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Abstract

Due to the growing amount of data, a technique that can direct attention to the im-

portant features can be useful. Conventional feature selection solves this problem by

reducing the features number while Distance Metric Learning (DML) uses a distance

metric over objects to offer insights on important features. However, in the previous

work, feature selection and DML are performed separately and do not take advantage

of each other’s feedback. This research proposes a novel system that explores mutual

feature selection and DML feedback and offers feature selection via metric filtering in

the DML domain by combining Evolutionary Distance Metric Learning (EDML) and

Reinforcement Learning (RL). EDML is a type of DML that relies on an evolutionary

approach in its learning process to optimize its distance metric. RL is a learning tech-

nique used to derive a policy through a sequence of trials and errors and can explicitly

select features for DML problems. In the proposed method, features represented by

the elements of EDML distance transformation matrices are prioritized by a Differential

Evolution algorithm. Then a selection control strategy using RL is learned by inserting

and evaluating the prioritized elements. The proposed framework has the novelties of

performing RL-based metric filtering in DML as well as adopting a two-way informa-

tion exchange approach between RL and DML. In the first way, RL will learn and send

feedback that will affect the EDML metric creation. In the second way, the evolutionary

feature prioritizing of EDML is utilized by RL in its learning process. This directs atten-

tion to important portions of the input space in case the number of features is large and

reaches good solutions with the aim to reduce the number of features while maintaining

the clustering performance. A higher dimensional adaptation model is also explored to

handle high dimensional DML problems. In this adaptation, a function approximation

RL method creates the feature selection strategy to filter the metric while using a batch

system to save DML evaluation time in high-dimensional input spaces. Moreover, differ-

ent hybrid approaches are examined to explore different ways of information exchange.

Additionally, Diagonal and Full distance metrics are both explored as well as different

ways of formulating the RL policy. Results show a significant decrease in the number of

features while maintaining accuracy.
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Chapter 1

Introduction

1.1 Problem Overview

In real-world applications, massive amounts of data are created and need to be processed

daily; however, the continuous growth of these data presents a challenge in the IT world

regarding the ways to determine the important portions and select from such a large

volume in an efficient and timely manner. Figure 1.1 shows the rapid growth of data in

the last few years 1.

Figure 1.1: Rapid data growth

From the economic point of view, many organizations are unable to cope with the

amount of data present in their warehouses and external data not in their possession.

1https://towardsdatascience.com
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Because of the overload problem associated with them, a way to provide insights on the

important features of the data is vital for business agility.

That is why today’s data processing approaches and advances in computer science

aim to extract important information only. To overcome the problems associated with

data processing, machine learning, and data mining algorithms aim to process data

and extract valuable information. However, these tools may be inefficient for the ever-

growing amount of data over the last few decades. That is why data mining algorithms

try to offer insights and select efficiently the important data features from large volumes

of data.

Data processing algorithms in machine learning like clustering algorithms [1, 2] try

to find structure in unlabeled data by grouping similar objects together and form a

group. Forming these groups depends on what features the clustering algorithm uses

to define what is similar and what is not. Another example is classification algorithms,

classification is a predictive modeling problem where the model tries to predict the label

for a given example of input data using the previously gathered labeled data.

In clustering algorithms, selecting the right features to group the data is very impor-

tant as unimportant features increase the data processing time and can lead to worse

results. Therefore, a way to provide insights into the important features of the input

space plays an important role in clustering as it can lead to reducing the cost and time

complexity of the system.

For that reason, feature selection [3, 4] can help in this problem. Feature selection can

remove useless features from the original feature set and can alleviate high dimensionality

problems as it reduces the search space and complexity. Also, regularization [5] is an

effective approach in feature selection; for example, L1 regularization is based on the L1

norm as it can drive many parameters to zero and can avoid overfitting by reducing the

model complexity.

In addition to feature selection, the distance between data points is very important

and should be considered as it can give insights into the important features and can

offer potential in feature reduction. Distance Metric Learning (DML) [6] is a machine

learning technique that measures the distance between data points to capture important

information. In clustering and classification, the definition of distance between data

points greatly affects these tasks. Therefore, DML can help by learning a distance

metric over objects to capture the important relationships among features. The learned
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distance metric can be used to increase the accuracy of the classification and clustering

tasks. However, DML uses elements in the matrix simultaneously, for which it requires

access to all the features, including the unimportant ones in the learning process.

For that purpose input space filtering to reduce dimensionality is needed to DML.

Methods like feature selection before DML can help reduce the DML dimensionality by

reducing features. However, conventional feature selection processes neither put into

account the DML evaluation with respect to the changed features nor the relationship

between the selected features and their values in the metric. In addition to that, methods

like L1 regularization needs careful tuning of the hyper-parameter on each data set to

balance between feature selection and performance of the task.

1.2 Research Contribution

This research offers a new way for input space filtering to reduce dimensionality in DML

called distance metric filtering. The most difficult problem of distance metric filtering

is that simultaneous optimization of the elements selection and their values are needed

as well as combining the right number of features with the right distance metric.

To target these challenges in distance metric filtering, sequential feature selection

with Reinforcement Learning (RL) [7] is introduced. RL is a machine learning technique

that learns a policy according to feedback (reward) resulted from interaction with its

environment. This work proposes RL-based feature selection in DML as a distance

metric filtering technique and can include explicit feature selection to the DML process

by learning the important features for any data set just by using the DML evaluation

as feedback. This approach not only reduces the features but also selects the correct

number of features along with their specific values in the metric. This is why this

research has the potential to solve the challenges arising from distance metric filtering.

To provide a rich learning environment for RL in this research, Evolutionary Algo-

rithms (EA) are introduced to the DML domain. The advantage of using EA is having

multiple generations that can offer many ways of learning exchange for RL as well as

using the EA information as input in the RL learning process. Furthermore, this evolu-

tionary property is very unique in the DML domain as EAs are highly parallelizable and

provide solutions to problems that mathematical programming finds hard to formulate.

Other DML methods like Information-Theoretic Metric Learning (ITML) [8] can not

provide such a rich environment as they possess neither the necessary generations nor

3



the evolutionary process that enhances the learning exploration possibilities for RL.

In this work, we propose a novel hybrid optimization framework in the DML field

that combines a type of Evolutionary semi-supervised DML called Evolutionary Distance

Metric Learning (EDML) [9] and RL-based feature selection called Reinforced EDML

(R-EDML) [10, 11, 12]. EDML is a DML algorithm that adds EA in the DML process

to optimize its transformation matrix.

Since EDML prioritizes features simultaneously instead of filtering or selecting them,

RL can help in explicitly selecting and learning in a sequential manner not a simultaneous

one like EDML, and can learn how to select features based on the accuracy resulted from

EDML. This hybrid system can take advantage of the evolutionary feature weighting

process and the optimization of the distance transformation matrix in EDML along with

the RL decision making. This combination can direct attention to important portions

of the DML input space in case the number of features is large and an optimal solution

is hard to find, this allows for good sub-optimal solutions to be reached.

Another novelty is a mutual interaction and information exchange between RL and

Evolutionary Algorithm (EA) in metric learning. This enables EA to focus the RL

environment on the important features and enables RL to edit the input of EA before

creating the next generation according to the learning feedback. This approach not only

reduces the features but also selects the correct number of features along with specific

transformations determined by the EDML EA. This enables clustering while scaling

down dimensionality.

In real-world applications, the data is usually of high dimensional nature which

presents a challenge to DML as it struggles to solve high-dimensional problems. In

high-dimensional DML problems, high computational resources are not always available

as a solution. Therefore, to target DML problems in high dimensional settings, an

extension to R-EDML called High Dimensional Reinforced EDML (HDR-EDML) [13]

is proposed. This extension is an adaption to handle high dimensional distance metric

filtering problems where insights into the important features of high-dimensional input

spaces are necessary as it can reduce the data processing time. HDR-EDML uses a

function approximation RL learning process to create a feature selection control strategy

in high-dimensional input space to filter the metric as well as a batch system that can

reuse the evaluation obtained once.

Following this chapter, Chapter 2 discusses the literature regarding conventional

4



and RL-based feature selection. Chapter 3 describes the hybrid system base methods:

EDML and RL. Chapter 4 describes the original hybrid method R-EDML along with

its experimental results. Chapter 5 describes the extended hybrid method HDR-EDML

along with its experimental results. Finally, Chapter 6 concludes this research.
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Chapter 2

Base Methods

In this chapter, the proposed system’s base methods will be described. Evolutionary

Distance Metric Learning will be explained first, followed by Reinforcement Learning

and the techniques used in it.

2.1 Evolutionary Distance Metric Learning (EDML)

2.1.1 Types of Distance Metric Learning

A variety of DML methods have been proposed [6, 14, 15]. Some of the methods include

nearest neighbor classification [16, 17], image ranking [18, 19] and clustering algorithms

[1, 2, 20, 21] with the aim to improve the clustering and classification accuracy by

learning the distance metric from a data set. DML is divided into two learning techniques

[6]:

1. Unsupervised DML: This can achieve dimensionality reduction as it identifies ge-

ometric relationships in the Euclidean data space. Additionally, it can convert the

input space into a low dimensional space. Simultaneously, it can avoid losing data

point relationships.

2. Semi-supervised DML: This uses auxiliary information like class labels and pair-

wise constraints of must-links and cannot-links in its learning. It aims to optimize

a common metric transformation function by preserving similar classes and sepa-

rating different classes.

6



2.1.2 EDML Overview

Evolutionary Distance Metric Learning (EDML) [9] used in this research uses a distance

transformation matrix M to find the appropriate transformation of the input space where

the diagonal elements of M represent scaling factors applied to corresponding features.

EDML is a semi-supervised DML technique that uses an EA to optimize its M. EDML

relies on a clustering index with neighbor relation to evaluate inter- and intra-clusters

and to optimize M based on the Mahalanobis distance defined as:

d2i,j = (xi − xj)tM (xi − xj) (2.1.1)

where xi = (xi,1, . . . , xi,v)t is the ith data point that has v-dimensional feature vector,

and M is a v × v symmetric matrix. In EDML, matrix M is the variable to be op-

timized. This M comprises diagonal elements that represent the features weights and

non-diagonal elements that represent the correlation between different features. The M

optimization is conducted using self-adaptive differential evolution (jDE) algorithm [22].

Figure 2.1 describes the EDML life cycle which is summarized as follows:

1. jDE creates a generation of candidates which are the distance transformation ma-

trices Ms, for each candidate M the following happens:

(a) Using M, the input space is transformed employing Mahalanobis distance in

Equation 2.1.1.

(b) The cluster structure is created by any clustering technique.

(c) The clusters are evaluated with class labels and pairwise constraints using

the clustering index like pairwise F-measure [23].

(d) The evaluation result is sent back to jDE as the fitness for this candidate.

2. According to the fitness, jDE selects the individuals for the next generation using

a probability-based mutation and cross over and creates the next generation.

3. Steps 1) and 2) are repeated until a threshold is satisfied, this threshold can be a

certain number of generations or the desired accuracy margin. The result shows

the matrix with the best performance among all its peers in all generations.
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Figure 2.1: EDML life cycle

2.1.3 EDML Process

Figure 2.2 describes the process of the original EDML; the sequence of the events is top

to bottom and left to right.

1. First EDML creates a new generation using the evolutionary algorithm, for exam-

ple generation 1, this generation contains a population of distance transformation

matrices: M1, M2 and M3. This population of matrices is small just as an

example.

2. Each matrix contains 5 diagonal elements which represent scaling values to the

input space features; each element is represented by ”x”.

3. These elements are then used to transform the input space and a clustering oper-

ation is done and evaluated.

4. According to this evaluation, the evolutionary algorithm will either mutate the

8



current generation to create generation 2 or stop generating if a certain threshold

is satisfied.

5. If the threshold is not satisfied after the evaluation, cross over and mutation will

happen to generation 1 and generation 2 will be created, the red and orange

elements are a simple representation of the changed values in the new generation

after the evolutionary algorithm process is done.

6. This process will continue until a fixed number of generations are created or the

threshold is satisfied. In this research, creating a generation, then doing clustering,

evaluation, and then mutation to get the next generation is referred to as the

EDML phase.

