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Chapter 1

Introduction

People are always facing the problem of choosing. From all possible selections

to find out the best one is not easy sometimes. The optimization problem is the

problem that needs to find the best solution from feasible solutions. Conventional

optimization problems are usually described as minimization problems. By com-

puting and comparing the fitness of the solutions in one optimization problem, it

is able to select at least one best solution out. However, some of the problems can

be complex for processing. Among these problems, the black-box optimization

problem is difficult since the landscape of the objective function is unknown.

Evolutionary computation [8] is inspired by biological evolution and provides

many algorithms for optimization problems. Among the evolutionary computa-

tion, metaheuristics are provided by sampling a set of solutions. Metaheuristics

utilize the search process to find near-optimal solutions in a search space. These

algorithms are approximate and not problem-specific. Even though metaheuris-

tics do not ensure to get the global optimum solution for some problems, they

may get sufficiently good solutions for problems with incomplete information like

the black-box problems. Some population-based metaheuristics called swarm in-

telligence (SI) [4, 29, 36] are inspired by the collective behavior of the natural or

artificial dynamics biology systems. Individuals in a group can do personal work

and take part in social work. They follow some common rules for cooperation.
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2 CHAPTER 1. INTRODUCTION

When handling some problems that are modeled as mathematical functions,

swarm intelligence simulates the cooperation mechanism of the natural group to

build a population-based solver for them. By studying from the natural group work

and utilizing the knowledge to develop tools, it is able to learn from the animals’

behavior and summarize the rules of the behaviors. Then simulating the actual

biology systems helps to build useful solvers. For optimization problems, both

personal knowledge and social information are used for formulating the models of

swarm intelligence.

Inspired by swarm intelligence, some optimization algorithms are developed

for processing optimization problems. For each of them, some no mass agents

are used to automatically search in a search space for finding candidate solutions.

These agents’ movements are affected by different factors. The agent group study

from the surrounding situation when searching around a specific space. It means

that each agent has a study ability to adapt itself to the environment. Besides,

one would not only study about itself but also study the common knowledge which

is shared by one common group. By using this method, the agents can cooperate

with each other to do common work. Some interaction methods are provided in

these swarm intelligence algorithms to help each agent exchanges its information

with others. There are some well-known swarm intelligence algorithms such as

particle swarm optimization (PSO) [30], firefly algorithm (FA) [61], brain storm

optimization (BSO) [42], cuckoo search [9], bat algorithm [63], ant algorithm [43],

artificial bee colony (ABC) [59] and so on. These algorithms have been used to

process many optimization problems and have shown good performance on some

of the problems. Improving methods for these algorithms have also been studied

in these years.

As one of the population-based metaheuristic methods, PSO is easy to be im-

plemented for optimization problems and has a strong global search. However,

there are some reasons as the poor local search ability or premature convergence

that cause PSO cannot keep finding better solutions in the latter evolution. Past
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works provided ways to improve the conventional PSO as Gaussian mutation, ran-

dom walk, position initializing, population reassignment, sampling (SPSO-2011).

SPSO [64] proposes an idea of rotational invariance to enlarge the search range.

A linear decrease inertia weight is used for building a balance of exploration and

exploitation [58]. An approach called TVACPSO has been presented in which

local best solutions are updated by using some mutation strategies as Cauchy,

Gaussian, and opposition-based mutations [37].

However, a lot of them have the problem that delaying convergence and in-

creasing the number of parameters that need to be adjusted. On another side, FA

owns a strong local search ability for the optimization problems. Compared to

simply importing the random walk, in FA, one firefly estimates the gradient of its

own position by using the information of other points and search with a random

walk biased towards the gradient [54]. It is important to make a good balance

between the local search and the global search. Then consider how to make a

better algorithm as a PSO-FA hybrid where different properties of PSO and FA

are utilized.

PSO and FA are different about memory record and random factors. Mak-

ing hybridization provides an inspiration to utilize distinct algorithms’ properties.

This provides a method that is possible to get better candidate solutions. By

building a hybrid algorithm of PSO and FA, it is hopeful to improve search per-

formance than PSO with the help of FA. This research focuses on designing an

improvement strategy for the swarm intelligence model to utilize the properties of

PSO and FA. With an appropriate strategy, the hybrid one is expected to improve

the performance when handling some complex optimization problems.

Related works of making hybrid of PSO and FA are:

Modifying the standard model as: Let the attractiveness factor to instead the

social and cognitive acceleration coefficients [32] and applied to network classi-

fier. Let firefly owns the personal best of PSO [25] and applied to parameter

selection in machining. Some other algorithms that the population changes from



4 CHAPTER 1. INTRODUCTION

one model to another model [2, 14]. Let firefly owns personal best and global

best [38]. Changing particles’ properties with a fixed rule: Changing particles to

fireflies applied to power system [6], floorplanning problem [44]. Change the best

firefly to particle [3] and applied to data classification. Changing the best fitness

owner in the particles to firefly [48] and applied to the power system. Best particle

moves as a firefly [34] and applied to satellite image classification. Making a sub-

population of PSO and FA: Making sub-populations by sharing common optimal

as FAPSO [50]. In FAPSO, a local search strategy is introduced to improve the

exploitative capability. A multi-swarm method based on FA and PSO is proposed

as a hybrid algorithm [27]. Some other hybrids based on sub-population are ap-

plied to cloud service [20], power management [33], tuning the penalized support

vector machine’s parameters [5]. Building a strategy to select the model of PSO

or FA: HFPSO is proposed with a model selection strategy based on whether one

particle improves than the previous global best record. Some works applied it

to flow shop scheduling problem [28], forecasting solar power [1], electric power

networks [40].

The above works using parameter tuning, modifying model and show good

performance for specific problems. However, parameter tuning costs a lot of com-

putation and it is not helpful to build widely-used solvers.

On another side, high-dimensional problems own many parameters and need

many iterations or arithmetic operations for evaluations. In real applications,

evaluating high-dimensional problems usually costs a lot of computation while

large number evaluations may not be practical and reasonable. It is difficult to

do parameter tuning during the whole evolution process. Besides, the black-box

optimization problem [26] is difficult for the landscape of the objective function

is unknown. It is challenging to get feasible and practical solutions for high di-

mensional black-box function optimization problems. Optimization solvers as the

swarm intelligence that do not rely on problem-based knowledge are suitable to

handle the black-box optimization problems.
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For black-box functions, the analytic form is not known. A black-box function

can be evaluated to obtain fitness values and approximated gradients. However,

when evaluating a solution’s quality for a metaheuristic, it needs to know the

optimal solution in advance. For assessing the performance of optimization algo-

rithms, the benchmark problems as the CEC benchmark are provided with known

properties for testing to understand the weaknesses and strengths of one algorithm.

In chapter 3, a simple hybrid of PSO and FA is introduced. By testing the

hybrid algorithm on CEC benchmark problems, it shows how controlling the com-

position of the hybrid group to affect the algorithm’s performance. Different

strategies are used to build hybrid mechanisms. For automatically changing the

composition of the population, this research also proposed a model selection mech-

anism as an event-driven strategy that focuses on the personal study process. To

show how the proposed strategy work, the proposed method is tested on some

optimization problems and compared with some other swarm intelligence algo-

rithms.

Then in chapter 4, a hybrid algorithm that uses a model selection mechanism

is introduced. This research proposes making a hybrid swarm of standard models

without parameter tuning. By utilizing an event-driven strategy that focuses on

personal study to cutting off the effect of the global best for part of the population

to let them find more potential solutions to improve the global best. HFPSO is

a hybrid that utilizes a model selecting method based on whether a particle is

successful to improve than the previous global best record. Compare to HFPSO,

the proposed method focuses on the personal study process of the particles to

improve the numbers of particles that update their personal best. Some expensive

benchmark problems whose properties are known are provided. By testing the

proposed hybrid on these problems to show how the proposed hybrid well per-

forms on high dimensional problems than some other optimization methods. This

research shows that the personal study is important to improve the performance

of the whole group.
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Besides, the PSO-FA hybrid swarm is applied to evolutionary multitasking [11,

24, 45, 67]. Evolutionary multitasking aims to simultaneously handle multiple op-

timization tasks when considering there is some relationship that exists among

these tasks. As an evolutionary multifactorial optimization method, multifacto-

rial optimization is proposed for handling multitasking problems with a single

population. By updating a skill factor, one particle has a chance to change its

preferred task. If one particle stop evolution when optimizing its current pre-

ferred task, it may lose to others that prefer the same task of it. Then changing

its preferred task would give it a chance to improve its status in another task.

Especially when the tasks are not similar to each other, one performs not well in

a task does not mean that would be the same in another task for it. Then for one

particle who fails to improve its best record in one task but success in another

task, exploiting the current interested space is meaningful to contribute to the

evolution in the reassigned task. The proposed method helps the particle to do

the local search if it updates its personal best. Combining the proposed strat-

egy with the multifactorial optimization to help the population to improve the

solutions when processing multiple tasks. In chapter 5, the multifactorial hybrid

algorithm is tested on a multifactorial benchmark problem and compared with a

simple multifactorial particle swarm optimization to show that the combination

of hybridization strategy and multifactorial optimization contributes to improving

the performance of simultaneously handling multiple optimization tasks. In chap-

ter 6, a black-box benchmark problem in which it needs to optimize the mass of

three different cars is provided. Test the proposed multifactorial hybrid to show

the method well performs on a real problem.



Chapter 2

Swarm intelligence

In the natural environment, there are many collective behaviors as ant colonies,

bird flocking. Swarm intelligence is inspired by these collective behaviors in bio-

logical systems. In a swarm intelligence system, a simple population consists of

some no-mass search agents with a cooperation mechanism. Each agent interacts

with another one to process a common problem rather than a single individual to

do that.

In a common group, members follow some rules to decide their actions. For the

individuals, they own some inherent properties. The biological properties decide

one individual can do what actions. In one group, the individuals cooperate

with each other. Different kinds of communication methods exist in nature. By

interacting with each other in a common group, individuals show their social

behavior.

Swarm intelligence is inspired by the personal activity and the social behavior

of the animal groups. Assume that there are some no-mass search agents instead

of the actual moving animals to simulate the moving process. By utilizing the

search behavior of a swarm intelligence model, the search agent population is able

to explore the solution space of one problem with position updating.

On another side, optimization problems have got a lot of attraction in the field

of economic, engineering. A metaheuristic is one method that relies on algorith-

7



8 CHAPTER 2. SWARM INTELLIGENCE

mic knowledge rather than problem knowledge so it is able to be used to handle

some expensive problems as the black-box optimization problems in which the

landscapes are unknown.

Swarm intelligence [29] is one of the popular metaheuristics for handling the

black-box optimization problem. Many swarm intelligence algorithms are devel-

oped with different population-based strategies. The swarm intelligence algo-

rithms have some common properties of utilizing interaction among search agents

and some stochastic factors. One general property of swarm intelligence for ef-

fectively handling optimization problems is parameter tuning of the algorithm

parameters for a specific problem. However, it is difficult to tune the parameters

without trial and error for that costs a lot of computation. This chapter intro-

duces two swarm intelligence algorithms: PSO and FA. These two algorithms are

different of memory record and stochastic factors. Then consider utilizing the

differences of them to develop a better optimization solver.

2.1 Particle swarm optimization

Particle swarm optimization (PSO) [30] has been proposed by Kennedy and Eber-

hart in 1995. PSO is a biologically inspired optimization method. As a population-

based search algorithm, PSO has got a lot of attention and has been applied to

handle optimization problems. PSO has the merit that it is easy to be imple-

mented.

About the implementation of PSO, it assumes that there are some no-mass

particles that are randomly assigned in a search space. Whole particles move in

the common search space with their velocities. Each particle gets its evaluation

value by computing the position information in the objective function.

In the population, each particle will compare its current position with its previ-

ous position. Then, the agent will memorize its best position. For computing the

optimum of the problem, the evaluation values of whole individuals are compared
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and ranked. Then the best solution is able to be found. By comparing the best

solution and the memorized best solution, it is able to know whether the global

best position is updated. Through a large number of iterations, particles can it-

eratively update their best positions and share the knowledge with each other.

When the terminating condition is satisfied, the best recorded solution is got.

In PSO, previous information is used for updating the current status. For

each individual, its personal best position is recorded for the cognition process.

