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1. Introduction

In this paper we consider the scattering problem for the following system of non-
linear Schrόdinger equations with nonlocal interaction

r\ -j

(1) iftUj = --Δuj + f^u), (t,z)ERxRn,

(2) Uj(Q,x) = φj(x), j = ! , - . . , TV.

Here Δ denotes the Laplacian in x9

Λ (fl) = Σ (v * K I 2 K - Σ [v * K ϋfc)]u*,
fc=l fc=l

and * denotes the convolution in R n . In this paper we treat the case n > 2 and
V(x) = \x\~~Ί with 0 < 7 < n.

The system (l)-(2) appears in the quantum mechanics as an approximation to a
fermionic N-body system and is called the time-dependent Hartree-Fock type equation.

Throughout the paper we use the following notation:

N - {1,2,3,-..}, V - (θ/dxit td/dxn), U(t) = exp(ftΔ/2),M(t) -
exp(i\x\2/2t), J = U(i)xU(-t) = M(t)(itV)M(-t). For 1 < p < oo, p' = p/(p-l),
δ(p) = n/2 - n/p. || | |p denotes the norm of Lp(Rn) (if p = 2, we write || | |2 =
|| - ||). For 1 < g, r < oo and for the interval / c R, || ||g,r,/ denotes the norm

r/q '

of L r(/;L«(Rn)), namely, \\u\\q,r,ι = I / ( / \u(t,x)\qdx } dt
τιn

integers / and m, Σ ί > m denotes the Hubert space defined as

l / r

. For positive

,m = ( i : | |V>| | 2 + ^ | |x^l|2)1 / 2 < oo}.
\<*\<l \β\<m

When we use TV'th direct sums of various function spaces, we denote them by the
same symbols and denote these elements by writing arrow over the letter, like /.

Now we state our main theorem.
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Theorem 1.1. (i) Suppose that 1 < 7 < min(4, n), and l,m G N. Then for any

φ(+) £ s / > m, f/ίere exists a unique φ G Σ*'m swc/z

(3) Hrn | | < + - ί/HM*)||Σ ί,m - 0,

where u(i) is the solution of (\)-(Ί) with U(-t)u(t) G C^R Σ*'™). For any φ^ G

Σ*'m, the same result as above holds valid with +00 replaced by — oo in (3).

(ii) Suppose that 4/3 < 7 < min(4, n), and l,m G N. A«d 1/7 < \/2, suppose,

in addition, that m > 2. Then for any φ G Σ / > m , there exist 0 ( ± ) G Σ / ? m such that the

solution o/(l)-(2) with U(-i)u(t) G C(R; Σ z 'm) satisfies

(4) lim ||0W _ U(-t)u(t)\\Σιtm = 0.

By Theorem 1.1 (i), if 1 < 7 < min(4,n), we can define the operator W+ in Σ ' ' m

as

W+ : 0 ( + ) i—> φ,

which is called the wave operator. The operator W- is defined similarly. Under the

condition of 4/3 < 7 < min(4,n) (m > 2 if 7 < >/2), Theorem 1.1 (ii) implies the

completeness of W±, namely, RangeW± = Σ f ' m .

There are many papers for the following equation

.du 1

dt 2
(6) u(0,z) = 0(x),

where

(see, for example, [5, 7, 8, 9, 12]). The equation (5)-(6) is called the Hartree type

equation. For the scattering problem for (5)-(6), the following results are known (see

[9]).

[A] Suppose that 1 < 7 < min(4,n), and l,m G N. Then, for any φ^ G Σ*'m,

there exists a unique φ G Σ*'m such that

(7) lim \\φW - U(-t}u(t)\\^m = 0,
t — > + CXD
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where u(t) is the solution of (5)-(6) with U(-i)u(t) G C(R; Σ*'m). For any φ(~) G

Σ z > m, the same result as above holds valid with +00 replaced by —oo in (7).