Figure 2.2: EDML process

2.2 Reinforcement Learning (RL)

2.2.1 RL Overview

Reinforcement Learning (RL) [7] is a learning technique that focuses on the interaction

between an agent and the surrounding world. RL enhances the agent’s behavior over

time by learning from trials and errors. The agent produces an output that represents

an action of the state of the world the agent is in. The state here represents the
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virtual representation of the world at a specific time. Moreover, the world interacts

with the agent’s actions by giving a scalar value called a reward, informing the agent

in this state how well its action is. The goal of the agent is to maximize the expected

discounted cumulative reward. Reinforcement Learning is commonly used for control

tasks in robotics, scheduling problems, or gameplay but not usually with data mining

which this research is exploring.

One of the strongest points of RL is that a model of the environment is unnecessary.

Through the agent’s life span, the agent can learn a policy to follow through interaction

and a reward system. The policy defines the agent’s behavior at any given state. It is

a function that maps any state of the environment with an action to be performed by

the RL agent.

An episode is a sequence of interactions between the agent and the environment

from the start state to the terminal state. The agent chooses an action using the policy

derived from the value function, performs this action, and observes the reward of the

environment. Afterward, the agent updates its estimate of the value function associated

with the policy. Then, the optimal policy is inferred by choosing the highest state-action

value. As for the learning process, RL can rely on tabular methods in finite input spaces

or function approximation methods in huge or infinite spaces.

Figure 2.3 describes the RL life cycle: at each time step t, The agent executes

an action At, reaches a state, and then receives an observation Ot and a reward Rt,

according to these two the agent will execute an action, goes to another state and the

process continues until the agent learns the optimal policy for the environment it is in.
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Figure 2.3: Reinforcement Learning life cycle

RL algorithms are divided into two types using the agent’s information:

1. Model-based: where the agent creates a model of the environment and finds the

optimal policy by performing a planning algorithm on the model.

2. Model-free: where the agent does not know the model of the environment. Re-

gardless, the agent learns a policy by trial and error through a series of interactions

with the environment.

2.2.2 RL as an MDP

Reinforcement Learning is based on Markov Decision Processes (MDP). Markov Decision

Processes describe a fully observable environment, and every state in this environment

has the Markov property, which means that any state can completely describe the history

of all actions leading to this state. In other words, the state can be described as a

sufficient statistic for the future.

Reinforcement Learning model can be described as an MDP model which has these

main 4 elements:
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1. S: a set of states.

2. A: a set of actions.

3. T (s, a, s′): a transition function; the probability of transition from state s to state

s′ by action a.

4. R(s, a): an expected reward of performing action a in state s.

2.2.3 Q-learning

Q-learning is a model-free RL technique that aims to maximize a value function Q. In

Q-learning, the optimal policy is derived from the highest Q-value in the current state.

This is carried out by iteratively updating the Q-value function.

Q-learning Process

In Q-learning the agent indulges in a sequence of state/action pairs, at the tth step, the

agent:

1. Observes the current state s.

2. Performs an action a.

3. Observes subsequent state transition T (s, a, s′).

4. Receives a reward R(s, a).

This process is done for a number of episodes to optimize the Q-value function and

to reach the optimal policy, described by the following equation:

Q (s, a)← Q (s, a) + α
[
r + γmaxa′Q

(
s
′
, a

′
)
−Q (s, a)

]
(2.2.1)

where s represents the state; a represents the action in state s; r represents the reward

after taking an action in a state; γ (0 ≤ γ < 1) represents the discount factor, which

determines how the sum of discounted rewards is calculated. Since future rewards are

worth less than immediate rewards, the discount factor controls how future rewards are

less than the immediate rewards. Finally, α (0 < α ≤ 1) represents the learning rate,

which controls the learning speed by controlling how the Q-values are updated. The

low value refers to a slow update, which refers to slow learning, whereas the high value

shows that learning can occur quickly.
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2.2.4 Least-Squares Policy Iteration (LSPI)

LSPI Overview

Least-Squares Policy Iteration (LSPI) [24] uses a process called policy iteration to opti-

mize its policy. Policy Iteration is an iterative process that uses a tabular representation

to discover the optimal policy. It does that by generating a sequence of improving poli-

cies by following two steps: policy evaluation and policy improvement. The iteration

converges to the optimal policy when there is no change in the policy evaluation process.

LSPI is an off-policy RL algorithm that combines value-function linear approxima-

tion and approximate policy iteration which uses a parametric representation to approx-

imate the value function. LSPI relies on samples of experiences (tuples) to evaluate the

policy. The data samples are in the form of state, action, reward, next state (s, a, r, s′)

known as SARS tuples. These data samples can be collected in any manner and reused

efficiently by LSPI to evaluate the generated policies in all iterations and learn decision

policies from them. Compared to other gradient descent methods [25, 26, 27], LSPI is

sample efficient as it can reuse the same batch of experience samples in its policy evalua-

tion and has no parameters to tune. The state-action value function Q̂ is approximated

using a linear architecture:

Q̂ (s, a;w) =
k∑

i=1

φi (s, a)wi (2.2.2)

where φ is the feature vector, containing k features, describing the state-action pair.

The weight vector w describes the weight of each element in the feature vector. The

value function is the dot product of the feature vector and weight vector.

A greedy deterministic policy Π can be computed at any given state by the maxi-

mization of the approximate values overall actions in that state.

Π (s) = argmaxaQ̂ (s, a) (2.2.3)

LSPI Process

LSPI process in Figure 2.4 can be described as follows:

1. Data samples (s, a, r, s′) are collected in any manner to cover the state-action

space.

2. An initial random policy Π (s) is created.
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3. The collected data samples are used to approximate the value function of that

policy (policy evaluation) using Equation 2.2.2 and update w by solving the linear

system.

4. The policy is updated by choosing actions with the highest value functions (policy

improvement) using Equation 2.2.3.

5. This process (steps 3 and 4) repeats for a number of iterations until the weights w

of the approximate value function in the previous iteration does not change much

from the weights w
′

in the current iteration according to a termination factor e, (

|w − w′ | < e).

Figure 2.4: LSPI life cycle
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Chapter 3

Literature Review

3.1 Conventional Feature Selection

Feature selection methods are categorized into 3 main classes Filter, Wrapper and Em-

bedded [4]:

1. Filter class: Filter methods use a variable ranking approach for variable selection.

They depend on general features like variable correlation for prediction or classi-

fication. This is done by suppressing the least interesting variables and selecting

the rest for the prediction or classification task. The advantage of this method is

time-efficient computations. The disadvantage of this method is that Filter meth-

ods ignore the variables relationships and this usually leads to selecting the same

variables. Examples of Filter methods are:

(a) Fisher method [28] which calculates the feature score as the ratio of interclass

separation and variance, evaluates the features independently and collects the

top-ranked ones as the final selected features.

(b) RELIEF algorithm [29] which is a supervised approach that ranks the features

using a relevance criterion and according to a threshold, it selects a subset of

features.

2. Wrapper class: Unlike the previous class, Wrapper methods keep the relations

between variables, they do so by choosing a subset of variables instead of individ-

uals and this facilitates the detection of possible relations between these variables.

However, they are time inefficient and suffer from the risk of overfitting if the

number of observations is low. When a greedy search is used, they fail to obtain
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optimal solutions. Examples of Wrapper methods are:

(a) Genetic Algorithm (GA) [30] which can be used to find the features subset,

wherein the selected features can be represented by the chromosome bits.

(b) Particle Swarm Optimization (PSO) [31] which is an evolutionary technique

that is based on swarm intelligence where each particle in the swarm can

represent a solution and PSO can search for the optimal one by updating the

velocity and the position of each particle.

3. Embedded class: The last class is a combination of the previous classes, so it

tries to take advantage of the filter method variable selection process and does the

feature selection and classification tasks simultaneously. An example of Embedded

methods is SVM-RFE [32] which is a Suppor Vector Machine (SVM) [33] based

feature selection. SVM-RFE performs a sequential feature selection in a backward

elimination manner. Using a linear SVM, the features with high scores are the

ones that separate the samples.

Regularization [5] is another effective approach in feature selection; for example, L1

regularization is based on the L1 norm as it can drive many parameters to zero and can

avoid overfitting by reducing the model complexity. Given a model, we define the loss

function L as the error of the model. This error is the difference between the true value

y and the predicted value ŷ:

L = Error(y, ŷ) (3.1.1)

By adding the L1 regularization term to the calculation of the loss function, the model

can avoid overfitting by adding constraints in L. Given n as the number of model

variables, w as their weights, and λ as the regularization parameter that needs to be

tuned, the loss function with L1 regularization is defined as:

L = Error(y, ŷ) + λ

n∑
i=1

|wi| (3.1.2)

3.2 Reinforcement Learning based Feature Selection

RL has been successful when applied to feature selection. RL is chosen because of its

ability to learn a strategy attentive towards the important parts of the data set which
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can be useful for large data sets. RL-based feature selection transforms the feature

selection process from a pre-processing step to an online sequential feature selection

process. RL first selects the feature and depending on the current state of the machine

learning model it interacts with, RL will select another feature or stop the selection

process. This not only leads to feature reduction but also can speed up the learning

process. The RL main applications in feature selection are discussed below:

Dulac-Arnold et al.[34] proposed an approach that used policy iteration approxima-

tion in classification, where the policy was redefined at each step until it converged.

These authors converted classification into a sequential process where RL selected the

features and classified the input into one of the available classes. In that way, classifi-

cation and feature selection were done by a single component.

Norouzi et al.[35] suggested an RL-based attention control strategy for image recog-

nition, in which a sequential block-based approach was used to increase the correct

classification rate of partially occluded faces. In this approach, the faces were parti-

tioned into blocks and their importance in the classification task was learned by an RL

agent who learned the exact number and order of blocks needed for correct classifica-

tion. This approach could reduce the number of features needed for image recognition

especially if the image was incomplete or impartial.

T. Rückstieß [36] suggested RL-based sequential online feature selection in supervised

learning domains to convert classification into a sequential decision process. The ap-

proach sequentially fed features to the classifier until a correct classification was achieved.

This helped reduce the number of features in the classification process.

Hachiya et al. [37] proposed a new framework that used filter-type feature selection

for RL. They used the conditional mutual information as feature selection to evaluate

the independence between return and state-feature sequences. The conditional mutual

information was approximated by a least-squares method.

Janisch et al. [38] tackled the problem where feature collection was costly with the

goal to optimize a trade-off between the expected classification error and the feature

cost. They defined the problem as a sequential decision-making problem and used

Deep Q-learning [39] where individual actions are either requesting the feature values or

terminating the episode by providing a classification decision. They used neural networks

for value function approximations and showed that their approach outperformed the

most recent methods specifically designed for the costly features classification.
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To the best of our knowledge, none of the past RL-based feature selection researchers

have tried to simultaneously optimize the DML elements selection and their values nor

have used RL as a metric filtering technique in DML.

This research in comparison explores this problem in clustering and it does not just

select the features; it selects the correct number of features along with specific scaling

factors for each feature determined by the EDML EA in the transformation metric, thus

filtering the distance metric.

3.3 Feature Selection in High Dimensional Problems

In real-world applications, data is usually of high dimensional nature in which selecting

relevant information is an important task. In high-dimensional DML problems, the

input space requires data processing resources with high computational power. Previous

methods have been applied in the high-dimensional metric learning domain, where they

handled high-dimensional data by using parallel computing [40], or reducing the distance

metric into a low-rank matrix [41, 42], or adopting sparse learning by regularization [43].

Other methods have applied feature selection along with DML as discussed below:

Nguyen et al. [44] introduced an online learning algorithm using sparse coding for

feature selection in high-dimensional spaces and applied it to simulated and real robotics

domains. They created an MDP formulation that incorporates a principled way to

factorize the state space compactly while capturing the comprehensive transition and

reward dynamics information. In their work, they separated the state-attributes that

defined the state from the informative state-features and applied feature selection on a

large number of state features to capture the transition dynamics, while maintaining a

compact state space.

Nezhad et al. [45] proposed a feature selection method based on deep learning archi-

tecture for high-dimensional clinical data and applied it to a specific medical problem to

decrease the risk of heart disease. They used individual clinical data with many features

and stacked auto-encoders for feature representation in higher-level abstraction. This

approach applied deep learning to identify personalized features to control and predict

the amount of left ventricular mass indexed (LVMI). This helped to identify significant

risk factors affecting LVMI to body surface area.

