k=0
n+1 n n+1 n
U U s (U U (5.16)
At k 2 ’ '
k=K
sUPM =0 (k=0,K). (5.17)



Remark 5.3. In the previous result [28], Fukao et al. constructed another structure-
preserving scheme. They used a forward difference operator as an approximation of an
outward normal derivative on the boundary conditions. On the other hand, we have
constructed a structure-preserving scheme in which we used a central difference operator
as an approximation of an outward normal derivative. This is the difference with their
previous scheme.

Then, the proposed scheme (5.13)—(5.17) has the following property corresponding to
(5.10), i.e

Theorem 5.1. The solution to the scheme (5.13)—(5.17) satisfies

5FJ(U™) = — ‘5+U0 (n=0,1,...). (5.18)

K-1 9
> fn
k=0

Proof. Using Corollary 2.1, Lemma 5.2, (5.13)—(5.17), we have

Jd (U(n+1)) _ Jd (U(n))

o (U™ =
nJa(UM) Y
B K . @ U’in—i—l) + U]gn) dF U]E,n—i—l) . Ulgn)
- Z —70y, 9 T (nt1) 7(n) At Az
k=0 d(U ka )
n+1 n (n+1 n
k 2 At
0
K
_ Z// ( ")) ACC _
k=0
K—1 )
- [y - S e
k=0
K-1 ) )
—2’51?35”) Az~ " (n=0,1,...)
k=0
This completes the proof. O]

Furthermore, the proposed scheme (5.13)—(5.17) has the following property corresponding
0 (5.9), i.e

Theorem 5.2. The solution to the scheme (5.13)—(5.17) satisfies the following equality:
SEMyU™) =0 (n=0,1,...).

Proof. Using (5.13), (5.17), and Proposition 2.2, we obtain

K U(n+1) _U(n) K ) . K

5:Md(U(n)) _ ZH%AJ: _ 21/5; >Pk€n)A$ — [5](f )Pk(n)}o =0 (n=0,1,...).
k=0 k=0

This completes the proof. O
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§3 Stability of the proposed scheme

In this section, we show that, if the proposed scheme has a solution, then it satisfies
the global boundedness.

For the proof of the global boundedness of the numerical solution, we use the following
lemma.

Lemma 5.3. The solution to the scheme (5.13)—(5.17) satisfies the following inequality:

2

| DU™|| < {% (Jd(U<0>) +L ‘min {gﬂgﬂg),o}‘)} (n=0,1,...). (5.19)

Proof. From the dissipative property (Theorem 5.1) and the assumption on the potential
F', we obtain

2
JU®) 2 Sy = T3 [t

— % HDU(n)H2 + min {égﬂ%F(f),O L (n=0,1,...).

Namely, we have

2 |DU®| < Jy(U®) — Lmin {;gﬂgF@),O}

< JqUO) + L ‘min {égﬂgF(f),O}‘ (n=0,1,...).

Therefore, the inequality (5.19) holds. O
From Lemma 5.3 and Proposition 2.6, we can obtain the following global boundedness:

Theorem 5.3 (Global boundedness). The solution to the scheme (5.13)—(5.17) satisfies
the following inequality:

HU(n)”L? < % |Md(U(0)){+{%(Jd(U(°)) + L ‘min {%gﬂgF(f),O}’)}é (n=0,1,...).
(5.20)

Proof. From Proposition 2.6 (Discrete Poincaré-Wirtinger inequality) and Theorem 5.2,
we have

n 1 n 1 .
U], < 7 [Ma(U™)] + L2 | DU
L @O DU =01 G2
By applying Lemma 5.3 to (5.21), we can obtain (5.20). 0
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Remark 5.4. Theorem 5.3 means that our proposed scheme is numerically stable for any
time step n. We can obtain a more precise evaluation by evaluating errors of the discrete
quantities if the initial data is sufficiently smooth.

Lemma 5.4. If U,io) = ug(kAx) (k=0,...,K) for a function uy € C3([0, L]), then there
exist constants C'y, Cy; > 0 independent of Az and At such that

| Ja(UO) — J(uo)| < Cy,  [Ma(U) — M(u)| < Cy.
Proof. From the triangle inequality, we see that

| Ja(U ) — J(uo)|
L

K-1 K
= (Z Gl Az + Z GM(U(O))ASC> — G (ug, Opug)dx
k=0

0

K—1 K
]' "
< 5( G (UD)Az + Z Gap (U x) = " "Glug(kAx), Dyug(kAz)) Az
k=0 k=1 k=0
K L
+ Z’ (up(kAx), Opug(kAx))Ax —/ G(ug, Opup)dx| . (5.22)
o 0

Since G(ug, d,up) € C%([0, L]) from the assumption uy € C3([0, L]), by using the Euler—
Maclaurin summation formula and Az < L, we estimate the second term on the right-
hand side of (5.22) as follows:

K

Z o(kAx), Opug(kAx) Ax—/ G (ug, Orug)dx

k=

< —7 Aw / |82 (ug, Opug }dm
g—/ |8§G(ug,8xuo)‘d:v.

8 Jo
(5.23)

Next, we estimate the first term on the right-hand side of (5.22). By using Proposition
2.1, we have

=

K K
( G (UMAz+) GM(U(O))Ax) — ) " "Glug(kAx), Oyug(kAz)) A

k=1 k=0

DN | —

ol
i
o

-1

|G (U) = Glug(kAz), Dpun(kAx))| Az

VAN
N | —

VR
& X

=0

]~

+) |G (UY) = Glug(kAz), Dyuo(kAw))| A:p) .

o

=1

From the assumption U,EO) = ug(kAzx) (k=0,...,K), we obtain
Gik(U(O)) — G(ug(kAx), Opug(kAx)) = % (|5 uo(kAx ‘ — |Opug(kAZ)| )
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for k=0,..., K — 1. Similarly, we have
G (U©) = Glug(kAx), Dyuo(kAz)) = (|5 up(EAD)[* = |0y (kAT)| )

fork=1,...,K. For k=0,..., K — 1, applying the Taylor theorem to wug, there exists
¢; € (0,1) such that

up((k + 1)Ax) — up(kAx)

Ax
Similarly, for 1,..., K, there exists (s € (0, 1) such that
up(kAz) — up((k — 1)Ax)

Ax

A
= Qyuo(kAz) — Txaﬁuo((k; — G)Ax).
Hence, we have

GLLU) = G(ug(kAz), Oyue(kAx))

= %{Al’axuo(kﬁai)@guo((k +c)aw)+ B gk + <1>Ax))2} (k=0.... K—1),

4
Gip(U) = Glug(kAz), Opug(kAz))
(Az)?

= _%/ {wau()(kﬁw)aiu()((k — ()Ax)— (D2uo((k — Cg)Ax))2} (k=1,...,K).

Therefore, from Az < L and KAz = L, we obtain

K-1
Z |G (UO) = Glug(kAz), yug(kAz))| Az
k=0
f}/ = (AZC)Q K-l 2
< 5 Z |Otig(kAZ) D2 ((k + (1) Az)| Ax 4 ~—— 1 Z |02uo((k + ¢1)Az)|” Az
k=0 k=0
<

= 2
5 (A1A2+ —A >

where A; := max,ep 1) |0Luo(x)| (i = 1,2). Similarly, we have

K

L? L
>[Gigu(U) - Glua(hde), dua(kda))| a < 25 (auda+ 43)

k=1

Thus, we see that

K-1 K K
% (Z GL UM Az + ) G;k(U<0>)Ax> =) "Glug(kAx), Oyuo(kAx)) Az
=0

k=1 k=0

L
22

2
| Ja(U) — J(ug)| < L—/ |02G (o, Dyuo \dx+—<,4 Ay + A2> (5.25)
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Also, from the Euler-Maclaurin summation formula, we obtain

K

L
Z”uo(k'A:z:)Ax—/ updx
0

k=0

2

| Ma(U©) — M(uo)| = < %/0 |O2uq | da. (5.26)

The right-hand sides of (5.25) and (5.26) are the desired constants C; and C), respec-
tively. O

From Theorem 5.3 and Lemma 5.4, we have the following corollary:

Corollary 5.1. If U,EO) = ug(kAz) (k=0,..., K) for a function uy € C*([0, L]), then the
solution of the scheme (5.13)—(5.17) satisfies the following inequality:

HU(")HLgo < %(|M(u0)|+CM)+{% (J(uo)—l—CJ—i-L‘min{%gﬂgF(f), O}D} (n=0,1,...),
(5.27)

where

1 [* L
Cy:= L? {g/o ‘8§G(U0, axU0)| dx + % (AIAQ + ZA%) } )

L2 L

A; == max lﬁiuo(x)‘ (1=1,2), Cy: }(’3§u0| dx.
0

z€[0,L] 8

84 Existence and uniqueness of the solution to the
proposed scheme

In this section, using the energy method in [28,52,65-68], we prove that the proposed
scheme (5.13)—(5.17) has a unique solution under a specific condition on At.

Theorem 5.4. Assume that the potential function F is in C°. For any given U 0 =
{U, éo)}szﬂl € RET3 let us define By and By by

min {érel]gF(S), 0}‘) }
If At satisfies

1 L:B At
max{; max [F(6)], & max [F"(6)| + 2 2 |F"f<g)|},/2— <1, (528)
i

l€|<2Bo 2 |¢]<2B, 1€]<2Bo

Nl

2 -1 :
By = {; (Jd(U<0>) +L . Bo= 1 |Ma(U®)| + L2 By,

then there exists a unique solution {U,gn)}kKj_ll € RETS (n =1,2,...) satisfying (5.13)-
(5.17).

Remark 5.5. The assumption (5.28) is independent of the space mesh size Az. Also, it
is one of the advantages of the numerical method we apply that the condition on At can
be derived explicitly as above.

For the proof, we use the following lemmas. Since proofs of these lemmas can be found
in [61,70], we omit them.
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Lemma 5.5 ( [70, Theorem 2.8]). Let A and B be n x n complex matrices. Then, AB
and BA have the same eigenvalues, counting multiplicity.

In the following lemmas, we denote the Hermitian conjugate or adjoint of a n x n matrix
A by A*.

Lemma 5.6 (Sylvester’s law of inertia [70, Theorem 8.3]). Let A and B be nxn Hermitian
matrices. Then, there exists a nonsingular n x n matrix S such that B = S*AS if and
only if A and B have the same inertia, i.e.,

In(A) = In(B),

where the inertia In(A) of A is defined to be the ordered triple (i4(A),i_(A),io(A)), that
is,

In(A) := (i+(A),1-(A),i0(A)),

and iy (A), i_(A), and ig(A) are the numbers of positive, negative, and zero eigenvalues
of A, respectively (including multiplicities).

Lemma 5.7 (Cholesky factorization [61, Theorem 23.1]). For any nxn Hermitian positive
definite matrix A, there exists a unique n x n upper-triangular matrix R whose diagonal
components are all positive such that

A=R'R.
Using the above lemmas, we obtain the following lemma:

Lemma 5.8. Let A be an arbitrary n x n Hermitian positive semi-definite matrix and
let B be an arbitrary n x n Hermitian positive definite matrix. Then, the eigenvalues of
AB are all real and nonnegative.

