|

) <

The University of Osaka
Institutional Knowledge Archive

Title Study on Reuse Issues in Open Source Software

Author(s) |1, =

Citation |KFRKZ, 2021, EHIEHX

Version Type|VoR

URL https://doi.org/10.18910/82284

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Study on Reuse Issues in Open Source Software

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2021

Shi QIU






Abstract

Open source software (OSS) is software whose source code can be reused
under some particular terms and conditions. Reusing OSS in software de-
velopment has long been proved to be a good method to increase software
productivity. Although OSS reuse can help developers create software prod-
ucts more efficiently, it also comes with some reuse issues needed to pay
attention to. One important aspect is software license, without which un-
der what conditions OSS can be redistributed, reused, and modified can
not be understood correctly. Another aspect is software copyright, without
which the copyright owner who owns the right to determine these conditions
can not be identified clearly. Furthermore, understanding the popularity
growth of OSS is also important for maintenance and reuse.

In the first part of this dissertation, we deal with the issue of software
copyright. Software copyright claims an exclusive right for the software
copyright owner to determine whether and under what conditions others
can modify, reuse, or redistribute this software. For OSS, it is very impor-
tant to identify the copyright owner who can control those activities with
license compliance. In this part, as the first step of understanding copy-
right owner, we will explore the situation of the software copyright in the
Linux kernel, a typical example of OSS, by analyzing and comparing two
kinds of datasets, copyright notices in source files and source code contrib-
utors in the software repositories. The discrepancy between the two kinds
of analysis results is defined as copyright inconsistency. The analysis re-
sult has indicated that copyright inconsistencies are prevalent in the Linux
kernel. We have also found that code reuse, affiliation change, refactoring,
support function, and others’ contributions potentially have impacts on the
occurrence of the copyright inconsistencies in the Linux kernel. This study
exposes the difficulty in managing software copyright in OSS, highlighting
the usefulness of future work to address software copyright problems.

In the second part of this dissertation, we deal with the difficulty of
copyright notice identification of source files. For OSS, identifying copyright
notices is important. The copyright owner is allowed to change its license
or to grant a commercial one to a third party and start legal proceedings
to enforce its license. Several licenses also require that the copyright owner

iii



of OSS projects being reused should be recorded explicitly. However, both
the collaborative manner of OSS project development and the large number
of source files increase its difficulty. In this part, we aim at automatically
identifying the copyright notices in source files based on machine learning
techniques. The evaluation experiment shows that our method outperforms
FOSSology, the only existing method based on the regular expression.

In the third part of this dissertation, we deal with the issue of soft-
ware license. Software license is a written text that claims under what
conditions others can modify, reuse, or redistribute the software. A license
may violate another one according to the terms and conditions. Making
software by reusing OSS as dependency may cause dependency-related li-
cense violation if the developers overlook the license of the dependency.
In this part, we first conduct an empirical study on npm - a JavaScript-
based software ecosystem - to study the prevalence of dependency-related
license violations. The result suggests that only a few packages (0.644%)
in npm have dependency-related license violations. However, we also ob-
serve that including the packages licensed under copyleft licenses in the
dependency network highly potentially causes dependency-related license
violations. We then conduct a preliminary questionnaire on the authors of
packages detected as having dependency-related license violations to study
the developers’ attitudes. The results reveal: 1) the developers’ overlook-
ing and misunderstanding of the dependency-related license violations; 2)
the difficulties in managing dependency-related license violations and the
developers’ demands for help.

In the fourth part of this dissertation, we deal with the issue of software
popularity. In OSS ecosystems, software popularity is valuable information
to developers because they continually want to know whether their software
is attracting and gaining acceptance. Software popularity is also an impor-
tant indicator to suggest if a software is beating its competitors in an OSS
ecosystem. Meanwhile, the software with the rapid growth of popularity is
a double-edged sword for OSS ecosystem and its reusers. Accordingly, it is
important to understand the popularity growth of packages (i.e., how fast
packages become popular). In this part, we conduct an exploratory study
on packages in the node package manager (npm) to understand: (1) the
characteristics of popularity growth, and (2) the factors that could affect
popularity growth. We propose a method to model popularity growth as a
curve and find that popularity growth mathematically follows three models
— accelerated growth model (i.e., quadratic model), steady growth model
(i.e., linear model), and decelerated growth model (i.e., square root model).
The results show that 51.56% of the studied packages depict steady growth
model, followed by accelerated growth model and decelerated growth model,
40.02% and 7.20% respectively. Furthermore, we reveal that factors in-
cluding age, dependents, new features, and functionalities have impacts on

v



popularity growth. Our study shows potential tips for helping practitioners
in developing and evolving packages in a competitive OSS ecosystem.

The findings in this dissertation will help practitioners who reuse OSS
in practice and researchers who are to create a better platform for OSS
reuse.



vi



List of Publications

1. Shi Qiu, Daniel M. German, Katsuro Inoue. “An Exploratory Study
of Copyright Inconsistency in the Linux Kernel.” IEICE TRANSAC-
TIONS on Information and Systems, 2021 (to appear).

2. Shi Qiu, Daniel M. German, Katsuro Inoue. “A Machine Learn-
ing Method for Automatic Copyright Notice Identification of Source
Files.” TEICE TRANSACTIONS on Information and Systems, Vol.E103-
D, No.12, pp.2709-2712, Dec. 2020.

3. Shi Qiu, Raula Gaikovina Kula, Katsuro Inoue. “Understanding Pop-
ularity Growth of Packages in JavaScript Package Ecosystem.” The
3th IEEE/ACIS International Conference on Big Data, Cloud Com-
puting, and Data Science Engineering (BCD 2018), pp.55-60, Yonago,
Japan, Jul. 2018.

4. Shi Qiu, Daniel M. German, Katsuro Inoue. “Empirical Study on
Dependency-related License Violation in the JavaScript Package FEcosys-
tem.” Journal of Information Processing, 2021 (under the final re-
view).

vii



viii



Acknowledgement

First of all, I wish to express my deepest gratitude to my supervisor Profes-
sor Katsuro Inoue, for his continuous support and insightful advice through-
out these years, no matter in research or my personal life. It would be
impossible for me to complete this work without his guidance. It is my
fortune to have the opportunity to have been supervised by him and have
been inspired by his immense knowledge and enthusiasm toward research. I
do not doubt that all the things he taught me would be my precious wealth
throughout my life.

I would like to thank my co-supervisors: Professor Daniel M. German
at the University of Victoria. He gave me a lot of motivating research ideas
and inspiring comments on my work. I am grateful for his guidance and
advice.

Besides my supervisors, I would like to thank the rest of my thesis
committee: Professor Shinji Kusumoto and Professor Fumihiko Ino, for
their valuable comments regarding my research.

I would like to thank Associate Professor Takashi Ishio and Assistant
Professor Raula Gaikovina Kula at Nara Institute of Science and Technol-
ogy, and Assistant Professor Yuki Manabe at the University of Fukuchiyama
for their kindly guidance and insightful comments on my research. In par-
ticular, thanks to Yuhao Wu at Hitachi, Ltd. He was like an elder brother to
me providing advice and encouragement continuously. I am very thankful
for building a true friendship with him.

I would also like to express my gratitude to Associate Professor Makoto
Matsushita, Assistant Professor Tetsuya Kanda, Specially Appointed Pro-
fessor Shusuke Haruna, Associate Professor Norihiro Yoshida at Nagoya
University, Assistant Professor Eunjong Choi at Kyoto Institute of Tech-
nology, Ali Ouni at the University of Quebec, Dr. Xin Yang, and Ms. Kate
Stewart at The Linux Foundation, for their support and advice.