The personal best information means one individual can memorize its previous

experience and utilize the memory to contribute to the progress of itself. This

factor causes one particle’s behavior be affected by its memory. Besides, the

social common knowledge as the global best position is recorded and shared among

individuals in a common group. The group-shared information is updated by the

leader individual and contributes to the whole group’s communication. Common

knowledge plays a role in adjusting one particle’s velocity. The personal work

and the social work are combined to construct one individual’s moving velocity

in PSO. Besides, one inertia factor is usually utilized in one individual’s progress

as another previous information. As an automatic searching algorithm, PSO uses

one individual’s previous velocity as an inertia factor. In most situations, only a

part of one individual’s velocity is used for future movement.

Some important issues for particle movements are the moving velocity, personal

best position, global best position, current position, and so on. One particle refers

to its personal best position pbest and group’s best position gbest for its position

updates. That means one agent learns from the previous knowledge, and its best

knowledge is also shared with other members of the society. Besides, the moving

velocity is recorded for each individual as an inertial factor. Each agent’s current

best value pbest is renewed in every step. At the same time, the swarm’s optimum

gbest is also renewed with agents’ communication. And the velocity of agents also

change with time. The personal best is studied and memorized by the agent itself.

In a biological society, animals working with each other. Through an individual’s
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Table 2.1: Pseudo code of PSO

Step1 Initial the particle’s position
Step2 Initial the particle’s best known position, velocity
Step3 Set suitable parameters
Step4 Loop

While (generation limit is not meet)
Renew the particle’s velocity
Renew the particle’s position and best known position
Renew global best position
Renew optimum

Step5 End loop

personal behavior, it can learn from the natural environment and accumulate

experiences. By attending a social activity, the common knowledge would help

the individual to adapt itself to the environment better.

PSO’s update equations were defined as Eq (2.1):

 vt+1
i = wvti + c1r1(ptbest − xti) + c2r2(gtbest − xti)

xt+1
i = xti + vt+1

i

(2.1)

Here, w is an inertia weight, c1, c2 are constants, r1, r2 are randomly selected

from the uniform distribution over [0,1]. Indicates he velocity of particle i in time

t, then the velocity vti is updated to vt+1
i in time t+1. With the velocity to update

the position xti to xt+1
i . Then pbest indicates the personal best position, gbest is the

global best position.

2.2 Firefly algorithm

Fireflies’ flashing behavior is a well-known natural phenomenon. The flashing light

of the firefly comes from the process of bioluminescence and helps to attract prey

or protect the firefly itself from attack.

Fireflies communicate with each other by flashing. The brightness indicates

the strength of the signal, then one firefly would be attracted by other fireflies
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Figure 2.1: PSO model
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that are brighter than it. By comparing the intensity, a firefly selects its flight

direction. By simulating the flashing behavior and communication method of the

firefly, a dynamics model for mathematical optimization is provided by X. S. Yang

that called the firefly algorithm. The firefly algorithm has been used to process

some optimization problems.

In the firefly algorithm, fireflies are flashing and moving at the same time. As

an initial step, agents are randomly placed in the search space. Their intensities

will be initialized with evaluation values of position information on the objective

function. By ranking the intensities, one firefly is attracted by another one which

is brighter than it. Define the firefly j that is brighter than i belongs to a common

group Gi. The brightest one will move as a brown movement since it would not

be attracted by other fireflies. Then agents move through the position’s updating

based on the communication among themselves. As a first-order dynamics model,

there is no velocity issue used in the FA. Compare their intensity then move the

agent which is less bright to the brighter one. It should be considered that the

brightness will be changed with the distance rij. So attractiveness would be varied

base on the Euclidean distance between agent i and j.

In the simplified model, it is assumed that a firefly selects its flight direction

through the observed intensities in the flashing light. Light intensity at r distance

is described as I = I0/r
2 (I0 is the intensity of the light source). For each firefly,

light is absorbed and affected by a constant light absorption coefficient.

Firefly algorithm is developed by the flashing behavior of fireflies which is a

familiar phenomenon. In the simplified model, it is assumed that the firefly selects

its flight direction through the observed intensities in the flashing light. Then, FA’s

update equation was proposed as Eq (2.2).

xt+1
i = xti +

∑
j∈Gi

(βexp[−γr2
ij](x

t
j − xti) + αεt) (2.2)

Here, β indicates an attraction weight to the brighter fireflies, and γ represents
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Table 2.2: Pseudo code of FA

Step1 Initial the fireflies’s position
Step2 Initial intensities with function fitness
Step3 Set suitable parameters
Step4 Loop

While (generation limit is not meet)
Renew the position and evaluate
Ranking intensities of fireflies
Find best firefly
Renew optimum

Step5 End loop

the light absorption rate according to the distance. For each individual i, one

individual is brighter than i is indicated as j. rij means the distance between i

and j. Then, in the last term, α is a parameter for controlling the step size, and εt

is a random vector for a random walk whose elements are sampled from Gaussian

distribution with 0 mean and unit variance. Then update the position xti to xt+1
i .
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Figure 2.2: FA model



Chapter 3

Hybrid algorithm for black-box

optimization problem

Optimization is a rational requirement in various fields as engineering designing,

economic planning, and so on. There are various kinds of optimization prob-

lems that aim to obtain good solutions. Among these optimization problems, a

class of black-box function optimization [26] gets the attraction of researchers.

Black-box means that only the output value is available at the observed points of

design variables. Also, any information about a derivative and whole landscape

of the objective function is not available in computing optimum solutions. Thus,

an automatic search algorithm is employed to deal with such kinds of problems.

In particular, a metaheuristic [62] approach has been an attractive method since

it requires algorithmic knowledge rather than a heuristic with domain-specific

knowledge. However, generally speaking, while facing different problems, meta-

heuristics do not always perform better than a heuristic one. It is important to

make a metaheuristic search method work well in different situations.

Metaheuristic methods can be categorized as local search or global search,

single-solution based or population-based, and so on. Since a single model can

well solve only parts of the optimization problems, we may require to think about

other ways of paralleling solving problems better. To this end, there have been

15
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proposed plenty of efficient algorithms with their improvements in dealing with

complex optimization problems. For example, making a hybrid algorithm may be

a good way. However, some of such hybrid methods were ad-hoc approaches. Even

if such approaches achieved good performance, they were sometimes criticized. So

we should employ more interpretive approaches. By making use of the properties

of base algorithms, it will be possible for us to build a well-performed combination.

This chapter introduces a simple hybrid algorithm that is combined with par-

ticle swarm optimization and firefly algorithm. Then it will introduce how to

set the population with different models and describe how they sharing common

information with each other. Then, the algorithm is tested on 15 complex func-

tions that were supplied by CEC 2015 single-objective computationally expensive

optimization problems [10]. From the computing results, it expects to find some

influencing factors of the hybrid algorithm and consider how to improve the algo-

rithm performance.

3.1 Simple hybrid of PSO-FA

In this section, a simple hybrid algorithm for PSO and FA will be explained.

In a common group for hybridization, two different kinds of individuals exist.

For developing a PSO-FA hybrid algorithm for optimization problems, a hybrid

mechanism that fixing the numbers of particles and fireflies is proposed.

In PSO, the particles share the global best information as common knowledge.

While in FA, the fireflies compare with each other by ranking the intensities of

them. For combining the two different types of agents together, it is necessary

to let all agents share some information in common. In the proposed hybrid

algorithm, all agents have their own intensities no matter they are particles or

fireflies. At the same time, whole individuals would share the global best memory.

Particles’ number and fireflies’ number would be fixed in the hybrid swarm. It

means that the percentage of the different types of individuals can be consciously
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Table 3.1: Pseudo code of PSO-FA hybrid algorithm

Step1 Set numbers of particle (n1), firefly (n2)
Initialize the agents’ position

Step2 Evaluate the agents and initial the global
best and personal best

Step3 Loop start
If the agent is a particle

move as particle according to Eq. 2.1
Elif the agent is the firefly

move as firefly according to Eq. 2.2
Step4 Evaluate the agents

Update the global best and personal best
Step5 If the terminate condition is satisfied

End loop
Else

Go to step 3

tuned.

The working flow of the hybrid swarm is simple. As an initial step, the indi-

viduals will be randomly placed in the search space. Then evaluating each one

by calculating the position in the objective function. Set their initial positions as

personal best position and find the global best position by comparing the evalu-

ation values of them. In each iteration, some individuals would move according

to the PSO model, while others would move according to the FA model. At the

same time, the global best memory would be shared by the whole society and

used for particles’ study process. Besides, all agents own the intensity issue and

the intensity will be initialized with the function value. In each iteration, whole

agents contribute to updating the global best memory. Fireflies would be affected

by both particles and fireflies. Within the limited computation resource, the final

optimum is got. The hybrid algorithm is shown in Table 3.1.
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3.2 Benchmark optimization problem

For one minimum optimization problem, there is a definition space in which it

is able to find solutions. Each of them is represented by a vector with multiple

variables. By searching in the space, some candidate solutions can be found for

comparison. The objective of the optimization solver is find the best candidate

solution from whole solutions within the defined space. By changing the design

variables of one vector, it is able to get different solutions. Then evaluate the

candidate solutions according to calculate the fitness of them in the objective

function. By computing and comparing corresponding evaluation values, the best

solution can be selected out from whole possible solutions. By iteratively evaluat-

ing, updating, and comparing the solutions, one algorithm is able to find at least

one best solution within limited computation resources.

Black-box optimization is provided as the objective function is unknown. For

developing efficient algorithms, it cost a lot of evaluation time of objective func-

tions in real black-box optimization problems. On another side, some benchmark

problems are provided with expensive settings that limited computation is afford-

able. The test suites as the CEC benchmark are provided with limited computa-

tion times. These benchmarks are important to assess optimizers’ performance,

understand one algorithm’s weaknesses and strengths, and contributes to testing

new algorithms. Then in this research, the benchmark test suites are used for

developing algorithms for that these problems with given functions can be sim-

ply calculated. In addition, instead of costing too much computation resource on

the trial and error about parameters, making a good composition of models to

improve the search performance that finding better solutions is important for the

application of swarm intelligence.

In CEC 2015, some bound-constrained single-objective computationally ex-

pensive numerical optimization problems are provided for testing algorithms’ per-

formance. The provided problems are quite more difficult than some common
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optimization problems. Whole problems are functions with 10 or 30 dimensions.

Some of the problems are shifted or rotated to improve the difficulty of process-

ing. They are unimodal, multimodal and some of them are called hybrid functions

composited of several basic functions.

The basic functions for the CEC 2015 expensive single-objective optimization

problems [10] are described as below.

1. Bent Cigar Function

f1(x) = x2
1 + 106

D∑
i=2

x2
i (3.1)

2. Discus Function

f2(x) = 106x2
1 +

D∑
i=2

x2
i (3.2)

3. Weierstrass Function

f3(x) =
D∑
i=1

(
kmax∑
i=0

[
ak cos

(
2πbk(xi + 0.5)

)])
−D

kmax∑
i=0

[
ak cos(2πbk · 0.5)

]
(3.3)

a=0.5, b=3, kmax=20

4. Modified Schwefel’s Function

f4(x) = 418.9829×D−D
∑
i=1

g(zi) zi = xi+4.209687462275036e+002
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g(zi) =



zi sin(| zi |
1
2 ) if | zi |≤ 500(

500− mod(zi, 500)
)

sin
(√
| 500− mod(zi, 500) |

)
− (zi − 500)2

1000D
if zi > 500(

mod(| zi |, 500)− 500
)

sin
(√
| mod(| zi |, 500)− 500 |

)
− (zi + 500)2

1000D
if zi < −500

(3.4)

5. Katsuura Function

f5(x) =
10

D2

D∏
i=1

(1 + i
32∑
j=1

| 2jxi − round(2jxi) |
2j

)
10

D1.2 − 10

D2
(3.5)

6. HappyCat Function

f6(x) =
∣∣ D∑
i=1

x2
i −D

∣∣1/4
+ (0.5

D∑
i=1

x2
i +

D∑
i=1

xi)/D + 0.5 (3.6)

7. HGBat Function

f7(x) =
∣∣( D∑

i=1

x2
i )

2 − (
D∑
i=1

xi)
2)
∣∣1/2

+
0.5
∑D

i=1 x
2
i +

∑D
i=1 xi

D
+ 0.5 (3.7)

8. Expanded Griewank’s plus Rosenbrock’s Function

f8(x) =f11(f10(x1, x2)) + f11(f10(x2, x3)) + · · ·+ f11(f10(xD−1, xD))

+ f11(f10(xD, x1))
(3.8)

9. Expanded Scaffer’s F6 Function

g(x, y) = 0.5 +
sin2

√
(x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2

f9(x) = g(x1, x2) + g(x2, x3) + · · ·+ g(xD−1), xD) + g(xD, x1)

(3.9)
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10. Rosenbrock’s Function

f10(x) =
D−1∑
i=1

(100(x2
i − xi+1)2 + (xi − 1)2) (3.10)

11. Griewank’s Function

f11(x) =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos(
xi√
i
) + 1 (3.11)

12. Rastrigin’s Function

f12(x) =
D∑
i=1

(x2
i − 10 cos(2πxi) + 10) (3.12)

13. High Conditioned Elliptic Function

f13(x) =
D∑
i=1

(106)
i−1
D−1x2

i (3.13)

14. Ackley’s Function

f14(x) = −20 exp
(
−20

√√√√ 1

D

D∑
i=1

x2
i

)
−exp

( 1

D

D∑
i=1

cos(2πxi)
)

+20+e (3.14)

and so on.