C. Lian et al. [46] constructed a low-dimensional transformation matrix for dimen-

sionality reduction of high-dimensional settings. They used L2,1-norm sparsity regular-
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ization of this low-dimensional transformation matrix to act as feature selection. To

control the feature selection process, they relied on a hyper-parameter that controls this

regularization and limits the influence of unreliable features.

Similarly, G. Kunapuli et al. [47] used a trace-norm, like the L1 norm to introduce

sparsity into the eigenvalues of the distance metric, thus performing feature selection

along with metric learning. They relied on a hyper-parameter which controls the sparsity

of the learned metric for input-space feature selection.

Compared to black-box methods like neural networks, this research uses LSPI as

the RL method for feature selection in high-dimensional problems. LSPI is easy to

implement and use, and its analysis and debugging are fairly transparent. Furthermore,

LSPI can reuse samples previously obtained thus speeding up the learning process.

As for L1 regularization methods, they need careful tuning of the hyper-parameter

on each data set to balance between feature selection and performance of the task. If the

hyper-parameter is too small it may fail to control the influence of unreliable features

and if too big, it can remove important features. In comparison, our approach can learn

the important features for any data set just by using the DML evaluation as feedback.
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Chapter 4

Reinforcement Learning based

Dimensional Metric Filtering

(R-EDML)

4.1 Overview

The main goal of this research is to develop a technique that can direct attention to

specific portions of data by creating a feature selection control strategy that aims to

optimize the input space by reducing the number of used elements (features) in M of

Equation 2.1.1 without affecting the accuracy.

To achieve this goal, a novel approach is tested by creating a new hybrid system

called Reinforced EDML (R-EDML) [10, 11, 12] with two main components as shown

in Figure 4.1:

1. R comes from Reinforcement Learning which is used as a control strategy model.

2. EDML comes from Evolutionary Distance Metric Learning which is a Distance

Metric Learning technique and in this research, EDML is used in clustering.
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Figure 4.1: R-EDML components

In this hybrid system, it is important to use RL and EDML, EDML optimization

mechanism combined with the RL decision-making process can create new ways of learn-

ing.

1. What EDML can achieve with RL:

(a) EDML has its own feature prioritizing process which can be taken advantage

of and used as a prefiltering process before RL-based metric filtering.

(b) EDML has multiple generations which allow RL to explore in multiple envi-

ronments and exchange feedback.

(c) EDML has its EA which can be edited using RL to explore different variations

in the evolutionary process.

2. What RL can achieve with EDML:

(a) RL uses the EDML generation and matrices as an environment, it learns

according to the DML evaluation which is based on the metric values so the

feature selection process is related to specific metric values to these features.

(b) The RL space can be changed according to the EA, so the feature selection

process can be focused on the output of the EA by customizing the RL space.

Without using RL or EDML, RL and EDML unique feedback exchange will not

happen and none of these advantages can be achieved.

4.2 Proposed Method

Since the Evolutionary Algorithm (EA) in EDML constantly mutates and changes the

elements inside the distance matrices for every generation it creates. The approach
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is to merge the RL sequential decision process in the EDML evolutionary generation

process, taking place by inserting the elements in a sequential manner in the matrices

and by learning the correct number of elements for any given EDML generation. This

information is either used to change the generation itself or just record the data for

later comparisons. RL compared to other feature selection algorithms is suited best for

EDML as RL can learn a feature selection control strategy, unrequired for a model of

the environment, tailored to each EDML generation.

To create the feature selection control strategy to filter the metric, R-EDML uses a

tabular RL method called Q-learning (described in Section 2.2.3). Q-learning is chosen

for its ability to learn an optimal solution given enough exploration which is not a

problem in non-high-dimensional settings.

In this study, we focus on two types of EDML matrices: One is diagonal EDML where

R-EDML will select from only the diagonal elements as they represent the features. The

second is the Full Matrix EDML where R-EDML selects from both diagonal and non-

diagonal elements to use the full power of EDML matrices transformations.

Following this, the R-EDML life cycle of this model is described, then R-EDML

modeling the problem as an MDP is introduced as RL is based on Markov Decision

Processes (MDP). Finally, how RL merges with the original EDML process described

in Figure 2.2 is shown.

4.2.1 R-EDML Life Cycle

R-EDML uses the EDML generation as the RL environment. The overall R-EDML life

cycle is divided into two phases:

1. The EDML phase

2. The RL phase

Both phases run after each other in a loop for a specific number of generations.

The EDML phase prepares the generation for the RL phase, whereas the RL phase

runs between steps 1) and 2) in the EDML cycle (described in Section 2.1.2) where it

learns which subset of features to be used, then performs steps a) through d) in the

EDML cycle. RL then gives feedback to the EDML phase to create the new generation.

For every iteration, before the RL phase starts, the highest EDML F-measure so far

(described in Section 4.3.5) will be recorded to be used in the satisfactory condition
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that RL uses in its learning process. The detailed steps are as follows:

1. EDML phase:

EDML creates a generation G of candidates then evaluates them using the K-

means clustering algorithm and selects the elite results for the new generation

using an EA. This generation’s population is a set of distance matrices M’s re-

sponsible for the data set transformation (The diagonal elements of M’s correspond

to the features in the data set, whereas non-diagonal elements correspond to the

correlation between different features).

2. RL phase:

(a) Elements of each M are stored for future reference. In the case of Diagonal

R-EDML, the diagonal elements for each M are stored. In the case of Full

Matrix R-EDML, both the diagonal and non-diagonal elements are stored.

(b) All the elements in all Ms for this generation are reset to zero.

(c) Several RL episodes will start, in each episode:

i. RL learns which elements to select by sequentially inserting the elements

in Ms and using the clustering evaluation with each insertion as learning

feedback to know the element’s importance.

ii. According to this evaluation, RL either stops inserting new elements or

continues. The termination of each episode depends on either achieving

the satisfactory condition after evaluation or inserting all the elements.

(d) From these episodes, RL learns which subset of elements Me give the best

accuracy Ma for the best M in G.

(e) The selected elements will either be saved for later comparisons or will be fed

back to EDML and used in creating the next generation.

(f) The feedback (important features learned) from the RL phase to the EDML

phase is constructed in two ways: Change EDML and No Change EDML.

i. Change EDML: the current generation is changed before being passed

to the EA, this change is:

A. Resetting the non selected elements to zero or decreasing their value

by a certain fixed ratio.
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B. Setting the selected elements to their original values.

ii. No Change EDML: the result is not fed to EDML, and all the elements

are returned to their original values. EA will continue independently from

RL.

EDML phase will use EA to create a new generation and RL will start learning a

subset of elements for the new generation. The cycle repeats for n generations. Given

the number of selected elements of the best M in all generations so far (M∗) in terms

of fewest features and close EDML accuracy EDMLa up to a margin β (small positive

value) as M∗e. The selection of the new M∗ satisfies both these conditions [ (EDMLa

−Ma) ≤ β ] and [Me < M∗e]. After n generations, M∗ is the R-EDML process output.

Figure 4.2 shows an example of Diagonal R-EDML life cycle with each generation

having a population of 3 matrices M1, M2 and M3, each with different color (green,

red and blue) to uniquely distinguish their 3 diagonal elements (features) . Grey cells

represent non diagonal elements while white cells represent empty value cells., whereas

Figure 4.3 shows the R-EDML RL phase pseudo-code.

Figure 4.2: R-EDML life cycle (Diagonal R-EDML)
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Figure 4.3: R-EDML RL phase pseudo-code

4.2.2 R-EDML Model as an MDP

RL is based on MDP processes characterized by the Markov property. In MDP, ev-

ery Markov state captures all the relevant information from history and independently

describes the sequence of states leading to this state in the environment. Therefore, R-

EDML models the problem as an MDP, MDP modeling has the following components:

1. States

2. Actions

3. State Transition function

4. Reward function

5. Terminal function

As for R-EDML, the following concepts are described:

1. Satisfactory condition

2. Policy

The states definition (s) is the current selected elements in the EDML transfor-

mation matrices Ms. The state is described by saving the indices of these elements in

Ms.
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The actions definition (a) is selecting the index of an element in Ms. Therefore, in

diagonal EDML, selecting a feature is represented by inserting the values of the selected

diagonal element index to Ms. In this process, an already selected element cannot be

selected again.

The state transition function definition [T (s, a, s′)] is described as follows: from

a state s with certain elements in the matrices, the agent will take an action a by selecting

an unselected element; then, this element is inserted in the generation’s matrices and

a new state s′ is created and evaluated according to the newly inserted element. The

environment in this model is deterministic so this is a deterministic transition, i.e.,

T (s, a, s′) = 1 for the new state s′ under the state-action pair (s, a).

The final goal of the agent is the maximization of the expected reward, in other

words, maintaining the EDML accuracy with the least number of actions (elements)

possible, the reward function and terminal functions are constructed in the following

manner to achieve that. The environment in this model is deterministic which makes

the expected reward deterministic as well.

The reward function definition [R (s, a)] is described as follows: For every ac-

tion, a small negative reward called action punishment (AP ) is given to the agent, this

influences the agent’s behavior to use as few elements as possible while maintaining

accuracy. A positive reward called satisfactory reward (SR) is given to the agent if the

satisfactory condition is met and this terminates the episode. The total reward after an

episode finishes is described as:

Rtotal = Eselected ×AP + SR (4.2.1)

where Eselected is the number of the selected elements after the episode is finished. While

the episode is running, given the satisfactory condition as θ, a set of selected elements

is denoted as B and the currently selected element after the tth generations of EDML

is denoted as mt; the value assignments of AP and SR are described as:

SR =

10, if θ is satisfied

0, otherwise

AP =

0, if mt∈B

−1, otherwise
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The terminal function definition is described as follows: The episode in R-

EDML is terminated if the satisfactory condition (θ) is met or if all the elements in M

are selected.

The satisfactory condition (θ) is the criteria by which the reward and terminal

functions judge how good or bad a certain state is. This condition focuses on reducing

the number of features while obtaining an accuracy close to the EDML accuracy up to

a certain range. Given the F-measure (described in Section 4.3.5) after performing an

action as F1a, the condition is satisfied if these conditions are met:

1. The F-measure (F1a) is close to a fixed margin φ as compared with the best EDML

accuracy [ (F1a − Best Accuracy) ≥-φ]. This ensures that F1a can have any value

higher than the best EDML accuracy but limits the best EDML accuracy when it

is higher than F1a. This means the Best accuracy will not exceed φ if it is higher

than F1a, whereas F1a will exceed φ if is higher than the Best accuracy.

2. The number of elements of F1a is equal to or less than the fewest elements recorded

to achieve the best accuracy.

Figure 4.4 shows a detailed description of the current satisfactory condition
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Figure 4.4: R-EDML satisfactory condition

After both conditions are met, the values of the current best EDML accuracy and the

fewest elements recorded are updated according to F1a to improve the agent performance

by imposing a harder goal in the next phases. The comparison in the satisfactory

condition shows our acceptance of the slight degradation as well as the improvement of

evaluation score within the accepted margin as long as the number of features is reduced.

The policy (Π), is applied in two ways:

1. The agent learns a new policy for each generation (policy separation) based on

the assumption that EDML EA mutates and changes the elements’ values after

each generation, so a new policy tailored for each generation is tested.

2. A unified policy across all generations is used that is continuously updated for all
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generations (policy unification).

The policy used in this research is an Epsilon greedy policy, which allows the agent

to be greedy for rewards with a probability of 1 − ε and also lets the agent explore as

well with a probability of ε. This greedy exploration method is adopted because it is

believed that an optimal solution is not guaranteed if the number of features is large.

Given state s, action a, A (s) as the set of available actions in s where a ∈ A (s) and

A∗ as the action with the highest value function where A∗ ← argmaxaQ (s, a). Epsilon

greedy policy Π can be described as follows:

Π (a|s) =

1− ε+ ε/|A (s) |, if a = A∗

ε/|A (s) |, if a 6= A∗

An example of R-EDML’s state action space in a generation with 3 matrices is

described in Figure 4.5. In this example, there are 4 states s1, s2, s3 and s4, every

state represents a generation with a population of 3 matrices m1, m2 and m3 and each

matrix has the indices of 3 elements e1, e2, and e3. From each state s, different numbers

of possible states can be created according to which element is selected to be inserted.