I would like to thank all the members of Inoue Laboratory, creating
a friendly environment for studying and researching. Special thanks to
our lab secretary Ms. Mizuho Karube, for her continuous support and
assistance in the past 6 years. I would never forget the joyful time I had in
Inoue Laboratory.

X



Thanks are also due to all the friends I made in Japan. They helped
me in many aspects besides my research and made my life enjoyable here.

Last but not least, I am deeply indebted to my parents, Junying Qiu
and Yan Qin, for their spiritual support throughout my studies and uncon-
ditional love throughout my life.



Contents

1 Introduction

1.1 OSSand OSSReuse . .. ... .. ... .. .. .......
1.1.1  Open Source Software . . . .. .. ... ... ....
1.1.2 OSSReuse . .. .. ... .. .. .. .. ...

1.2 The Reuse Issuesin OSS . . . . ... ... ... ... ....
1.2.1 Copyright Inconsistency . . . . . . .. ... .. ...
1.2.2  Copyright Notice Identification . . . . . . .. .. ..
1.2.3 Dependency-related License Violation . . .. .. ..
1.2.4 Popularity Growth of OSS . . . . . . .. .. .. ...

1.3 Overview of the Dissertation . . . .. ... ... ... ...

Study on Copyright Inconsistency in the Linux Kernel
2.1 Introduction. . . . . . ... ... ... ... ... ... ...
2.2 Background . . ... ... ... ...
2.2.1 Copyright Notices in FOSS Projects . . . . ... ..
2.2.2  Source Code Committers in FOSS Projects . . . . .
2.3 Copyright Inconsistency . . . . . .. .. .. ... ... ...
2.3.1 Definition . . . . ... ... .. .o
2.3.2 Categorization . . .. .. ... ... ... ...,
2.4 Empirical Study . . . ...
2.4.1 Research Questions . . . . . .. ... ... ......
2.4.2 Dataset Construction . . .. ... ... ... ....
2.4.3 Analysis Method . . . . ... ... ... .......
25 Results. . . .. ..
2.5.1 RQI1: How Prevalent Are Copyright Inconsistencies?
2.5.2 RQ2: What Caused the Copyright Inconsistencies? .
2.6 Threats to Validity . . . . . ... ... ... ... ... ...
2.7 Related Work . . . . . ... ...
2.7.1 Software Ownership . . . .. ... ... ... ....
2.7.2 OSS Contributor . . . . . .. ... ... ... ...,
2.7.3 Software License . . . .. .. .. ... ... .....
2.8 Conclusion of This Chapter . . . .. .. .. ... ......

X1

0 NN ==

DO DD DD = = b b e e e e e e
N OO OO bR WD OO



3 A Machine Learning Method for Automatic Copyright No-

tice Identification of Source Files 31
3.1 Imtroduction. . . . ... ... ... ... ... ... 31
3.2 Machine Learning Method . . . . . . .. .. ... ... ... 32
3.3 Comparison of Four Supervised Classifiers . . . . . .. . .. 33
3.3.1 Dataset Construction . . .. ... .......... 34
3.3.2 Experiment and Results . . . . ... ... ...... 34
3.4 Comparison to FOSSology . . . . . . . ... ... ... ... 35
3.4.1 Dataset Construction . . ... ... ... ...... 35
3.4.2 Experiment and Results . . . . ... ... ... ... 36
3.5 Conclusion of This Chapter . . . ... ... ... ...... 36
4 Study on Dependency-related License Violation in the JavaScript
Package Ecosystem 37
4.1 Imntroduction . . . . .. . .. . .. ... ... 37
4.2 Background . . . . .. ..o oL oo 39
4.2.1 License Violation . . . . ... ... ... ....... 39
4.2.2 Package Dependency . . . . . .. .. ... ... ... 40
4.2.3 Dependency-related License Violation . . . .. ... 41
4.3 The Prevalence of Dependency-related License Violation . . 43
4.3.1 Datacollection . . .. ... ... ... ........ 43
4.3.2 Method . .. .. ... ... oo 43
4.3.3 Results and discussion . . . . .. ... ... ... .. 49
4.4 Preliminary Questionnaire . . . . . . .. .. ... ... 51
4.4.1 Questionnaire Design. . . . . . ... ... ...... o1
4.4.2 Datacollection . . . ... ... ... ......... 51
4.4.3 Results and discussion . . . . ... ... ... .. .. 52
4.5 Threats to Validity . . . . . ... .. ... ... ... ... 54
4.6 Related Work . . . ... ... ... .. ... .. . ..., 55
4.6.1 Software License . . . . .. ... ... ... ..... 55
4.6.2 License Compliance . . . . ... ... ... ..... 56
4.7 Conclusion of This Chapter . . . .. ... ... ... .... 56
5 Study on Popularity Growth of Packages in the JavaScript
Package Ecosystem 59
5.1 Introduction . . . . . . ... ... ... .. ... .. ..., 59
5.2 Modeling Popularity Growth as a Curve . . . . .. ... .. 61
5.3 Empirical Evaluation . . . . .. ... ... ... ... .. .. 63
5.3.1 Research Question1 . . . ... ... ... ...... 63
5.3.2 Research Question2 . . . ... ... ......... 65
5.4 Discussion . . . . . . . ..o 70
5.5 Conclusion of This Chapter . . . . ... .. ... ...... 71

X1l



6 Conclusion and Future Work
6.1 Conclusion . . . . . . . ..
6.2 Future Directions . . . . . . . . . . . . ... ..

xiii



Xiv



List of Figures

2.1

4.1
4.2
4.3

5.1

5.2

9.3

The impact of the selection of the minimum threshold per-
centage on the results of the detection of the committer-not-
holder inconsistency. . . . . . .. ... ... 26

The examples of direct dependency and indirect dependency. 41
A part of the dependency network of cstar package in npm. 41
License compatibility network. . . . .. ... ... ... .. 42

The popularity growth for three packages representing the
three proposed models. In each plot, the blue curve is the
one created with the original data while the red curve is the
model that fits best. Note that Figure 5.1(a) represents the
accelerated growth model (grunt), Figure 5.1(b) represents
the steady growth model (wcsize) and Figure 5.1(c) illus-
trates the best-fits for decelerated growth model (active).. 61
The effect of dependencies on downloads in npm. When pack-
age a is installed, package b, ¢ and d is downloaded at the

same time. . . . . . ... o 62
The word-cloud graph using the keywords of every package
fitted by each growth models. . . . . . . .. ... ... ... 68

XV



xvi



List of Tables

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3
3.4
3.5

4.1
4.2
4.3
4.4

Summary of the roles introduced in this chapter. . . . . ..
Result of using cregit on generic.h. . . . ... ... . ...
Summary of the target version of the Linux kernel. . . . . .
A part of the built organization dictionary. . . .. .. ...
The number of source files with different types of copyright
inconsistencies and the ratios. Ratio to (I) means the ratio of
the source files detected as having this type of inconsistency
to all source files in the sample dataset. Ratio to (4) means
the ratio of the source files detected as having this type of
inconsistency to the source files detected as having any type
of inconsistency. . . . . . . ... L.
The reasons why holder-not-committer inconsistencies hap-
pened in the Linux kernel version 4.14. . . . . . . . ... ..
The reasons why committer-not-holder inconsistencies hap-
pened in the Linux kernel version 4.14. . . . . . . . . .. ..
The reasons why holder-not-committer inconsistencies hap-
pened in the Linux kernel version 5.80. . . . . . ... .. ..
The reasons why committer-not-holder inconsistencies hap-
pened in the Linux kernel version 5.80. . . . . . . .. .. ..