Then 15 expensive single-objective optimization problems are changed from

these basic functions with some rotate and shift data. They are complicated and

not easy to get solutions for them. The detail of the problems is shown in Table 3.2.

3.3 Numerical test

In this test, the PSO-FA hybrid algorithm is used to compute these complex

optimization problems’ minimums. The agent numbers are set as n1 and n2,

which will moving according to PSO rules or FA rules. The test condition is
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Table 3.2: CEC 15 expensive optimization test problems

Categories Fi Functions F ∗i
Unimodal
functions

F1 Rotated Bent Cigar Function 100
F2 Rotated Discus Function 200

Simple
Multimodal

functions

F3 Shifted and Rotated Weierstrass Function 300
F4 Shifted and Rotated Schwefel’s Function 400
F5 Shifted and Rotated Katsuura Function 500
F6 Shifted and Rotated HappyCat Function 600
F7 Shifted and Rotated HGBat Function 700

F8
Shifted and Rotated Expanded 800
Griewank’s plus Rosenbrock’s Function

F9 Shifted and Rotated Expanded Scaffer’s 900
F6 funtions

Hybrid
funtions

F10 Hybrid Function 1 (N=3) 1000
F11 Hybrid Function 2 (N=4) 1100
F12 Hybrid Function 3 (N=5) 1200

Composition
functions

F13 Composition Function 1 (N=5) 1300
F14 Composition Function 2 (N=3) 1400
F15 Composition Function 3 (N=5) 1500

described as below:

Agent numbers: 50, n1(particle number), n2(firefly number); PSO parameter:

c1=1.4, c2=1.4, w=0.7; Implement times: 30; Dimension: 10; Search space range:

[-100, 100].

The 15 optimization functions were tested with 1000 iterations. Each agent

will be initialized randomly in the search space before the iteration starts. In ev-

ery iteration, a particle will update its local best memory and global best memory

while the brightness firefly will also contribute to updating the global best mem-

ory. In addition, the test result will be expressed as taking the logarithm of the

objective function value.



3.3. NUMERICAL TEST 23

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

standard deviation analysis of algorithms

PSO FA HA(45 5) HA(5 45) HA(30 20) HA(20 30)

Figure 3.1: Standard deviation analysis of algorithms (x axis shows the functions’
numbers, y axis shows the standard deviations of 30 runs
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rithms of the global best values )
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PSO, FA and the PSO-FA hybrid algorithm (4 types: particle number = 45,

firefly number = 5; particle number = 5, firefly number = 45; particle number

= 30, firefly number = 20; particle number = 20, firefly number = 30;) are ran

under the 10 dimension situation. This computation is ran about 30 times for all

15 complex optimization problems. The implement result is shown in Table 3.3.

As we can see from the Table 3.3, some results such as the minimum value, the

maximum value and the standard deviation of each function’s test are recorded.

The PSO-FA hybrid algorithm deal with most of the problems well. From

Table 3.2, it is able to see that the theoretical final optimum of these complex

functions. These algorithms got optimums through lots of loops. By comparing

the test result with each other we can see that these algorithms performed well

on lots of functions.

We can see that these algorithms performed differently when they dealing with

different functions. It seemed that HA(30 20) and HA(20 30) can get the best

minimums of F1. To other functions, HA(30 20) and HA(20 30) can also perform

as well as PSO.

As we have seen in the Figure 3.1, there are the standard deviations of test

results. From the graph, when testing the F1 and F10 with PSO, FA and HA,

these algorithms’ test results performed big standard deviations. But to other

functions, the test results are stable with small standard deviations. And to lots

of functions, FA’s results are more unstable than others.

In order to show the difference between these algorithms’ evolution speed, here

provides a graph of one run’s convergence process of F1. From the Figure 3.2, it

is able to see that PSO gets good fitness fast while FA improves slowly. It shows

that the hybrid algorithm performs between them. In the hybrid algorithms, if

there are more particles than fireflies, the speed for finding better global best will

be faster.

PSO and FA have been used for processing optimization problems by lots of

researchers. By combining the properties of these two models, individuals with
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different characteristics can cooperate with each other in a common group. By

building and testing the PSO-FA hybrid algorithm in which the number different

kinds of particles are fixed, it shows that tuning the number of particles can change

the algorithm’s performance.



Chapter 4

Model selecting PSO-FA hybrid

algorithm

This chapter introduces a proposed method with model selecting strategy for a

hybrid of PSO and FA [53]. PSO utilizes the previous information as personal

best for personal study and global best for social communication. Since PSO

has some drawbacks as poor local search or premature that would cause stop

evolution, previous works provided a lot of methods to improve the performance

of the PSO. For example, SPSO [64] proposes an idea of rotational invariance to

enlarge the search range. A linear decrease inertia weight is used for building a

balance of exploration and exploitation [58]. Besides, making a hybrid algorithm

is one method to improve PSO by using the properties of another algorithm. Many

PSO-related hybridizations have been developed in recent years. For each of these

algorithms, a common population is expected to perform properties of different

models.

The PSO-GA hybrid has been developed by involving the Genetic Algorithm

(GA) and PSO as inputting the GA character into PSO. The selection, mutation,

and reproduction of the population are used in the PSO-GA hybrid [39]. DE

is also presented as one of the metaheuristics for processing global optimization

problems. Using the property of DE is hopeful to improve population diversity.

27
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By combining the Differential Evolution (DE) with PSO, DEPSO [65] is provided.

Besides, the hybrid of PSO and other algorithms such as Simulated Annealing [60],

Ant Colony Optimization [41], Cuckoo Search [19], Artificial Bee Colony [15] have

been provided in recent years.

Different hybrid mechanisms are provided for building hybrid algorithms. Ex-

cept of making a fixed percentage of different particles, there are other methods

such as setting a switching condition for controlling different algorithms. One

switching condition is that setting a number before which one algorithm works

and then another one works. For the information communication among the hy-

brid population, there is a method in which the best particles of GA and PSO are

exchanged [39]. In the past years, the PSO-GA hybrid is used to process many

problems such as unconstrained global optimization problems and some engineer-

ing design optimization problems.

Making a good balance between exploitation and exploration is important for

one swarm intelligence algorithm [18]. In a general swarm intelligence model, ad-

justing the parameters can change the effect of them [23]. For a hybrid swarm of

different models, how controlling the exploitation and exploration would affect its

performance. Then making a good balance between the PSO and the FA is impor-

tant to develop a well performed hybrid swarm. PSO and FA have some common

points about position update for that they all own the iteration mechanism in

the swarm and stochastic factors. At the same time, they have some different

properties: 1. PSO uses the previous knowledge for iteration information while

FA has no memory and uses current information. 2. PSO uses a random factor

to adjust the effect of the cognition and social learning while FA uses a random

walk. Different from PSO, FA relies on the current information and the fireflies

communicate with each other by comparing the intensities of themselves. This

contributes to avoiding been affected by negative previous knowledge. Making a

hybrid swarm of PSO and FA is expected to improve the performance of PSO

about getting better global solutions.
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Some hybridizations [7, 51, 52] of PSO and FA have been presented. Xiao

and Hatanaka presented a simple hybridization with fixed numbers of particles

and fireflies [51]. By tuning the proportion of two different types of agents, the

performance of the hybrid swarm would be changed. It shows that tuning the pop-

ulation component would affect the whole group’ performance. Finding a suitable

component proportion would improve the performance of the hybrid swarm.

Besides the fixed component, there is a method in which one agent’s charac-

ter is able to be transformed. A property changing method is proposed aim at

changing the characteristic of a specific individual of the hybrid swarm [52]. This

method is applied to build a property changing PSO-FA hybrid algorithm. In

this algorithm, the initial population is composed of some particles and fireflies.

When the agent group iteratively searching for finding better solutions, the best

particle would be transformed into a firefly. After the movement, the transformed

one changes back to a particle. This algorithm shows that changing character can

affect the whole group’s performance.

With property changing mechanism, one individual is able to perform different

characters. However, changing a specific individual may not be good for processing

all problems. Automatically changing the character is a good method for helping

one individual select a preferred model based on the actual situation. Different

from the method of changing a specific individual, there is a method called HF-

PSO [7] in which one agent can be automatically transformed. In this method,

one particle changes its preferred model based on the status of the evolutionary

process. The individual implements the FA model when it improves than the

previous global best, or it will implement the PSO model. In HFPSO, it uses a

memetic method with the model selection to control agents’ movement. By com-

paring the fitness of the agents’ current position and fitness of the previous global

best, it can judge whether it gets better fitness than the global best. HFPSO aims

to control individuals’ characteristics in global search stage or local search stage

to improve the algorithm’s performance.
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HFPSO is a hybrid that utilizes a model selecting method with an event-driven

trigger of whether a particle is successful to update the previous global best record.

Different from HFPSO, this chapter proposes a hybrid strategy that focus on the

personal study process. When one particle improves than its personal best record,

then let it to move as a firefly. This strategy aims to show that the personal study

utilizes FA to do local search helps to improve the performance of getting better

solutions. CEC benchmark provides some expensive optimization problems. By

testing the hybrid swarm on the benchmark problems to observe whether the

hybrid swarm performs better of getting global best solutions.

4.1 Model selecting strategy

There are some reasons cause PSO cannot keep finding better solutions in the

latter evolution. Strong local search ability can lead to the particles quickly gath-

ering around the local optima and that would cause the premature convergence of

the population. When the local search ability is weak, it will be difficult for the

particles to convergence to a local optimum. These can cause the global best to

stop improvement. When processing black-box optimization problems, it is diffi-

cult to observe the behavior of the particles. However, it is able to imagine that

many particles fail to improve themselves when the global best stops improvement.

Find a way to improve the number of particles that update their personal best is

expected to improve the global best.

For one problem, particles are easy to find some interesting zones for them-

selves. Since particles are attracted by the global best, it may limit the population

to find better solutions if the global best stop evolution and attract whole particles

to leave away from their current interesting space. By changing the characteristic

of one particle and make it move as a firefly, it helps the particle to get rid of

the effect of the global best and focus on their interested space. With the local

search, it increases the possibility for particles to find better solutions than the
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current global best solution. On another side, HFPSO is a hybrid that utilizes

a model selecting method based on whether a particle is successful to improve

than the previous global best record. For each particle, it fails to improve than

the previous global best does not mean that it fails to improve its personal best

record. (When whole particles fail to improve than the global best, the hybrid

swarm would just be changed to a PSO population) Only the outstanding parti-

cles would have a chance to do the FA movement for local search. Different from

HFPSO, this research proposes a hybrid strategy that focuses on the personal

study process. When one particle improves than its personal best record, then let

it move as a firefly. It means that one particle would do the local search to exploit

the current interested space until its evolution stops.

This section explains the hybrid swarm model with PSO and FA based on

event-driven model change (HA). The hybrid algorithm is proposed by utilizing

a model selection strategy based on whether the personal best is updated. If the

personal best is updated, it would be handled by FA or it would be handled by

PSO. The model changing aims to guide the agents that focus om their surround-

ings to do the local search when they succeed to improve their previous status or

following the leader to do the global search when they fail to improve themselves.