With each action, a small negative action punishment (AP-) is given to the agent and a

big satisfactory reward is given (SR+) if the satisfactory condition is met. The episode

is terminated if the satisfactory condition is met or all elements are selected.
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Figure 4.5: R-EDML state action space

4.2.3 RL Merge with EDML

Figure 4.6 shows how RL merges with the original process of EDML (described in

Section 2.1.3), the sequence of the events is left to right, top to bottom.

1- RL will be inserted between EDML generations, so after each EDML phase (which

is creating a generation, then doing clustering, evaluation, and then mutation to get the

next generation), the RL will start.

2- Each generation in this figure has 3 distance transform matrices: M1, M2 and

M3 and the diagonal elements are denoted by “x” and the red elements are an indication

of the changed elements due to the evolutionary process of EDML.

3- First thing before RL start is that the diagonal elements will be reset, which is

denoted by empty cells.

4- RL will start the learning episodes, for example in this figure only 2 episodes will

be run. In each episode, RL will sequentially insert the original diagonal elements and

evaluate, and according to the evaluation, either a new element will be added or not.

5- After all the episodes finish, Q-learning will learn a policy (from Equation 2.2.1)

which will suggest a number of elements for this generation, in this example the policy
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suggested elements whose indices are 2 and 4. In this research, this phase is the RL

phase which is taking an EDML generation, performing learning episodes, and learning.

Figure 4.6: RL merge with EDML process

4.3 Experiments and Results

4.3.1 Main Goal

The goal of this section is to test the effect of the learned selection control strategy on the

EDML transformation matrices. F-measure (F1 score) described in Section 4.3.5 is used

for clustering evaluation in the following experiments. To examine the different ways of

combining EDML and RL in this hybrid system, a series of variations, approaches, and

experiments are tested on different real data sets. K-means is the clustering algorithm

used in this study using a K-nearest neighbor graph of cluster centroids.

The results of R-EDML are compared with the embedded feature weighting con-

ducted by EDML, which prioritizes the features, and also with the EDML accuracy

[10] as well as conventional feature selection [11] to compare R-EDML with the origi-

nal EDML as well as feature selection applied on EDML in terms of features number

and accuracy. Moreover, policy separation is applied to all tests apart from the policy

unification test, whereas Diagonal R-EDML is applied to all tests apart from the Full

Matrix R-EDML which is compared to Information-Theoretic Metric Learning (ITML)

[8].
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4.3.2 Randomness Handling

Both RL and EDML have a random factor in their processes. In RL, the Epsilon greedy

policy has a random factor for the exploration process, as for EDML, the evolutionary

algorithm has a random factor in the mutation and cross over processes that change

and optimize the values by creating new generations. In addition to that, EDML starts

with an initial random population. To handle this randomness and to limit its effect

and ensure a unified start for all tests, two approaches are adopted:

1. Instead of using the initial randomly created generation that EDML creates, a

unified initial population is created with fixed random values to ensure the same

starting point for all tests. This fixed initial generation does not affect the evolu-

tionary process in any way.

2. Each approach for each test will be run multiple times and the average result is

taken.

4.3.3 R-EDML Approaches

Since RL has not been used with EDML before, a multitude of approaches are tested and

compared to examine different ways of information exchange between RL and EDML,

the approaches are as follows and will be described each in details:

1. For each generation / N generations

2. Change / No Change EDML

3. Resettable / Appendable learning

4. learn from Policy (P) / Highest Accuracy (HA)

5. Frequent actions feature

6. Merge technique

Approaches Description

1. For each generation / N generations:

Since the RL phase runs on matrices, it can run any time independent from the

EDML phase. Thus, we view the effect of how often the RL phase runs.
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(a) For each generation: Run RL for each EDML generation. Each EDML phase

creates 1 generation and after the EDML phase finishes, RL episodes will run

(RL phase).

(b) For every N generations: Run RL each time EDML finishes N generations.

Each EDML phase creates N generations and after the EDML phase finishes,

RL episodes will run (RL phase).

Figure 4.7 describes For each generation approach with each generation having a

population of 3 matrices and each has 5 diagonal elements, after each EDML phase

(1 generation), the RL phase will be run. The purpose of this approach is to check

how RL can learn with each generation EDML creates. Figure 4.8 describes For

every N generations approach with each generation having a population of 3 ma-

trices and each has 5 diagonal elements, after each EDML phase (N generations),

the RL phase will be run. The purpose of this approach is to check how RL can

learn not with each generation EDML creates but after a batch of generations.

Figure 4.7: For each generation approach
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Figure 4.8: For every N generations approach

2. Change / No Change EDML:

In this hybrid system, we test if the RL phase can offer better results by affecting

the EDML phase or by running as an independent post process. It is believed in

the early stages of EDML generations not to Change EDML as the generations

are immature. The EDML should be changed after the generations are matured

and are close to convergence.

(a) Change EDML:

This approach is done after the RL phase finishes (after all episodes end

and the learning process is finished) and before passing the generation to the

EDML evolution algorithm. In this approach, the generation that RL has

learned for changes according to this learning process, meaning all elements

will be reset to zero except the learned elements suggested by the learning

process, they will return to their original values. The purpose of this approach

is to let RL affect the EDML generation according to what it learns so that

the learned elements will have more priority and effect in the evolutionary

algorithm than the non-learned elements in the next EDML phase. In this

research, two ways of changing EDML are tested:

i. Change EDML

After the RL phase ends, the learned elements will return to their orig-

inal values mt
ii, while the non-learned elements will be reset then the
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generation is passed to the EDML phase.

ii. Change EDML 2

After RL phase ends, the learned elements will return to their original

values mt
ii, while the non learned elements will have an 80 % value re-

duction instead of being reset (mt
ii ← mt

ii × 0.2) then the generation

is passed to the EDML phase. The reason behind this is that lesser

elements weights will have a smaller effect in the next generation

Figure 4.9 shows the process of both Change EDML and Change EDML 2

in the Diagonal case with the same example of generation (population of 3

matrices and 5 elements each).

In this example after generation 2 is created, it undergoes a reset operation

inside the RL phase for each episode and after the RL phase ends, in this

example it learns that elements whose indices are 2 and 4 are sufficient for this

generation. Change EDML approach will return only the learned elements

back to their original values (denoted by x) and reset the rest (denoted by

empty cells). Change EDML 2 approach will return only the learned elements

back to their original values (denoted by x) and reduce the rest by a certain

value (denoted by small red x).

Figure 4.9: Diagonal Change EDML approaches

(b) No Change EDML:

This approach is done after the RL phase finishes (after all episodes end
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and the learning process is finished) and before passing the generation to the

EDML evolution algorithm. In this approach, the generation that RL has

learned for returns to its initial state, meaning all elements will return to

their original values (instead of being reset like at the start of the RL phase).

The purpose of this approach is to run RL in parallel and independently from

EDML and not let it affect EDML generations, instead just act as an observer

that records the results and picks the best after learning.

Figure 4.10 shows the process of No change EDML in Diagonal case with the

same example of generation (population of 3 matrices and 5 elements each).

In this example after generation 2 is created, it undergoes a reset operation

inside the RL phase for each episode and after the RL phase ends, in this

example it learns that elements whose indices are 2 and 4 are sufficient for this

generation. Regardless of this suggestion, the No change EDML approach will

return generation 2 back to its initial state and pass it to the EDML phase

to create the next generation while the policy result will be saved for later

comparisons.

Figure 4.10: Diagonal No Change EDML approach

3. Resettable / Appendable learning:

These approaches test whether the next RL phase will perform better if affected

by the previous RL phases. Resettable learning explores RL phases disconnected
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from one another, whereas Appendable learning connects RL phases.

(a) Resettable learning:

This approach is done before the RL phase start (before each episode start).

Since as described before in the process methodology of R-EDML, before

each episode, the generation matrices are reset from their elements to zero

(Section 4.2.1, RL phase step b) to allow RL to sequentially insert them and

learn. In this approach, this resettable state of the generation before the start

of each episode will not be changed or affected by what was learned before

in the previous RL phases. The purpose of this approach is to investigate

every generation independently regardless of what the previous RL phase in

the previous generation has learned. The goal is to see if this approach can

give any insights or advantages if each learning process was independent of

the other.

Figure 4.11 describes this approach in the diagonal case, wherein each learning

process, different elements are learned (2 and 4 in first RL phase, 0 and 3

in second RL phase, and so on) and since each RL phase does not affect the

next RL phase, the generation will always be reset of its elements before each

episode of each RL phase.

Figure 4.11: Diagonal Resettable learning approach

(b) Appendable learning:

This approach is done before the RL phase start (before each episode start).

In this approach, the initial resettable state of the generation before the
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start of each episode will be changed according to what was learned in the

previous RL phases. So before every episode starts, instead of resetting all

elements, only the elements that were not learned in the previous RL phases

will be reset, and the learned elements will stay unchanged. This means

that the initial generation state before each episode will not be resettable.

In this approach, every RL phase appends its learned elements to the initial

state of the next RL phase. This appending cycle will continue until the

appended elements are equal to the total number of elements. In that case,

the appended elements list will be emptied and the appending cycle starts

again. The purpose of this approach is to investigate how the RL phases can

benefit one another. The goal is to see if this approach can give any insights

or advantages if each learning process was depending on the other.

Figure 4.12 describes this approach in the diagonal case, wherein each RL

phase, the learned elements are appended to the initial state of the next RL

phase and this appending process continues until all the elements are added

in the initial state, then it is reset and the appending cycle starts again.

Figure 4.12: Diagonal Appendable learning approach

4. Learn from Policy (P) / Highest Accuracy (HA):

Two different RL phase outputs are explored; one uses the policy learned, and the

second uses the highest result in the phase. The idea behind this is to check two

types of feedback to the EDML phase, one from the policy and the other from the

episode with the best result.

(a) Learn from Policy (P):
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For the current generation, after RL finishes its episodes, the learned elements

are chosen by the RL policy described in Section 4.2.2. For the current

generation, after RL finishes its episodes, the learned elements that can be

used in the next EDML phase will be the ones learned from the RL policy.

The purpose of this approach is to use the original policy of RL in R-EDML.

Figure 4.13 shows this approach, where the policy learned that elements 2

and 4 are enough for this generation, and these elements will be fed to the

next EDML phase.

Figure 4.13: Learn from Policy

(b) Learn from Highest Accuracy (HA):

The other type of learning that is explored in the RL phase is learning from

Highest Accuracy, which means for the current generation after the RL fin-

ishes its episodes, the learned elements that can be used in the next EDML

phase will be the elements of the best accuracy episode. Given Mb as the

matrix of the best episode, k as the number of episodes, Fe as a set of all the

F-measures from all the current RL phase episodes and ak as the F-measure

for Mk(k = 1, ..., n), Mb is defined as:

Mb = argmaxMk
{ak|ak∈Fe}

The purpose of this approach is to explore another way of choosing the el-

ements, not according to policy, but according to the best episode result in

this RL phase.

Figure 4.14 shows this approach, where the policy is not used and instead
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the best episode result was elements 0 and 3, and these elements will be fed

to the next EDML phase.

Figure 4.14: Learn from Highest Accuracy

5. Frequent Items approach:

This approach is tested to take advantage of the elements frequently chosen in

each RL phase. This feature is implemented to test whether better results will

be achieved if these elements are fixed in the next phases. This feature was only

tested with the Resettable option since the Appendable option forces the actions

selected from the last RL phase to be added to the next generation. The idea

is: depending on a frequency threshold, if an action’s atii frequency reached this

threshold (Frequencyatii ≥ (Frequency Threshold)), it will be fixed in the next RL

phases.

Figure 4.15 describes in detail the process of this approach. In this example, given

a frequency threshold of 2, which means the action will be considered frequent

if it was selected 2 times. First, every action frequency counter will be set to

zero, so for the 5 actions (from action 0 to action 4) each has a frequency value

of zero before the first RL phase starts. Then after the first RL phase finishes,

the learned elements/actions frequency counter will increase (actions 0 and 2 will

have a frequency value of 1) and after the RL phase finishes, each action frequency

value will be compared to the frequency threshold. Since none of them have a

frequency of 2, then none of them will be considered frequent. Then the next RL

phase starts and after it finishes, action 0 and 1 will have their frequency value

increased, which will make action 0 considered a frequent action. This will make

action 0 fixed before the next RL phase starts (meaning it will be added to the
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initial resettable state of the generation in the next RL phase).