Examples of the identified copyright notices using FOSSol-
ogy for bonito64.h. . . . . . ... 0oL
The word categorization and the tokens we use to replace
words. . . ...
Summary of the target version of the Linux kernel. . . . . .
Comparison of four classifiers. . . . . .. ... ... ... ..
Evaluation of the proposed method. . . . . .. .. ... ..

The list of the selected licenses. . . . . . . . ... ... ...
The rules of how changes should be handled in npm.

The examples of how to specify the ranges. . . . . ... ..
The historical meta-data dataset constructed for cstar pack-
age I NPM. . . . . . v v vttt e e e e e

32



4.5

4.6
4.7

5.1
5.2
5.3
5.4

The attached information of version and license for the de-
pendencies in the dependency network constructed for cstar

package. . . . . ... 49
The top 10 dependency-related license violations. . . . . . . 50
The proportion of the selected licenses innpm. . . . . . . . . 50
Mathematical models . . . . . . . ... ... ... ... 62
Summary Statistics of the collected dataset . . . .. .. .. 64
Best Fitting Results for the 102,341 target packages. . . . . 64
Summary Statistics of the 101,088 fitted packages. . . . . . 66

xXviii



Chapter 1

Introduction

Software is playing an important role in society nowadays. A lot of ap-
proaches have been proposed to support software development. Among
them, software reuse has been proved to be an efficient and effective way to
increase software productivity and improve the quality of software[11, 56,
64], especially open source software (OSS) reuse. OSS is software whose
source code can be reused under some particular terms and conditions.
OSS reuse makes valuable contributions in helping developers create new
software products in modern software development [63]. However, there
are also some reuse issues in OSS. In this dissertation, we deal with these
issues. We first introduce OSS and OSS reuse in Section 1.1. We then
introduce the reuse issues in OSS in Section 1.2 respectively.

1.1 OSS and OSS Reuse

In this section, we provide a brief background of OSS and OSS reuse re-
spectively.

1.1.1 Open Source Software

OSS could be defined as software whose source code can be reused under
some particular terms and conditions with the help of open source license.
Open source license allows the software to be freely used, modified, and re-
distributed by anyone, as long as the conditions of its license are satisfied.
OSS employs new types of development activities, community networking,
and organization structure [61]|. Different from proprietary software, OSS is
developed in a collaborative manner, receiving contributions from a large
number of people from different countries/regions, or different organiza-
tions. OSS supports our daily life in a wide variety of aspects: mobile
phone, web service, and IT system infrastructure all rely on OSS. Hun-
dreds of OSS are in use by thousands to millions of users nowadays, some



of which have millions of lines of source code. For example, the Linux ker-
nel is contributed by 21,074 different contributors at the end of 2019 [51].
OSS has become an important asset in software development. The famous
examples of OSS projects are Linux kernel', Apache?, Mozilla®, etc.

There are different terms for describing the OSS phenomenon: open
source software (OSS), free software, and free open source software (FOSS),
etc. Although there are differences between them with regards to the as-
signed licenses, they are often treated as the same thing [43, 61]. We use
open source software (OSS) as the general term because the difference of
these terms does not affect the main goal of this research.

OSS projects are usually created by an individual or a group motivated
by a specific need [68]. With the development of OSS, more and more
contributors join and contribute the source code to the project, forming a
broad community known as the OSS community. Generally speaking, there
are two types of contributors: individuals and organizations, motivated by
different types of motivation. They could participate in OSS projects as
many roles, such as contributing source code, testing software, reviewing
the source code, reporting and fixing bugs, writing documentation, and
managing the development. OSS community has become the most im-
portant foundation of OSS, guaranteeing the development, support, and
maintenance of OSS [13].

Furthermore, some OSS projects are developed and evolve together in
a shared environment, known as the OSS ecosystem [54|. To develop a new
OSS project, other OSS projects in the OSS ecosystem could be reused
easily. OSS ecosystem has emerged in recent years as an efficient and
effective way to increase the productivity of OSS and the activity of the
OSS community. Furthermore, OSS ecosystems are increasingly popular for
their economic, strategic, and technical advantages and have also become an
emergent field of research that has been addressed from various perspectives
[9]. The famous examples of OSS ecosystems are npm*, RubyGems®, etc.

1.1.2 OSS Reuse

Software reuse is the process of creating software systems from existing
software rather than building software systems from scratch 30, 45]. Soft-
ware reuse has long been advocated and proved as a good practice to save
time, reduce cost, and increase quality. There are four types of software
reuse: data reuse, architecture reuse, design reuse, code reuse, and module

"https://www.kernel.org/
https:/ /httpd.apache.org/
3https://www.mozilla.org/
“https://www.npmjs.com/
Shttps://rubygems.org/



reuse [40]. Developers could benefit from software reuse on many aspects
such as code quality, coding efficiency, maintenance, and quality.

OSS reuse is one of the most common practices of software reuse. With
the rapid growth of OSS, OSS reuse is playing a more and more important
role in software development [63]. For example, almost half of the Nor-
wegian software companies reuse OSS in their products [37], while 30% of
the functionality of OSS projects in general reuse existing components [63].
OSS developers are willing to share their own source code and they are also
glad to reuse others’. On one hand, reusing OSS could save development
time and reduce the cost compared to writing the software from scratch [5].
On the other hand, the source code of OSS can be accessed publicly and of-
ten be widely tested by many other developers, because of which the quality
can also be improved and ensured [6]. The rapid development of software
forges like GitHub® and Google Code” also create a convenient environment
for developers to share their OSS, reuse others’ OSS, and collaborate with
others.

1.2 The Reuse Issues in OSS

Although the developers benefit a lot from OSS reuse, OSS reuse also comes
with many reuse issues needed to be taken special care of. On one hand,
OSS reuse may have an important side-effect on software quality. For ex-
ample, although more than 80% of the systems depended on outdated ex-
ternal libraries, developers were unaware of any security risks that were
introduced into the system [48]. On the other hand, OSS reuse may have
reusers face lawsuits and potential monetary penalties. If OSS is not reused
according to the conditions and terms described by its licenses properly, the
copyright owner could start legal proceedings against the reusers to enforce
its license. For example, in the legal dispute between Oracle and Google,
Oracle claimed for a penalty of $8.8 billion from Google [76|. Overlooking
the copyright notices will also have the reusers be involved in the legal dis-
putes with the original copyright owners. For example, Patrick McHardy -
a developer of the Linux kernel - has sued some companies by claiming he
owns the copyright notice of some components in the Linux kernel [57, 74].

There are much of reuse issues in OSS still needed to be addressed: the
inconsistency between the declared holders in the copyright notices and the
contributors of the source code (i.e. copyright inconsistency) increases the
difficulty of establishing copyright ownership; copyright notice identifica-
tion of source files is difficult; including other OSS with an incompatible
license as dependency results into dependency-related license violation eas-
ily; developers have no knowledge of the popularity growth of OSS. In this

Shttps://github.com/
"https://code.google.com/



dissertation, we deal with these reuse issues to support OSS reuse. We
introduce each of them respectively.

1.2.1 Copyright Inconsistency

Software copyright claims an exclusive right to determine whether and un-
der what conditions this software can be modified, reused, or redistributed.
Identifying who owns the software copyright is important because they have
the right to change the license, granting a commercial one to a third party,
or start legal proceedings to enforce the license.

The individuals or organizations explicitly declared in copyright notices
(i.e. holders) and the individuals or organizations who actually contribute
the source code (i.e.contributors) are the information that is usually used
to establish the copyright ownership of an OSS project. However, they are
not always consistent. In other words, the copyright notices recorded in
the source files do not always reflect the actual contributors. We define
the inconsistency between the holders in the copyright notices and the
contributors of the source code as copyright inconsistency.