Proof. Applying Lemma 5.7 to the Hermitian positive definite matrix B, there exists a
unique n X n upper-triangular matrix R such that

B=R'R, 1;>0 (izl,...,n),
where 7;; (i = 1,...,n) are diagonal components of R. Hence, we have
AB = A(R*"R) = (AR")R. (5.29)

It holds from r; > 0 (i = 1,...,n) that det R* = ryy - -r,, > 0. That is, R* is nonsingu-
lar. Therefore, using Lemma 5.6, we obtain

In(A) = In((R*)*AR*) = In(RAR"). (5.30)

Since (AR*)R and R(AR*) have the same eigenvalues from Lemma 5.5, by using (5.29)
and (5.30), we obtain

In(A) = In(RAR") = In((AR")R) = In(AB).

Since A is positive semi-definite, the eigenvalues of A are all real and nonnegative. Namely,
the eigenvalues of AB are all real and nonnegative, too. O]
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Proof of Theorem 5.4. We show the existence of a (K +3)-vector U+ = {1 K+
€ RE®S for a given U™ = {UM}EFL € REFS that satisfies (5.13)~(5.17). For the

purpose, we define the nonlinear mapping W: {U } ) = {U }EHL by

U, — o™

o =B k=0, K), (5.31)
o A dF
P = —ys? ( k . k ) + oo (k=0,...,K), (5.32)
Up — Uén) Y fkarU;En)
— = oy — , (5.33)
k=0
0K—Uf((n)_ (1) Uk‘i‘Uén)
— = o, — , (5.34)
k=K
SVPM™M =0 (k=0,K). (5.35)

Firstly, we show that the mapping ¥ is well-defined. For any fixed U = {Up};—, € R,
from (5.33) and (5.34), U_; and Uk, can be explicitly written as

~ n n 4Ax [~ "

U_1=—U()+U1+U1)—Tf<U0—U(§ ). (5.36)
~ n ~ " 4Ax 7~ n
UK+1:_UI((J)A+UK*1+UI(<21_E(UK—U[(()>' (537)

Thus, it is sufficient to show that Uy, (k =0, ..., K) can be explicitly written by given U
and U™ Using (5.35)(5.37), we eliminate terms at k = —1, K + 1 in (5.31) and (5.32).
Thus, we have

Uo — Ug" 2 (pm) _ pm
- pM™_p .
~ AeT (P =R, (5.38)
7 () B
% —0PPM (k=1,... K1), (5.39)
Uc—UP 2 (2w  2m
At (Ax)? ( i1~ e ) (5:40)
- (n) 7 (n)
~ (n) 27 U1 + Ul U[) + U() 27 - (7’1) dF
A _ _ _ (541
0 (Axz)? {( 2 2 +AmAt (UO Uo >+d(an Uén))7 o4
. > (n) F
P]gn) :_751<f> Ui + Uy n d - (k=1,...,K —1), (5.42)
2 d(Ug, U."”)
~ 2’)/ UK,1+U(nZ UK+U(n) 2’)/ ~ dF
pm _ _ K-1) _ [ZETYk —UM)
K (Az)? {( 2 2 T AvAL <UK Uk ) i d(UK7U1(?))
(5.43)

Here, we give the following matrix expression of W:

AU = f(U, U™).

84



By using (5.41)~(5.43), we eliminate P™ in (5.38)—(5.40). Then, the (K + 1) x (K + 1)

matrix A is defined by

9
6+ =
Y
4 =
[0

1

A=1+p

-8 2
7T -4
-4 6
1 -4

1
—4
6

1

-4 1

1 -4 6 -4 1

: (5.44)

1 -4 6 —4 1
1
1 -4 7 —4—-—
Qo
2
2 -8 6+ —
o

where [ is the (K + 1)-dimensional identity matrix. Besides, o and § are defined by
a = At/(4Az) and B := yAt/(2(Ax)*), respectively. If the matrix A is nonsingular, then
the mapping V is well-defined. In fact, we show that A is nonsingular. For the purpose,
we show that the determinant of A is positive. Firstly, let us define the (K +1) x (K +1)

matrices Dy and Dg by

-2 2
1 -2 1
D2 -
1 =2
2
Then, we obtain
2
6+ —
“
4 — =
o
1

Dy D,

1

—4

—4
6

1

1
—2-= 2
«
1 -2 1
1 -2
2
1
—4 1
4 6 -4 1
1 -4 6 -4 1
|4 7 -4l
(@]
2
2 -8 6+-—
(6]

Namely, A = I + 8D,D,. We remark that D, and D, are not symmetric. Accordingly,
following the procedure of the proof for Lemma 0.1.1 in [25], we show that Dy and D,
are similar to some symmetric tridiagonal matrices, respectively. Let us define b, := 2,
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b =1(1=2,....K),¢g:=1(i=1,...,K — 1), and ¢ := 2. Then, Dy and Dy are
expressed as follows:

2= b
-2 bl a 1
C1 —2 bg C1 —2 bQ

S
i

S
I

ck-1 —2 bk Cxk—1 —2 )%

Moreover, let vy, := 1 and v;; := \/(ble coobisq)/(crea - cimq) (i =2,..., K 4+ 1). Then,
we have

2.1-.-1 2.1..-1-1
=2 (=2, K Y i
Vij 1_1.._1 \/_ (2 ’ ) )7 UK+1K+1 11.1.2

= 1.
Furthermore, let us define the (K 4+ 1) x (K + 1) matrix V' by
V11 1
V22 \/§
V.= dlag Vi = T = .
1<i<K+1 B )
UK 41K+1 1
Then, we have
1 -2 2 1
V2 1 -2 1 7
VD,V = '
1
V2 1 -2 1 2
1 2 =2 1
_ 2 1
V2 —2v2 V2 7
V2 —2V2 V2 NG
2 -2 1
-9 \/§
V2 -2 1
1 -2 1
1 -2 1
1 -2 V2
V2 =2

Similarly, we obtain
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VD,V =

1 -2 V2
VR
o
Here, let us define the (K + 1) x (K + 1) matrices X and Y by X := VD,V ™! and
Y := VD,V~'. Then, X and Y are (K + 1) x (K + 1) symmetric matrices. Furthermore,
it holds that XY = VDy,V-'VD,V1 = VDyD, VL. That is, DyD5 is similar to XY.
Hence, Dy D5 and XY have the same eigenvalues. Moreover, —X is positive semi-definite,
and —Y is positive definite. Actually, for any non-zero vector © = (21, 29,...,Tx11) €
RE+1 it holds that

1
<2+_) v — Vo,
a

—\/51‘1 + 2]32 — X3
—To + 21‘3 — T4

—Tg_ 9+ 20 1 — Tk
—Tr-1+ 20K — \/§$K+1

1
—V 2z + (2 + a) TK41

Thus, we have
' (-Y)x

1
= (2 + —) r] — V2x135 — V21 70 + 215 — Ty — ToTy + 215 — - - -
o

1
.. '+2,[L‘%(_1—I’K_ll’K—J]K_lﬁK—I—Ql’%{—\/§$KI'K+1—\/§$KI'K+1 "_(2_’_5) l’%{_;'_l

2 2
1 V2 V2 1
= a$%+2<$1—7$2) +(zg—x3)*+- - -+($K—1—$K)2+2<$K+1—7$K> +ax§<+1 > 0.

Suppose that ' (=Y )z = 0. Then, we get 1 = --- = xx 41 = 0. This is contradictory to
x # 0. Namely, —Y is positive definite. Similarly, by direct calculation, we can see that
' (—=X)x > 0 for any non-zero vector © = (x1,Zs,...,Tx41) € REFTL That is, —X
is positive semi-definite. Therefore, from Lemma 5.8, eigenvalues of XY = (—X)(-Y)
are all real and nonnegative. Hence, eigenvalues of A are all positive from two facts that
eigenvalues of Dy D5 are all real and nonnegative and that [ is positive. From the above,
det A > 0, i.e., A is nonsingular.

Next, we prove the existence and uniqueness of the solution to the proposed scheme by
the fixed-point theorem for a contraction mapping. From (5.36) and (5.37), it is sufficient
to show the existence of a (K + 1)-dimensional vector U = {U;}X , € REH! satisfying
U,=U (k=0,...,K). For the purpose, we define the mapping © : RE+1 — RE+1 by

1

O(V):=V+ ZMd(U<0>)1 for all V € REH, (5.45)
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where 1 := (1,1,...,1)T € RE*!, Then, its inverse mapping O~ is written as

O (V)=V - %Md(U(O))l for all V € RFFL (5.46)

Let us define the mapping ® : RE+! — RE+! by
o(V):=0! ({qfk © (V))}kK:()) for all V € RE*1, (5.47)
where Wy, (O (V) is the kth element of the vector (Vo ©)(V) = ¥(O(V)). Moreover, let
Xo = {f e R*"™|IDf|| < 2By, Ma(f) =0}.

We show that ® is a contraction mapping on X, under the assumption (5.28) for At. If
® is a contraction mapping, ® has a unique fixed-point V* in the closed ball X from the

Banach fixed point theorem. That is, V* satisfies ®(V*) = V*. From (5.46) and (5.47),
we have

B(V*) =07 ({1 (O (VII,) = (L@ (VNHS, ~ MU (549
Furthermore, from (5.45), we obtain
V=0 (V) - %Md(U(O))l. (5.49)

Hence, it holds from (5.48) and (5.49) that {¥}, (© (V*))}i, = © (V*). Namely, © (V*)
is the solution U™V to the scheme (5.13)-(5.17). Firstly, we show ®(X,) C X,. For
the purpose, we check [|[D(®(V))|| < 2By and My(®(V')) = 0 for any fixed V € Xj. Let
U :=O(V). Then, from (5.45), we have

1
Up= Vi + ZMd(U<°>) (k=0,...,K). (5.50)
Hence, it holds that
1
6 U, = 07 (vk + Zde(U(O))) =6V (k=0,...,K—1), (5.51)

Let us define U := U(U) and V := &(V) = O~ ({U},). Then, from (5.46), we obtain
~ ~ 1
Vi = Uy — ZMd(U“’)) (k=0,...,K). (5.52)

Hence, we have

5V =61 (Uk — %Md(UW))) =50, (k=0,...,K—1). (5.53)

In addition, it follows from (5.31), (5.35), Proposition 2.2, and Theorem 5.2 that

J J ~ oK
My(U) = "UpAx =Y "UM Az + At "6 PV Az = My(U™) + At [5;{» P}gm}o
k=0 k=0 k=0

= Mq(U©).
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Thus, it holds from (5.52) and this inequality that

K K
N - N 1 -
My(V)=> "Vihw =) "" (Uk — ZMd(U(O))> Az = My(U) — My(U©)
k=0 k=0

= Md(U(O)) _ Md(U(D))

Therefore, all that is left is to show || DV|| < 2B,. From Corollary 2.1 and (5.31)(5.34),
we have

K-1 -~ (n) > (n)
1 ~ 1|2 2 U, +U Ug—U
L _ (n) _ o A + [ ZFE T Yk
L (HDUH v ||) 22{% ( 2 )}{5 ( o )}A
i U+ UM\ U, — U™ Arta | Ls0 U, +U™M\ )\ U, — U™
2 At 2 At
K - (n)\? F m\?
l-y 1 dF N —~ —
) I e e (U SR P Un — Ui} _p(%o— o
il W v d(Uy, U™) At At