Figure 4.15: Frequent actions approach

6. Merge technique approach:

All the previous approaches have been tested in different combinations but not all

at the same time; this approach combines all of them. The idea is to examine the

performance if EDML is unchanged by RL from the beginning and is allowed to

mature and converge through the evolutionary process, and then RL is allowed to

change it. This approach works as follows: given the total number of generations

N, the RL phases acting on the first half of the generations will be No Change

EDML with Resettable method to give the EDML a chance to converge before

changing it, whereas the second half will be Change EDML with the Appendable

method to start changing the matured EDML generations. Figure 4.16 describes

this approach, given 10 generations, the first half and second half will be treated

differently after each RL phase.
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Figure 4.16: Merge technique

Approaches Combinations

This section shows how all the previous approaches from the last section are combined

and used together. A multitude of combinations are explored, the purpose of this is

to examine the different ways each combination can change the R-EDML result. Some

combinations wait for EDML to converge first then change it, others change EDML

before it converges, others explore not changing EDML and run RL independently in

parallel with it and others merge all these ways together. The approaches are divided

into 2 main types, Merge technique approaches, and Non-Merge technique approaches.

All these combinations are tested and filtered according to the accuracy and number of

selected features. The experiments results that will be shown in this research are the

results of the filtered approaches only. Figures 4.17 and 4.18 show the Merge technique

approaches combinations and the Non-Merge technique approaches combinations.
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Figure 4.17: Merge technique approaches combinations

Figure 4.18: Non-Merge technique approaches combinations

Approaches Combinations Mechanism

This section describes the mechanism model of one of the approaches combination to

offer a detailed description of the R-EDML approach process. The selected approach will

be a Merge technique approach since it combines all the approaches in one; Figure 4.19

shows the selected Merge technique approach (For each generation + Learn From policy

+ Frequent Items Enabled).
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Figure 4.19: Selected Merge technique approach

Example Settings

2 episodes for each RL phase, 3 matrices per generation, 5 features, and a frequency

threshold of 1.

Given 4 generations, this approach will use the following approaches:

Generation 1∼2: No Change EDML + Resettable Learning + Learn from Policy

+ Frequent Items

Generation 3∼4: Change EDML + Appendable Learning + Learn from Policy

Figures 4.20, 4.21, 4.22 and 4.23 show the mechanism of every generation in this

selected approach.

1. Generation 1: before learning, all elements are considered not frequent (nf). After

learning, elements 2 and 4 will be considered frequent (f) but generation 1 won’t be

changed before passing it to the EDML phase. Figure 4.20 describes this process.
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Figure 4.20: Approaches mechanism part 1 - RL process between generation 1 and 2

2. Generation 2: before learning, all elements are considered not frequent (nf) except

for elements 2 and 4 which will be fixed in the resettable state of each episode,

after learning, elements 2, 3, and 4 will be considered frequent (f) but generation

2 will not be changed before passing it to EDML phase. Figure 4.21 describes this

process.

Figure 4.21: Approaches mechanism part 2 - RL process between generation 2 and 3

3. Generation 3: before learning, no elements will be fixed as the Frequent Items
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approach is not enabled with the Appendable learning approach, after learning,

element 0 is learned and the generation will be changed before passing it to the

EDML phase. Figure 4.22 describes this process.

Figure 4.22: Approaches mechanism part 3 - RL process between generation 3 and 4

4. Generation 4: before learning, element 0 which is learned from the last RL phase

will be fixed in the Resettable state of each episode, after learning, elements 1

and 4 are learned and the generation will be changed. Figure 4.23 describes this

process.

Figure 4.23: Approaches mechanism part 4 - RL process of final generation 4
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4.3.4 Database

The tests are performed on different types of real data sets, to cover testing R-EDML

against a variety of data sets. The real data set tests are carried out on the UCI machine

learning database [48]. The data sets are Iris, Glass, Wine, Vehicle, and Segment; each

with a different number of data points, features, and classes; Table 4.1 shows the data

sets details. The UCI data sets are used as is, i.e., we did not add any noise nor remove

any values in the data sets. We chose those UCI data sets as they are reliable and they

do not have missing values and are correctly labeled as well as containing little noise to

consider in this research.

Table 4.1: R-EDML UCI data sets

Data set Data points Features Classes

Iris 150 4 3

Glass 214 9 6

Wine 178 13 3

Vehicle 846 18 4

Segment 2310 19 7

4.3.5 Experiment settings

R-EDML Parameters

R-EDML parameters are divided into EDML parameters, RL parameters, and Ap-

proaches parameters. Multiple parameters are used owing to a hybrid system com-

bining multiple techniques like EDML and RL and each parameter section manages the

customization of a separate part of the R-EDML model.

1. EDML parameters:

EDML parameters like the number of population, clusters, and neighbors are used

from previous papers [49, 50] which show after preliminary experiments that using

these parameters will make EDML converge.

(a) Total number of generations: 2000

(b) Diagonal EDML Generation population (number of transformation matrices

in each generation):
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i. 20 matrices (Iris data set).

ii. 46 matrices (Glass and Wine data sets).

iii. 56 matrices (Vehicle and Segment data sets).

(c) Full Matrix EDML Generation population:

i. 30 matrices (Iris data set).

ii. 135 matrices (Glass data set).

iii. 273 matrices (Wine data set).

iv. 513 matrices (Vehicle and Segment data sets).

(d) K-means clusters:

i. 20 clusters (Iris, Glass, and Wine data sets) .

ii. 50 clusters (Vehicle and Segment data sets).

(e) K-nearest neighbors: 5

(f) Generations number per EDML phase:

i. 1 generation (in case of for each generation).

ii. 20 generations (in case of for each N generations).

2. RL parameters:

(a) Number of episodes:

i. per generation: 4 (in case of for each generation approaches where N =

1).

ii. per 20 generations: 40 (in case of for each N generations approaches

where N = 20).

(b) Epsilon (Epsilon greedy policy) = 0.1

(c) AP (action punishment) = −1

(d) SR (satisfactory reward) = +10

The idea behind choosing these values is the following: The number of episodes is

chosen according to preliminary experiments. As for the Epsilon value, it is set to

0.1 because the state-action space is not big to require a lot of exploration. For the

rewards assignments, these values are selected after some preliminary experiments

because it is believed that they are suitable for the range of features in the target

data sets (4 to 19 features).
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3. Approaches parameters:

They include the reduction fixed ratio of Change EDML 2 which is set to 80%

and the frequency threshold which is set to 10 (described in Section 4.3.3) with

the idea that in case of for each generation, 100 RL phases will run and if an

element is selected at least tenth of that number it will be considered frequent and

important.

Evaluation Measure

As for the evaluation process, the evaluation measure used is the F-measure (F1 score)

which is the harmonic average of recall and precision where precision is the measure of

the same class among each cluster, whereas recall is the measure of the same cluster

among each class. The F-measure used here is the pairwise F-measure [23] which is

similar to normal F-measure but is evaluated in a pairwise manner on the clustering

result. Pairwise manner evaluation borrows the idea of precision and recall to evaluate

the clustering result and is more suitable to evaluate this problem.

Given C (xi) as the cluster index of xi; C (xj) as the cluster index of xj ; T (xi) as

the class index of xi and T (xj) as the class index of xj , the class and cluster confusion

matrix of data pairs is defined in Table 4.2:

Table 4.2: Class and cluster confusion matrix of data pairs

T (xi) = T (xj) T (xi) 6= T (xj)

C (xi) = C (xj) a b

C (xi) 6= C (xj) c d

The precision P , recall R, and F-measure F1 are defined as follows:

P =
a

a+ b
(4.3.1)

R =
a

a+ c
(4.3.2)

F1 = 2 · P ·R
P +R

(4.3.3)

which ensures an incremental behavior in the performance with every generation having
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better accuracy or at least equal to the generation before. This gives RL an incentive

to keep updating its goal and to keep up with the incremental accuracy.

Approaches Combinations Filtering

Different approaches that investigate different ways of information exchange between

RL and EDML have been examined. However, some combinations (described in Sec-

tion 4.3.3) are thought to be the best due to the following assumptions:

1. It is best to let EDML EA matures first before changing it, this will allow the EA

to utilize its full power.

2. If RL changed EDML before EA matures, it won’t take full advantage of the EA

process to optimize the matrices.

3. Until EA matures, RL should act as an independent post-process to observe and

test different selection variations till EA becomes more mature then RL should

experiment in changing it.

4. Appendable learning approach links the RL phases together to use the learning

experience from previous RL phases in the current RL phase. Appendable learning

is best suited with Change EDML approach as after EA matures, RL can start

changing EDML using all the combined RL phases experiences.

5. Resettable learning approach does not take advantage of the past RL phase learn-

ing experience so it is best suited with No Change EDML approach as it gives RL

the chance to explore with all elements freely in every RL phase without changing

EDML.

6. Frequent item approach notices the consistent selection of elements by multiple

RL phases and takes advantage of it in the learning process, so it is best to use it.

7. For every n generations approach is better than For each generation approach as

it lets the EA work independently for several generations instead of RL changing

each generation, this way the EA can perform better and RL can inject changes

every once in a while without hindering the original evolutionary process itself.

8. For each generation approach is best suited with No change EDML, as it lets the

RL explore with each generation without hindering the EA process.
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9. Learn from policy approach is better than Learn from highest accuracy approach

as it uses the RL power to learn the elements with the metric values instead of

searching for the best result regardless of the metric value relationship with the

elements selection.

Initial tests are carried out to filter out the best approach combinations according to

the best pair of accuracy and number of selected features. The tests are also conducted

to choose the best margin φ in the RL threshold (described in Section 4.2.2). Tables 4.3,

4.4, and 4.5 show the best 3 combinations out of all the approach combinations in Glass,

Wine, and Vehicle data sets. The three top combinations are:

1. Combination 1: No Change EDML and Resettable [For each generation].

2. Combination 2: Merge technique, Change EDML 1, and Frequent Items [For each

20 generations].

3. Combination 3: Change EDML 2, Resettable, and Learn from Policy [For each 20

generations].

It is important to note that combination 1 fulfills assumptions 5 and 8, while com-

bination 2 fulfills assumptions 1, 2, 3, 4, 5, 6, 7, and 9 and finally, combination 3

fulfills assumptions 7 and 9. The best-selected combination to achieve the best pair of

F-measure and number of features across all data sets is combination 2. Combination

2 achieved the best results as it does not change EDML in the beginning and changes

EDML later on, also it uses Resettable learning with No Change EDML and uses Ap-

pendable learning with Change EDML, and also takes advantage of the Frequent item

approach which injecting the RL changes into EDML every n generations, not with

every generation.

Table 4.3: Approaches combinations filtering in Glass data set

Combination F-measure # Features

Combination 1 0.5344 3

Combination 2 0.5391 1

Combination 3 0.5324 1.9
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Table 4.4: Approaches combinations filtering in Wine data set

Combination F-measure # Features

Combination 1 0.879 4.2

Combination 2 0.955 3.3

Combination 3 0.9286 2.9

Table 4.5: Approaches combinations filtering in Vehicle data set

Combination F-measure # Features

Combination 1 0.4453 2.2

Combination 2 0.4643 2.1

Combination 3 0.4538 1.6

4.3.6 Experiments

The following experiments use diagonal EDML, which means in the symmetrical trans-

formation matrices, only the diagonal elements which represent scaling factors to the

actual dimensions will be used in R-EDML, the other non-diagonal elements represent

the correlation between different dimensions. Therefore, removing these elements is the

same as removing features from the input space. The only exception is the Full Matrix

R-EDML experiment that uses the entire EDML matrix. All experiments are performed

25 times and the average result is recorded for each data set. The approaches shown in

this section are the best-filtered approaches from all the combinations of approaches.