As an example of copyright inconsistency, we observed a file named hid-
cypress.c in the Linux kernel. Before the commit whose id is 2f43f8749ebae-
b4934173a6{864fcbb60ce9f48a, the comments in the header part of source
file are as follow:

Vi

*

HID driver for some cypress '"special" devices

*  Copyright (c) 1999 Andreas Gal

*  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
*  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com>
for Concept2, Inc

Copyright (c) 2006-2007 Jiri Kosina

* Copyright (c) 2007 Paul Walmsley

*  Copyright (c) 2008 Jiri Slaby

-.‘:/

/-.‘:
* This program is free software; you can redistribute it and
* Jor modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation;
* either version 2 of the License, or (at your option) any
* later version.

-,':/

It is easy to know that this file is licensed under GPL 2.0+ license,
attached with 6 copyright notices. But in the commit mentioned above,

4



copyright notice Copyright (c) 2007 Paul Walmsley is removed from the
comments. The reason is clarified in the commit log of this commit:

Paul Walmsley has implemented dynamic quirk handling back in
2007 through commits:

2eb5dc3 ("USB HID: encapsulate quirk handling into
hid-quirks.c")

8222fbe ("USB HID: clarify static quirk handling as
squirks™)

8cef908 ("USB HID: add support for dynamically-created
quirks")

876b927 ("USB HID: add ’quirks’ module parameter')

and as such, his copyright rightly belongs to
drivers/hid/usbhid/hid-quirks.c file.

However when generic HID code has been converted to bus and
individual quirks separated out to individual drivers on the
bus, the copyright has been blindly transferred into all the
tiny drivers, which actually don’t contain any of Pauls’
copyrighted code.

Remove the copyright from those sub-drivers.

Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Paul Walmsley <paul@pwsan.com>

As we can see, during the software evolution, copyright notice hold by
Paul Walmsley has been wrongly imported into this file. However, Paul
Walmsley does not own any source code in this source file. We also confirm
this by tracking the history of the source file. No source code is contributed
by Paul Walmsley while his copyright notice is recorded. A copyright in-
consistency occurs in such a situation.

Copyright inconsistency in the industry can bring a large amount of
damage to a company. For example, Patrick McHardy - a developer of the
Linux kernel - has sued some companies by claiming his the authorship of
some components of the Linux kernel [57, 74|. As a first step to deal with
the issue of copyright inconsistency, we aim to investigate the prevalence of
copyright inconsistencies and the reasons causing their occurrence in this
research.

We will discuss this issue in detail in Chapter 2.



1.2.2 Copyright Notice Identification

Copyright notice claims who has the right to determine under what condi-
tions this software can be redistributed, reused, and modified with the help
of software licenses. Generally, a copyright notice is a sentence including
the explicitly declared holders, the word "Copyright" or a copyright sign,
and the valid year, written with the software license. An example of the
copyright notice is as follows:

Copyright (C) 2015-2021 Osaka Univ.

This program is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the free Software Foundation;
either version 2, or (at your option)

any later version.

H O W W H O W W W W

This copyright notice declares that Osaka University owns the copyright
of this software.

For OSS, it is very important to identify the copyright notices in source
files since the individuals or organizations declared in the copyright notices
can control those activities with license compliance. However, identifying
copyright notice of source files is difficult. Both the collaborative manner
of FOSS project development and the large number of source files increase
the difficulty.

In this research, we aim at automatically identifying the copyright no-
tices in source files based on machine learning. We first proposed a method
to vectorize the copyright notice using the extracted natural language fea-
tures. We then optimized and compared the accuracy of four supervised
classifiers to address our research goals, followed by an evaluation experi-
ment in which our method outperforms FOSSology, a state-of-the-art ap-
proach based on regular expression matching.

We will discuss this issue in detail in Chapter 3.

1.2.3 Dependency-related License Violation

Software license grants the permissions of reusing and redistributing the
software to its users. Generally, it is a text written in the header part of
the source files. Open source license is software license approved by Open
Source Initiative, describing under what the terms and conditions OSS
could be used, modified, and shared. Generally speaking, there are two
types of open source licenses: the permissive license and copyleft license.



A license may violate another one according to the terms and conditions.
License violation may cause potential legal risks [80]. Usually, a permissive
license violates a copyleft one.

Here is an example: The following texture is a part of the Apache-2.0
license:

[...]

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[...]
While GPL-2.0+ license says:

[...]

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

[...]

According to the terms and conditions of the two licenses, it is easy to
know that the Apache-2.0 license violates the GPL-2.0+ license.

In the user-contributed OSS ecosystem, a package usually includes other
packages as dependencies. This package’s license may violate the license
of its dependencies. We define this violation as a dependency-related li-
cense violation. In this research, we aim to investigate the prevalence of
dependency-related license violation by conducting an empirical study on
npm. We also design a preliminary questionnaire aiming to find out the
developers’ attitude.

We will discuss this issue in detail in Chapter 4.

1.2.4 Popularity Growth of OSS

Software popularity is valuable information to developers especially for soft-
ware in the OSS ecosystem. It is an important clue to know whether a
package is successful or not in the software ecosystem [12]. Meanwhile, the
software with the rapid growth of popularity is a double-edged sword for
the OSS ecosystem and its reusers. On one hand, the vulnerabilities or
defects involved in this software will spread at the same time. On the other
hand, if this software is suddenly removed from the OSS ecosystem, much



other software that depends on this software will stop work as well. Ac-
cordingly, it is important to understand the popularity growth of packages.
To understand how fast software in the OSS ecosystem become popular,
we conduct an empirical study on packages in npm - a large repository
of JavaScript-based software packages - to investigate the characteristics of
popularity growth and the factors that could affect popularity growth. The
study on the characteristics of popularity growth is conducted based on the
proposed method modeling popularity growth as a curve. The study on the
factors that could affect popularity growth is conducted relying on statistic
analysis examining whether or not there is a strong relationship between
them and the proposed growth models.
We will discuss this issue in detail in Chapter 5.

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 reports our work on analyzing copyright inconsistency and
the reasons for its occurrence based on an empirical study of the Linux
kernel.

Chapter 3 reports our work on proposing a method that automatically
identifies the copyright notices in source files based on machine learning
techniques.

Chapter 4 reports our work on investigating the prevalence of dependency-
related license violations. We also conduct a preliminary questionnaire to
study the developers’ attitudes.

Chapter 5 reports our work on studying the popularity growth of pack-
ages in npm to understand the characteristics of popularity growth, and the
factors that could affect popularity growth.

Chapter 6 concludes this dissertation and shows directions for future
work.



Chapter 2

Study on Copyright
Inconsistency in the Linux
Kernel

2.1 Introduction

Software copyright grants the copyright owner a legal right to determine
under what conditions this software can be redistributed, reused, and mod-
ified with the help of software licenses. Different from proprietary software,
FOSS projects are developed in a collaborative manner, receiving contri-
butions from a large number of people, named contributors, from different
countries or regions, or different organizations. For example, the Linux
kernel is contributed by 21,074 different contributors at the end of 2019,
and those contributors have the potential to claim the copyright of the
contributed software [51]. In this chapter, we name the individuals or or-
ganizations explicitly declared in copyright notices as the holders, and the
individuals or organizations who actually own the copyrights as the copy-
right owners.