K K
< 2N rp (677 5) Az - D i — (6775 Az
T k=0 v k=0 d<Uk7 Ulgn))

K

Now, it holds from Corollary 2.1 and (5.35) that

N

K
2 9 N2 2 N K 2 NNTE
"B (67 BMV) Aw = —= (1 B A + = (6" BBV = ~=||DP™
k=~ k k k k 0
(e Y= g} g

Furthermore, from Corollary 2.1, (5.35), and the Young inequality: ab < (g/2)a® +
(1/(2¢))b* for all a,b € R, and € > 0, we obtain

K K-1
2 dF ~ 2 . dF
SIS (PP ) Ae = 23 (5 R) S of [ | p A
Y= d(U, UM Y d(Uz, UM

k=
<5< ) P(”)) aF
AUk U) |

2
~ 2
=53 <5+Pk(")> 90 (g ) ¢ | A
v k=0 4 d<Uk7 Ukn )

H ( UU(”)) |

2

[e=]

K

From the above, we have

ai (o] oo ”) H (7w o)




Consequently, using the triangle inequality: va? + b < |a| + |b] for all a,b € R, we get

|po| < (DUt H+\/;H UU )H (5.54)

Thus, from (5.53) and (5.54), it is sufficient to show that the right-hand side of (5.54) is
not greater than 2By. For k =0,..., K — 1, using Lemma 2.2, we have

dF 1~ 1._
0 [ —5— ) = S (U, U U UG U + = (U, UM Uy, U)o U™
' <d(Uk,U,§”’)) p" \REL TR Bt B SO TR T 98 Wk Pk P PRIk B

(5.55)
Hence, using (5.55) and the Minkowski inequality, we obtain

> (e

5.0m)|

>—‘/-\

D=

1 n
§F’(Uk+1,Uk;U,§+)1,U NGFU, + = F"(U,EH,Uk Uprr, Up) 0 U™

9 3
Ax}
9 3
Ax}

max | PO, U U, Up)| [ DU

1
2 0<k<K-1

2
Ax}

Eo
o

M
{‘1

=

IN

5 (Ui, U U, UM U,

B
Il
o

2F//(UI<(;117Uk 7Uk+17Uk>5 U

+
—N—
T ?

0

)F Uk+17UkaUl<;+17 IEN))

1
20
+

Next, we consider | " (Uy 1, Uy; U,Ei)l, U{™)| and ]F”(U,gi)l, U™ Upsr, Up)|. Tt follows from
Proposition 2.6 that

1 1
WUl = 7 IMa(U)| + L= |1 DU
We get My(V) =0 from V € X,. Hence, by (5.50), we have

K
My(U) =) "UpAz = My(V)) + Mg(U) = My(U®).
k=0

Since it holds from V' € X and (5.51) that | DU|| = || DV|| < 2By, we obtain
1 1 1 1 ~
U < 7 IMa(U)] +2L2 By = — |Ma(U™)| +2L2 B, < 2B,
Also, using Theorem 5.3, we get | U™ || e < By. Therefore, from Lemma 2.1, we obtain

F' (Ui, Uss UL US| < max [F/©), | F/(U, U Ui, U)| € max [F(¢))

l€|<2Bo l¢]<2Bo
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for k=0,..., K — 1. Hence, it holds that

HD (%)

Consequently, using (5.54), (5.56), and Lemma 5.3, the following estimate holds:

1 n
<L IPUQI (DU IDUMY) . (556)
|€]<2Bo

~ At 1
[P < ipvt+ 4 [57-5 max (P71 (10U -+ D))
gl=<

3 max |F”
m;zgol €3] At

<B
< Do + 5 2

- Bo.

Now, from (5.53) and the assumption (5.28), we have |IDV|| = |DU|| < 2B,. From
the above, it holds that ®(V) = V € X, i.e., ®(Xy) C Xy. Next, we prove that & is
contractive. For any V1, V, € X, let U; := O(V]) and U, := ©(V;). From (5.45), it

holds that ]
Uk = Vg + ZMd(U<0>) (k=0,...,K, i=1,2). (5.57)

It follows from (5.57) that

1
0 Uiy = 0 (v;,k + —Md(U(O))> =6 Vi (k=0,...,K—1,i=1,2). (5.58)

L
Furthermore, from (5.57) and V; € X (i = 1,2), we have
K
My(U;) = "Uipa = My(V;) + My(U®)) = My(U©) (i = 1,2). (5.59)
k=0
Moreover, it follows from Uy j, — Uz = Vip — Vo (k= 0,..., K) tha || (U, - U,)|| =
| D(Vh — V2)|| Now, let us define U; := U(U;) and V; := &(V;) = ({Uzk}k o) (1=

1,2). Then, from (5.46), we have

|

Vig =Uip = T MaU”) (k=0,... K, i=12).
Hence, it holds that f/lk — f/gk = ﬁlk — UM (k=0,...,K). Namely, HD(f/} %)H =
|D(U; — Us)||. Now, from the definition of ¥, the Vector (UL = {0 (U) } Y
satisfies (5.31)—(5.35) (i = 1,2). Subtracting these relations, we obtain

ﬁl,k — UQ,k
At

N 3 9 _ . dF dF
(5]<€2>(U1,k—U2,k> = - —<P1(TI?_P2(Z)>+ (n)y (n) (k=0,.... K),
v ’ ’ AU, UY")  d(Us, U™)

=5 (P ™) P§f,§> (k=0,...,K), (5.60)

(5.61)
0170 — 02,0 ) Ul,k: — Uz,k
= 5 , (5.62)
~ ~ ~ ~ k=0
Uk —Urx [ Uk — Usp
=g . , (5.63)
k=K
50 (Pfj;j - P2k> —0 (k=0,K). (5.64)
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From Corollary 2.1, (5.60)—(5.64), and the Young inequality, we have

K 2
Z”{ (U1p = Uai) } Az

k=0

= — i"{@f)(a,k - UQ,k)} (Ul,k - Um) Az + [{5;<€1><ﬁ1,k - Um)} (Um — Um)}:

HD(le —0y)

K K
et 2 ()
P30 (00

2AtK71 H(n 2At 5(n ~(n =(n ~(n K
2 () 2 o -} o - )

T
2At dF dF S =
= {53 ( N @) )}{5; (Pl(’k) - Pé,k))} Ar
v k=0 d(UlJmULk) d(U2,kaU2,k)
K
2At S m(n dF dF
- o (PR - 2a2)} o e
v d<U1,k7 Ul,k ) d(UQ,]m UQ,]{; ) 0

2Nt R
<o ot

At
-5

dF dF
b oy @
dULUD)  dUy, U

~ - At
D(U, — H < |2
H (Ul UQ) - 27y

Namely,

dF dF
7 (d(U1, Ul(n)) a d(Us, U2(n))> H : (5.65)

Using Lemma 2.2, we get

dF dF 1_ . .
N are = 3 F Ui Vs U U (U = Ung) - (k =0, K).
AUk, Up”)  d(Usz, U,™)

Hence, it follows from Lemma 2.3 that

HD(d(Ufl,Zn) d(UdU )H ‘HD{F"UMU?’U U (U - Un)}|

< 5 HF!/(UI, Us; U(n), U(n))HLgo ||D(U1 . U2)||
+ % |01 — Us| |DF" (U, Us; UM, UM)||.
(5.66)
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We consider ||[F"(Uy,Uy; U™, UM)||e and |DF"(Uy,Uy; U™, UM)|. From V; €
Xo (i = 1,2) and (5.58), we have ||DU;|| = ||DV;]| < 2By (i = 1,2). Therefore, us-
ing Proposition 2.6 and (5.59), we obtain

1 ) 1 ~ .
Uil < 7 IMa(U)| + L2 DU < 7 [Ma(U)| +2L2By < 2By (i =1,2).
Hence, using Theorem 5.3 and Lemma 2.1, we get

|F" (U, Uy U™, U™) < max |F"(¢)]. (5.67)

[ X
L& 7 je<2m0

Furthermore, from Lemma 5.3 and Lemma 2.4, the following estimate holds:

|DF" (U, Up; U™, U™))| <% max [F"(€)| (| DUL|| + | DU|| + | DU™||)

l€]<2Bo

B
< % max |F"(£)|. (5.68)

Now, it follows from Uy, — Usy = Vi — Var (k=0,...,K) and V; € Xy (i = 1,2) that
My(Uy — Us) = Mg(Vi — Va) = Ma(V1) — Ma(V2) = 0.
Hence, from Proposition 2.6, we have
[0~ Uslly < 7 MU~ U] + L2 D (U~ U)| = L2 D (W -~ D). (5.69)
Thus, using (5.66)—(5.69), we get the following estimate:
max |F"(¢)] 5L2B, max |F"(¢)]

dF |§\<2BO l€|<2B,
D
H (d(UbU(")) U2> )H " 6

< DU~ U] (5.70)
Consequently, from (5.65) and (5.70), we obtain

|pvi - W) = | o - 0
max IF"(¢)|  5L2B, nax. FYEN A
<| + I \/;HD(Ul—UﬁH
A LA
- |y = %;mm—%m

Since it holds from the assumption (5.28) on At that
max |F"(¢)] 5L2B, max |F"(¢)]

B B At
1€]<2Bo 4 |€]<2Bo <1,
2 6 27
the mapping & is contraction into Xy. This completes the proof. Il

The following corollary holds from the same argument as Corollary 3.3 in [67].
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Corollary 5.2. Assume that F(s) = (q/4)s* — (r/2)s* for all s € R, where ¢ and r are
positive constants. If At satisfies

max{gr 17qB2 r 5lq ~, r} At

=, = -, B2 - <1,
27 2 70 40 2y

2

then there exists a unique solution {U,E")}kKjfl € RET3 (n =1,2,...) satisfying (5.13)-
(5.17).

§5 Error estimate

In this section, we show the error estimate. We also use the energy method in [28,52,
65-68]. Fix a natural number N € N. We compute U™ up to n = N by our proposed
scheme (5.13)—(5.17) and estimate the error between it and the solution to the problem
(5.1)—(5.5) up to T' = NAt. Let u and p be the solutions to the problem (5.1)—(5.5)
with an initial condition. Besides, assume that u € C*([0, L] x [0,T7]). Also, we assume
that the potential F' is sufficiently smooth. Moreover, we extend the solutions u and p in
[0, L] x [0, T] to @ and p in [—Ax, L + Ax] x [0, 7], respectively, as follows:

u(—x,t) + 2x0,u(0,t) + g@iu(o,t) (—Azx <z <0),
w(z,t) = u(z,t) 0<z<L),
w(2L — z,t) 4+ 2(x — L)0,u(L,t) + @@iﬁu([ﬁ t) (L<x< L+ Azn),
(5.71)
p(—x,t)+axpéo’t) {1+ (Ao)? }x3+8xp6(8,t) <1+A_x) 2, (=Ar <1 <0),
ﬁ(x t) = p($’t)7 (0 = i? = L) )3 85 L I
p(2L—x,t)+%{l— (fA_x)z }(x—L)3+ pé() ) (1_xA_a: )(x—L)5,
(L <z <L+ Azx),

for all t € [0,T], where 0,f(a) means 0,f(z)|,_,. By direct calculation, we can check
that @ € C*([—Ax, L+ Az] x [0,T]). We can also check that 92p exists and is continuous
n [—Az, L + Az] x [0, 7] and that the following property holds:

~(—Aaz‘ t) =p(Ax,t), p(L+ Ax,t)=p(L— Ax,t), foralltel0,T]. (5.72)

Let U"” = @(kAz,0) (k= —1,0,..., K, K+1). In addition, we define errors eq(f,l and 6;7,2
by

61311 = U,E") —a(kAz,nAt) (k=-1,0,..., K, K+1, n=0,1,...,N),
1
el ::P,gn)—ﬁ<mx, <n+§> At) (k=-1,0,....K,K+1, n=0,1,...,N —1).