R-EDML vs. EDML

The idea behind this experiment is to compare R-EDML to normal EDML to check if

this hybrid system will improve EDML in terms of features and accuracy. Although

EDML does not explicitly select features, it has its feature prioritizing process. We

observed the EDML optimal matrices results and the ratios between all the elements’

weights and we picked a threshold of 0.05. The prioritizing method of EDML important

features number is as follows: after all generations are created, the diagonal elements’

weights of the optimal matrix are analyzed. Weights that are less than the threshold

(0.05) are immediately discarded, and the rest is filtered according to the following

formula:
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Given M* as the optimal EDML matrix with elements m∗ii, given mmax as the

maximum value in M* and mmin as the minimum value in M* whose value is bigger

than 0.1, L∗ is the list of prioritized important elements from M*. The following

equation describes the EDML important feature prioritizing process:

L∗ = {m∗ii|m∗ii > 0.05 and [(mmax −m∗ii)− (mmax −mmin)] 6 0.1} (4.3.4)

R-EDML vs. Conventional Feature Selection

Conventional feature selection is applied to EDML to test if it is superior to R-EDML in

terms of feature reduction. Two types of feature selection are tested, both concentrate

on different aspects of the features:

1. Feature scoring: Gives score to each feature based on gain ratio [51] (Higher

scores are better) and focuses on the quality of each feature.

2. Feature subset selection: Uses a greedy forward selection algorithm to select the

best features and is based on Pearson’s correlation [4] that indicates the quality

of the features, focusing on the relation between features instead of individual

features.

Full Matrix R-EDML (non-diagonal)

Full Matrix R-EDML uses a combination of diagonal and non-diagonal elements. The

purpose of this test is to take advantage of the Full Matrix capability in transforming

the input space and see if the result can be improved while trying to use diagonal and

non-diagonal elements. Full Matrix R-EDML is compared to another semi-supervised

DML technique called ITML, which is the most famous DML method that learns a

Mahalanobis distance metric by exploiting a notion of a margin between pairs of samples.

A weight prioritizing process similar to that of EDML is carried out on ITML, later

compared with R-EDML. A GitHub implementation 1 is used for ITML.

R-EDML Policy Unification

In all the previous tests, in each R-EDML generation, a new policy tailored for the

generation is learned because the assumption is that the R-EDML evolution algorithm

1https://metric-learn.github.io/metric-learn/_modules/metric_learn/itml.html#ITML_

Supervised
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changes and mutates the elements of each generation. In this experiment, the policy

is unified across all generations to determine if a unified updated policy has potential

validity.

4.3.7 Results and Observations

Table 4.6 shows the feature weighting results of EDML and ITML, whereas Table 4.7

shows the comparison result between Full Matrix R-EDML and ITML. Tables 4.8, 4.9,

and 4.10 show the comparison between all the previous experiments among all data sets.

In Table 4.10, # Generations refers to the number of generations needed to reach the

best result (highest F-measure and lowest number of features), which is a measurement

to verify the approach that converges faster.

In Table 4.9, # Features in Diagonal EDML refers to the number of the selected di-

agonal elements. In Full Matrix EDML, # Features refers to diagonal elements (whether

these diagonal elements are explicitly selected by R-EDML or they are not explicitly

selected but non-diagonal elements associated with these diagonal elements are selected;

in this case, they are considered selected).

R-EDML vs. EDML Feature Weighting

In Table 4.6, EDML EA important feature weighting has decreased the required features

for every data set. Even though feature weighting is not a considered feature selection,

EDML still uses all the features. Typically, R-EDML explicitly selected fewer features

than EDML important features in Table 4.9.

Diagonal vs. Full Matrix R-EDML

Surprisingly, Full Matrix R-EDML selected fewer features than Diagonal R-EDML, even

though the former used a Full Matrix instead of the diagonal one. In Table 4.9, Full

Matrix R-EDML offered the best feature reduction in 3 out of 5 data sets as compared

with the diagonal approach, where each policy method offered the least features in 2

out of 5 data sets. In Table 4.10, Full Matrix R-EDML converged faster in Vehicle data

set, whereas in Iris, Glass, and Wine data sets Diagonal R-EDML converged faster. As

for the F-measure, Table 4.8 shows that Full Matrix R-EDML offered better accuracy

compared with Diagonal one, with higher accuracy in 3 out of 5 data sets.
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Policy Unification vs. Separation

In comparison to the policy separation approach, Table 4.9 shows that the unified policy

selected fewer features in 2 out of 5 data sets, the same number of features in 2 out of 5

data sets, and more features in only 1 data set. In terms of features, this shows better

results. Regarding the F-measure, Table 4.8 shows that this approach offered the same

accuracy in 4 out of 5 data sets. As for the number of generations to converge, Table 4.10

shows that the unified approach converged faster in 4 out of 5 data sets. This shows

potential in the policy unification method.

R-EDML vs. EDML with Conventional Feature Selection

R-EDML (Diagonal policy separation, Diagonal policy unification, and Full Matrix)

showed better results in terms of F-measure, number of features, and convergence com-

pared with conventional feature selection. In Table 4.8, R-EDML achieved better ac-

curacy in all data sets. In Table 4.9, R-EDML selected fewer features in all data sets,

and in Table 4.10, R-EDML needed a fewer number of generations to converge as it

reached the best result in fewer generations in 4 out of 5 data sets. Thus, the R-EDML

feature selection strategy has led to a high average feature reduction % while keeping a

high F-measure: 65% in Iris, 88% in Glass, 74% in Wine, 88% in Vehicle, and 94% in

Segment. This shows that this method offers a great advantage.

Full Matrix R-EDML vs. Information-Theoretic Metric Learning (ITML)

Since ITML uses a Full Matrix, only Full Matrix R-EDML is comparable to it. In

Table 4.7, the comparative result is displayed for each data set showing the F-measure

and the number of features. Even though ITML does not explicitly select features, but

prioritize them instead, R-EDML selected fewer features than ITML. Since no advantage

in F-measure between the two techniques is noted, we conclude that R-EDML is better

than ITML.
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Table 4.6: Feature weighting results in EDML and ITML

Data set # Feat. EDML Imp. Feat. ITML Imp. Feat.

Iris 4 2 2.1

Glass 9 3.3 3.7

Wine 13 6.3 6

Vehicle 18 3.6 7.4

Segment 19 4.8 6.8

Table 4.7: ITML comparison results

Data set ITML(F-measure # Feat.) Matrix R-EDML(F-measure # Feat.)

Iris 0.91 4 0.92 1.3

Glass 0.45 9 0.56 1.8

Wine 0.98 13 0.97 2.2

Vehicle 0.52 18 0.43 1.5

Segment 0.54 19 0.75 1

4.3.8 Effect of the Acceptance Margin of F-measure

This section investigates the effect of the acceptance margin of F-measure (φ in Sec-

tion 4.2.2). We performed experiments on Wine and Glass data sets in the Diagonal

R-EDML while changing the control parameter. This parameter is the margin φ used

in the threshold comparison to examine how the F-measure and the number of features

change in the top three approaches combinations in Tables 4.3, 4.4, and 4.5. Figures 4.25

and 4.24 shows the results of the two data sets using three different margins φ = 0.01,

0.04, and 0.08. Results show that as the value of the margin decreases, R-EDML gets

an F-measure close to the best EDML accuracy. The results also show that as the

F-measure increases, the number of features increases as well. When the value of the

margin increases, R-EDML is not restricted with an accuracy close to the best accuracy;

thus, the F-measure and the number of features decrease. Combination 2 (in red) which

has the merge approach showed better results compared with the other combinations in

both F-measure and number of features. Moreover, Combination 2 showed no increase

in the number of features no matter how small the margin is in the Glass data set,
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whereas in the Wine data set, the number of features displayed a small increase when

the margin is reduced compared with the other approaches. This shows potential in

RL in the EDML process (Combination 2) compared with running RL independently

(Combination 1 and Combination 3).

Figure 4.24: R-EDML margin evaluation graph - Wine data set
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Figure 4.25: R-EDML margin evaluation graph - Glass data set

4.3.9 Summary

R-EDML is composed of two machine learning techniques, RL and EDML to create

a feature selection strategy using RL by performing metric filtering in EDML. In the

R-EDML life cycle, RL and EDML both work after each other and exchange feedback to

perform this metric filtering. Since R-EDML is based on RL, it models the problem as an

MDP. Various experiment settings, parameters, and information exchange approaches

have been tested to determine the best way to merge RL and EDML.

The database used is UCI for its reliability and a different number of data sets were

tested with a variety of data points, classes, and features. The evaluation measure

used in R-EDML is the F-measure and the clustering algorithm used is K-means. For

experiments, R-EDML feature selection was tested against EDML feature weighting,

EDML with conventional feature selection, and ITML. Diagonal and Full matrix R-

EDML were tested as well as different ways of updating the RL policy. Results show

a feature reduction superiority in R-EDML while maintaining the clustering accuracy.

Finally, margin variation testing was performed to select the best accuracy margin to

be used in R-EDML.
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Chapter 5

Adaptation to High Dimensional

Metric Filtering (HDR-EDML)

5.1 Overview

R-EDML has performed well in small dimensional data sets compared to other con-

ventional feature selection methods but is unsuitable in high dimensional data as its

sequential evaluation is time-consuming and its table-based learning process can handle

only a limited input space.

High Dimensional Reinforced EDML (HDR-EDML) [13] extends R-EDML to scale

up the dimensionality by using a function approximation learning process that can

handle bigger input spaces as well as a batch system that can reuse the evaluation

obtained once. HDR-EDML aims to minimize the used elements (features) in M while

maintaining the clustering accuracy.

One novelty of HDR-EDML compared to R-EDML is that it combines EDML and

Least-Squares Policy Iteration (LSPI) [24] which is an off-policy RL method suitable for

learning in high dimensional settings that uses value-function linear approximation and

approximate policy iteration. Another novelty is a mutual interaction and a two-way

information exchange between RL and Evolutionary Algorithm (EA) in metric learning.

This enables EA to focus the RL environment on the important features and enables

RL to edit the input of EA before creating the next generation according to the learning

feedback. This approach not only reduces the features but also selects the correct

number of features along with specific transformations determined by the EDML EA.

This enables clustering while scaling down dimensionality.
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5.2 Proposed Method

In HDR-EDML, we focus on diagonal EDML where HDR-EDML will select from only

the diagonal elements as they represent the features. RL is based on Markov Decision

Processes (MDP). Therefore, R-EDML modeled the problem as an MDP. HDR-EDML

models the problem the same way.

To create the feature selection control strategy to filter the metric, HDR-EDML

uses a function approximation RL method called Least-Squares Policy Iteration (LSPI)

(described in Section 2.2.4). LSPI can derive good solutions from large or infinite search

spaces present in high dimensional settings.

LSPI is chosen in this research for the following reasons:

• LSPI is an off-policy method that can reuse samples previously obtained by other

policies.

• LSPI has no parameters to tune and will either converge or reach a near-optimal

policy in the policy space.

• LSPI offers the strength of policy iteration, where policy iteration generally results

in a small number of very large steps directly in policy space, in linear function

approximation we can jump directly to the least-squares solution (LSPI process,

step 3) where the sum squared error of all w updates to be zero.

5.2.1 HDR-EDML Overview

HDR-EDML is based on the R-EDML process with the extension of using an RL ap-

proximation method and adopting a two-way information exchange approach (EDML

←− LSPI and EDML −→ LSPI). HDR-EDML process is as follows:

1. EA creates Generation G with a population of Ms.

2. HDR-EDML creates a batch of random samples of SARS experiences (s,a,r,s′)

from G.

3. HDR-EDML controls the available actions (elements) that will create these sam-

ples by limiting the elements to the ones prioritized by EA. It uses a threshold on

elements in M in this limitation process, thus controlling the batch action space

which will later be used by LSPI (EDML −→ LSPI). Then, the samples are created:

63



(a) Several random policies Pr will create the batch by starting from random

initial states s.

(b) To create initial s, randomly selected initial indices edit Ms (to be M′s).

(c) Pr performs a on M′s and evaluates by clustering the data with Equa-

tion 2.1.1.

(d) Pr sets r according to a’s evaluation.

(e) Pr creates s′ that will be the M′s with the new a.

(f) The policies continue until either a random number of actions is performed

or θ is satisfied.

(g) After the desired number of samples is acquired, the whole process stops.

4. LSPI will use this batch to learn a policy P that will filter all Ms in G by selecting

specific elements (features).