In general, the holders are seen as the copyright owners. However, the
holders may not cover all contributors who could potentially become the
copyright owners. So identifying the copyright owners of FOSS only by the
holders is insufficient. Therefore, an important question in the copyright
ownership problem of FOSS is: "Who are the actual copyright owners?"
Identifying the copyright owner of FOSS is important for several reasons: a)
only the copyright owner of FOSS is allowed to change its license or granting
a commercial one to a third party, such as Oracle grants commercial licenses
to MySQL! [33]; b) only the copyright owner of FOSS is allowed to start
legal proceedings to enforce its license; ¢) several FOSS licenses (e.g. the

"https://www.mysql.com/



BSD family of licenses) require that the copyright owner of FOSS projects
being reused be acknowledged in the documentation and other materials of
the system that reuses it.

In recent years, some developers who once contributed to large FOSS
projects have enforced the open source license against the distributors who
use the FOSS. These charges are based on the terms of the highly restrictive
open source licenses. These distributors may face lawsuits and potential
monetary penalties if they ignore or violate the terms of these restrictive
licenses. For example, Patrick McHardy - a developer of the Linux kernel
- has sued some companies, claiming that he shares a great part of the
authorship of the Linux kernel [57, 74]. While it is easy to find his copy-
right notice existing in some source files, it is not easy to identify what
portions of his contributions still remain in the current kernel. In other
words, his declaration of the copyright notice may be inconsistent with his
remained contributions. Therefore, the question arises: "Are these devel-
opers enforcing the open source license against the distributors the actual
copyright owners of redistributed FOSS projects?" To address this prob-
lem, both the open source community and the industry invested a great
amount of effort. For example, an open source license compliance software
system and toolkit called FOSSology? have been developed to detect the
copyright notice buried in the source code [32]. BlackDuck® also provides a
service of assessing the legal risks of software copyright to those who want
to commercially reuse FOSS.

However, establishing copyright ownership in large FOSS projects and
verifying whether the statement of a copyright notice is correct are compli-
cated. On one hand, as we mentioned below, the contributors, who could
potentially become the copyright owners as well, can not be totally covered
by the holders. On another hand, since the large FOSS projects are usually
co-developed by a large number of developers during a long period, the
copyright notices potentially risk the poor management and can not refer
to the actual copyright ownership. For example, a copyright notice can be
added when a contributor contributes source code to a FOSS project, but if
the contributed source code is totally deleted from this FOSS project, the
added copyright notice is possibly left in the source file since the developer
who did this deletion may not know which part of source code is governed
by this copyright notice. In these cases, the copyright notices will denote
copyright ownership incorrectly. The inconsistency between the holders in
the copyright notices and the contributors of the source code (called copy-
right inconsistency or simply inconsistency) plays an important role in the
difficulty of establishing copyright ownership in large FOSS projects.

Zhttps:/ /www.fossology.org/
3https:/ /www.blackducksoftware.com/

10



Table 2.1: Summary of the roles introduced in this chapter.

Role Definition

Copyright owner Who actually owns the copyrights.

Holder Who is explicitly declared in copyright notices.
Contributor Who actually writes the source code.
Committer Who commits the source code to repositories.

In this chapter, as a first step of understanding copyright ownership, we
analyze copyright inconsistencies of the Linux kernel, which is a typical ex-
ample of FOSS. To the best of our knowledge, no work has been done to go
deep into copyright inconsistency. Only a few works analyzed the relation-
ship between the contributors and the holders [19], which are insufficient
to reveal some important problems about this issue such as how prevalent
copyright inconsistencies are in FOSS and why copyright inconsistencies
occur. Also, we want to know whether the statements of copyright notices
are accurate and truly denote the contributors’ contributions to the source
files that contain them.

To achieve our goal, we must first identify the holders and contribu-
tors. The holders in copyright notices can be detected from the copyright
notices directly. While identifying the contributors is much more difficult
since tracking the "original" authors of the source code is a difficult task
in software engineering as well. Here we use the committers who can be
tracked in software repositories as an indicator of the contributors. The
difference between committer and contributor is that committer is the de-
veloper who commits the source code while the contributor is the developer
who actually writes the source code. Both of them could be the potential
copyright owner who actually owns the copyrights. Although the com-
mitters are not always consistent with the contributors, they are the only
explicit information we can observe in software repositories directly. We
will explore the cases that a developer commits source code written by oth-
ers in our empirical study. Using the committer can help us to conduct
a quantitative analysis to study the copyright inconsistency because the
holders and contributors are two most explicit pieces of information we can
rely on to establish the ownership of the source file.

Table 2.1 summarizes all the roles introduced in this chapter.

Based on these questions, we first define and categorize the copyright
inconsistency formally. We then conduct an empirical study to study copy-
right inconsistency. Our research questions are set as follows:

RQ1: How prevalent are copyright inconsistencies?

RQ2: What caused the copyright inconsistencies?

The contributions of this chapter are as follows:

11



1. We have made the first study to focus on the prevalence of copyright
inconsistencies, relying a proposed analysis method to detect and study
them.

2. We have also conducted an empirical study on the Linux kernel to
find the reasons.

This chapter is organized as follows. Section 2.2 first provides a brief
background on copyright notices in FOSS projects, after which Section 2.3
proposes the definition of copyright inconsistency. Our empirical study
on the Linux kernel is described in Section 2.4, followed by Section 2.5
with a discussion of the results. Section 2.6 describes threats to validity.
After a description of related work in Section 2.7, Section 2.8 concludes this
chapter.

2.2 Background

In this section, we have a look at the practical situation of copyright notices
and committers in the FOSS project.

2.2.1 Copyright Notices in FOSS Projects

A copyright notice is a sentence to declare the holders explicitly. Generally,
a copyright notice begins with the word "Copyright" or a copyright sign
"(C)", followed by the names of the holders. The valid year of this copyright
notice is usually stated in the copyright notice as well. An example of the
copyright notice in FOSS is as follows:

Copyright (C) 2011-2013 Free Software
Foundation, Inc.

This program is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the free Software Foundation;
either version 2, or (at your option)

any later version.

FHOoH H W H OH W W W K R

This copyright notice declares that the Free Software Foundation owns
the copyright of this software. A FOSS license is stated with the copyright
notice as well.

Usually, these holders are seen as owning the copyright. Note that in
this chapter, holders refer to the individuals or organizations explicitly de-
clared in copyright notices. While copyright owners refer to the individuals

12



or organizations who did own the copyrights. The holders may not always
be consistent with the copyright owners.

Similar to other types of properties, copyright can be sold and trans-
ferred. Different FOSS projects have different rules on copyright transfer.
Some FOSS projects require their developers to transfer the copyright of
their contributions. For example, Oracle - the copyright owner of MySQL
- requires all contributors to transfer the copyright of their contributions
when they make the contributions [58|. This strict requirement ensures
Oracle to be the only copyright owner. Therefore, "(©) 2019, Oracle Corpo-
ration and /or its affiliates" is the only copyright notice of MySQL, declaring
that the holder, also the copyright owner, is Oracle Corporation and/or its
affiliates. By having this only ownership of MySQL, Oracle is also able to
offer commercial licenses.

However, most FOSS projects do not force the copyright transfer. They
receive contributions from a large number of contributors, which makes es-
tablishing the ownership of FOSS more complicated. Therefore, a FOSS
project may be copyrighted under from one to hundreds of copyright no-
tices. An example is the Linux kernel where a lot of copyright notices can
be observed. Meanwhile, these copyright notices are usually declared using
some particular pattern. The situations of many other FOSS projects are
similar to the Linux kernel.