This method aims to enlarge the potential possibilities of finding better solutions.

For each individual i, it decides the next movement model by justifying whether

the personal best is updated. Here f(xti) denotes the fitness of individual i, and

f(pbestti) denotes the fitness of its personal best. If the individual gets a better

evaluation than the personal best at the current time t, then the personal best is

updated. In the proposed model, this updating event is used as the trigger for

model change. Thus, each individual would update its position according to the

following model,

The definition of the model selection mechanism is shown in Eq 4.1:
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Table 4.1: Pseudo code of PSO-FA hybrid algorithm

Step1 Initialize the individual position
Step2 Evaluate individuals and set the personal best pbesti
Step3 If terminate condition not meet

Find the global best gbest from pbesti , (i = 1, 2, . . . , N)
For each individual i

If the personal best is updated
move as firefly according to 2.2

Else
The agent moves as a particle according to 2.1

Evaluate the fitness
If f(xi) < f(pbesti):

Update the pbesti
Step4 End

Agent moves as

PSO, if f(xti) ≤ f(pbest
(t−1)
i )

FA, if f(xti) > f(pbest
(t−1)
i )

(4.1)

The PSO-FA hybrid algorithm is built as in Table 4.1. In the proposed al-

gorithm, the model selection mechanism based on an event-driven mechanism of

personal best information update. HA uses the model selection strategy of pbest

to decide the moving model of the agent.

The algorithm is used for handling optimization problems. The detail opti-

mization process starts with the initial population setting. Whole search agents

in the population are randomly located in a search space. Each one’s position

is changed with the movement and described as xti. By updating the individual

position xti of the i-th individual in discrete time t, it can search in a continu-

ous space. For one which implements the PSO movement, it owns a velocity vti .

Through its personal study and social communication, it updates its velocity in

the next time step for changing the position. For one which implements the FA

movement, it uses an attractive factor to update the position. One would get

a fitness number by applying its position vector to the objective function of the

problem. By comparing and ranking whole particles’ fitness, the best fitness is
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found. If the best fitness improves the previous best fitness, then it is recorded

for updating the best memory solution.

Assume that for one optimization problem that owns high dimensions, in lo-

cal search stage of PSO, the fast convergence ability slows down when particles

searching close to an optimal solution in the solution space. Then the particles

would oscillate around optimal solution and cause delay of the optimization task.

In FA, fireflies not own velocity and previous best position. It means that fireflies

move regardless of their previous best positions and this may be useful in the

exploitation stage for each particle. Then in the proposed strategy, by changing

the moving method, the particle has the chance to move as a firefly. This may

help the particle run away from the previous best position.

4.2 Numerical test

CEC2015 and CEC2017 provide some computationally expensive problems for

performance comparison of algorithms. This section provides the numerical test

of PSO, FA, SPSO, HFPSO, HA on these problems. Limited evaluation times

are allowed for each algorithm. This paper provides the numerical test on the

CEC15 benchmark problems and CEC17 benchmark problems [49] which is de-

scribed in Table 4.2. The functions in both benchmarks are separated into four

categories: unimodal, simple multimodal, hybrid and composition. These uni-

modal or multimodal functions are non-separable. Whole functions are provided

in high dimensions and in each dimension the search space is limited to [-100,100].

The proposed method focuses on the personal study process of the particles.

This method is expected to improve the numbers of particles that update their

personal best by changing characteristics. Here show some examples of one run’s

result in Figure 4.1, 4.2, 4.3. The particle group totally owns 50 particles. For

the change curve of the particles’ number, the vertical axis means the number

of the particles that succeed to update their personal best in one iteration. The
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number in the vertical axis shows how many of them improve themselves. The

figures describe the evolutionary process about personal best and global best of

the proposed method and HFPSO in three functions: F13, F14, F15 of CEC 2015.

From the test result, it can see that compare to HFPSO, the proposed method

apparently improves the numbers of particles that update their personal best. And

the global best is also improved than HFPSO. The proposed method is effective

to improve the performance to find better solutions.

In the test, it compared the hybrid algorithm with simple PSO, SPSO (Bigia-

rini et al., 2013), FA and HFPSO. About the test environment, here describe the

parameters as below: The total evaluation number is set as 1500 for 30 dimensions

(30D). For the PSO model, c1 and c2 are set as 1.4. Then in this paper, the inertia

weight w is set as 0.8. Randomness r1, r2 generated follow U(0, 1). For the FA

model, β=2.0, γ=1.0, and the step scale α use 5. The randomness of the random

walk is generated by following N(0, 1). The test will implement for 20 times for

each case. The mean value of the 20 times run would be recorded for comparison.

In Figure 4.4, the horizontal axis means the iteration numbers while the vertical

axis means function values of the best memory record. Then use the logarithm

value to scale the fitness to make the graphs. These figures describe the update

situation of the global best information in each algorithm. In the result of F1 - F15,

the hybrid algorithm HA performs better evolutionary trends than simple PSO and

FA. Besides, the hybrid algorithms, get better optimums than other algorithms

averagely. It means that the hybrid algorithm averagely performs better than

PSO, FA, and SPSO.

The proposed PSO-FA hybrid algorithms is designed for developing a hybrid

swarm that can well process more optimization problems than PSO or FA for

optimization problems. A model selection strategy is used in the hybrid swarm.

From the result of the CEC 2015 benchmark, it is able to observe how these

algorithms perform differently on the 15 problems. The result is shown in Table 4.3

and Table 4.5. For the F1 function, it is unimodal with a smooth but narrow ridge
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global best evolution curve

particles’ number curve

Figure 4.1: One time run for F13
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global best evolution curve

particles’ number curve

Figure 4.2: One time run for F14
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global best evolution curve

particles’ number curve

Figure 4.3: One time run for F15
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Table 4.2: CEC 17 expensive optimization test problems

Type No. Description F ∗
i

1 Shifted and Rotated Bent Cigar Function 100
Unimodal functions 2 Shifted and Rotated Sum of Different Power Function 200

3 Shifted and Rotated Zakharov Function 300
4 Shifted and Rotated Rosenbrock Function 400
5 Shifted and Rotated Rastrigin Function 500

Simple 6 Shifted and Rotated Expanded Scaffer F6 Function 600
Multimodal 7 Shifted and Rotated Lunacek Bi Rastrigin Function 700
Functions 8 Shifted and Rotated Non-Continuous Rastrigin Function 800

9 Shifted and Rotated Levy Function 900
10 Shifted and Rotated Schwefel Function 1000
11 Hybrid Function 1 (N = 3) 1100
12 Hybrid Function 1 (N = 3) 1200
13 Hybrid Function 1 (N = 3) 1300
14 Hybrid Function 1 (N = 4) 1400

Hybrid 15 Hybrid Function 1 (N = 4) 1500
Functions 16 Hybrid Function 1 (N = 4) 1600

17 Hybrid Function 1 (N = 5) 1700
18 Hybrid Function 1 (N = 5) 1800
19 Hybrid Function 1 (N = 5) 1900
20 Hybrid Function 1 (N = 6) 2000
21 Composition Function 1 (N = 3) 2100
22 Composition Function 1 (N = 3) 2200
23 Composition Function 1 (N = 4) 2300
24 Composition Function 1 (N = 4) 2400

Composition 25 Composition Function 1 (N = 5) 2500
Functions 26 Composition Function 1 (N = 5) 2600

27 Composition Function 1 (N = 6) 2700
28 Composition Function 1 (N = 6) 2800
29 Composition Function 1 (N = 3) 2900
30 Composition Function 1 (N = 3) 3000
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Figure 4.4: CEC 2015 convergence curve (horizontal axis indicates iteration num-
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4.2. NUMERICAL TEST 41

0 10 20 30 40 50
t

2.84

2.86

2.88

2.90

2.92

2.94

2.96

gb
es

t

convergence curve

PSO
FA
SPSO
HFPSO
HA

F7

0 10 20 30 40 50
t

4

5

6

7

8

gb
es

t

convergence curve

PSO
FA
SPSO
HFPSO
HA

F8

0 10 20 30 40 50
t

2.9607

2.9608

2.9609

2.9610

2.9611

gb
es

t

convergence curve

PSO
FA
SPSO
HFPSO
HA

F9

Figure 4.4: CEC 2015 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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Figure 4.5: CEC 2017 convergence curve (horizontal axis indicates iteration num-
ber, vertical axis indicates global best value of 20 implements’ mean result)
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landscape. To the F2 function, it is unimodal with a sensitive direction. For

unimodal functions, the model selection helps the hybrid swarm (HA) performs

better than PSO, FA, SPSO and HFPSO. It shows that the model selection helps

to improve the progress in this problem than others. Then in Figure 4.4, for F1,

F2, it is able to see that PSO shows a high drop down rate at first and gradually

slows down to get close to premature. FA keeps to find better solutions but at

a slow improve rate. HA shows a high improving rate in the F1 function and

keep improving trend in F2 function. With the model selection strategy, the HA

keeps high improved rate as PSO even though it loses to PSO at the begin time.

The hybrid swarm keeps progress while PSO slow down the improve rate. It

means that the hybrid swarm shows good performance in exploration stage or

exploitation stage.

F3 to F9 are simple multimodal functions. HA gets good rank scores in most

of them except the F5 function. For that multiple local optimums exist, the

ability to get out of the traps is important for processing multimodal problems.

In Figure 4.4, about F3, F6, F7, F8, PSO fails for premature while HA is successful

to keep high improved rate in them and get better solutions. It shows that the

high convergence rate and strong local search both work in the hybrid swarm. The

model selection strategy shows good performance in multimodal problems.

For F10 to F15, these problems are hybrid functions or composition functions.

Since these problems are complicated for they are composited of several basic

functions, the model selection mechanism is expected to well perform for such

kinds of problems even though the landscapes of these problems are unknown. HA

performs best in these functions. It is able to see that HA keeps gradually getting

better optimums. In the graph of the F15 function, HA still keeps improving the

best value after PSO stops improvement. Since the proposed hybrid swarm is

composed of PSO and FA, it shows that the hybrid mechanism contributes to

improving the premature of PSO.

In the CEC 2017 benchmark, there provide 30 functions. The result of the
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benchmark shows in Figure 4.5, Table 4.4 and Table 4.6. HA performs best in the

unimodal problems. For the multimodal problem No.4 - No.10, HA performs best

in most of them except No.9, No.10 function. It means that the hybrid swarm

with the model selection mechanism shows good performance while processing

multimodal problems. To the complex hybrid functions and composition functions

No.11 - No.30, HA performs best in most of them. From the whole result, HA

gets an average score which is far better than others.

Based on the above, as an optimize solver, the hybrid swarm composed of

PSO, FA is proposed and uses the model selection strategy for improving the

performance for calculating black-box optimization problems. The test result

shows that HA gets the best score in the CEC 2015 benchmark and CEC 2017

benchmark. Besides, the hybrid swarm performs both high convergence speed and

the ability to get better optima when comparing it to PSO and FA. The model

selection strategy is helpful to improve the hybrid swarm’s performance compare

to others.

4.3 Statistical test

From the test result of CEC 2015 and CEC 2017, the proposed hybrid gets the

best average rank score in Table 4.5 and Table 4.6 and that means the proposed

hybrid algorithm performs best. To verify that the performance of the proposed

algorithm is statistically different from other algorithms, the Holm-Bonferroni

procedure [17, 22] is used for analyzing the performance difference within PSO,

FA, SPSO, HFPSO and the proposed hybrid algorithm. In this statistical test, the

null hypothesis (two algorithms are no different) and the alternative hypothesis

(two algorithms are different) are considered when handling the benchmark suites.

If the null hypothesis is rejected, there is a significant difference between the

performances of two algorithms.