For simplicity, we use the expression 1156" = u(kAx,nAt) from now on. Also, the ex-

pression d; f; means & fi|,_,, where the symbol “x” denotes +, (1), or (2). Then, the
following lemmas hold:
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Lemma 5.9. Assume that u € C*([0, L] x [0, T]). Then, we obtain the following equations
on the errors:
S+ ()

e nal
Cur T Cuk _ 50 € k=0, K) (5.73)
(n+1) (n)
(n) @[ Cuk T Cuk ar dF (n+1)
e =—0 + — — = ~ — | +¢& (k=0,...,K),
S ( 2 ) <d<Ué LUl )
(5.74)
(n+1) (n) (n+1) (n)
Cu0  ~ Cu 1) [ €uo T Cup ntg
A o (T) +§:§,o ) (5.75)
n+1 n n+1 n
=y () el | e -
At F 2 K '
glel) =0 (k=0,K) (5.77)
forn=0,1,..., N — 1, where &, &, and &3 are defined as follows:
(n+1) (n)
n—f—% n+% u —Uu - n+% n+%
gl(,k ) = 8tu£ )_%+522)p£ )_agplg ) (k=0,...,K),
(o) fop, ) g dF )
52,1.; Yi=r Oyuy, —0y 5 + CESYNC) —F (Uk ) (k=0,...,K),
duy, " uy )
1 nal (nt+1) _ () ~(n+1) | ~(n) ol
:gngQ) = &tug t) Mo Uy A7 Yo +6,il> (_uo 2+ Yo ) — &cug +2),
1 1 n+1 n 1 ~(n+1 ~(n
(n+§) — 9 (n+§) B ug( ) ug() 9 (n+§) B (5<1> uﬁ( )—i—ug()
S,K T tU’K At + (I?uK k 2 - .
Proof. For any fixed n =0,1,..., N — 1, from the definition of e,, (5.1), and (5.13), we
have
eff,jl) B eq(f/i B Uénﬂ) _ U]En) uinﬂ) _ u}(cn)
At B At At
n+1 n 1 " n+1 n
At Tk T At
s oy )
_ 5]<CQ>PI§TL) . aiplgn+2) + atulg +2) Uy X Uy,
1 1 1 ! (n+1) (n)
n n+y n+3 n+s n+s Uu — U
_ 5,5;2>P,§ ) 6}22)1)]& +2) +§li2>p£ +2) _ 83])12 +2) _|_atu£ +2) U N k
ntl
=o570el) + 51(7[9 (k=1,...,K —1). (5.78)

Similarly, from (5.2), (5.14), and the definitions of e, and e,, we obtain

(nt1) | 77(m) s s
(n) @ (U + U dr 2 (n+3) i (n+3)
e, . = —0 + + y0;u — F'(u )
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(n+1) (n+1) (n) (n)
e +u +e,rTu n+3
_ _759 ( wk k ) w,k k ) +78§u£ +3)
dF dF dF (n+1)
+ - + — F'(u, *7)
AU U) A W) dwd, ) ’

(n+1) (n) (n+1) (n)
e +e ntl
— o Gk Ok} S (nE) e (M T U
2 2
dF dF dF (n—&-l)
_I_ . + _ F/(U 2 )
(d@é””%té“) (ﬂuﬁ*”né@>) (d@éﬁ“%uﬁb ’

n+1) )
@) [ Cuk teuk dF dF ( 3
- -5 - =1,...,K-1).

< (5.79)

We show that (5.78) and (5.79) hold at & = 0, K. We remark that the equations (5.1)—
(5.2) hold in the interior of the domain (0, L) only. Hence, we cannot apply the equations
(5.1)—(5.2) directly in the calculation of (5.78) and (5.79) on the boundary. Therefore, we
consider points slightly inside from the boundary of the domain, and we take the limit of
them to show that (5.78) and (5.79) hold at k = 0, K. For any ¢ € (0,1), let

67(38’6 = Uén) — u(eAx,nAt), egfl)(,_s = U[((n) —u((K —¢e)Az,nAt) (n=0,1,...,N),
1
esoe =R —p(sAx, (n + 5) At) (n=0,1,...,N 1),
1
e —c = Py —p((K —¢)Ar, (n + 5) At) (n=01,....N —1).
Furthermore, for n = 0,1, ..

LN —1, let

n+1 n
) g lrd) _wD o (k) e (n4)

1e ‘= OjlUe N + 6, pe v ;
(n+1) (n)

n+i n+i Up_ - —U n

Do) = ol - e 2 e gD o),

(n+1) ( )
(+3) _ ) g2, (n43) _ si2) ta dr 10 (1F2)
52,5 =7 awuff - 61{: 9 + d(u£n+1) ugn)) —F (u5 )?

_(nt1) | ()
ntg oy [ Ug_o +Ur’, dF n+li
52(,K—e) = {a:% E( € ) - 5l<€ > ( = 2 = > } + d( (n+1) _(n) o F/(u.g(—a ))

uK € ’uK a)

In a similar way as (5.78), we have

(nt1) () (nt1) ()
u0e — Cup, nt3 CuK,— ~ CuK,— 2) (n n+i
= Cube _ el gt Gt TOuRos 5o 408 (s.80)
From the smoothness assumption of u, letting ¢ tend to 0 in (5.80), we obtain
(nt1) () (1) _(m)
€u0 T Cuo n+ eu,K - eu,K n+
At _6 p0+£1( 2)7 At :5<> pK+£1( 2) (n:07177N_1)
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In a similar way as (5.79), we get

(n+1) (n)

(n) (2) €u,0,e + €u,0,e ar dF (n+%)
epoe = —100 | = ) + T oy T o oy | e e (581
e ( : ) (dwé DU A W) )

(n+1) (n)

e(n) _ _75(2> (eu,K,—a + eu,K,—€> + ( dF N dF > + €(7’L+%)

K—e T k n+1 n n+1 n 2,K—¢ *
. 2 dUT Uy ditD Wl )

(5.82)

From the smoothness assumptions of u and F letting € tend to zero in (5.81) and (5.82),
we obtain

(n+1) (n) )

oM — _75@) €uo T €uo N dF B dF N £(n+§)

0 n n n n 2,0 ’
P 4§ 2 AR O SRRl

n+1 n
e(”) _ _75@) 62,[( ) +e;,f)< 1 dF B dF +€(n+%>
p, K k 9 d(UI(?H), Uz(?)) d<u§?+1)7 u%)) 2,K

forn=0,1,..., N — 1. Next, from the definition of e,, (5.3), and (5.15), we have

e~ U0 () o (rd) gt — !
At - At o to At
it 4 g nti nti a0
1
— 5" <—° TR WP A o D M o
n+1 n ~(n+1 ~(n ~(n+1 ~(n
_ 5<1> Ué )+U(§ ) _(,).(1) u(() + )—I—U(() ) +5<1> u(() + )+u(() ) 9 u(nJr%)
- Yk 9 k 2 k 9 0
n+1 n
o)t
o At
(n+1) (n)
€u -+ €. n+i
:5]<cl> <%> + §70+2) (n:O,l,...,N—l).

Similarly, from the definition of e,, (5.4), and (5.16), we get

(n+1) (n) (n+1) (n)
e — e e +e n+i
u, K wK _ 50 (%) + ?S;z) (n=0,1,...,N—1).

Lastly, it holds from the definition of e,, (5.17), and (5.72) that

0=06"P" =5"el) + spmE) _ el (k=0,K, n=0,1,...,N - 1).

From the above, equations (5.73)-(5.77) on the errors e, and e, hold. O

Lemma 5.10. Assume that v € C4([0, L] x [0,T]). Furthermore, we suppose that the
potential function F is in C3. Denote the bounds by

max {||DU]]. [Du®]} < o max (U] [u]p } < G (589

0<n<N 0<n<N
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Also, let

C, L2 |Ir|1ax |F"(&)] + ‘glax |F" ()]
€l<

2
Then, for any fixed € > 0, the following inequality holds:

{i-ai( S o) et < frvar (Soe) boet |+ sent)

forn=20,1,..., N — 1, where

03 =

2
o1 2C3 |G n
Rn+3) — = (1 + &> AtCy max |F"(€)] 51(]+2) + HD@( *)
2y 130 €<C2 =0 Ly
e | )| (s )| () RRGHIE
g D& |+ ’51,0 2+ ’ ‘ 3,0 + &5 (5.84)

Proof. For any fixed n =0,1,..., N — 1, using Corollary 2.1, we have

1 ) ) K—1 e(n];‘,-l) . e(nlz n]:rl
s (101 o) = i (S57) o ( >}“
k=0

K+ ) ) 4 o) (nt1) _(n) ) 4 o)
Z/ uk euk () +6 Az + eu,k _euké()
Ok 2 At F
(5.85)

k=0
Firstly, we consider the first term on the right-hand side of (5.85). From (5.73), (5.74),
(5.77), Corollary 2.1, and the Holder inequality, we obtain

K (n+1) (n) (n+1) (n)
e e +e
_§ :// u,k uk5()< u,k uk) Ag

At k 2

(’Vl+1) n) K (TL+1) (n)
@ Y @ [ Cuk T Cuk n+ +e
" <6k; ep7k> 514; ( ) Axr — E " 2 ( 5 Azx

B
Il

=10

2| =

X
—= N

Il

=)
il
)

(n+1) (n)
il +e,
(, +2)5<2>(—k) Az

dF dF ( +2)} .
n n n n + 2,k A 51l€ k
(d U O dwt) g >>> Z 2
K—-1
_ 1 + )2 Ly o) m]"
= kzzg <5k ep’k) Az + 5 [<5k ep’k> epk]o
+ l Kzl (5-1-6(”)) 5+ dF dF + §<"+%) Ax
y o NP\ oy att )

S

K
(1) _(n) dF B dF (n+3)
<5k 6p,k> <d<U(n+1) U™ d(u(n+1) o) + &

k. VYL » Yk 0

- (n+1) (n) (n+1) )\ 1%
il +e, nti) €y
+ (5; fk, 2)) {5; <—2 )}Am— fk 25 <—2 )]
k=0 0
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1 n) 112 1 n dF dF n+%
s—;uﬂéww+—nD¢wwD( )