2.2.2 Source Code Committers in FOSS Projects

Modern software development is usually participated by a lot of developers.
The large FOSS projects are also developed in a collaborative manner,
receiving commits from a large number of committers. For example, in the
case of the Linux kernel, the Linux foundation - the organization dedicated
to maintaining the Linux and other related FOSS projects communities
- reported that over 15,600 developers from more than 1,400 companies
have contributed to the Linux kernel since tracking began 11 years ago
[14]. Version control systems such as git*, usually have a feature known
as "blame", to track who nominally commits certain lines of code to the
repositories. To track the contribution at a more granular level of code
tokens, a tool named cregit is developed to track the committer, time,
and commit log of each token in source file [29].

In our following study, we rely on cregit to construct the dataset.
Table 2.2 shows an example of the extracted information using cregit to a
source file named generic.h in the Linux kernel. It is easy to know the list of
the committers, and the proportion of the contribution of each committer.
For example, Arnd Bergmann contributed 170 tokens to the source file,

“https://git-scm.com/

13



accounting for 80.6% of all tokens, and committed thrice, accounting for
27.3% of all commits.

2.3 Copyright Inconsistency

In this section, we make a precise definition of copyright inconsistencies
and categorize them.

2.3.1 Definition

For the purpose of this research, copyright inconsistency refers to the in-
consistency between the holders and the committer. The holders refer to
the individuals or organizations explicitly declared in copyright notices ac-
cording to our definition. The committers refer to the individuals who
committed the source code to repositories.

2.3.2 Categorization

In many FOSS projects, copyright inconsistencies can be observed easily.
Here we still take the source file generic.h in Linux kernel, as the target
source file to observe. The header comments of this source file are as
follows:

/:‘:

* spear machine family generic header file

* Copyright (C) 2009-2012

* ST Microelectronics

Rajeev Kumar <rajeev-dlh.kumar@st.com>
* Viresh Kumar <vireshk@kernel.org>

* This file is licensed under the terms of
the GNU General Public License version 2.
* This program is licensed "as is" without
any warranty of any kind, whether express
* or implied.

:‘c/

It is easy to know that the holders are ST Microelectronics, Rajeev Ku-
mar, and Viresh Kumar. Note that possibly Rajeev Kumar is an employee
of ST Microelectronics according to the domain of his email address. We
then extract the committers relying on cregit. The committers and the
proportion of their contributions to the source files are shown in Table 2.2.

We can observe that inconsistencies happened in two ways.

14



Table 2.2: Result of using cregit on generic.h.

Person #Token T.Prop #Commit C.Prop
Arnd Bergmann 170 80.6% 3 27.3%
Viresh Kumar 29 13.6% 4 36.3%
Russell King 5 2.4% 1 9.1%
Robin Holt 5 2.4% 1 9.1%
Shiraz Hashim 1 0.5% 1 9.1%
Masahiro Yamada 1 0.5% 1 9.1%
Total 211 100.0% 11 100.0%

Firstly, we can not find any hints about the ST Microelectronics and
Rajeev Kumar - both seen as the holders- in the committers. Their actual
contributions to this source files are not clear. It may be a possible reason
that their copyright notices are wrongly declared or just out of date.

Secondly, a lot of committers- Arnd Bergmann, Russell King, Robin
Holt, Shiraz Hashim, and Masahiro Yamada - did not declare their copy-
right notices in the source file. This resulted in a problem that the owner-
ship of this source file can not be established since we have no knowledge
about the contributions of the committers to this source file. Especially,
the copyright notice of Arnd Bergmann, who committed more than 80%
source code to the source file by tokens, is not declared in the source as well.
Establishing the ownership of a source file without regarding a committer
who committed a large part of source code such as Arnd Bergmann is not
wise.

So establishing the ownership of a source file only by the copyright no-
tices is not sufficient. Some may argue that the committer such as Shiraz
Hashim or Masahiro Yamada committed too few source codes. Therefore,
the proportion of their commits can not support them to become the qual-
ified committers and declare their ownership of this source file. We will
have a discussion on this proportion in our empirical study in Section 2.4.
These two types of inconsistencies between the holders and the committers
can be observed in many other observed source files as well.

Based on the observation of Linux kernel, we observed two types of
copyright inconsistency. One is the situation that the holder is not the
committer (i.e. holder-not-committer inconsistency). Another one is the
situation that the committer is not the holder (i.e. committer-not-holder
inconsistency).

Note that if the organizations the committer belongs to are declared in
the copyright notices, we determine there is no inconsistency in this situa-

15



Table 2.3: Summary of the target version of the Linux kernel.

Version 4.14
Date Nov 13, 2017
#File 45,477

tion. A quantitative and executable analysis of the copyright inconsistency
could be conducted based on the proposed definition and categorization.

2.4 Empirical Study

The goal of this section is to introduce our analysis methods to answer re-
search questions. To achieve this goal, we select the Linux kernel - the most
popular and successful open-source operating system kernel - to analyze.
Table 2.3 shows a summary of the target version of the Linux kernel.

2.4.1 Research Questions

This empirical study aims at addressing the following research questions:

RQ1: How prevalent are copyright inconsistencies? This research ques-
tion investigates the prevalence of copyright inconsistencies in the Linux
kernel. Copyright inconsistencies will be detected using the proposed method,
followed by quantitative analysis.

RQ2: What caused the copyright inconsistencies? This research ques-
tion aims at finding the reasons causing the copyright inconsistencies in
the Linux kernel. The results reveal the reasons by a qualitative analysis
manually tracking the historical commit logs of the source files.

2.4.2 Dataset Construction

To achieve our goal, we first construct the datasets for our empirical study.
The dataset construction consists of three steps - sampling, building the
committer dataset, and building the holder dataset.

— Sampling:

We first download the source code of the Linux kernel from Github®.
Notice that we only collect the source files whose life cycle can be entirely
traced in Github. Some source files - known as pre-git files - have been
created and evolved before the source code was uploaded to Github. Those
pre-git files are not our target source files. This step makes copyright no-
tices trackable, which helps us in answering the research questions. We end

Shttps://github.com/torvalds/linux

16



up with 38,932 source files after removing pre-git files from the total down-
loaded source files. We aim to construct a sample dataset by randomly
selecting source files from these 38,932 source files. We use a statistical
method to determine the sample size needed in order to get results that
reflect the target population as precisely as needed. The required sample
size was calculated so that our conclusions would generalize to all 45,477
source files with a confidence level of 95% and a confidence interval of 5 6.
The calculation of statistically significant sample sizes based on population
size, confidence interval, and confidence level is well established. The cal-
culated required sample size is 381. At last, we randomly select 500 source
files from 38,932 non pre-git files to construct the sample dataset.

Among these 500 source files, a part of source files’ histories can not
be tracked because of the mechanism of git. Git keeps track of changes to
files in the working directory of a repository by their names. When a file is
moved or renamed, git sees it as a creation of a new file while the original
file is deleted. Since our analysis required the traceability of the entire
history of a source file, we only select the source files which are not moved
or renamed before. By removing source files once moved or renamed, we
end up with a sample dataset consist of 414 source files. This number is still
larger than 381 - the minimum required number of statistically significant
sample size.

— Building the committer dataset:

In this step, we build the committer dataset. For each source file in
the sample dataset, we extract the full name, number of tokens they con-
tributed, and the proportion of this contribution for each committer using
cregit. Note that a committer may have multiple different accounts in
GitHub. We rely on cregit to solve this problem. cregit extracts the
committer ’s full name and use it as the unified identifier to merge the
multiple different accounts owned by the same committer. We then extract
the e-mail address of each committer by tracking the historical commit logs
of the source file.