Based on the null hypothesis (two algorithms are no different), the control
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method (best performed algorithm) would compare with other NA− 1 algorithms

for NTP target problems. Then there is a family of hypotheses that related to the

focused method. If the null hypothesis is rejected, there is apparent difference in

this pair. For each pair of the hypothesis, there are two samples. x1, x2. Let x1,

x2 describe the average rank score of these two samples. The variance of the two

samples are s1, s2, and the sample number of them are n1, n2. For analyzing the

differences of these two samples, the test statistics z is given as:

zj =
x1 − x2√
s1
n1

+ s2
n2

(4.2)

In this test, the average rank score of two algorithms are two samples. Indicate

the average rank score of algorithm j and 0 as x1, x2 and use Sj, S0 to describe the

variance of them. The average rank scores are used for calculating the difference

of the samples’ mean value. Depends on the Friedman test, the variance of two

algorithms: s1, s2=NA(NA + 1)/12, n1, n2=NTP . Put these into formula Eq 4.2,

then it is able to get the Formula Eq 4.3.

zj =
Sj − S0√
NA(NA+1)

6NTP

(4.3)

For the ranked algorithm j, the zj [13] is used to calculate the cumulative normal

distribution p value of it. In this test, the level of confidence δ is used as 0.05.

then a threshold is calculated as θ = δ/j, j > 0. Here, “p < θ” indicates the null

hypothesis is rejected or it will be accepted.

The statistical test result is shown in Table 4.7 and Table 4.8. HA gets the

best rank score in CEC 2015 benchmark, CEC 2017 benchmark. The best rank

score owner is selected as a base one for comparison then the rank score of HA is

utilized as S0. Calculating the z value of PSO, FA, SPSO, and HFPSO based on

Eq 4.3. Then verify whether “p < θ” to decide to reject or accept that there is no

difference between them and proposed HA.
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Table 4.3: CEC15 30D result (bold values are the best ones)

F1 F2 F3 F4 F5

PSO 2.2295E+10 1.4104E+05 3.3596E+02 6.4161E+03 5.0335E+02
FA 9.3342E+10 1.3989E+05 3.4403E+02 8.3790E+03 5.0408E+02

SPSO 2.2763E+10 1.5188E+05 3.3866E+02 7.9491E+03 5.0421E+02
HFPSO 2.1371E+09 1.3755E+05 3.3165E+02 7.1158E+03 5.0408E+02

HA 1.0439E+09 9.0280E+04 3.2714E+02 5.1460E+03 5.0417E+02
F6 F7 F8 F9 F10

PSO 6.0358E+02 7.4632E+02 6.8400E+05 9.1342E+02 9.1116E+06
FA 6.0773E+02 9.1165E+02 1.1191E+08 9.1401E+02 1.1896E+08

SPSO 6.0351E+02 7.4747E+02 6.6867E+05 9.1385E+02 2.3966E+07
HFPSO 6.0088E+02 7.0234E+02 4.0099E+04 9.1376E+02 1.1549E+07

HA 6.0072E+02 7.0081E+02 3.5467E+03 9.1341E+02 7.4758E+06
F11 F12 F13 F14 F15

PSO 1.2152E+03 2.1964E+03 1.8728E+03 1.7262E+03 2.8006E+03
FA 1.7221E+03 3.6644E+04 3.2119E+03 2.0301E+03 3.4285E+03

SPSO 1.2487E+03 2.5173E+03 1.9404E+03 1.7252E+03 2.7577E+03
HFPSO 1.1592E+03 2.1357E+03 1.7465E+03 1.6721E+03 2.6358E+03

HA 1.1576E+03 1.8085E+03 1.7249E+03 1.6627E+03 2.5054E+03

From the statistical result, the proposed HA outperforms than PSO, FA, SPSO,

HFPSO in CEC 2015 benchmark, CEC 2017 benchmark. There is a significant

difference between HA and other algorithms. That means the proposed strategy

for the hybrid swarm apparently improves the performance and averagely well

perform in processing these black-box benchmark optimization problems.

Making hybridization is a promising method to improve the performance by

suitably combining different models. In this chapter, a PSO-FA hybridization

with a model selection strategy is proposed. In the model selection strategy, an

event-driven trigger based on whether the personal best information is updated is

utilized. This hybrid swarm aims to improve the weakness as premature by im-

porting different swarm intelligence models’ characteristics into a common swarm.

This work contributes to building a hybridization of basic PSO and FA. By im-

porting an event-driven trigger to automatically control the personal study process

of each individual, the proposed method is easy to be implemented by saving the
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cost that controlling the selection process and utilizing the simple PSO and FA

as component models. To show how the proposed hybrid swarm performs when

comparing it with PSO, FA, SPSO, HFPSO, CEC 2015 benchmark problem and

CEC 2017 benchmark problem are used for a comparison test. From the test

result, it is able to observe that the proposed hybrid swarm gets the best result

in most of the problems. For verifying whether there is an apparent difference

between the hybrid swarm with other algorithms, the Holm-Bonferroni procedure

is used for a statistical test. From the statistical result, the hybrid swarm with

the model selection strategy outperforms others. The PSO-FA hybridization with

the event-driven model selection strategy clearly outperforms PSO, FA, SPSO,

HFPSO. This chapter introduced an event-driven model selection strategy based

on the personal best update to build a PSO-FA hybrid swarm. By changing the

status of the individual, the proposed method focuses on the personal study pro-

cess and contributes to well handle complex problems. This work provides the

idea of designing the personal study process in the hybridization.
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Table 4.4: CEC17 30D result (bold values are the best ones)

1 2 3 4 5
PSO 2.0410E+10 1.1607E+45 2.0640E+05 4.0400E+03 8.4665E+02
FA 1.1633E+11 4.0912E+49 2.1394E+05 4.2072E+04 1.1218E+03

SPSO 2.6368E+10 4.6386E+39 2.5781E+05 4.1677E+03 8.3950E+02
HFPSO 4.3752E+09 2.3324E+35 2.4309E+05 1.1596E+03 8.2683E+02

HA 3.8816E+09 1.1477E+33 1.9739E+05 9.9653E+02 8.0619E+02
6 7 8 9 10

PSO 6.7629E+02 1.4317E+03 1.1001E+03 1.2318E+04 7.7391E+03
FA 7.1732E+02 3.2267E+03 1.3234E+03 2.7010E+04 9.4968E+03

SPSO 6.6041E+02 1.5303E+03 1.1149E+03 8.9372E+03 9.0320E+03
HFPSO 6.5935E+02 1.2493E+03 1.1178E+03 1.2454E+04 9.3613E+03

HA 6.5219E+02 1.1299E+03 1.0991E+03 9.2666E+03 9.0174E+03
11 12 13 14 15

PSO 7.7605E+03 1.4334E+09 6.2467E+08 1.0351E+06 1.4717E+07
FA 2.0412E+04 2.3583E+10 2.0836E+10 6.7683E+06 2.4391E+09

SPSO 1.4800E+04 2.2801E+09 1.0757E+09 1.8997E+06 7.4552E+07
HFPSO 7.4597E+03 1.6923E+08 3.0429E+07 2.1609E+06 1.2356E+06

HA 4.8455E+03 3.1471E+08 5.5979E+07 1.5028E+06 8.5941E+06
16 17 18 19 20

PSO 3.9967E+03 2.7269E+03 1.2442E+07 4.8911E+07 2.9360E+03
FA 7.0888E+03 9.8644E+03 1.0163E+08 3.6388E+09 3.2577E+03

SPSO 4.2322E+03 2.8921E+03 2.0126E+07 1.0885E+08 3.2515E+03
HFPSO 3.9560E+03 2.5836E+03 1.2173E+07 1.7169E+07 3.0069E+03

HA 3.6942E+03 2.5125E+03 9.6756E+06 2.3869E+07 2.8973E+03
21 22 23 24 25

PSO 2.6301E+03 8.7253E+03 3.3347E+03 3.4555E+03 3.8462E+03
FA 2.8531E+03 1.1075E+04 3.7601E+03 4.1805E+03 1.5125E+04

SPSO 2.5983E+03 1.0228E+04 3.0272E+03 3.2061E+03 4.4889E+03
HFPSO 2.6123E+03 9.4143E+03 3.0340E+03 3.1878E+03 3.3297E+03

HA 2.5879E+03 8.9259E+03 2.9618E+03 3.1194E+03 3.3029E+03
26 27 28 29 30

PSO 8.9625E+03 3.5667E+03 4.9891E+03 5.2202E+03 6.2924E+07
FA 1.5138E+04 4.9661E+03 1.1776E+04 1.1382E+04 2.6572E+09

SPSO 8.1553E+03 3.4244E+03 6.1261E+03 5.5838E+03 1.4121E+08
HFPSO 7.5380E+03 3.3159E+03 3.9945E+03 4.7784E+03 1.8952E+07

HA 6.9230E+03 3.3246E+03 3.7522E+03 4.8066E+03 3.1446E+07
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Table 4.5: CEC15 Ranking score (bigger one is better)

PSO FA SPSO HFPSO HA
F1 3 1 2 4 5
F2 2 3 1 4 5
F3 3 1 2 4 5
F4 4 1 2 3 5
F5 5 3 1 4 2
F6 2 1 3 4 5
F7 3 1 2 4 5
F8 2 1 3 4 5
F9 4 1 2 3 5
F10 4 1 2 3 5
F11 3 1 2 4 5
F12 3 1 2 4 5
F13 3 1 2 4 5
F14 2 1 3 4 5
F15 2 1 3 4 5

Avg. 3.00 1.27 2.13 3.80 4.80
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Table 4.6: CEC17 Ranking score (bigger one is better)

No. PSO FA SPSO HFPSO HA
1 3 1 2 4 5
2 2 1 3 4 5
3 4 3 1 2 5
4 3 1 2 4 5
5 2 1 3 4 5
6 2 1 3 4 5
7 3 1 2 4 5
8 4 1 3 2 5
9 3 1 5 2 4
10 5 1 3 2 4
11 3 1 2 4 5
12 3 1 2 5 4
13 3 1 2 5 4
14 5 1 3 2 4
15 3 1 2 5 4
16 3 1 2 4 5
17 3 1 2 4 5
18 3 1 2 4 5
19 3 1 2 5 4
20 4 1 2 3 5
21 2 1 4 3 5
22 5 1 2 3 4
23 2 1 4 3 5
24 2 1 3 4 5
25 3 1 2 4 5
26 2 1 3 4 5
27 2 1 3 5 4
28 3 1 2 4 5
29 3 1 2 5 4
30 3 1 2 5 4

Avg. 3.03 1.07 2.50 3.77 4.63
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Table 4.7: Holm-Bonferroni procedure for CEC 2015 30D problems (comparison
base on HA1)

score z p θ h∗

FA 1.2667E+00 -6.1315E+00 4.3538E-10 1.2500E-02 1(rejected)
SPSO 2.1333E+00 -4.6246E+00 1.8768E-06 1.6667E-02 1(rejected)
PSO 3.0000E+00 -3.1177E+00 9.1137E-04 2.5000E-02 1(rejected)

HFPSO 3.8000E+00 -1.7321E+00 4.1632E-02 5.0000E-02 1(rejected)
HA 4.8000E+00

∗: 0-accepted, 1-rejected

Table 4.8: Holm-Bonferroni procedure for CEC 2017 30D problems (comparison
base on HA1)

score z p θ h∗

FA 1.0667E+00 -8.7447E+00 1.1183E-18 1.2500E-02 1(rejected)
SPSO 2.5000E+00 -5.2174E+00 9.0720E-08 1.6667E-02 1(rejected)
PSO 3.0333E+00 -3.9192E+00 4.4425E-05 2.5000E-02 1(rejected)

HFPSO 3.7667E+00 -2.1311E+00 1.6542E-02 5.0000E-02 1(rejected)
HA 4.6333E+00

∗: 0-accepted, 1-rejected



Chapter 5

Multifactorial hybrid swarm

Conventional algorithms focus on providing an actual solution for a single opti-

mization task. These algorithms can also be used to handle the multi-objective

optimization problems where the Pareto optimal set is approximated by the pop-

ulation or the archived candidates. In recent years, a novel field of evolutionary

computation called evolutionary multitask optimization or evolutionary multi-

tasking has been proposed and utilizing a parallel processing ability based on a

population-based search to handle multiple problems separately [21]. It has re-

ceived attention in the evolutionary computation community. Furthermore, for

processing multiple optimization problems with a single population, multifacto-

rial optimization has been presented as a method in which each constitutive task

would affect the evolution of the population [21]. As an actual multifactorial op-

timization framework that is inspired by the bio-cultural models of multifactorial

inheritance, a multifactorial evolutionary algorithm (MFEA) is developed [12].