U(n+1) U n)) o d(u(n+1) (n)) +&

m+D) <n+1> (n)
+ % + 6
0

Next, we consider the second term on the right-hand side of (5.85). It follows from (5.75)

and (5.76) that
K L) () \ )2 (n+1> (n)
_ 5( ) u K +e u K . 5(1) +6
, k 2 k 2

n+1 n n+1 n
eur el 5<1><e£,k )+ei,,1>
n+1 n+1
(3) 500 Uk + e (3) 50 € i e
+€3,K T 83,0 k T .

e

At k 2

From the above, we obtain

n n 2
QAtmD<+”H [De]?)

oz L dF dF nil
= Ty HDGZ() )H + ~ HDeé gl HD ( (U, Um) d(u(n+1) u(™) +E§ 2)) H

n n n+1 n n+1 n 2
D et 4 el _ )5 ELK )+e£}< _ )5 625 )‘Hfg,c))
2 k 2 k 2
(n+1) | (n) (n+1) | (n)
n+ u, K +6u K n+i n+i €40 +6u,0
+ (— ( 2>+5ng )> 51<c ><—2 >+(1(,0 2)—€§,0 2)) 51<gl><—2 > '

From the above inequality, the Young inequality, and the inequality: (a+b)? < 2(a? + b%)

for all a,b € R, we have
()

(n+1) (n) 2) l (n) 2
ZMOM> § HD%\\+WHD%\\+% (
n+1) )

n+1 }
" dF
12601 |2 (grgriygrony ~ aaormy +€5” W
2

e

”D€1n+2

<(”+1+eu)> ( (24) n+2
# (el - i) o <—;6%)

< L0+ [P (g g - sy HE )
v Y

AU UM d(ut+D) ul)
2 D\ )2
| fin(dieda

(n+1) | _(n)
e, ey 1
D|—M
()|’ (€ e
+40; (-

3,0
99

(n+3)

+HD€1

1
2

(ot )

1K

(n+3)

3,K

NP
51(’,10* 3)




Namely,

n+1 n)||2
L (e - ||Dea>||) |
1 dF dF (n+3)
e+ 2 2 2
l —|—6u 1 n n+z n+z
+ e ( ) 5{ ) ] e e }
(5.86)
We consider the difference quotient of F. Using Lemma 2.2, we have
dF dF 1-
_ _ _F//<U(n+1)’ u(n-l—l); U(n)’ u(n)>€(un+1)
AU M) dY Wy 20 N TR R e
1-
+ §F//<U( U(n+1) (n+1)>6$11 (k; =0,... 7K>‘
Hence, it follows from Lemma 2.3 that

D dF dF
d(UC+) Ugm) o d (u+D) u)

%HD(F"( U+ 'u,(nJrl); U(n)’u(n))egwl))"_i_l}}D(F//(U(n)’u(n); U(n+1)’u(n+1))ein))H
1 (n (n . .
§HDF"( ol U, ™) | el |

5 HF’"(U n+1)’ u(n+1); U("), u” )”L?HDGSLHH)H
+ % HDF”(U("), u(”); U(n+1)7 u(n+1)) H Hein)”Lgo
L P e, g,y | pe).

d

Let us define Cp; (i =2,3,4) by

Cp; = max |FO( i=2,34).
F, In\<02‘ 77)‘ ( )

From (5.83) and Lemma 2.1, we have

|F" (U0, D, ) () < Cpa ||F" (U, a0, gD 4,00 Croa,

[Pe I <

Moreover, from (5.83) and Lemma 2.4, we obtain

HDF” (U(n-i-l)’ u(n-l-l); U(n)’ u(n)) || < % (201 +2C,+Ci + Cl) ClcF,S,

_ C
HDF// (U(n)’ u(n); U(nJrl)’ u(nJrl)) || < % <2C1 +2C,+Cy + Cl) = ClcF,?)-
From the above, it holds that

ar aF CiCrs ()] pns) (n)
HD(d<U<n+l>,U<n>>‘d<u<nﬂ>,u<n>>)HS 3 (el + 1ell)

+ €82 (el | + [ Del? ). (587
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Next, we consider He (ntl) ”L and Heu )||Loo Now, using (5.73), (5.77), and Proposition
2.2, we have

K K

K (R

(3] -3 ritars Y Dne [0 3l
k=0 k=0 k=0

K td)
=3 YAz (n=0,1,...,N-1).

k=0
That is,
K K "
e A =) el kAa:JrAtZ"flk Azr (n=0,1,...,N —1).
k=0 k=0
Using this equality iteratively, we obtain
K K 141)
Sorelae =3 el A + Atz"gln Az
k=0 k=0 k 0
3 ) 1+3)
= el Aa:+AtZ”£1k A:U+At2” A
k=0 k=0
K n—1 K
S ICUINES 3) LAY
k=0 §=0 k=0
n—1 K L1
= Z”g” NN (n=1,...,N),
7=0 k=0
where the last equality holds from qu) = 0. Hence, from Proposition 2.6 and the above
equality, we have
1 K ) 1 n—1 K (j—&-l) )
el < 7 D empAa|+ L2 | Del | =7 |3 Y e ¥ Azat|+L: || Dell
k=0 j=0 k=0
1 n—1 K (‘+l) )
<2 SUSElY Avarr Lt [Del?|
7=0 k=0
R 0D S~ A Ar 1 L} [ Dl
ST 2 |G| 2 ArAr L [ Dl
5=0 k=0
n—1 (j+l) )
=At g2 —|—L5}|De£‘”)“ (n=1,...,N).
3=0 Ly

(5.88)
Applying (5.88) to (5 87), we obtain

dF . §

H ( U<n+1>Un>> d<u<n+l>7u<n>>)HSCs(HDei“)H+HDe£>H)
+ AtC1Crs Y glits)

Jj=0 Ly
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forn=20,1,..., N — 1. Therefore, we have

1 dF (n+1)\ ||
7 | (zmemom - seeamy +6Y)
! ar ([
<5 (| (e ~ )| [
1 - j i
Sa{@ (el + | Del]]) + (MCF:?)Z | e >}
7=0 Ly

forn=20,1,..., N — 1. For simplicity, let

RY‘) = AtC1Crgs Z 51(]+§)

J=0

e

Ly

Let € > 0 be an arbitrarily fixed number. From (5.89) and the inequality: (a + b+ ¢)? <
2(a? 4+ %) + (£/2)(a®> + 1*) + (1 + (4/€))c? for all a,b,c € R, and € > 0, we obtain

1 dF dF (n+3)
4_ HD (d(U(n+1) U(n)) - d(u(n—H) u(n)) +& )

2

1 . ’
< 1 (G D™V + cu [Del? + YY)
1 n 2 n)||?
% {2(ctlpe )+ 3 |pet[)

n 203 o\ 2
+25 (C3 1DelrV|* + 3 | Del?|) + <1+€_j) (1 >>}
n 2 2\ € n 2 12 1 2072 2
= 5 (e " +Det? ) 5 (106t I+ 10l )+ 3 (142 ()

(5.90)

In addition, it follows from the Young inequality and the inequality: (a+b)? < 2(a® + b?)
for all a,b € R that

n+1) + ein)
2

1 n
< 5 HD£1( )

s (0ese]-+ e

pel"Y

IN
DO | —

€ n n 1 2
{5 ooy e+ ! }
‘2

(5.91)

2 (nt1)||2 (n) 2) 15 (n43)
= (Ipetee 1+ [ De*) + o | el

IN

Consequently, using (5.86), (5.90), and (5.91), we obtain
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oo (DD~ [[Del )

%<}|De ”+1)|| +HDe(n)H ) (HDein“)H2+||De§f>{|2)+% (1 N 2—C§>(R§")>2

ey
+ 2 (I Defr 0| + [[Del ) + = [ el 2
4 u u 2&, 1
]2 2 ) el 2
+%{ | IS T R NS }

2
= 52 (IDel |+ D) + 5 (1Del |+ [1Pef? ) + 5

Multiplying both sides of the above inequality by 2At, we conclude that

2 2
{1 - (% +g> At} | Del|* < {1 " (% ¥ g) At} | Dl + AR

forn=0,1,...,N — 1. Il

Theorem 5.5. Assume that v € C5([0, L] x [0,T]). Furthermore, we suppose that the
potential function F is in C*. In the same manner, as Lemma 5.10, denote the bounds
by (5.83). Fix B € (0, (v/C%)). If At satisfies

At < B ( (:fz> : (5.92)

then there exists a constant C' := C'(B) dependent on B and independent of k and n such
that

(1 a0,2e0) (5 8) = u(y )| oo,y < C ((Ax)? + (A1)?)  for all ¢ € [0, T,

where I1a, A¢U is the function that interpolates the grid value point U,i") and is defined
by

(HAw,AtU)(l',t) (HAx(HAtUk (l‘,t
= (HA ) (Qf,t

T _ Yy BEAYEEE (n+1)

(k+1 (n+1 )U + (k41 Am) (At n)Uk
ENS _ o (R (L) g

- <A:L- k) (” 1 At) Ui+ (55— ) (At ") Ukn

for (z,t) € [kAz, (k+ 1)Az] x [nAt,(n+1)At], k=0,1,..., K—-1, n=0,1,...,N— 1.
Also, I, is the function that interpolates the grid value point fj and is defined as follows:

(Haxf)(x) := fr + %(x — kAx)

xXr xr
:<k:+1—E)fk+<E—k>fk+1 for « € [kAz, (k+1)Az], k=0,...,K—1.
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Besides, ITx; is the function that interpolates the grid value point f and is defined as
follows:

f(n+1) _ f(n)
At

t t
- S B (O B (n+1) — _
(’H—l t)f +( " 79]‘ for t € [nAt, (n+1)At], n=0,...,N—1.

(acf)(t) = f + (t —nAt)

Proof. Stepl. Let € be an arbitrarily fixed positive number satisfying

1 C?
—(1-=B).
T B ( g )
In other words, we have B < 1/C} for Cy := (C2/7) + . Let Cy := (2C4)/(1 — C4B).

Then, it follows from (5.92) that

1+ C4At
1— C,At

Actually, since Cj is positive, it holds from (5.92) that 1 — C4;At > 1 — C,B. Also, from
the definition of Cy, we obtain Cy(1 — CyB) = 2Cy. Thus, we have

< 1+ CyAt < exp(C4AL). (5.93)

(1+C4A) (1-CyAL) = 1—CyAt+CyAL1—CyAt) > 1—CyAt+CiAt(1—CyB) = 1+CLAL.

From this inequality, the first inequality in (4.76) holds. The second inequality in (4.76)
holds from the following inequality: 1+ x < exp(x) for all > 0. Using Lemma 5.10,
(5.92), and (5.93), we obtain

n 2 1+C At ) 112 At el
~ 112 At ntl
< exp(C1At) || Del™]|” + m}z( t2) (n=0,1,...,N—1). (5.94)
Using (5.94) repeatedly, we have
112 = n_1)12 At n—1+1
|Del™||* < exp(Cuart) || De V" + mR( 1+3)

A n— 2 At A n—2+1 n—1+1
< exp(204At) HDez(L 2)H + m Hexp(CﬁAt)} R( 2+2> + R( 1+2)
<.