Lastly, we identify the organizations the committers belong to by check-
ing the domain of their e-mail addresses. We use a semi-automatic method
to achieve this goal. A domain dictionary is built to map the domain of
the e-mail addresses to the organizations. When we try to identify the
organization of a committer, we first check if the domain of his or her e-
mail address is in the domain dictionary or not. If so, we determine the
corresponding organization as the organization the committer belongs to.
Otherwise, we manually check this domain and identify the organization for
this committer. The pair of the domain and the organization is added into

Shttps://www.surveysystem.com /sscalc.htm

17



the domain dictionary at the same time. Note that here an organization is
indicated by a uniform identifier.

In this way, we build the committer dataset. All source files are con-
tained in this dataset. For each of them, we list his or her full name, the
number of tokens he or she contributed, the proportion of the contribu-
tion, e-mail address, and the organization he or she belongs to. During this
process, we successfully build a domain dictionary as well.

— Building the holder dataset:

In this step, we build the holder dataset for each source file in the
sample dataset. Note that we have built the committer dataset containing
the full names of all committers and the uniform identifiers to indicate the
organizations they belong to. We first use FOSSology [32] to detect the
copyright notices, after which we manually check all detected copyright
notices to remove the wrongly detected ones.

Then next, we build an organization dictionary shown in Table 2.4. The
index is the uniform identifiers of the organizations. Each of the uniform
identifiers refer to a list of possible organization names found in the analysis.
The organization names are the different ways one organization might be
referred to in copyright notices. In the beginning, the list only contains one
name that we find in building the committer dataset.

We then match the full name of each committer to each detected copy-
right notice. We achieve this by checking whether the full name is included
in the detected copyright notice or not. Note that this check is not case-
sensitive. If we find the full name of one committer in the detected copyright
notice, we determine it as the holder of this copyright notice. At the same
time, the type of this holder is determined as individual. For the remaining
copyright notices, we try to match them to the organization names in all
lists in the organization dictionary. If an organization name is matched,
we determine the index - the uniform identifier refers to the list containing
this organization name - as the holder. At the same time, the type of this
holder is determined as organization.

After these two matches, we try to manually identify the holders and
their types for the remaining copyright notices. If the manually identified
organization name has got a uniform identifier in the organization dictio-
nary, we determine this uniform identifier as the holder. Meanwhile, we add
this manually identified organization name into the list that the uniform
identifier refers to. If the manually identified organization name has not got
a uniform identifier in the organization dictionary, we create a new uniform
identifier as the index and add this manually identified organization name
into the list the newly created uniform identifier refers to. Finally, we build
a holder dataset, for each source file in which the holders and the infor-

18



Table 2.4: A part of the built organization dictionary.

Index List

ibm IBM Corporation
IBM Corp.
International Business Machines Corp.

amd  Advanced Micro Devices, Inc
AMD, Inc

ti Texas Instruments, Inc.
TI, Inc

mation about their related copyright notices and their types (individual or
organization) are summarized.

During this process, we successfully build an organization dictionary at
the same time. Table 2.4 shows a part of the built organization dictionary
constructed during the analysis of the Linux kernel.

2.4.3 Analysis Method

To answer RQ1, we detect the copyright inconsistencies based on the built
committer dataset and holder dataset. Based on the definitions in Sec-
tion 2.3.1, we detect two types of copyright inconsistencies respectively -
the committer-not-holder inconsistency and the holder-not-committer in-
consistency.

To achieve our goals, we propose two definitions of committer for the
detection of two types of copyright inconsistency. General committers refer
to all committers who once committed source code. This definition will
be used in the detection of the holder-not-committer inconsistency, which
ensures that the holder-not-committer inconsistency can only be detected
when we can not find any information about the holder in the committer
dataset. Core committers refer to the committers who contributed more
than a minimum threshold percentage of contribution. Setting a minimum
threshold percentage of the contribution could exclude the minor commit-
ters who only do some simple work, and determines the core committer
from a general committer. We will set this minimum percentage as 14.9%
because it is the least percentage of source code at the token granularity of
the contributor who committed the highest percentage of the source code in
the sample dataset. We will discuss the effectiveness of this threshold and
how this threshold could impact the result of the detection in Section 2.6.
This definition will be used in the detection of the committer-not-holder
inconsistency.

19



Table 2.5: The number of source files with different types of copyright
inconsistencies and the ratios. Ratio to (I) means the ratio of the source
files detected as having this type of inconsistency to all source files in the
sample dataset. Ratio to (4) means the ratio of the source files detected as
having this type of inconsistency to the source files detected as having any
type of inconsistency.

No Inconsistency #Files Ratio to (I) Ratio to (4
(D sample dataset 414 100.0%

(2 holder-not-committer 134 32.4% 51.1%

3  committer-not-holder 229 55.3% 87.4%

@ any type of inconsistency 262 63.3% 100.0%

%) both two types 101 24.4% 38.5%

We first detect the holder-not-committer inconsistency. For each holder
in the holder dataset, we check whether this holder is a name of any general
committer or an organization that any general committer belongs to. A
holder-not-committer inconsistency is detected if a holder is neither a name
of any general committer or an organization that any general committer
belongs to.

We then detect the committer-not-holder inconsistency. For each core
committer in the committer dataset, we check whether its name or orga-
nization is recorded in the holder dataset or not. A committer-not-holder
inconsistency is detected if neither a core committer’s name nor its organi-
zation is recorded in the holder dataset.

To answer RQ2, we try to find the reasons behind the occurrence of the
holder-not-committer inconsistency and the committer-not-holder inconsis-
tency respectively. For each inconsistency, we manually check the commit
logs and the comments in the source code of the source files to find out the
reasons. A reason is determined only when it is explicitly recorded in the
commit logs or the comments in source code.

2.5 Results

In this section, we report the results and have a discussion on the results
to address research questions in our empirical study in Section 2.4.

2.5.1 RQ1: How Prevalent Are Copyright Inconsistencies?

In this research question, we analyze to what extent copyright inconsisten-
cies exist in source files in the Linux kernel.

20



As can be seen from Table 2.5, 262 source files are detected as having
copyright inconsistencies, accounting for 63.3% of all 414 source files. As
a popular and well maintained OSS project, the copyright ownership of
the Linux kernel should be clear and well maintained as well. The general
image of the Linux communities is that there is not too much copyright
inconsistency in the Linux kernel. An ideal situation is expected that there
is no inconsistency. However, this result is out of our expectation and do
not accord with the general image of the communities, which suggests that
copyright inconsistencies are prevalent in the Linux kernel.

We can see that 134 source files are detected as having the holder-
not-committer inconsistency, accounting for 32.4% of all 414 source files in
sample dataset, and 51.1% of 262 source files detected as having any type
of inconsistencies respectively. We can also see that 229 source files are
detected as having the committer-not-holder inconsistency, accounting for
55.3% of all 414 source files in sample dataset, and 87.4% of 262 source
files detected as having any type of inconsistencies respectively. It can
be noticed that the committer-not-holder inconsistency is more prevalent
than the holder-not-committer inconsistency. A possible reason for the
prevalence of committer-not-holder inconsistency may be that only a few
developers declare their copyright notices when they contribute the source
code. Therefore, a lot of the committers are not included in the holders.
We aim at finding the reasons in detail in RQ2.

It is also easy to know that 101 source files are detected as having
both of two types, accounting for 24.4% of all 414 source files in sam-
ple dataset, 38.5% of 262 source files detected as having any type of in-
consistencies, 75.3% of 134 source files detected as having the holder-not-
committer inconsistency, and 44.1% of 229 source files detected as having
the committer-not-holder inconsistency respectively. The result suggests
that if the holder-not-committer inconsistency exists in a source file, there
is also a high possibility of the occurrence of the committer-not-holder in-
consistency. Oppositely, if the committer-not-holder inconsistency exists
in a source file, there is no such high possibility of the occurrence of the
holder-not-committer inconsistency. It may be a possible reason that for
the source files detected as having the holder-not-committer inconsistency,
the committers added others’ copyright notices. Another possible reason
may be that after a long time of software evolution, a lot of new source
code is committed, and the new source code replaced the old source code
committed by the committers before. We will investigate the reasons in

RQ2.