In MFEA, a skill factor is used to assign a preferred task for each individual of

the population. This method is proposed to enhance productivity for effectively

dealing with industrial problems. It is expected to utilize the latent correlations

among instinct tasks by using multifactorial optimization.

On the other hand, swarm intelligence is one of the popular population-based

metaheuristics for optimization problems. Besides, making hybridization of suit-

63
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able selected swarm intelligence models is also one way for processing optimization

problems effectively. Previous works show that hybridization can improve the per-

formance of processing optimization problems.

This chapter introduces a multifactorial PSO-FA hybrid algorithm (MFHA) [56].

The PSO-FA hybrid swarm utilizes the model selection mechanism with an event-

driven trigger based on whether the personal best information is updated. In the

proposed multifactorial hybrid swarm, a skill factor is used to help the task as-

signment of individuals that would help individuals in the population to explore

different tasks. For a multifactorial swarm, it is important to suitably assign a

task to each individual in the population. This assignment is usually based on the

skill factor that indicates the preferred task to each individual based on the pre-

evaluated ranking and is exchanged by a crossover in the evolutionary algorithm.

Since there is no explicit exchange mechanism in the swarm intelligence model,

thus a skill factor reassignment is introduced in this chapter. The hybrid swarm

is expected to improve the best solutions in multiple tasks with a combination

of a model selection mechanism and skill factor reassignment. By carrying out a

numerical experiment of the multifactorial PSO (MFPSO) and the multifactorial

PSO-FA hybrid algorithm on the benchmark multifactorial optimization problem,

then comparing them with each other to show how the hybrid swarm improves

performance than PSO from a total evaluation.

5.1 Multifactorial optimization

Evolutionary multifactorial optimization is a methodology to realize evolutionary

multitasking, based on the population-based search. It simultaneously deals with

multiple optimization tasks. Here, K represents the number of tasks and Tk, k =

1, 2, . . . , K describes each target task. Then, Xk denotes the search space and FK

denotes the objective function of the corresponding task, respectively. Assume

that all optimization tasks are the minimization task without loss of generality,
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and let x1, x2, . . . , xK be the optimal solutions of the corresponding optimization

task, where xk = argminx∈Xk

{
F k(x)

}
. By iterative evaluating solutions in each

task, evolutionary multifactorial optimization aims to get whole tasks’ solutions

as,

x1, x2, . . . , xK = argmin
{
F 1, F 2, . . . , FK

}
(5.1)

A unified search space is provided for the search population. Here use a set

P = p1, p2, . . . , pN to describe individuals in the population. In the search popu-

lation, one individual pi is represented by a D dimension vector. For each individ-

ual pi, i = 1, 2, . . . , N , it would be encoded in a unified space which encompasses

X1, X2, . . . , XK , and decoded in each task as x1
i , x

2
i , . . . , x

K
i , where xki ∈ Xk. De-

scribe the dimensionality of these tasks asDk, k = 1, 2, . . . , K. Then the dimension

of the unified space would be defined as D = max {Dk}. The task k should be

handled in Xk, that means the number of Dk variables would be selected out from

the vector of the individual in D dimensional space. As a simple implementation,

the first Dk variables of the vector can be used to calculate the solution xki in task

k. By evaluating the solutions in each task and ranking the result, it is able to

get each task’s candidate for the solution as in Eq (5.1).

Inspired by multifactorial bio-cultural models, the multifactorial evolutionary

algorithm (MFEA) [12] is developed. In the MFEA, it utilizes a skill factor that

is used to assign preferred tasks for individuals and is defined for deciding which

task the individual performs best in one generation. It is able to get the skill

factor as below: Get multiple evaluation fitness by evaluating xki in each task’s

definition space. For each task Tk, k = 1, 2, . . . , K, it is able to get each individual’s

fitness fik(·). By comparing and ranking the fitness in the task, it is able to

get the rank value rik for each individual following the ascending order of the

ranking result. So the task index in the rank value is set as the individual’s

skill factor (τi = argmink {rik}). Then one individual would be evaluated only
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in the preferred task after assign a preferred task to it. Here individuals own

the same skill factor are divided into sub-swarm P k, k = 1, 2, . . . , K. Where jk

denote the index that has skill factor τj = k and Jk be a set of index jk, then

P k =
{
pi|i ∈ Jk

}
, k = 1, 2, . . . , K. Note that ∪Kk=1P

k = P . There are different

methods to decide the skill factor for one individual. In fact, it also utilizes

a sub-population model in MFEA, and genetic operators such as crossover and

mutation generate migration. In MFEA, it randomly generates the skill factor of

the offspring based on parents’ skill factor. In this work, ranking evaluation values

would be used for deciding the skill factor of individuals. For the multifactorial

swarm intelligence model, the skill factor reassignment time should be considered

since there is no automatic exchange mechanism in the population.

It is important to consider the relationship among these tasks as the degree of

intersection of the global optima and the correspondence in the fitness landscape.

Utilizing the inter-task relationship is significant to contribute to the effectiveness

of the search. For efficiently utilizing the relationship of distinct optimization

tasks, evolutionary multitasking optimization is proposed. Automatic search helps

the knowledge transfer among different problems. By applying swarm intelligence

to multifactorial optimization, the multifactorial swarm is able to be developed.

In recent years, swarm intelligence model has been applied to multifactorial

optimization for developing swarm intelligence based multifactorial optimization

method. As an example, by applying brain storm optimization (BSO) algorithm

to multifactorial optimization, a multifactorial brain storm optimization algorithm

(MFBSA) has been introduced in the previous study [66]. This method proposed

applying clustering technique into multitasking. Clustering the population by

setting the optima of each task as the cluster center. Then probably generating

the offspring of individuals in each task.

There are other swarm intelligence models as the particle swarm optimization

applied to the multifactorial optimization. Then in the previous study, a multifac-

torial optimization based on particle swarm optimization is introduced and aim
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to utilize particle swarm optimization to enhance the convergence effect [57]. It

shows that the particle swarm operator can effectively accelerate the convergence

on some benchmark problems.

There are also some methods to improve the multifactorial PSO then an

adaptive multifactorial particle swarm optimization is proposed in the previous

study [46]. Different from some other multifactorial PSO which utilizing use a

fixed inter-task learning in the evolution process, an inter-task learning-based in-

formation transferring mechanism is designed in the adaptive multifactorial parti-

cle swarm optimization. The mechanism uses a differential term and an inter-task

crossover to help the particles explore a broad search space.

5.2 Multifactorial PSO-FA hybrid algorithm

Multifactorial optimization has the feature of transferring relevant knowledge to

simultane-ously accelerate convergence towards near-optimal solutions of multiple

optimization tasks. PSO has the weakness in high-dimensional problems for that

the search performance deteriorating in local search stage. When applying PSO to

the multifactorial optimization to simultaneously process multiple tasks, particles

would gather fast for each task. That may cause the PSO to stop progress fast in

multiple high dimension optimi-zation tasks. The proposed hybrid is developed

to improve the ability to search for better solutions. By applying the proposed

hybrid to multifactorial optimization, it may improve the progress of the global

best of multiple tasks.

This section introduces a multifactorial PSO-FA hybrid algorithm which is

built with PSO [30] and FA [61]. By updating the individual position pi of the

i-th individual in discrete time t, it is able to search in a continuous space.
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5.2.1 Multifactorial particle swarm optimization

There are some methods of multifactorial particle swarm optimization have been

proposed in previous works [46, 57]. As a simple application of PSO to the multi-

factorial optimization, MFPSO is built in this paper. In PSO, previous informa-

tion is used for updating the status. For each one in the swarm, its personal best

position would be recorded for the cognition process. The personal best informa-

tion means one individual could memorize its previous experience and utilize the

memory to contribute to the progress of itself. This factor causes one particle’s

behavior been affected by its memory. Then in the MFPSO, the personal best

is recorded in different tasks. For individual i, the personal best in each task k

is recorded as pbki . Besides, social common knowledge as the global best position

is recorded and shared among whole individuals. The group-shared information

contributes to the whole group’s communication and is updated by the leader indi-

vidual. Then the common knowledge also plays a role in building one individual’s

activity. In MFPSO, the global best in task k is described as gbk. The personal

work and the social work are combined with an inertia factor to construct one

individual’s moving velocity in PSO. Through some random factors, it is able to

control the effect of knowledge learning.

For each individual, the information update occurs in one task. In the initial

step, the individual would be evaluated for whole tasks to get the skill factors.

Then each individual would be evaluated in only one preferred task in one step.

Therefore, in one step, only one task’s fitness for the individual is able to be

updated. From the above, the personal best information is selected to be used

for updating the skill factor. Let pbki be the personal best position of i-th particle

in task k and gbk be the global best position of task k, respectively. That is the

global best position is a shared memory of P k. MFPSO’s update equations were

defined as Eq (5.2):
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 vi(t+ 1) = wvi(t) + c1r1(pbki (t)− pi(t)) + c2r2(gbk(t)− pi(t))

pi(t+ 1) = pi(t) + vi(t+ 1)
(5.2)

Here, w is an inertia weight, c1, c2 are constants, r1, r2 are randomly selected

from the uniform distribution over [0,1].

5.2.2 Firefly algorithm for multifactorial optimization

By applying the firefly algorithm to the multifactorial optimization, the firefly

algorithm is able to process multiple optimization tasks simultaneously. In the

application of the multifactorial optimization, individual pi ∈ P k would compare

brightness with another individual pj, (pj ∈ P k, j 6= i), and a set that elements

are brighter fireflies than i in task k is denoted by P k
i ⊂ P k. That means one

individual would only be attracted by the agents who prefer to the same task.

So each individual would compare with other individuals in P k except itself. It

should be considered that the brightness will be changed with the distance rij.

So attractiveness would be varied based on the Euclidean distance between pi(t)

and pj(t) ∈ P k
i . Light intensity at r distance is described as I = I0/r

2 (I0 is the

intensity of the light source). For each firefly, light is absorbed and affected by a

constant light absorption coefficient.

Then, FA’s update equation is proposed as Eq (5.3).

pi(t+ 1) =pi(t) +
∑
pj∈Pk

i

(βexp[−γr2
ij](pj(t)− pi(t)) + αεt) (5.3)

Here, β indicates an attraction weight to the brighter fireflies, and γ represents

the light absorption rate according to the distance. rij means the distance between

i and j. Then, in the last term, α is a parameter for controlling the step size,

and εt is a random vector for a random walk whose elements are sampled from

Gaussian distribution with 0 mean and unit variance.
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5.2.3 Multifactorial hybrid algorithm

This work introduces an application of the model selecting PSO-FA hybrid al-

gorithm to multifactorial optimization. When processing a single problem, the

hybrid swarm utilizes a model selection strategy to select either PSO or FA model

for one individual. In this strategy, whether the personal best is updated becomes

a trigger of model selection. Thus, if the personal best position was updated then

the particle selects to move with the local search of the FA model otherwise it

moves as the PSO model.

In the hybrid swarm, each particle records its personal best and the whole

group shares the group best that is selected from the personal best of the parti-

cles. When one individual moves as a firefly, it compares the intensity with other

individuals for updating moving velocity. By applying the skill factor into the

PSO-FA hybrid algorithm, the multifactorial PSO-FA hybrid algorithm (MFHA)

is provided for simultaneously processing multiple optimization problems with a

single swarm. In this algorithm, the population would record the evaluation re-

sult in each task. That means individuals would record the information by tasks.

By comparing the recorded function fitness of the individuals, each one in the

population gets its skill factor. One individual would only update its preferred

task’s fitness record in one iteration. That means it needs a variable to control

the update time of the skill factor, which is defined as η [55]. This parameter is

used to control the task assignment time of individuals. Besides, when the skill

factor reassignment occurs, one individual’s skill factor may be changed by com-

puting and comparing the result of recorded fitness. If one individual’s preferred

task is changed when skill factor reassignment occurs, then it would be moved

into another group. The individuals who own the same skill factor value would

be divided into the same group for comparison. For the individuals who prefer

the same task, they share the global best in the preferred task. At the same time,

one individual utilizes its personal best in the preferred task. When one works as

a firefly, it would only compare the intensity with the individuals in the preferred
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Table 5.1: Pseudo code of PSO-FA hybrid algorithm

Step1 Initialize the individual position of swarm P
Step2 Evaluate each individuals fitness in K tasks and

Step3 Set its personal best pbki ,k = 1, 2, . . . , K for each individual
Step4 If terminate condition not meet

Find the global best gbk for each task from pbki , (i = 1, 2, ..., N)

At every η step, assign skill factor for each individual based on pbki
For each individual i

Get the skill factor of it as k
If the personal best memory is not updated last time

Move it as particle according to pbki and gbk

Else
Move it as firefly in comparing with pj in P k

i

Update fitness in task k, and compare with pbki
If fitness is improved

Update pbki and set a model change flag
Step5 End

task. The multifactorial PSO-FA hybrid algorithm is built as in Table 5.1. With

the multifactorial optimization structure, the hybrid swarm is expected to well

process multiple optimization tasks simultaneously.