~ 2 At - ) ~ it 1
< exp(nCyAt) | Del)| *@; [exp{(j — )Caat}] RO+

1_A—Ct’43 Z [exp{é4(j - 1)At}] R(n_ﬁ%) (n=1,...,N),

where the last equality holds from e = 0. For any 7 = 1,2,...,n, it holds from

j—1<n—1<N that
_ _ _ T _
exp{C4(j — 1) At} < exp(C4NAt) = exp (C4N . N) = exp(CyT).
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Therefore, we obtain

| Def||* < =222 g4 AtZR "It3) (n=1,...,N). (5.95)
—GiB 2

Hence, from (5.88) in the proof of Lemma 5.10, and (5.95), we have

n—1
n (+3) L peln
el < e 3 [efD]+tpet)
j= d
n—1
(+3) L exp( C'4T n—j+1 .
gmz £ Lw+ =B AtZR J (n=1,...,N).
j=0 d
(5.96)
Next, we estimate £/ (i = 1,2) and 5(n+1/2 (k =0, K). Let us define
Oty
M; ;(v) = max{ pyr i (z,t) € [0, L] x [O,T]} for all 4,5 € Z,
~ oIy

M, ;(7) := max {‘

o0 i (z,t) € [-Az, L + Az] x [O,T]} for all 7, j € Z.

Firstly, we consider &3 and &3 x. Applying the Taylor theorem to @ and using (5.71), we
obtain the following estimate (for details, see the proof of Corollary 4.1):

a(n""l) a(”) ntl
5ﬁ<k ;k>—@¢ V) < € (A Myafu) + (A0 )+ (A0 (A2 ) My )}

for k = 0, K. As a remark, throughout this proof, we need the reader to keep in mind that
the meaning of ' changes from line to line, whereas C' always denote those constants.
From the assumption (5.92) on At, we obtain the following estimate:

~(n+1 ~(n
5}9(“1& )+ u](C )> _amu]gmé)

2

< 0 { (00)? (Mualu) + Mool +(807Miz(w) |

2

for k = 0, K. Furthermore, using the Taylor theorem, we have the following estimate:

el (n+1) - (n)
deu,g +3) oy, U

A7 < CMys(u)(At)? (k=0,...,K). (5.97)

From the above, we estimate {3 and &3 i as follows:
(n+1) (n)
< atugmé) oy
At

~(n+1) | ~(n) )
(U tu (n+3)
Sy (%) — Opuy
2

C4M3 2( )) + C(At)Q (Mo,g(u) + Ml,g(u)) (/{Z = O, K)

(n+3)

3.k +

< C(Ax)? (M&o( )+
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Next, we consider &;. For any ¢t € [0,7] and k = 0,..., K, applying the Taylor theorem
to p, there exists 0; € (0,1) such that

p((k+ 1A, t) — 2p(kAz,t) + p((k — 1)Ax,t)
(Az)?

2
= 0?p(kAx,t) + (AZZ) {00p((k + 01) Az, t) + ,p((k — 61) Az, 1)} . (5.98)
Substituting (n + 1/2)At into ¢ in (5.98), we obtain

_n % n % ~(n % ~(n % Ax ~(n %
5<2>p( + )_82p( + )_5<2>p< + )_anIE + )_( ) (a;l ](C—H%) a4p’£_zl)> (/CZO, ) ,K)

k Pr «Pe =0 Pg v Y -
(5.99)
Therefore, we have
_(n+3 -1 Ax)? -
sl oY) < B a6y k=0, 50, (5.100)
Hence, using (5.97) and (5.100), the following estimate holds:
1 1 (n+1) _ (n) 1 n
51(7;"'5) < 8tulg +2) Uy U + 51<f> ~I<€ +2) _ azplg +2>
’ At
Ax)? -
S CM073(U)<A15)2 + ( 12) M4 0(p) (k = Oa 7K)
Next, for £ =0,..., K — 1, from (5.99), we have
2) -(n+3 G
{( 5t ozt >) - (52 B o )>}
(Az (Az)?
A:U { Z‘ ]S+1+>91 + 84 ](€+1 )91 - 24 a;l ’g+91> + 84 ’g 91)
n+3 n-+
— ( )2 aﬁ £:+1+)91 a4pl(€+91) + (Ax)2 6§pl(€+1 )91 a;l IS 91) ] (5101>

24 Azx 24 Az

Since p satisfies p(-,t) € C°([0,L]) for any fixed ¢t € [0,7], applying the mean value
theorem to 92p(-,t) and using (5.101), we obtain

_n % n % AJ]Z ~ -
oy <5;<f>p;§+ )—3§p£+ >>’ <! 12> Mso(p) (k=0,...,K—1).

Besides, applying the Taylor theorem to u and using the mean value theorem, we have

P I et :
(Sk» at - T < C’Ml,g(u)(At) (k = 0, ce ,K — 1).
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Hence, we have the following estimate:

) )
Sﬁ@ﬁ+>%iE%J

< OM, 5(u)(AD)? + (Ar)* v

6+£<”+2)

1,k

0,....K—1).

Next, we consider &. For any x € [0, L], applying the Taylor theorem to @, there exists
05 € (0,1) such that

u(z, (n+ 1)At) + a(z, nAt)

2
L 1 AL (. 140, 5 1—0,
—u(x, (n+§)At)+ 16 {@u(x, (n i At ) + oful( x, | n+ 5 At |y .

(5.102)
Substituting KAz (k=0,...,K) into z in (5.102), we obtain

~(n+1) | ~(n) i a1 At

5}2@(“1@ 2+uk )_agulgn"'z) _ 5}(€2>,&£ +2) _agulg +2)
2 9 1—6o
- (Alg {5 <82 ot )) +0 (afa,ﬁ"*”)} (5.103)
for k =0,...,K. Also, for k = 0,.

.., K, applying the Taylor theorem to @ and using
(5.71), there exists 05 € (0, 1) such that

( n+ i
E%L%%j” (k = 0),
_(n+3 n+3 Azx)? n+i n+i
s@alm8) _ g2y () _ ) ( ;1) oY) +a§u,§§;)) (k=1,....,K—1), (5.104)
(Ax) n+l
= i) (k = K).

For details, see the proof of Corollary 4.1. Since u satisfies u € C°([0, L] x [0, T]) from the
regularity assumption of u, applying the mean value theorem to du and using (5.104)
we obtain

5t (5,@2>a,§ *3) _ gyl +2)>‘ <! 1“;) Mso(u) (k=0,...,K —1). (5.105)
Similarly, for £ = 0, .

K, applying the Taylor theorem to 92% and using (5.71), there
exists 04 € (0, 1) such that

(ozop %) — gy aaopo )
146

; (k=0),
~(nt+— nt 10 120
5,§2>(83u,§ )) - (3233 (50 popa™t ) k=1, K —1), (5.106)

—04
146, ﬂ
o2opu, T )+ oo )

(k

K).
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Applying the mean value theorem to 9290?u and using (5.106), we obtain

5;;{5,9 (af WI?Q)) }' < Mso(u) (k=1,...,K—2), (5.107)

1469
5,:{5,9 (afa,ﬁ“”) }‘ < M3o(u) + 0, Mzo(u) < 2Mszo(u) (k=0,K —1). (5.108)

Hence, from (5.103), (5.105), (5.107), and (5.108), we conclude that

1 (n+1) ( )

<[5t (o2 -l

(o) o)
< <A1“;) M o(u) + <A4t)2 su) (k=0,.. K —1).

Similarly, from the Taylor theorem and the mean value theorem, we see that

dF (nJrl)
o ————— — Fl(u, ?
k (d(ugjﬂ), u](:)) ( k )) '

< C{CF,2M1,2(U) +Crs (M1 (w) Mo (w)+Moo(w)Mio(uw))+Cray o(u) (Mo, (U))2 } (At)z

for k =0,..., K — 1. From the regularity assumption of the solution « and the potential
F, we see that Cp; (i =2,3,4), M, ;j(u) (i, € Z,0 < i+ 3 <5), and M,;(p) (: =4,5)
are bounded. Thus, we obtain the following estimates:

(n+3)

1,k
n+%)

el

< O5((Ax)+(A1?) (k=0,...,K),

< Cs((Ax)* + (At)?) (k=0,K), (5.109)

5:e ) < cu(anH(An?) (k=0 K1 i=12)

where C5 is a constant independent of Ax and At. Therefore, the following estimates
hold:

51(’”%) < O5((Az)? + (At)?), (5.110)
H kz 5+gz,€ 2 Ax < C2((Az)*+(At)?)? g Az (5111)

= LC2((Az)*+(At)?)? (i=1,2).

Furthermore, using (5.110), we obtain

n—1

ALY

J=0

e

< Os((Ax)* +(A)*)nAt < CsT((Az)*+(AH)?) (n=1,...,N).

L

(5.112)
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Hence, from (5.84), (5.109)—(5.112), it holds that

2
1 1 2072 3 nty " ’
RO+ - L (1+ Cs ) (olchAtZ | HDﬁg( *2) D HD£1( +2) ‘
v &Y =0 Ly
2 2 2
n+3 n+3 n+3 ntg
+ 1(,0 ) + 1(,1( ) + :5,0 ) + :’SK )

< o (14 Z8) {(CuCraCu) (B + (A7) + L3CH(80 + (A1)}

(Az)* + (A1)*)* +4C5 ((Ax)* + (At))?

< {i (1 i 25(’;2) (T +13) 4 2y 4} (M) + (A1)

forn=0,..., N — 1. Now, let us define the constant Cg as follows:

202 L
Cs _02{2 <1+ )<010F3T+L> +—+4}.
¥ ey €

Then, we obtain

Lexp( C4 n—j+1 C6L9XP(C4T) 2 212
= C.B AtZR < —c.B nAt((Az)? + (At)?)

< CGLff}a(g‘*T)((m)? + (A1) (5.113)

forn=1,..., N. From the above, using (5.96), (5.112), and (5.113), we conclude that

1

e, < CT((A0) + (A1) + {C6L1T_GX§4(?T) }

= C7((A2)* + (AH?) (n=1,...,N), (5.114)

(Az)* + (At)*)

where the constant C7 is defined by

D=

L L CﬁLT exp(é'4T)
Cr = Cy(B) = CsT + { SN

Step2. It holds from the triangle inequality that

[ a0 atU) () = u(s 0) | poogo ) < N a0,a:U) (5 1) = (Hawarw) (5 8| o o.1
+ [[(ag,aew) (1) = u( D)l ooy for all £ € [0, 7.
(5.115)

Firstly, we estimate the first term on the right-hand side of (5.115). For t € [nAt, (n +
1)At], n =0,1,..., N — 1, there exists n € [0, 1] satisfying t = (n + n)At. Hence, using
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(5.114) and the following inequality |[ITa.fllzo0.0) < [Ifllzee for all {fi}i, € RFH, we
obtain

(I pentU) (5 t) — (Hpazarw)(s, )||L°°(0,L)

L L A D L)
{(n +1-— w) (L azu™) + (w - n) (HAxu("“))}

~ Al L>(0,L)
|(1 —77) {(HAxU(”)) — (HAxu(n))} +77{(HAacU(n+1)) o (H u(”+1) }”LOO(OVL)
1- T]) HHAx (U(n) _ u(n)) HLOO(()’L) +n HHAm ( (n+1) n+1 )
1 HU(H) HLSO + 1 HU(n—H) B n+1 HLOO
< C7 ((Az)* + (At)?). (5.116)

Next, we estimate the second term on the right-hand side of (5.115). For any fixed
(x,t) € [0, L] x [0, T], there exists kg € {0, 1,..., K — 1} satisfying = € [kyAx, (ko+1)Az],
and there exists ng € {0,1,..., N — 1} satisfying t € [ngAt, (ng + 1)At]. Hence, we have

IN

Iz 0.1y

|
(
(

IA

(Hapac)(z,t) — u(z,t) = (k;o vl &) (no vl K) {u(koAz, noAt) — u(z, t)}

+(b+1- 1) (Ait - no) (ulkoAz, (ng + DAL — u(z, 1)}

+ (Aix - ko) (no +1- Ait {u((ko +1)Az, noAt) — u(z, 1)}
A

(=~ o) (i _ no) (ul(ko+1)A, (no+1)At) — u(z, 1)}
Let Cg := (1/8)(Mao(u) + My 2(u)). Then, using the Taylor theorem, we obtain
(Hamact)(z,1) — u(z,1)] < Cs((Az)? + (A2).