[B] Suppose that 4/3 < 7 < min(4,n), am/ /,m G N. TTzew, /or 0«;y 0 G Σ*'771,

ί/iere emf unique φ^ G Σ z > m swc/z ί/iaί ί/ί̂  solution u(t) of (5)-(6) wiί/z U(—t)u(t) G

O ̂ -tv j ̂  ' ) satisfies

(8) lim ||(/>(±) - ί/(-ί)u(ί)| |Σι,m = 0.
t—>±oo

Our main Theorem is the analogous results to [A], [B].

Since U(t) is unitary in Hl, (4) implies that the asymptotic profiles of u(t) as

ί —> =boo are U(t)φ^\ and by the estimates

\\U(t)φ^\\p < (2π | ί | )-^) |μ( ± ) | | p , ) 2 < p < oo,

it is expected that

(9) \

as t — >• ±00. Indeed, in Corollary 4.1, we shall prove (9) for p = oo under the suitable

condition for φ.

Conversely, if (9) holds for some p sufficiently large, We can prove Theorem

l.l(ii). Actually, in Propositions 3.1 and 3.2, we prove (9) for some p > 2. This

decay estimate is the key point of our proof of the main theorem.

The proof of Theorems [B] is much more simple than our proof of Theorem 1.1

(ii). But we cannot apply the method in [9] for (5)-(6) to prove Theorem 1.1 (ii). So

we shall use the method in our work [15] to prove the main theorem.

2. Preliminaries

First, we collect various inequalities which will be used in later sections.

Lemma 2.1. (The Gagliardo-Nirenberg inequality) Let 1 < q, r < oo and j , m

be any integers satisfying 0 < j < m. If u is any function in W m ' 9 ( R n ) Π L r ( R n ) ,

then

(10) £ HVΊill,, < C
\a\=j

1 - α
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where

1 3 Λ ^x /„ χl--L=a( --- ) + ( ι _ α ) _
p n q n r

for all a in the interval j/m < a < 1, where the constant C is independent of u, with

the following exception: ifm — j — (n/q) is a nonnegative integer, then (10) is asserted

for j/m < a < 1.

For the proof of Lemma 2.1, see [3, 14].

Lemma 2.2. Let a > 0. Then

(ii) ||(-Δ

This lemma is essentially due to [4, 6]. The lemma is obtained as in the proof

of Lemma 3.4 in [4] and Lemma 3.2 in [6], by using the theory of Besov space (for

Besov space, see [1]).

Lemma 2.3. (The Hardy-Littlewood-Sobolev inequality) Let 0 < 7 < n, 1 <

p, q < oo and 1 + l/p = 7/n + l/q. Then

(12) \\ \x\-τ *φ\\p<C\\φ\\q.

For the proof, see [10, 13].

A pair (q, r) of real numbers is called admissible, if it satisfies the condition 0 <
δ(q) = 2/r < 1. Then

Lemma 2.4. If a pair (g, r) is admissible, then for any Ψ G L 2 ( R n ) , we have

(13) ιiflwιig,r,R < C M .

Lemma 2.5. We put (Gu)(t) = I U(t - r)u(r)dr. Let I C R be an interval
Jt0

containing tQ, and let pairs (qj,rj),j = 1,2, be admissible. Then G maps L r ί(/;ZΛ)
into L7"2 (/; Lq2 ) and satisfies

where C is independent of I.
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For the proof of Lemmas 2.4 and 2.5, see [11, 16].

Next, we summarize the results for the Cauchy problem to (l)-(2) . We convert
(l)-(2) into the integral equations

(15) Uj(t) = U(t)φj - i ί U(t - Tj/Xfl
Jo

then

Proposition 2.1. (i) Suppose that n > 2, 0 < 7 < min(4, n), and l,m E N.

Then for any φ E # z , fήere gmto α unique solution u(t) E C(R;/ ί / ) o/ (15). 77ιe

solution u(t) satisfies following equalities.