In this hybrid algorithm, changing the skill factor value of one particle can

reassign its preferred task. That means there needs a variable to update the

skill factor. This parameter is used to contribute to the assignment to tasks.

Besides, whether the skill factor is updated would be controlled by computing

and comparing the result of recorded fitness. In the group for one task, particles

and fireflies may exist at the same time. When the individuals perform as the

PSO model, they share the common global best memory information and keep all

information for each task. While they perform as the FA model, the attractiveness

would only occur between the individuals own the same skill factor value. The

proposed hybrid strategy uses whether updates the personal best as a trigger to

decide the movement model of one particle. In the last chapter, the hybrid strategy

increases the particle number that updates their personal best when dealing with

a single problem. This helps improve the global best. The MFHA is expected
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to increase the proportion of particles that succeed to update personal best by

combining the task reassignment and the event-driven strategy. Then MFHA can

outperforms MFPSO when processing multiple tasks.

5.3 Benchmark multifactorial problem

Some multifactorial optimization problems are provided to test multitask op-

timization algorithms’ performance. There are 7 commonly used optimization

functions. Through rotate, shift and combination of these basic functions, nine

multifactorial benchmark problems are presented [12]. For each problem, there

are two minimization tasks are included. Considering the intersection and simi-

larity among the tasks in these different problems, where intersection means how

many global optimums of the two tasks are identical, includes complete intersec-

tion (CI), partial intersection (PI), and no intersection (NI). Within each category

of the optimum intersection, there are three categories of similarity based on the

Spearman’s rank correlation similarity metric of high (HS), medium (MS) and low

(LS) similarity. Combine different intersection types and similarity types, 9 prob-

lems are provided (CI+HS, CI+MS, CI+LS, PI+HS, PI+MS, PI+LS, NI+HS,

NI+MS, NI+LS). It needs to handle these problems as in Eq (5.1) while K = 2.

Then these multifactorial benchmark problems are used in this test. The bench-

mark problems are provided in Table 5.2. Then use the multifactorial PSO-FA

hybrid algorithm (MFHA) to handle the problems. By comparing it with the

multifactorial PSO (MFPSO) to show the hybrid algorithm well perform on mul-

titasking problems.

5.4 Numerical test

In this numerical experiment, there are some parameters provided in Table 6.2.

For the PSO model, c1 and c2 are set as 1.4. Then, the inertia weight w is set
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Table 5.2: Benchmark multifactorial optimization problem

Problem Task1 Task2
CI+HS Griewank Rastrgin
CI+MS Ackley Rastrgin
CI+LS Ackley Schwefel
PI+HS Rastrgin Sphere
PI+MS Ackley Rosenbrock
PI+LS Ackley Weierstrass
NI+HS Rosenbrock Rastrgin
NI+MS Griewank Weierstrass
NI+LS Rastrgin Schwefel

Table 5.3: Parameter setting

Parameter Setting
Population size 100
PSO parameter c1=1.4, c2=1.4, w=0.7
r1, r2 sample from U(0, 1)
FA parameter α=1.0, β=1.0, γ=1.0
FA random walk sample from N(0, 1)
Update time η=10
Total iteration number 1000
Implement time 20
Dimension 50
Population defination space [-100, 100]

as 0.7, and r1 and r2 independently generated from the uniform distribution over

[0,1]. For the FA model, β=1.0, γ=1.0, and the step size parameter α=5. The

random walk randomness is sampled from Gaussian distribution with 0 mean and

unit variance. The total iteration number is set as 1000. The individual is defined

in a 50-dimension space with [-100, 100] space. Each individual is evaluated in

each task except for initialization and skill factor reassignment step. Note that

the total number of the function call for all tasks is the same in the experiments.

This makes the actual iteration number does not strictly equal to 1000. The test

will implement for 20 times for each case. The average value of the 20 times run

would be recorded for comparison.

In the test, it compared the multifactorial PSO-FA hybrid algorithm (MFHA)
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Table 5.4: Benchmark problem test result (comparison between MFPSO and
MFHA, bold values are the better ones)

Task1 Task2 scorei
CI+HS MFPSO 1.0550 762.9851 20.8556

MFHA 0.0298 193.9934 -20.8556
CI+MS MFPSO 19.9977 858.0876 30.0333

MFHA 2.7620 190.5484 -30.0333
CI+LS MFPSO 20.3607 8011.1641 23.6751

MFHA 20.1690 7480.6634 -23.6751
PI+HS MFPSO 1197.8425 2104.4935 19.8088

MFHA 206.9381 0.7062 -19.8088
PI+MS MFPSO 19.9987 13451.6652 21.1430

MFHA 2.5666 296.6262 -21.1430
PI+LS MFPSO 19.9982 0.5487 1.7809

MFHA 15.9799 1.0407 -1.7809
NI+HS MFPSO 12874.4193 885.0240 13.7128

MFHA 473.8831 194.5595 -13.7128
NI+MS MFPSO 0.9593 6.8082 8.8262

MFHA 0.0313 6.7855 -8.8262
NI+LS MFPSO 1012.5787 8200.8524 13.8607

MFHA 194.7562 7855.3179 -13.8607
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Figure 5.1: CI+HS convergence curve
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Figure 5.2: CI+MS convergence curve
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Figure 5.3: CI+LS convergence curve
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Figure 5.4: PI+HS convergence curve
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Figure 5.5: PI+MS convergence curve
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Figure 5.6: PI+LS convergence curve
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Figure 5.7: NI+HS convergence curve
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Figure 5.8: NI+MS convergence curve
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Figure 5.9: NI+LS convergence curve
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with multifactorial PSO (MFPSO). In Figure 5.1 - Figure 5.9, the horizontal axis

means the iteration numbers while the vertical axis means function values of the

best memory record. These figures describe the update situation of the global

best information in each algorithm.

In order to compare the performance of different algorithms, a simple perfor-

mance metric is used from the paper [12]. For 2 algorithms, Aa(a = 1, 2) describe

them. In one problem, 2 minimization tasks Tk(k = 1, 2) exist. Each algorithm

is run for L repetitions while I(a, k)l denotes the best result obtained in the l-th

repetition by Algorithm Aa on the task k. While µk and σk describe the mean

and the standard deviation for task Tk over all the repetitions of the algorithms.

Then the normalized performance I ′(:, k)l = (I(:, k)l − µk) = σk is considered for

all tasks. For each algorithm Aa, its performance score is given as in Eq (5.4).

scorea =
K∑
k=1

L∑
l=1

I ′(a, k)l (5.4)

The test result of comparing MFPSO and MFHA is shown in Table 5.4 and

Figure 5.1 - Figure 5.9. Here used η=10 to reassign the skill factor for the mul-

tifactorial algorithms. The average result and final score are shown in Table 5.4.

It records the average result of each task and the final score in one problem. The

smaller score value means that the algorithm performs better in the problem.

From the test result, MFHA gets the best score in whole problems than MFPSO.

Even though MFHA loses to MFPSO in TASK1 of CI+LS, NI+MS, the hybrid

swarm still gets better scores than MFPSO. That means the MFHA gets better

optimums than MFPSO averagely for the multifactorial optimization benchmark.

From the result, it is able to observe that in all high similarity problems, both

MFPSO and MFHA perform a high improvement rate. For CI+MS, MFHA loses

to MFPSO in the start stage in one task but keep progress trend to exceed MFPSO

when MFPSO stop improvement quickly. For CI+LS, MFHA loses to MFPSO in

the start stage in both tasks and exceed MFPSO in one task when MFPSO stop
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improve quickly. The score result shows that MFHA performs better than MFPSO

in whole cases.

The proposed method helps the particle to do the local search if it updates

its personal best. Combining the proposed strategy with the multifactorial opti-

mization and expects the population to increase the particles that update their

personal best. Here show some examples of one run’s result with 200 iterations

of particle number record of CI+MS problem in Figure 5.10, 5.11. In these fig-

ures, the vertical axis describes the proportion of the particles that update their

personal best in two tasks. The horizontal axis records iteration numbers. When

tasks reassignment is not available, two single particle group that does not change

members will process one of the tasks in MFPSO, MFHA. From the result, it can

see that compare to task2, less particles update their personal best in MFPSO and

MFHA. Then in the figures that task reassignment is available, MFPSO increases

the proportion of particles that update their personal best at 10 iteration since the

task reassignment time is 10. But MFPSO not keeps the high proportion value

for a long time. Compare to MFPSO, MFHA also increases the proportion value

at 10 iteration and keeps a high proportion values for a while. That indicates

that the cooperation of the event-driven hybridization and skill factor reassign-

ment improves the particles that update their personal best when simultaneously

processing multiple tasks.
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Proportion of particles that update personal best in MFPSO

Proportion of particles that update personal best in MFHA

Figure 5.10: One run’s result of 200 iterations of no task reassignment in CI+MS
problem
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Proportion of particles that update personal best in MFPSO

Proportion of particles that update personal best in MFHA

Figure 5.11: One run’s result of 200 iterations of task reassignment in CI+MS
problem
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Chapter 6

Real-world application

It is important to improve efficiency, reduce costs, develop new products in some

fields as manufacturing. These are usually provided as optimization problems.

These optimization problems are usually categorized as single-objective or multi-

objective, linear or nonlinear, convex or nonconvex, and discrete or continuous.

Among these actual problems, a lot of them are black-box optimization problems

for that the problems are difficult to describe. Thus, some optimization solvers

are used to processing such problems with automatic search behavior. Among

them, metaheuristics [62] are attractive methodologies since they require only

algorithmic knowledge rather than problem domain-specific knowledge.

Swarm intelligence [29] is a typical metaheuristic for black-box function op-

timization. By making hybridization of selected swarm intelligence models, it is

able to utilize the different properties of them. On another side, multitask op-

timization has been proposed as a novel paradigm in evolutionary computation

recently for that it utilizes parallelism of a population-based search mechanism.

It will be significant to research multitask optimization problems when some in-

tersections existed among different tasks. Multifactorial optimization is provided

for processing problems like this. Then, inspired by the intelligent behavior of

human’s ability to deal with multiple tasks, the multifactorial evolutionary algo-

rithm (MFEA) [12] is provided for the multitask optimization problems. MFEA is

89
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a method with the evolutionary process making use of evolutionary multitasking

to enable the autonomous transfer of knowledge from one problem to the other

problem. As shown in the previous research, it is important to decide how the

solver deals with different tasks at the same time. In MFEA, a skill factor is used

to automatically assign tasks for a population. With the skill factor, individuals

would focus on themselves preferred tasks and only computing them. By import-

ing the task selection method into a population-based algorithm, it is able to make

the solver simultaneously processing multiple problems.

For some real-world problems, some optimization tasks are complex for they

have many constraints. The multiple car design benchmark [31] has been pro-

posed as an engineering design optimization. By applying a multifactorial hybrid

swarm intelligence algorithm and use it to process the benchmark problem, it is

able to verify whether the multifactorial hybrid algorithm can simultaneously pro-

cess multiple cars design tasks well. In this chapter, the multifactorial PSO-FA

hybrid algorithm is used. By testing it on the multiple car design benchmark and

comparing it with multifactorial PSO, then check whether the proposed hybrid

algorithm improved than an algorithm without the hybrid scheme [55].