Therefore, we estimate the second term on the right-hand side of (5.115) as follows:

[ ag,aet) (- 1) = u( )| oo 0.0y < Cs((Ax)* + (At)?) for all t € [0, T]. (5.117)
Hence using (5.115)—(5.117), we conclude that

(s aeV) (1) = ul ) ooy < (C7+ Cs)((A2)* + (A1)?) for all t € [0, 7).
This completes the proof. n

g6 Computation examples

In this section, we demonstrate through computation examples that the numerical
solution of our proposed scheme is efficient and that the scheme inherits the conservative
property and the dissipative property from the original problem in a discrete sense. Also,
we compare our scheme with the previous structure-preserving scheme proposed by Fukao—
Yoshikawa—Wada [28]. Throughout the computation examples, we consider the double-
well potential F(s) = (1/4)s* — (1/2)s*>. In the same manner as Section 5, we use the
following notation 7' = NAt.
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6.1 Computation example 1

As the initial condition, we consider
T
u(z,0) = ug(x) = 0.01 cos (§x> :

We choose N = 20000 and fix 7" = 400 so that At = 1/50. Also, we choose K = 40
and fix L = 20 so that Az = 1/2. Besides, we fix the parameter v = 2.0. Figure 5.1
shows the time development of the solution obtained by our proposed structure-preserving
scheme. Figure 5.2 shows the one by the previous structure-preserving scheme proposed

by Fukao—Yoshikawa—-Wada.

Our proposed scheme — Fukao-Yoshikawa-Wada scheme —

\\
AR
“&Q\\\\\\\\\\\\

N \\\\\\\\\\\
N
\\\\\\\&

\\\\\\ \\\\
\\\\\\\\\\\\\\\\\{%\\k‘\\\\\\\\\
AN

W
W

Figure 5.2: Numerical solution by
Fukao—Yoshikawa—Wada scheme with

Ax =1/2

Figure 5.1: Numerical solution by our
scheme with Az = 1/2

The behavior of the solution obtained by our proposed scheme is different from the one by
the Fukao—Yoshikawa-Wada scheme. In order to analyze the difference in these results,
we refine the space mesh size. Specifically, in the following results, we choose K = 800 so
that Az = 1/40. In this case, the result of the Fukao—Yoshikawa—Wada scheme improves.
Figure 5.3 shows the time development of the solution obtained by our proposed scheme.
Also, Figure 5.4 shows the one by the Fukao—Yoshikawa—Wada scheme. Both results are
similar to the result obtained by our scheme with Az = 1/2. Note that we can obtain
a valid numerical solution by our proposed scheme even when the space mesh size Ax is

coarse.

Our proposed scheme — Fukao-Yoshikawa-Wada scheme —

=
N
\\\\Q
\g&\\g;\ N \
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Figure 5.4: Numerical solution by
Fukao—Yoshikawa—Wada scheme with

Az =1/40

Figure 5.3: Numerical solution by our
scheme with Az = 1/40
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Next, we confirm the conservative property and the dissipative property. Figure 5.5
shows the time development of My (U ™) obtained by our scheme with Az = 1/40. Figure
5.6 shows the time development of Eén) —Jo(U©®) obtained by our scheme with Az = 1/40,
where

n—1 9
EY = 1yU) + 3 34|50+
=0

2 K-1 2
5;U§?‘ +Z]5;;P,§”( ArSAL (n=1,2,..).
k=0

We remark that the following equality holds from Theorem 5.1 (the discrete dissipative

property): (
n) _ 0 _
E{ = LUy (n=1,2,...).
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Figure 5.5: Time development of My(U™) Figure 5.6: Time development of E((in) —
obtained by our scheme with Az = 1/40: Ja(U®) obtained by our scheme with Az =
M4(U™) does not change by about 11 or- 1/40: E(gn) does not change by about 6 or-
ders of magnitude ders of magnitude

These graphs show that the quantities Mgq(U®™) and Ec(ln) are conserved numerically.
More precisely, My(U™) does not change by about 11 orders of magnitude, and E((jn)

does not change by about 6 orders of magnitude.

6.2 Computation example 2

As the initial condition, we consider
u(z,0) = ug(x) = 0.01sin(27z) + 0.001 cos(4mx) + 0.006 sin(47wx) 4+ 0.002 cos(107z).

We choose N = 50000 and fix 7" = 1000 so that At = 1/50. Also, we choose K = 250
and fix L = 10 so that Az = 1/25. In addition, we fix the parameter v = 1.0. Figure 5.7
shows the time development of the solution obtained by our proposed scheme. Figure 5.8
shows the one by the Fukao—Yoshikawa—Wada scheme.

Our proposed scheme — Fukao-Yoshikawa-Wada scheme —
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Figure 5.7: Numerical solution by our Figure 5.8: Numerical solution by
scheme with Az = 1/25 Fukao—Yoshikawa—Wada scheme with
Az =1/25
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The behavior of the solution obtained by our scheme ranging from ¢ = 0 to t = 600 is
different from the one by the Fukao—Yoshikawa-Wada scheme. In order to analyze the
difference in these results, we refine the space mesh size. To be specific, in the following
results, we choose K = 500 so that Az = 1/50. Even in this case, the result of the
Fukao—Yoshikawa—Wada scheme improves. Also, we remark that we can obtain a valid
numerical solution by our proposed scheme even when the space mesh size Ax is coarse.

Our proposed scheme — Fukao-Yoshikawa-Wada scheme —

0.5
U 0
0.5
-1
0 1000
Figure 5.9: Numerical solution by our Figure 5.10: Numerical solution by
scheme with Az = 1/50 Fukao—Yoshikawa-Wada scheme with

Az = 1/50

Figure 5.9 shows the time development of the solution obtained by our proposed scheme.
Also, Figure 5.10 shows the one by the Fukao—Yoshikawa—Wada scheme. Both results are
similar to the result obtained by our scheme with Az = 1/25. Hence, as can be seen
from Figures 5.1-5.4 and Figures 5.7-5.10, we expect that the solution obtained by our
proposed scheme is more reliable than that by the Fukao—Yoshikawa—Wada scheme when
the space mesh size is coarse.

Next, we confirm the conservative property and the dissipative property. Figure 5.11
shows the time development of My (U ™) obtained by our scheme with Az = 1/50. Figure
5.12 shows the time development of E” — Jo(U©®) obtained by our scheme with Az =
1/50.
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Figure 5.11: Time development of Md(U(”)) Figure 5.12: Time development of E((i”) —
obtained by our scheme with Az = 1/50: Ja(U©®) obtained by our scheme with Az =

M4(U™) does not change by about 14 or- 1/50: E{” does not change by about 11 or-
ders of magnitude ders of magnitude

These graphs show that the quantities Maq(U®™) and Eén) are conserved numerically.

More precisely, Mq(U™) does not change by about 14 orders of magnitude, and E((in)
does not change by about 11 orders of magnitude.
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6.3 Computation example 3

We consider the following dynamic boundary condition for the order parameter u:

{5exﬁtu(0,t) = du(z,b),_, in(0,00),

5.118
EexOpu(L,t) = — Opu(x,t)|,_, in (0,00), ( )

where e, is a positive constant. For the chemical potential p, we consider the same
homogeneous Neumann boundary condition as before. In this computation example, we
fix £x = 1000. We consider

u(x,0) = ug(x) = 0.05sin(27x)
as the initial condition. We choose K = 50 and fix L = 1 so that Az = 1/50. Also, we
choose N = 500000 and fix 7" = 1000 so that At = 1/500. Besides, we fix the parameter

v = 0.001. Figure 5.13 shows the time development of the solution obtained by our
proposed scheme.

Figure 5.13: Numerical solution to (5.1)—(5.2) with (5.5) and (5.118) obtained by our
scheme

As stated in the Introduction, our study for the dynamic boundary condition differs from
previous studies for non-dynamical boundary conditions such as the Neumann boundary
condition. Since there is a term of the time derivative on the boundary, it is natural that
the long-time behavior of the solution to (5.1)-(5.2) with (5.5) and (5.118) may differ
from that to (5.1)—(5.2) with the homogeneous Neumann boundary conditions for the
order parameter and the chemical potential. In order to assure that the difference occurs,
we present the computation example of our structure-preserving scheme for (5.1)—(5.2)
with the Neumann boundary conditions (see next subsection for details).
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Figure 5.14: Time development of My(U™) Figure 5.15: Time development of E((i”) —
obtained by our scheme: My(U™) does not Ja(U©) obtained by our scheme: Ec(ln) does
change by about 11 orders of magnitude not change by about 10 orders of magnitude

114



Next, we confirm the conservative property and the dissipative property. Figure 5.14
shows the time development of My(U™) obtained by our scheme. Figure 5.15 shows the

time development of Eén) — J4(U©) obtained by our scheme. These graphs show that
the quantities Myq(U™) and E((i") are conserved numerically. More precisely, Mq(U™)

does not change by about 11 orders of magnitude, and E((i") does not change by about 10
orders of magnitude. From the above, we can obtain the expected results.

6.4 Computation example 4 (Numerical results for the Neu-
mann boundary condition)

In order to verify that the difference in the long-time behavior of the solution oc-
curs, we present the computation example for (5.1)—(5.2) with the following homogeneous
Neumann boundary conditions:

{Gxu(x, ). _o = dpu(z,t)|,_, =0 in (0,00),

. 5.119
Opp(,t)| g = Opp(z,t)| ., =0 1in (0, 00), ( )

in the same setting as Computation example 3. We remark that the solution of (5.1)—(5.2)
with (5.119) also satisfies the conservative property (5.9) and the dissipative property.
However, in this case, the dissipative property is slightly different from (5.10). More pre-
cisely, the solution of (5.1)—(5.2) with (5.119) satisfies the following dissipative property:

d

EJ(U(t)) = _/0 |8xp(:17,t)|2d$ < 0.