(16)

(17) IK WII = ll^ ll, j = l, ,N;

and

(18) E(ΰ(t)) = E(φ),

where

(ii) Furthermore, if φ E Σ z ' m , f/zerc U(-t)u(t) E C(R; Σ^'m), am/ ί/î  solution

u(t) satisfies

(19) (iί(t)) - Σ l l ^ ll2 + (2 - 7) Γ rP(u(r})dr.
j=l ^0

REMARK, (i) By the Cauchy-Schwarz inequality, P(φ) > 0.

(ii) The equalities (17), (18) and (19) are called the L2-norm, the energy, and the

pseudo-conformal conservation laws, respectively.

The proof of Propositions 2.1 is similar to that of the corresponding result for

(5)-(6), so we shall omit it ( see, for example, [8, 9, 12]).
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3. Decay estimates for some norm of the solution

In this section we shall estimate the Lp-norm of the solution u(t) of (l)-(2) to

prove the main theorem. We use the following transform

= (it)n/2exp(-it\x\2/2)uj(t,tx),

where T is the Fourier transform in R n . This transform was introduced by N. Hayashi

and T. Ozawa [7]. Then the equations (1) are transformed into the equations

O -i -i

(20) i-gϋj = -yϊΔvj + pfiW> j = l, ,N,

and if <£ e Σ 1 > m , then v(t) € (7((0,oo);Σ r o > 1). The relations (17) and (19) are equiva-
lent to

OλΛ — II?;Ύ/ΉI — Π i — 1 - N
\ ) i ? v /11 — ? J — j ?

and

(22) r 2 | £ | |V^(ί)| |2 + t-^tP(v(t)) = 0,

respectively. Using the relation (22) , we show

Lemma 3.1. Suppose that n > 2, 0 < 7 < min(4,n), and φ e Σ 1 ' 1 . Then, for

t> 1,

(23) 53 ||V^

/f̂ r ,̂ the constants C depend on | |0| |Σι,ι.

Proof. If 7 < 2,

ΛΓ \ N

~ 4- P(υ(ί)) = (7 - 2 ) ^ 7 ~ 3 Σ llVvjWII2 < 0,
/ J=ι
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and if 7 > 2,

— ( N IIV 1112 2 ~ 7 (Ί } ] ] - ( - } 1-7

Hence

^ ίCί2-^ i f 7 <2,
(24)

^ " - ' ~ i f 7 > 2 .

So we shall prove (23) when \/2 < 7 < 2. We multiply (20) by Δ ^ , and integrate the
imaginary part over R n . Then

ί N r
Since Im / V * |vfc|2|Vvj|2da; and Im Σ / ^ * (^^fc)^7^ ' Vϋjdx are equal to

zero, we have, by Holder's inequality and Lemma 2.3,

1 d N

o3iΣllv^)ll2

2 at ^r^
N \ ί , 2x A

Im y^ / VjV(V * pfc ) Vvjdx -\- I vjςVζV Ί
.?',&=1 L«/Rn «/Rn

TV

where p = 2n/(n — 7). By Lemma 2.1 and (24), we have

Therefore,

(25) Σ l lv^ WH2 <

Since 72/2 > 1 if 7 > \/2, (25) and Gronwall's inequality yield (23).

Lemma 3.1 immediately implies
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Proposition 3.1. Suppose that \/2 < 7 < min(4,n), and φ G Σ 1 ' 1 . Then for the
number p satisfying 0 < δ(p) <lifn>3 and 0 < δ(p) < 1 if n = 2, the solution of
(l)-(2) has the estimate

(26) \

Proof. Since \\u(t)\\p = t'δ(p)\\ΰ(t)\\p9 Lemma 2.1 and Lemma 3.1 yield (26).

Now we show the Lp decay estimate of the solution in case 1 < 7 < \/2.

Lemma 3.2. Suppose that 1 < 7 < \/2 am/ 0 e Σ 1 ' 2 . TTien we have for t > 1,

ε w a positive number which can be chosen arbitrarily small, and the constant C
depends on ||0||Σι,2, and ε ( the case n = 2 ).