6.1 Real-world multiple car design problem

In the real problem, it costs too much computation and not easy to be solved. Con-

sidering the limited computation budget, the benchmark problem is used instead

of the real problem. This section introduces the Mazda multi-objective benchmark

optimization problem for the numerical test. This benchmark is designed for test-

ing the performance of search-based optimization methods such as evolutionary

algorithms and swarm intelligence. Two optimization problems are included in

this benchmark, one is a single-objective optimization of weight minimization of

multiple cars while another is bi-objective optimization of weight and number of

common parts in these cars.
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There are three target cars that are different types as compact, medium, and

wagon. The simultaneous design of multiple cars is expected to reduce develop-

ment cost and increasing common parts that may help reducing the manufacturing

cost. When handling the actual engineering design problem, constraints conditions

are rather important as engineering design, body stiffness, safety for impact, and

so on. In the previous research [16, 35], different methods are proposed for pro-

cessing single-objective or multi-objective problem in this benchmark. This work

aims to provide a hybrid algorithm that well performs to simultaneously optimize

the mass of the three cars.

In the Mazda multiple car design benchmark problem, it needs to get the

minimum mass of three different kinds of cars that are SUV, CDW, and C5H.

These three cars own different sizes and body shapes, but the same number of

parts. In one car, each part relates to the corresponding car weight and strength

to crush. This means that each car must satisfy the standard body strength.

In practice, there are 222 design parameters provided in the benchmark prob-

lem where each car has a set of 74 design parameters and each design parameter

set can be separable among different cars. These design parameters would be used

to calculate the mass of one car and their strength is able evaluated by numer-

ical simulation. When handling the problem, three cars can be simultaneously

optimized as three different optimization tasks. It is able to treat the bench-

mark problem as a typical multitasking problem for that it expects to utilize some

common design knowledge exist among different cars.

The original design parameters in dividing each car are denoted by, xSUV =

(x1, x2, ..., xD), xCDW = (x1+D, x2+D, ..., x2D), xC5H = (x1+2D, x2+2D, ..., x3D) for

each car, and D = 74 in this problem.

Design parameters are like (6.1)–(6.3).

xSUV = (x1, x2, ..., xd), d = 74 (6.1)
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xCDW = (x1+d, x2+d, ..., x2d) (6.2)

xSUV = (x1+2d, x2+2d, ..., x3d) (6.3)

As a multifactorial optimization problem, each individual is represented by

xj ∈ RD, and j denotes an index of the individual. A skill factor is able to assign

each individual to the corresponding task, that is if a skill factor τi = k then xj

is treated as xk. Here k, k = 1,2,3 represent car types, that is k = 1 means car

label is SUV, 2 means CDW, and 3 means C5H. For each car, the same dimension

owns common upper limitation and lower limitation as follows,

Swarm 

(population)

Design parameter 

for task 1

Constraints of 

task 1
Objective 1

Fitness of 

task 1

Design parameter 

for task k

Constraints of 

task k
Objective k

Fitness of 

task k

Select a target task by skill 

factor for each agent

If skill factor = 1 If skill factor = k

Figure 6.1: Multiple car design problem

Lk
d ≤ xkd ≤ Uk

d , k = 1, 2, 3 d = 1, 2, ..., 74 (6.4)

There are 18 constraint conditions concerning with car body strength and

safety for impact, and so on, these are denoted by the functions,



6.1. REAL-WORLD MULTIPLE CAR DESIGN PROBLEM 93

Table 6.1: Performance evaluation item

Performance evaluation item related constraint
Full frontal impact gk1
Frontal offset impact gk2 , g

k
3 , g

k
4

Side impact gk5 , g
k
6 , g

k
7

Rear impact gk8 , g
k
9

Low eigen value gk10, g
k
11, g

k
12

Body stiffness gk13, g
k
14

gki ≥ 0, k = 1, 2, 3 i = 1, 2, ..., 18 (6.5)

Here i; i = 1; 2; · · · ; 18 indicate the constraint index. The contents of the 14

constraints is shown in Table 6.1. These constraints concern with crashworthiness

of each car. They are modeled by a huge number of simulations in supercomputer

and the Kriging method. The remaining constraint g15; · · · ; g18 of each car were

defined by the following 4 relationships,

gk15 = xk14 − xk13

gk16 = xk16 − xk15

gk17 = xk14 − xk64

gk18 = xk15 − xk64

For processing multiple constrained multitasking problems, it needs to handle

multiple constraints simultaneously [47]. The method is to integrate multiple

constraint violations into a single violation measure. Generally, the sum of its

constraint violations, the number of the violated constraints or the violation of

the most violated constraint are used in this kind of problem.

Then set a penalty mechanism for this problem. For these all constraints need

to be none negative, so add all negative ones with an impact issue to each car’s

mass computation result as the evaluation value.

fitnessk = massk + ρ ∗ penaltyk, k = 1, 2, 3 (6.6)
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6.2 Numerical test

About the test conditions, individual number is set as 300 (at the initial step

there are 200 particles and 100 fireflies), and a totally 30000 times evaluation is

permitted. The parameter setting of PSO and FA is summarized in Table 6.2.

Then the weight in the fitness function is set as ρ = 1. First, an interval of a skill

factor update is examined. Here an interval η = 1 means the skill factor would be

updated at every step. The obtained results based on the test where η = 10. As

a result, it selects 10 steps as the interval of a skill factor update. Then, the test

compared the performance between the multifactorial PSO-FA hybrid algorithm

and multifactorial PSO. The obtained best mass record in each algorithm is shown

in Table 6.3. For all cars, the proposed hybrid algorithm achieved better mass

records than PSO based method.

From the test result, the multifactorial PSO-FA hybrid algorithm outperforms

in optimizing three minimum optimization problems simultaneously than the mul-

tifactorial PSO. The fitness and the obtained best mass are shown in Figure 6.2

and Figure 6.3, respectively. Here the obtained best mass means that it achieved

the light body design in this benchmark within the alternative that satisfied all

constraints. The difference between fitness and mass corresponds to the number of

constraint violations. At the early stage, it can find that the best solution achieves

all constraints satisfaction. Then, the proposed hybrid algorithm can keep the di-

versity of swarm, as shown in Figure 6.2. Also, it can locally search the boundary

region of constraints by FA based operation and improve the performance in each

optimization task.

In the previous study, it has presented the multifactorial PSO by introducing

a multifactorial mechanism into a simple PSO. Then extending a simple multi-

factorial PSO to PSO-FA hybrid algorithm, and expect a hybridization approach

would improve the performance on multifactorial optimization problems as on

single-objective optimization problems. In this chapter, here introduced a multi-
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SUV

CDW

C5H

Figure 6.2: The fitness value trajectories of the global best memory and median
in the swarm for each car. Upper two lines, brown and cyan indicate the median
fitness values of the proposed PSO-FA hybrid multifactorial algorithm and PSO
based multifactorial algorithm, respectively.
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SUV

CDW

C5H

Figure 6.3: The best mass value trajectories for each car.
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Table 6.2: Parameter setting

Population size 300
PSO parameter w=0.7

c1=1.4, c2=1.4
r1, r2 ∼ U(0, 1)

FA parameter α=0.02
β=1.0
γ=0.6

Table 6.3: optimum comparison

SUV CDW C5H

MFO PSO 0.9056 0.9568 0.9352
MFO PSO-FA hybrid algorithm 0.8319 0.9185 0.8818

factorial PSO-FA hybrid algorithm where each agent accords to either PSO or FA

model with sharing the personal best memory. In this hybrid algorithm, the agent

will change its model if it could update the global best memory and his original

model is FA. This property helps local search around the global best memory.

Then, a task selection by the skill factor makes the population into as like island

model that corresponds to the assigned task. In other words, an individual would

be assigned a skill factor to decide which task it good at.

I have examined the proposed multifactorial PSO-FA hybrid algorithm to

Mazda multiple car design benchmark problem and compared its performance

with a simple multifactorial PSO. I design a mechanism that makes each agent

that is representing the design variables gets close to its own leader by assigned

task, and task reassignment is carried out at regular intervals in the proposed al-

gorithm. In addition, each agent would affect much by its leader in the proposed

hybrid algorithm since it utilizes the global best in the PSO model and the best

agent in the Firefly model. In the result of the numerical test, it performed better

convergence trend in the multifactorial PSO-FA hybrid algorithm. This result

shows that hybridization helps to improve PSO about multifactorial optimization

problem.
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Chapter 7

Conclusion

The optimization problem is always challenging in many fields. Among the opti-

mization problems, the black-box optimization problem is difficult for the unknown

landscape. For black-box optimization problems, metaheuristics are used for that

they can process problems with incomplete information.

As a population-based metaheuristic, swarm intelligence is inspired by natural

collective behavior. By simulating the personal behavior and social communica-

tion of the biological systems, many swarm intelligence algorithms are developed.

As one swarm intelligence algorithm, PSO has an easy implementation for the

optimization problem. Even though PSO has a fast convergence speed, the poor

local search limits the evolution of PSO. Since FA has a strong local search and

does not be affected by the global best, this paper considers how to make a better

solver by developing a hybrid algorithm of PSO and FA.

Previous works using parameter tuning, model modifying to build a hybrid.

Parameter tuning costs a lot of trial and error. However, high-dimensional prob-

lems own a lot of parameters that need to be evaluated. Parameter tuning would

be expensive for computation. Adjusting particle number with fixed parameters

can also change the performance of one hybrid algorithm.

This research proposes making a hybrid swarm of standard models without

parameter tuning. By utilizing an event-driven trigger to help particles to get

99
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rid of the global best. By utilizing an event-driven trigger based on whether the

personal best information is updated, it is able to control one particle moves ac-

cording to PSO model or FA model. CEC 2015, CEC 2017 provide some expensive

benchmark problems with known properties. To show how the hybrid algorithm

performs well, test the hybrid algorithm on the benchmark optimization problems,

and compare it with PSO, FA, SPSO, HFPSO. From the numerical test, it shows

that the progress is improved by the proposed hybrid when comparing it with

others. For the problems that own a lot of local optima, the proposed hybrid

improves the global best than others.

Except for handling a single problem, this research applies the proposed hy-

brid to multifactorial optimization to simultaneously process multiple optimization

tasks with a single population. There may exist some relationship among these

tasks. With a task reassignment mechanism, it would give particles a chance

to change their preferred tasks. The hybrid strategy is designed to increase the

particles that update their personal best. Combining the proposed strategy with

multifactorial optimization is expected to help the proportion of the particles when

processing multiple tasks. From the test result in Chapter 5, the proposed hybrid

outperforms multifactorial PSO. Even for the tasks that are not similar to each

other, the proposed hybrid wins from a total evaluation. The combination of hy-

bridization strategy and multifactorial optimization contributes to improving the

performance of simultaneously handling multiple optimization tasks.

In chapter 6, a black-box benchmark of a real problem in which it needs to

optimize the mass of three different cars is provided. Then using the multifacto-

rial PSO-FA hybrid algorithm to process this problem and comparing the hybrid

swarm and the multifactorial PSO to show that the multifactorial hybrid swarm

success to show well performance on a real problem.

This research contributes to the inspiration of how to make a better algorithm

by making a hybrid of PSO and FA. The event-driven PSO-FA hybrid is proposed

and show good performance in high-dimension benchmark problems. By combing
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it with multifactorial optimization, the algorithm improves the best solutions in

multiple tasks. Applying it to a benchmark black-box car design problem which

is near to a real problem to show its good performance for a black-box problem.

For future works, I consider to find a better method to control the personal study

process and solving more practical problems.
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[13] Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Herrera. 2011.

A practical tutorial on the use of nonparametric statistical tests as a method-

ology for comparing evolutionary and swarm intelligence algorithms. Swarm

and Evolutionary Computation 1, 1 (2011), 3–18.

[14] A Francis Saviour Devaraj, Mohamed Elhoseny, S Dhanasekaran, E Laxmi

Lydia, and K Shankar. 2020. Hybridization of firefly and Improved Multi-

Objective Particle Swarm Optimization algorithm for energy efficient load

balancing in Cloud Computing environments. J. Parallel and Distrib. Com-

put. (2020).

[15] Mohammed El-Abd. 2011. A hybrid ABC-SPSO algorithm for continu-

ous function optimization. In 2011 IEEE Symposium on Swarm Intelligence.

IEEE, 1–6.

[16] Hiroaki Fukumoto and Akira Oyama. 2018. Benchmarking multiobjective

evolutionary algorithms and constraint handling techniques on a real-world

car structure design optimization benchmark problem. In Proceedings of the

Genetic and Evolutionary Computation Conference Companion. 177–178.
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