Since there is no result in the same setting as Computation example 3 in previous studies,
we carry out the numerical computation by the following structure-preserving scheme.
By using DVDM (see [31]), the scheme is derived as follows:

ptD _ )
k E— P (k=0,...,K, n=0,1,..),

Figure 5.16: Numerical solution to (5.1)—(5.2) with (5.119) obtained by the discrete vari-
ational derivative scheme
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As shown in Figure 5.13 and Figure 5.16, the solution to (5.1)—(5.2) with (5.119) arrives
at a different state from that to (5.1)—(5.2) with (5.5) and (5.118). Thus, the results
assure that the difference in the long-time behavior of the solution occurs.

Next, Figure 5.17 shows the time development of My(U™) obtained by the above

scheme. Figure 5.18 shows the time development of A" — Jy(U©) obtained by the
above scheme, where

1 K ‘5+P‘+)6P‘

AP = U™y + 3N AzAt (n=1,2,...),
=0 k=0
K ’5+U(”) oo’
K Yk +’k_ k
=313 ; FEOM) {Ar (n=01,...)
k=0

Remark 5.6. For any { fk}K+1 RE+3 satisfying the discrete homogeneous Neumann
boundary condition 5,<€ ) fr =0 (k =0, K), the following equality holds:

K K-1
/5“1‘ 2_|_ 5— 2
Z/| k Jxl : 10, f] Ar =S |6 fu A

k=0 k=0

From this equality, we obtain Jq(U™) = Jy(U™) (n=0,1,...).
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Figure 5.17: Time development of My(U™) Figure 5.18: Time development of A((jn) -
obtained by the discrete variational deriva- Jq(U®) obtained by the discrete varia-

tive scheme: Mg(U™) does not change by tional derivative scheme:

Aé") does mnot
about 14 orders of magnitude

change by about 9 orders of magnitude
These graphs show that the quantities My (U ™) and Aé") are conserved numerically. More

precisely, Mq(U™) does not change by about 14 orders of magnitude, and Aén) does not
change by about 9 orders of magnitude.
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Chapter 6

Summary

We have designed structure-preserving schemes for the Allen—-Cahn equation and the
Cahn-Hilliard equation by the discrete variational derivative method and then have ana-
lyzed schemes.

First, we have proposed a structure-preserving scheme for a non-local Allen—Cahn
equation. Our proposed scheme retains the mass conservation and the energy dissipation
in a discrete sense. Additionally, we have obtained the results of the stability, the solv-
ability, and the error estimate for the scheme. In particular, we have rigorously proved
that our scheme is second-order accurate in space and time, respectively, in the sense of
the discrete L2norm. Also, through computational examples, we confirm that the solu-
tion obtained by our proposed scheme is more reliable than that by the Crank—Nicolson
scheme when the time mesh size is coarse.

Next, by modifying the discretization of energy from the conventional ones and us-
ing the suitable summation-by-parts formula, we have designed a structure-preserving
scheme for the Allen—Cahn equation under a dynamic boundary condition, where the
boundary condition is approximated by a standard central difference. Moreover, we have
obtained the results of the stability, the solvability, and the error estimate for the scheme.
Especially, we show the solvability of our proposed scheme under only the smallness as-
sumption of the time mesh size without any space mesh size restriction by using the
energy method. Furthermore, we prove that our scheme is second-order accurate in space
and time, respectively, in the sense of the discrete L>°-norm. Besides, through numerical
computations, we confirm that the long-time behavior of the solution under a dynamic
boundary condition may differ from that under the Neumann boundary condition.

Lastly, in the same manner, as the design of the scheme for the Allen-Cahn equation
with a dynamic boundary condition, we have proposed a structure-preserving difference
scheme for the Cahn—Hilliard equation with a dynamic boundary condition. Moreover,
even in this case, we have shown the stability, the solvability, and the error estimate for
the scheme. Especially, we have shown that our proposed scheme is second-order accurate
in space, although the previous structure-preserving scheme by Fukao—Yoshikawa—Wada
is first-order accurate in space. Also, through computation examples, we have confirmed
that we can obtain a valid numerical solution by our proposed scheme even when the space
mesh size is coarse. Additionally, as in the case of the Allen—Cahn equation, we confirm
that the long-time behavior of the solution under a dynamic boundary condition may differ
from that under the Neumann boundary condition through computation examples.
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Appendix A

Program codes

In this appendix, we note down three program codes for solving proposed structure-
preserving schemes in this thesis. The first is an algorithm for solving the scheme for
the Allen-Cahn equation with a non-local term. The second is an algorithm for solving
the scheme for the Allen—-Cahn equation under a dynamic boundary condition. The third
is an algorithm for solving the scheme for the Cahn-Hilliard equation with a dynamic
boundary condition. The computer language used is Julia (Version 1.4.1). We use the
package “NLsolve” in Julia to obtain the next time-step for the numerical solutions to
the schemes.

124



qcl

81 A structure-preserving scheme for
a non-local Allen—Cahn equation

const L = 1.0
const K = 100
const \Delta x = L/K

const \Delta t = 2.0e-4
const \varepsilon =0.02

function u0(x)

A0 = 8; Al = T7;
BO = 11;
CO = 0.26; C1 = 0.07; C2 = 0.41; C3 = 0.24

return CO + Cl*cos (AO*\pi*x) + C2*sin((BO/2)*\pi*x) + C3*cos(
A1*x\pix*x)
end

function d2(u)
v = similar (u)
v[1] = ( 2*(ul2] - ul1]l) )/(\Delta x"2)

:K

for k in :
(ulk+1] -2*xulk] + ulk-1])/(\Delta x"2)

v[k]
end

N

v[K+1] = ( 2x(ul[K] - ul[K+1]) )/(\Delta x"2)

return v
end

function S(u)
S = sum(u)
S =8 - 0.5%x(ul1] + ulK+1])
return \Delta x*S

end

function \delta G(up,u::Array{Float64,1})
return -\varepsilon*d2( (up + u)/2 ) - (2/\varepsilon)*( (up +
u)/2 ) + (2/\varepsilon)*( ( (up."3) + ((up.~2).*u) + (up
x(u."2)) + (u."3) )/4)
end

function \lambda (up,u::Array{Float64,1})
I_1 = S( \delta G(up,u) )
return ( 1/(\varepsilon *L) )*I_1

end

function scheme (vp,v)

end

return vp - v + (\Delta t/\varepsilon)x*\delta G(vp,v)

Delta t*\lambda(vp,v)

using NLsolve
function nls(func, params...; ini =

end

u =
for

end

u_sq

if t

else

end
retu

zero
k in
ulk]

= u

ypeof (ini) <: Number
r =

[0.01)

= nlsolve ((vout,vin)->vout [1]=func(vin[1],params..

inil)
v = r.zero[1]
r = nlsolve((vout,vin)->vout
vV = r.zero
rn v, r.f_converged

s (K+1)
1:K+1
=u0((k-1) *\Delta x)

using ProgressMeter
@showprogress for n in 1:10000

end

glob
u =
u_sq

al u, u_sq
nls (scheme ,u,ini=u) [1]
= hcat(u_sq,u)

func (vin, params..

DN

\

D, 0

ini)



9¢1

§2 A structure-preserving scheme for r[2:K+2) = up[2:K+2] - wl2:K+2] + \Delta tx\delta G(up,u)
r[K+3] = \varepsilon_ex*(up[K+2] - u[K+2]) + 0.25*\Delta t*(

the Allen—Cahn EB(IIIEIti()Il with a (13/- 1/\Delta x )*(up[K+3] + ulK+3] - up[K+1] - u[K+1]1) + dF (up
[K+2] ,u[K+2]))
namic boundary condition

return r
end

using NLsolve

const L = 1.0 function nls(func, params...; ini = [0.0])
const K = 160 if typeof (ini) <: Number
const \Delta x = L/K r = nlsolve ((vout,vin)->vout [1]=func(vin[1],params...), [
const \Delta t = 1.0/10000 _ inil)
const \varepsilon_ex = 10 ) v = r.zero[1]
t = 100 else
const \gamna r = nlsolve((vout,vin)->vout .= func(vin,params...), ini)
A0 =5 V = r.zero
Al = 8 end
A2 = 2 return v, r.f_converged
BO = 0.02 end
B1 = -0.05
B2 = -0.008 u = zeros (K+3)
B3 = 0.01 for k in 1:K+3

ulk] = u0((k-2)*\Delta x)

function u0(x) end

return BO + Blxcos (AO*\pi*x) + B2xsin(Alx\pi*x) + B3xcos(A2%\ 4-54 = 1

pix*x) .
end using ProgressMeter
@showprogress for n in 1:6000
function d2(u) global u, u_sq )
v = similar (ul[2:K+2]) u = nls(scheme,u,ini=u) [1]
for k in 2:K+2 u_sq = hcat(u_sq,u)
vIlk-1] = (ulk+1] - 2*ulk] + ulk-11)/(\Delta x"2) end
end
return v
end

function dF(U,V)
return \gamma*(- 0.5%(U + V) + 0.26%x( (U."3) + (U."2).*V + U
A(V.m2) + (V.73) ) )
end

function \delta G(up,u)
return -d2( (up + u)/2 ) + dF(up[2:K+2],ul[2:K+2])
end

function scheme(up, u)
r = similar (up)

r[1] = \varepsilon_ex*(up[2] - ul[2]) + 0.25*\Delta t*x(- (1/\
Delta x) )*(up[3] + ul3] - up[1] - u(l1]) + dF(up[2],ul2]))
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83 A structure-preserving scheme for r
the Cahn—Hilliard equation with a else

nlsolve ((vout,vin)->vout [1]=func(vin[1], params..
inil)
r.zero[1]

nlsolve ((vout,vin)->vout .=
r.zero

func (vin,params...),

return v, r.f_converged

u0 ((kx - 1)*\Delta x)

@showprogress for n in 1:N

u_sq

. . . i :
dynamic boundary condition g
end
const L = 20 u = zeros(K+1)
const K = 40 for k in 1:K+1
const \Delta x = L/K ulk] =
const N = 20000 end
const T = 400 u_sq = u
const \Delta t = T/N X
const \gamma = 2.0 using ProgressMeter
function u0(x) global u,
u =

return 0.01%cos (0.5*\pi*x)
u_sq =

end

end

function d2(u)
v = similar (u)
v[1] = 2*x(ul[2]
for k in 2:K
v[k] = (ulk+1]

- ul1])/(\Delta x~2)

- 2*%ulk] + ul[k-1])/(\Delta x"2)
end

v[K+1] =
return v

2x (u[K] - ulK+1])/(\Delta x~2)

end
function dF(U,V)
return - 0.5%(U + V) + 0.25%x( (U."3) + (U."2).*V + U.*x(V."2)
+ (V."3) )

end

function P(up,u)

v = similar (up)

v = -\gamma*d2( (up + u)/2 ) + dF(up,u)

v[1] += ( (2*\gamma)/(\Delta x*\Delta t) )*(up[1] - ul1l)
v[K+1] += ( (2*\gamma)/(\Delta x*\Delta t) )*(upl[K+1] - ulK

+11)
return v
end

function scheme (up, u)
return up - u - \Delta t*d2( P(up,u) )
end

using NLsolve
function nls(func, params...;
if typeof (ini) <: Number

[0.01)

ini =

nls(scheme ,u,ini=u) [1]
hcat (u_sq,u)

DI

ini)