Proof. We apply Δ to the both side of (20) and obtain

(28) ^ Δ ^ = _ _ L Δ 2 ^ . + l Δ / . ( i 7 ) ? j = ! , . . . , TV.

Multiplying (28) by Δ ^ , integrating the imaginary part over R n , we have

/" N ί

Since Im / F * |ffc|2|Δι;j|2ώ and Im ^ / V * (vjϋk)ΔvkΔϋjdx are equal to
^R n j,fc=l -/Rn

zero,

+ / Δ(y * (vjϋk))vkΔvjdx + 2 V(V * (υjϋfc)) VvkΔϋjdx
Jnn Jnn \
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(i) Case n > 3. Holder's inequality, Lemma 2.1 and Lemma 2.3 imply that the
first term in the brackets of the right of (29) is dominated by

C ί I x Γ 7 " 1 * (|Vwfc| \vk\) \υj\ \Avj\dx
JΈLn

< C\\Vvk\\

The other terms are estimated similarly. Therefore, it follows from (23) that for t > 1,

d N (N \4~7/Jv \ 7 / 2

(30) -T- Σ IIΔ^ WII2 < C ί - M Σ H v M ΣIIΔ
m j=ι \j=ι ) \j=ι

7 / 2

Integrating this differential inequality, we have

which implies (27). Since ||Δwj(l)|| = || |x | 2 ?7(-l)ω(l) | | < (7||<?||si,2, the constant C
in (23) depends on ||< |̂|χ;ι,2.

(ii) Case n = 2. Since

we have for n = 2, — Δ F * = C(— Δ ) 7 / 2 . Hence, by using Holder's inequality, Lemma

2.1 and Lemma 2.2, we can estimate the first term in the brackets of the right of (29)

by

(32)

< c\\ΰ\\l Σ l
V=ι

Since Lemma 2.1 implies

<
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where 2 < θ < oo, the right of (32) is dominated by

( N x 4-7-20 / x (7+o)/2

Σ l i v ^ ll Σ I I Δ ^ II2

j=ι / V=ι /

with α = 2/(0 + 2). The second term in the brackets of the right of (29) is estimated
by

N N

< cMloo Σ l i v ^ ll Σ I I Δ ^ II2

V=ι / V=ι /
( N \ 4-7-2o / ^ \ (7+o)/2

Σ l i v ^ il ΣIIΔ^ II2

i'=ι / V=ι /
The other terms are estimated similarly. Therefore, we have

( \ (7+α)/2
έ i i Δ ^ wii2)
J = l /

Since the number α can be chosen arbitrarily small, this differential equation implies
(27).

Lemma 3.3. Suppose that n > 2, 1 < 7 < \/2 αnJ 0 G Σ 1 ' 2 . Then -we have for
t> 1,

(34) |

,̂ p satisfies 0 < 5(p) < (7 — 1)(2 — 7)/(6 — 47), αnJ ί/ιe constant C depends on

Proof. For simplicity, we prove the lemma in case n > 3. We put ||iT||p,* =
N

( Σ l^/ | 2 ) p / 2 dx]l/p, which is equivalent to the norm ||iT||p - ^ /

J 1 1 ||vz||p. We
_ιn i=ι

multiply the equation (20) by ( Σ ί i K| 2)^~ 2^ 2^j> integrate their imaginary part over
R n , and add them. Then we have

(35)
1/7 1 N Γ ( N

_ 11̂ )11̂ = ιm Σ/ Δ υ j Σ
ί 7 " 1 Z Γ j^l^R71 \/=ι
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Γ f N \(P-*)/*
since Im / V * | t^ | 2 1 ^ |t>/|2 1 b ? | 2 ^ a n d

./R" \/=l /
N Γ / N \ (p-2)/2

Im Σ I V * (vjϋk)vkVj I 5^ |v/|2 ) dx are equal to zero. By the integration
j,k=lJΈi" \l=l /

by parts and Holder's inequality,

(p-2)/2 \

N Γ f N \

''^L^ΛEMΊ

Vj J dx
=ι

(p-2)/2

j=ι

We note that when 1 < 7 < \/2, we have 0 < (7 - 1)(2 - 7)/(6 - 47) < 1, and so

2 < p < 2n/(n — 2). Then, Lemma 2.1, Lemma 3.1 and Lemma 3.2 yield

< Ctη.