5. P edits G to G
′

by removing the non-selected elements from Ms and keeping the

selected ones.

6. G
′

will be used by EA to create the next generation (EDML ←− LSPI).

The output of HDR-EDML is one specific M selected from all Gs (using the same

output selection conditions in the R-EDML process). This M has a subset of features

whose accuracy is close to EDML which uses all features.

Figure 5.1 shows an overview of HDR-EDML process: generation G1 has a popula-

tion of 2 Ms, each with 6 diagonal elements. After creating a batch and running LSPI,

Policy P selects and inserts only elements 0, 3, and 5 in G1 (making it into G1
′
) before

running EA. This way an RL policy tailored to the EDML generation is believed to give

better results as it helps to learn the best features that suit the matrices of the current

generation.
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Figure 5.1: HDR-EDML process overview

5.2.2 HDR-EDML Approaches

Like R-EDML, the overall HDR-EDML life cycle is divided into two phases: The EDML

phase and the RL phase. The EDML phase prepares the generation for the RL phase,

whereas the RL phase learns a policy on this generation. The output of HDR-EDML is

one specific M with selected fewer features that have an accuracy close to EDML which

uses all the features, from all the EDML generations (using the same output selection

conditions in the R-EDML process described in Section 4.2.1).

Three approaches are examined to test the effect of the information exchange between

RL and EDML phases on the result. These approaches are: ESARS, L-LSPI, and

LSPI-1.

1. EDML SARS (ESARS) has a two-way information exchange between EDML
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and RL:

(a) EDML
feedforward−−−−−−−−→ RL: EDML will control the creation of the batch’s SARS

samples to limit the input space to the elements that EDML deems important

only.

(b) EDML
feedback←−−−−− RL: RL will learn and send feedback that will affect the

EDML creation of the next generation.

In this process, EDML and RL phases will run after each other in a loop for a

fixed number of generations.

(a) EDML phase: EDML evaluates the candidates using any clustering algorithm

and selects the elite results for the new generation using an EA. This genera-

tion’s population is a set of distance matrices Ms responsible for the data set

transformation. EDML will create n generations. Generation # n (G) has

the best M∗n which gives the best EDML accuracy so far until generation #

n.

(b) RL phase:

i. The SARS batch (step 1 in the LSPI process, Section 2.2.4) for G (called

ESARS) is created randomly from only the diagonal elements in M∗n

whose weights are larger than a threshold δ. This focuses the learning

on this limited space instead of the whole input space.

ii. LSPI learns a policy Π (steps 2 through 5 in the LSPI process, Sec-

tion 2.2.4).

iii. The matrices in G will be changed according to Π’s selected elements.

This will make the EA focus more on Π’s selected elements in the next

generation creation.

(c) Steps a) and b) repeats for several generations.

The output is the M with the fewest selected features whose accuracy is close

to EDML (using the same output selection conditions in the R-EDML process in

Section 4.2.1).

Figure 5.2 shows the ESARS approach: EDML EA creates n generations, then

ESARS batch created from EDML feedforward is created. A Policy P learns from
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this batch and applies to generation #n (blue). RL feedback from P will change

the EA (P-EA) next-generation creation.

Figure 5.2: ESARS approach

Figure 5.3 shows the pseudo-code of ESARS.
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Figure 5.3: ESARS pseudo-code

2. Linked LSPI (L-LSPI) is a special case of ESARS. While having the same

process as ESARS, L-LSPI however has only a one-way information exchange

between EDML and RL (EDML
feedback←−−−−− RL).

(a) EDML phase: The same as ESARS’s EDML phase.

(b) RL phase: The same as the ESARS’s RL phase except for the SARS batch

creation step (step i) in ESARS’s RL phase). A batch of SARS samples is

created randomly from all the diagonal elements of G to cover the entire

state-action (input) space.

Figure 5.4 shows the L-LSPI approach: EDML EA creates n generations, then

68



the SARS batch is created. A Policy P learns from this batch and applies to

generation #n (blue). RL feedback from P will change the EA (P-EA) next-

generation creation.

Figure 5.4: L-LSPI approach

3. LSPI-1 has no information exchange between EDML and RL where RL will learn

one time directly from the last EDML generation without affecting EDML itself.

LSPI-1 is a special case of L-LSPI, wherein LSPI-1, n is equal to the total number

of generations, and G will not be changed after learning the policy. LSPI-1 process

is the same as L-LSPI except it does not have step iii) in the RL phase nor step

c) afterward.

Figure 5.5 shows the LSPI-1 approach: EDML EA creates all generations, then

the SARS batch is created from all elements, and Policy P learns from it and

applies to the last EDML generation (blue).
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Figure 5.5: LSPI-1 approach

5.3 Experiments and Results

The goal of this section is to test the effect of the learned selection control strategy on

high-dimensional EDML transformation matrices.

5.3.1 Database

The tests are carried out on the UCI machine learning database [48]. The data sets used

are Human Activity Recognition using Smartphones, Isolet, Parkinson’s Disease Clas-

sification, Musk, and Libras Movement. The data sets classes, instances, and features

number are described in Table 5.1. The UCI data sets are used as is, i.e., we did not

add any noise nor remove any values in the data sets. We chose those UCI data sets as

they are reliable due to correct labels, no missing values, and little noise to consider in

this research.
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Table 5.1: HDR-EDML UCI data sets

Data set # Features # Classes # Instances

Activity 561 6 7352

Isolet 617 26 6238

Parkinson 752 2 756

Musk 166 2 476

Libras 90 15 360

5.3.2 Experiment settings

In this study, K-means using a K-nearest neighbor graph of cluster centroids is the

clustering algorithm used. The average result of 20 trials is taken and rounded up.

The same preparations for R-EDML randomness handling in Section 4.3.2 are done for

HDR-EDML as well as the same evaluation method in Section 4.3.5.

HDR-EDML Parameters

Multiple parameters are used owing to a hybrid system and combining multiple tech-

niques like EDML and LSPI. Furthermore, HDR-EDML uses some hyperparameters as

well. These parameters values are selected according to preliminary experiments and

are divided as follows:

1. EDML parameters:

Preliminary experiments selected the number of generations (from a range of 500–

2500 generations) that led to a convergence in EDML, the population size (from

a range of 50–300 matrices) of each generation that gave the best results, and the

appropriate number of clusters (from a range of 20–60 clusters) for evaluation.

(a) # Generations:

i. 2000 (Musk and Libras).

ii. 1000 (Activity, Isolet, and Parkinson).

(b) Population size:

i. 100 (Musk and Libras).

ii. 250 (Activity, Isolet, and Parkinson).

(c) # K-means clusters: 50.
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2. RL parameters:

Preliminary experiments selected the total number of batch samples that covers

appropriately the state-action space (from a range of 1000–3000 samples), a ter-

mination factor that gives a good approximation (from a range of 10−3–10−6), and

reward values that are proportional to the dimensionality.

(a) # Batch samples:

i. 3000 (LSPI-1).

ii. 1000 (L-LSPI and ESARS), since L-LSPI and ESARS have multiple RL

phases.

(b) Termination factor e in policy iteration: 10−6.

(c) Action reward (AP ):

i. −1/d (LSPI-1 and L-LSPI), d = number of all diagonal elements.

ii. −1/d
′

(ESARS), d
′

= number of important elements.

(d) Threshold reward (TR): +1.

3. HDR-EDML parameters:

Preliminary experiments selected the RL phase frequency (every 1/6–1/2 of total

generations) that allows enough information exchange between RL and EDML.

Furthermore, an accuracy margin is selected that allows an accuracy degradation

compared to EDML up to 2% only while reducing features. In addition to that,

EDML EA weight assignments differ for each data set, so a suitable weight thresh-

old is selected by sorting the weights and selecting the median as the minimum.

(a) # Generations per RL phase:

i. 600 (Musk and Libras).

ii. 300 (Activity, Isolet, and Parkinson).

(b) Accuracy margin β: 0.02.

(c) Weight threshold δ:

i. 0.002 (Activity, Isolet, and Parkinson).

ii. 0.01 (Libras).

iii. 0.004 (Musk).
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5.3.3 Experiments

To examine the different ways of combining EDML and RL in this hybrid system, the

three approaches described in Section 5.2.2 will be compared against K-means (KMN),

ITML [8], EDML, and EDML with l1 norm regularization. ITML is the most famous

DML method that learns a Mahalanobis distance metric by exploiting a notion of a

margin between pairs of samples. While l1 [5] regularization based on the l1 norm is an

effective approach in feature selection as it can drive many parameters to zero and can

avoid overfitting by reducing the model complexity. For the EDML with l1 regularizer,

the l1 hyperparameter was tuned by a grid search for each data set. R-EDML is not

included in high-dimensional tests as its tabular representation and sequential decision

making make it not applicable to high-dimensional data sets which is why HDR-EDML

is proposed.

Furthermore, HDR-EDML ESARS is compared with R-EDML in terms of total

computational time and memory to check if the added novelties in ESARS can improve

R-EDML. Since R-EDML is not applicable in high-dimensional data sets, 3 small UCI

[48] data sets used previously in R-EDML [11] are chosen. The data sets are Glass,

Wine, and Vehicle; their information is described in Section 4.3.4. The same experiment

settings used for R-EDML [10, 11, 12] (described in Section 4.3.5) are used in this

comparison compared to the current HDR-EDML settings with 2000 generations created

for each data set. CPU Xeon Gold 6234 3.3 GHz and 256 GB RAM is used for the low

dimensional tests.

5.3.4 Results and Observations

Compared to the other HDR-EDML approaches, it is thought that the ESARS approach

will yield the best results, the reasoning behind this assumption is as follows:

1. ESARS special batch creation performs a prefiltering process before metric filtering

is done RL.

2. This approach uses the EA feature weighing power to focus learning on the ele-

ments deemed important by EDML.

3. It saves evaluation time by limiting the RL state-action space.

4. It offers the power of mutual information exchange cycle where RL feedback edits

the EA which later on edits the RL learning space.
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F-measure Results

Table 5.2 shows the comparison result between the proposed 3 approaches (LSPI-1, L-

LSPI, and ESARS) with KMN, ITML, EDML, and EDML with l1 norm regularization

in all UCI data sets in terms of F-measure.

The proposed methods’ F-measure is close to EDML and EDML+l1 in all data sets

because β is set to 0.02 with the exception of HDR-EDML outperforming EDML+l1 in

Isolet. HDR-EDML also outperformed ITML in 2 data sets (Activity and Musk). This

shows F-measure maintainability.

Comparing the 3 proposed approaches together, ESARS achieved the best accuracy

in 2 data sets (Activity and Isolet), L-LSPI achieved in 2 (Parkinson and Musk), and

LSPI-1 achieved it in Parkinson only. However, by comparing L-LSPI vs. ESARS,

ESARS performed better on Activity and Isolet data sets. This shows the benefit of

2-way (ESARS) information exchange between RL and EDML compared to 1-way (L-

LSPI) or 0-way (LSPI-1).

Number of Features Results

Table 5.3 shows the comparison result between the proposed 3 approaches (LSPI-1, L-

LSPI, and ESARS) with KMN, ITML, EDML, and EDML with l1 norm regularization

in all UCI data sets in terms of the number of features.

KMN, EDML, and ITML used all the features as they do not explicitly select fea-

tures. Compared to EDML+l1, the proposed methods selected fewer features in 4 out of

5 data sets. The feature reduction percentage of L-LSPI is about 91% in Activity, while

of ESARS 65% in Isolet, 93% in Parkinson, 94% in Musk, and 73% in Libras. L-LSPI

and ESARS could significantly reduce the features with a maximum drop in F-measure

of 2%.

ESARS selected the least features in 4 data sets (Isolet, Parkinson, Musk, and Li-

bras), while L-LSPI selected the least features only in Activity. LSPI-1 did not select

fewer features in any data sets compared to the other approaches. This shows the benefit

of a 2-way (ESARS) information exchange between RL and EDML compared to 1-way

(L-LSPI) or 0-way (LSPI-1) information exchange. The ESARS approach can focus its

learning on only the EDML prioritized elements which reduced the search space, time,

and the number of features.

74



T
ab

le
5.