Here

and the constant C depends on ||</>||Σι,2. Therefore,

(36) l

Since η < 1 for p satisfying 0 < δ(p) < (7 - 1)(2 — 7)/(6 — 47), the estimate (34)
follows by integrating the differential inequality (36).

By this lemma, we have

Proposition 3.2. Suppose that n > 2, l < 7 < \ / 2 and φ G Σ 1 ' 2 . Then the

solution of (l)-(2) has the following estimate

(37) |

where p satisfies 0 < δ(p) < (7 — 1)(2 — 7)/(6 - 47).
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4. Proof of the main theorem

In this section, we shall prove Theorem 1.1. Since we can prove part (i) of the

Theorem similar to the Theorem [A] for Hartree type equation, we omit the proof.

Throughout this section, we put q = 4n/(2n - 7) and r = 8/7. Then the pair (q, r) is

admissible. To prove part (ii), we introduce the following Banach space:

where

IMIx'.-d) = Σ ( Iivβu|i2,oo,ι + ||vβii||g,r,/) + E ( II J^lkoo,/ + ll /^lkr,/).
H</ \β\<m

Let / = [T, oo), where T will be defined later. Using Holder's inequality, Lemma

2.1 and Lemma 2.3, we have

(38) E llve/,-(fi)ll<' < c\\ΰ\\*q E E iivβu f c | |ς
|α|=ί fc=l|α|=i

and

(39) E \\Jβί^}\\q'<C\\u\\l^ Σ
\β\=m k=l\β\=m

So we have, by Lemma 2.1 and Lemma 2.5,

(40) Σ livxikoo,, < Σ ||vα[/(-τκ(τ)|| +

Under the assumption of the theorem, Proposition 3.1 or Proposition 3.2 implies \\u(

< (7ί~7/4. Therefore, by using (38) and Holder's inequality, the second term in the

right of (40) is dominated by

N Γ foo , I1/*"'
x~t % ^ ^ >

k=l\a\<l

k=l\a\<l

a oo \ (4-7)/4 N

r-27/(4-7)dr Σ Σ ||VαUfc||,,rι/.

/ fc=l|α|<ί
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If 7 > 4/3, the integral in the right of (41) converges. Hence,

(42) £ ||Vαti, | | 2 l 0 0 | J < \\U(-T)Uj(T)\\Έl,
|α|</

We can estimate

Σ l|V%lk,,/, Σ μ % |koo,/
\a\<l \β\<m \β\<m

similarly. Therefore,

(43) ||tZ||χ..m(/) < C||tf (-T)iϊ(T)||E,,m

If we choose Γ sufficiently large so that C T < 4 - 3 ^ / 4 < 1/2, (43) implies

\\U\\Xl,m(I}<C\\U(-T)u(T)\\^m.

Therefore, ||i?||χi,m(R) is finite. Once this has been proved, by the similar argument,

for t > s > 0, we have

a t . (4-7)/4

r-27/(4-7)d r | | β | | x , , m ( R )

/

< C Λ(4-37)/4 _ s(4-37)/4>\ ̂

The right of (44) tends to zero as s,t tend to infinity. Thus the theorem has been

proved.

Corollary 4.1. Suppose that 4/3 < 7 < min(4,n), and l,m > 1 + [n/2]. Then

for any φe Σ Z ' m , the solution u(t) of (l)-(2) satisfies

(45) l

Proof. By the relation Jβu(i) = M(i)xβM(-t)u(t) and Lemma 2.1.
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