2:
R

es
u
lt

s
co

m
p

ar
is

on
:

F
-m

ea
su

re
(A

V
E
±

S
T

D
)

D
a
ta

se
t

K
M

N
IT

M
L

E
D

M
L

E
D

M
L

+
l 1

L
S

P
I-

1
L

-L
S

P
I

E
S

A
R

S

A
ct

iv
it

y
0.

58
±

0.
00

8
0.

63
±

0.
01

2
0.

67
±

0.
00

9
0.

67
±

0.
00

5
0.

65
±

0.
01

5
0.

66
±

0.
00

8
0
.6

8
±

0.
02

5

Is
o
le

t
0.

43
±

0
.0

04
0
.5

0
±

0.
01

4
0.

49
±

0.
01

3
0.

47
±

0.
00

9
0.

48
±

0.
00

7
0.

47
±

0.
02

8
0
.5

0
±

0.
01

1

P
a
rk

in
so

n
0
.7

4±
0
.0

05
0.

75
±

0.
00

4
0
.7

6
±

0.
00

0
0
.7

6
±

0.
00

0
0
.7

6
±

0.
00

5
0
.7

6
±

0.
00

4
0.

75
±

0.
00

0

M
u

sk
0.

50
±

0
.0

2
0

0
.6

1
±

0.
00

5
0
.6

7
±

0.
00

0
0
.6

7
±

0.
00

4
0.

66
±

0.
00

0
0
.6

7
±

0.
00

0
0.

66
±

0.
00

5

L
ib

ra
s

0.
34
±

0
.0

0
7

0
.4

0
±

0.
00

4
0
.4

1
±

0.
00

0
0
.4

1
±

0.
00

4
0.

39
±

0.
00

4
0.

40
±

0.
00

8
0.

39
±

0.
00

5

75



Table 5.3: Results comparison: # Features (AVE±STD for EDML+l1, LSPI-1, L-LSPI,
and ESARS)

Data set KMN ITML EDML EDML+l1 LSPI-1 L-LSPI ESARS

Activity 561 561 561 147.9±3.67 161.7±2.93 49.2±4.31 64.4±2.62

Isolet 617 617 617 158.6±4.40 411.3±4.32 292.6±2.78 216.5±3.98

Parkinson 752 752 752 170.4±4.23 109.8±3.21 98.2±2.48 50.1±3.32

Musk 166 166 166 62.2±2.60 36.4±1.80 24.3±3.62 9.4±2.77

Libras 90 90 90 39.7±1.90 54.1±3.03 51.2±2.87 23.6±2.40

Computational Time and Memory Results

Table 5.4 shows HDR-EDML and R-EDML computational time comparison. ESARS

computational time is much less than R-EDML in all data sets while showing com-

petitive feature reduction and F-measure. This shows the effectiveness of HDR-EDML

compared to R-EDML in higher-dimensional data. Also, even though ESARS selects

fewer features than EDML+l1, due to the added RL evaluations it requires roughly dou-

ble the computational time. However, ESARS focuses its learning only on the important

elements, so the added evaluations are kept to a minimum compared to R-EDML.

Regarding memory, in HDR-EDML the state-action values are not stored. Instead,

only the feature functions φ and weights w are stored for state-action value function

computations. However, in R-EDML, the action value for every state is stored which

makes it impractical in high-dimensional spaces as the number of states and actions will

increase substantially.

Table 5.4: Run time comparison in low dimensional data (Total time (F-measure / #
Features))

Method Glass Wine Vehicle

R-EDML 5.8 min (0.54 / 1.0) 3.7 min (0.90 / 2.9) 29.3 min (0.45 / 2.2)

HDR-EDML (ESARS) 1.4 min (0.53 / 2.1) 1.2 min (0.94 / 4.3) 7.8 min (0.46 / 2.5)

5.3.5 Summary

R-EDML has performed well in small dimensional data sets. However, in real-world

applications, high-dimensional data is commonly used and R-EDML is unsuitable and

time-consuming due to its table-based learning process. Therefore, HDR-EDML is in-
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troduced which is an extension of R-EDML to handle high-dimensional data. In HDR-

EDML, the learning process is function-approximation based and a batch system allows

HDR-EDML to reuse the learning samples which saves time. A different number of

approaches were tested that tested different ways of information exchange between RL

and EDML.

The high-dimensional database used is UCI for its reliability and a different number

of data sets were tested with a variety of data points, classes, and features. The eval-

uation measure used in R-EDML is the F-measure and the clustering algorithm used

is K-means. Various experiment settings and parameters have been tested to deter-

mine the best way to merge RL and EDML. For experiments, HDR-EDML was tested

against K-means, EDML, EDML with L1 regularization, and ITML in terms of the

number of selected features and F-measure. Results show a feature reduction superior-

ity in HDR-EDML while maintaining the clustering accuracy. Finally, computational

time and memory are shown between R-EDML and HDR-EDML and showed better

memory handling and less learning time needed for HDR-EDML.
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Chapter 6

Conclusion

6.1 Summary

The constant growth in data has presented a challenge in the data processing world on

how to manage and filter this data. In this research, a new hybrid system R-EDML is in-

troduced that takes advantage of the sequential decision making in Reinforcement Learn-

ing (RL) to perform metric filtering in Evolutionary Distance Metric Learning (EDML)

and produce an optimal distance metric with similar performance while extremely re-

ducing the feature space. R-EDML learns a control strategy that directs attention to

the important features in the input space and an extension for high-dimensional prob-

lems called HDR-EDML is introduced. The experiments performed on UCI data sets

show consistent superiority of R-EDML and HDR-EDML as they reduce the required

features while maintaining the clustering performance which shows promising potential

in using these new methods and a chance for future improvements.

6.2 Discussion

Regarding the experiments performed in this research along with the observed results,

this research has combined two techniques and showed a lot of ways of merging and

taking advantage of each technique’s strong point. However since this is a novel combi-

nation, a lot of new different ways of merging must exist and need to be discovered and

taken advantage of and there is a huge exploration potential with different methods as

well. It was also important to notice that other feature selection methods do not offer

the same reduction capability with DML compared to our approach. This is due to the

fact that their feature selection process does not consider the metric values in the DML
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process and they do not also care about the evaluation feedback with respect to the

selected features. This novelty in feature selection provided by our approach showed

this advantage in DML methods.

Another thing to notice is that most works in this research were done on diagonal

EDML and few works were done on full matrix EDML. However, full matrix EDML

showed promising results which are encouraging to engage in more experiments and

show potential for further research as more ideas and more experiments can be custom

made for full matrix capabilities. In this research, two RL methods were tested with

one DML method. This can be expanded as many RL algorithms can offer different

advantages with different DML methods and the RL policy can be learned in many

different ways and can be adapted according to the DML method used. Regarding the

data sets used, only real data sets were used to show the metric filtering capability

in real-world applications. However, synthetic data sets can also be explored to test

different aspects of this new approach.

Regarding EDML, EDML feature weighting has offered an advantage as it acts as a

pre-filtering process before RL can perform metric filtering which enhances the result and

saves time as un-needed features can be skipped in the RL phase. It is also important to

note that full matrix EDML might be beneficial to be used in small to medium data sets

as it’s transformation power will be utilized to the maximum without worrying about

time. For that reason, R-EDML focuses on both diagonal and full matrix DML as either

method can be beneficial according to the data set size. As for diagonal EDML, it can be

more beneficial to be used in very large data sets as it focuses more on selection rather

than selection and transformation optimization. That is why HDR-EDML focuses only

on diagonal in its learning.

Regarding the accuracy margin used in the experiments to make the f-measure close

to the EDML, it can be adjusted according to the desired accuracy and the feature

selection will adapt accordingly. That being stated, some approaches showed a consistent

level of feature selection regardless of how small the accuracy margin gets. We believe

that with further investigation we can determine the factor that is responsible for this

advantage. It is also important to note that all experiments have either maintained

the F-measure according to the margin or increased the F-measure in some cases. This

means there might be ways to explore increasing the accuracy rather than maintaining

it. Regarding EDML convergence, the number of generations needed was less in our
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approach. Further investigation can provide insights or recognize patterns that can be

beneficial in determining ways to increase convergence and reduce future computational

time.

As for RL methods selection, the approximation method showed faster learning

time than the table-based one which is expected as the input space is not explored as

much as the table-based. However, the table-based way showed better results which are

also expected. Therefore, according to the data set size and time allowed for learning

whichever way can be chosen to determine which tradeoff is needed.

In Regards to the EDML and RL information exchange, mutual information ex-

change offered an advantage in feature selection and computational time compared to

one way or zero way. This shows the effect of mutual feature selection and DML feed-

back instead of only one-way feedback or no feedback. Finally, regarding memory,

HDR-EDML memory handling is vital for large data sets as R-EDML saves every state

action value and can not be used in case data sets are large in size. However, R-EDML

memory handling will not be a problem in small to medium data sets as the memory

needed will not be a problem in that case.

6.3 Research Applications

In this research, two main methods were introduced, an RL-based dimensional metric

filtering technique called R-EDML and an adaptation technique to high-dimensional

metric filtering called HDR-EDML. Both methods have their own strengths and weak-

nesses. R-EDML strength is represented in its accurate and optimal solution as well as

completely covering the entire input space given enough exploration. However, R-EDML

suffers from memory and computational time issues due to its sequential evaluation and

table-based learning. As for HDR-EDML, its strength comes from its ability to handle

high-dimensional data due to its batch system and approximation based learning as it

can save time and memory. However, this advantage comes with a trade-off regarding

the input space exploration as it is very hard to accurately cover the entire space and

reach an optimal solution often.

When deciding which method to use, it is important to take into consideration the

size of the data and its dimensionality. For high-dimensional data, it is better to use

HDR-EDML as it is more appropriate to handle this kind of data. As for smaller data

sets, R-EDML will be better to use as it will give a more accurate result and neither
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evaluation time nor memory needed will be a problem.

This research showed very good results when applied to EDML. However, this re-

search goal is the simultaneous optimization of element selection and their values which

can have a wide variety of applications not just in EDML. Other possible applications

can include any DML method as RL can optimize the selection of the distance metric

elements with their values given proper environment description and enough input space

exploration. Other applications include classification where RL can select features ac-

cording to the classification result which can be useful in high-dimensional input spaces

like image data and can save future data processing if parts of the input space can be

discarded if seemed unimportant by RL.

6.4 Future Work

Even though these new hybrid systems had good results that show potential in them,

some issues need to be handled and more experiments can be done. Future issues include

handling noisy data which is a usual occurrence in real-world applications. Therefore,

it would be worth investigating our approach performance on noisy data by adding

synthetic noise to the UCI data. Another issue is that the bigger the data dimensionality

becomes, the harder it is to efficiently cover the input space and learn from it the correct

number of important features. So different ways of RL methods need to be explored

to efficiently handle very big or infinite input spaces. Furthermore, more performance

measurements like Purity and Entropy can be added along with the F-measure.

This research shows a big potential for more ideas as this is a novel area that past

researchers did not explore. These ideas can also be extended to other data mining

techniques. Some future work ideas include:

1. Incorporating multiple RL agents to handle different parts of the state-

action space and combine their learning: In RL, the state-action space ex-

ploration plays a big role in the quality of the learning. In our research, only

one RL agent is used to cover the entire input space which is acceptable if the

input space is not big. However, it can be challenging to efficiently cover the space

when the dimensionality increases. In our research, multiple random policies try

to cover the space before learning. Another idea to explore is dividing the state-

action space into sections and several RL agents will be deployed where each one
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handles a section. A variation would be multiple agents all cover the entire space

then share their experience to learn from one another.

2. Optimization of the matrix M instead of using EA: In our approach, the

optimization of the distance metrics is done via the EDML Evolutionary Algo-

rithm. Another idea is to use RL or another optimization method to optimize the

elements in M instead of using EA.

3. Making the policy of RL affected by the EDML weights: The EDML fea-

ture weights in our research are usually changed and affected by the RL feedback.

However, the RL policy itself is not affected by the EA weights changing. In this

idea, the EA feature weights can have significance in the value function definition

which can affect the policy and the learning process in general.

4. Increase EDML weights according to selected features: The EDML fea-

tures weights in our research are reset to zero if they seemed unimportant by the

RL phase. However, the important EDML feature weights are not affected by

the RL feedback. An idea to consider is to increase the feature weights which

are deemed important by RL before passing them to the EA to create the next

generation.
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