As an answer to RQ1, copyright inconsistencies are prevalent in the
Linux kernel, among which, the committer-not-holder inconsistency is more
prevalent than the holder-not-committer inconsistency.

21



2.5.2 RQ2: What Caused the Copyright Inconsistencies?

We aim to find the reasons why copyright inconsistencies happened. To
achieve this goal, for the holder-not-committer inconsistency, we manually
check the commit logs and the comments in the source code of all 134
source files detected as having the holder-not-committer inconsistency. If
a reason is explicitly recorded in a sentence, we note down that sentence.
After that, we categorized all sentences to summarize the reasons.

For the committer-not-holder inconsistency, we select some source files
detected as having the committer-not-holder inconsistency as the target.
These source files should also satisfy the condition that no holder-not-
committer inconsistency is detected. We end up with 128 source files.
For these files, all holders are the committers, so we plan to investigate the
other committers who are not holders to find why they are not recorded in
copyright notices. Different from the holder-not-committer inconsistency,
holders who did not add their copyright notices usually did not explain
their reasons explicitly. So we try to find some hints about why holders did
not add their copyright notices no matter they are explicit or not. We then
categorized all sentences to summarize the reasons as well.

Table 2.6 shows the summarized reasons why holder-not-committer in-
consistencies happened. Among them, code reuse and refactoring are two
common activities in software development. It is possible that copyright
notices are not well managed during these activities.

To our surprise, affiliation change - the change of the companies or
organizations the developers belong to - plays an important role in the oc-
currence of the copyright inconsistency, which reveals that the management
of copyright notices may be overlooked by the developers as well. The "af-
filiation change" is found when we observed that although the developer’s
affiliation identified by e-mail address is not consistent with the one in
the copyright notice currently, this developer’s affiliation may be consistent
with the one in the copyright notice before. Specifically, we observed four
cases: (1) The developer switches to a different company or organization.
(2) The developer belongs to more than one company or organization. (3)
The company or organization is merged into another one. (4) The developer
uses a personal e-mail address. All these cases can be found by checking the
commit logs, the comments in the source code of the source files, and the
profiles of the developers. We also try to search the related information on
the Internet (e.g. the information of the developer on LinkedIn?, the infor-
mation of the company or organization in Wikipedia®, etc.) to endorse our
findings. Note that we do not explore the reasons why "affiliation change"
happens and whether possible legal risks exist. Developers may just forget

"https:/ /www.linkedin.com/
Shttps://en.wikipedia.org/

22



Table 2.6: The reasons why holder-not-committer inconsistencies happened
in the Linux kernel version 4.14.

Categorization #Source files Proportion
Code reuse 37 27.6%
Affiliation change 19 14.2%
Refactoring 14 10.4%
Support function 13 9.7%
Others’ contributions 13 9.7%
Typo 5 3.7%

All replaced 2 1.5%

None 31 23.2%
Total 134 100.0%

to update the copyright notices and the legal risks also vary across different
countries or regions. However, we do observe that “affiliation change” is an
important reason causing copyright inconsistency and needs to be noticed.

Support function and others’ contributions are two reasons why devel-
opers add others’ copyright notices when they committed source code. An-
other interesting case is All replaced, which is the situation that the source
code the holder committed is totally replaced by the source code committed
by the committers later, but the copyright notice is retained. All replaced
also suggests that copyright notices are not well managed in the Linux ker-
nel. We draw a conclusion that code reuse, affiliation change, refactoring,
support function, and others’ contributions are the main reasons why the
holder-not-committer inconsistency occurred.

Table 2.7 shows the summarized reasons why committer-not-holder in-
consistencies happened. The results are similar to the results of holder-
not-committer inconsistency. Code reuse, affiliation change, refactoring,
support function, and others’ contributions are still the main reasons why
the committer-not-holder inconsistency occurred.

Based on these findings, the following practical suggestions may help
practitioners: (1) When developers reuse source code, the provenance of
reused source code should be recorded properly as well for the traceability
of the copyright notice. (2) The list of contributors should be well main-
tained as an evidence of copyright ownership. (3) The communities should
propose a set of practical guidelines for managing the copyright notices.
For example, when a copyright notice is added, modified, or deleted, the
reason and the coverage of influence should be recorded. (4) The copyright

23



Table 2.7: The reasons why committer-not-holder inconsistencies happened
in the Linux kernel version 4.14.

Categorization #Source files Proportion
Code reuse 30 23.4%
Affiliation change 12 9.4%
Refactoring 8 6.3%
Others’ contributions 7 5.5%
Typo 1 0.8%

None 70 54.6%
Total 128 100.0%

ownership should be ascertained with a finer granularity such as line level
or token level. The related tools are needed to be developed.

As an answer to RQ2, we draw a conclusion that code reuse, affilia-
tion change, refactoring, support function, and others’ contributions are
the main reasons why copyright inconsistency occurred.

2.6 Threats to Validity

This section discusses the threats to the validity of our research. Threats
to construct validity concern the relationship between theory and outcome,
and relate to possible measurement imprecision when extracting data we
used in this study. In mining the repositories to build the committer
dataset, we first rely on cregit to summarize the names of the commit-
ters and their contributions. cregit measures the contribution in terms of
tokens. Compared with the method measuring the contribution in terms
of lines before, cregit is more precise and could avoid the case that de-
velopers doing simple code change are seen as the owner of the total lines.
However, the precision of cregit is not proved by a large-scale test. To
limit this problem, we randomly select some source files to check the preci-
sion of cregit at the same time when we do the empirical study. Another
threat in using cregit is its method of merging the multiple different ac-
counts owned by the same committer. cregit merges them based on the
full name of the committer. This method will be ineffective for the case
that a committer uses more than one name to commit source code to a
single source file. However, this defect does not affect the results because
we do not observe this case in our empirical study.

Another threat in building the committer dataset is that we identify the
organizations the committers belong to by checking the domain of their

24



e-mail addresses. But the committers possibly use their personal e-mail
addresses. Also, the committers may not change their e-mail addresses
in Github when they change their organizations. For these cases, we can
not rightly identify their organizations. Considering that we also track the
change of their organizations in answering the RQ2, this threat might have
an impact on our empirical study as well.

In mining the repositories to build the holder dataset, we first rely
on FOSSology to extract the copyright notices. Although we manually
check the copyright notices detected by FOSSology to remove the wrongly
detected ones, FOSSology could have missed some copyright notices. We
plan to use other methods or tools to do the detection in the future.

Another case worthwhile of being discussed is the minimum thresh-
old percentage of contribution to define the committer used to detect the
committer-not-holder inconsistency. We have set this minimum threshold
percentage as 14.9%. The percentage of source files detected as having
the committer-not-holder inconsistency will increase if we do not set it. In
our calculation, if we would lift the threshold, 87.9% of all source files are
detected as inconsistent, which proves the effectiveness of the minimum
threshold percentage in excluding the minor committers who only do some
simple work. Furthermore, we also investigate the impact of the selection
of the minimum threshold percentage on the results of the detection of
the committer-not-holder inconsistency. Figure 2.1 shows the result. The
rapid decrease of the number of the source files detected as having the
committer-not-holder inconsistency with the threshold increasing from 0%
to 14.9% proves the effectiveness of the minimum threshold percentage as
well. Some studies set the minimum threshold percentage as 5% to exclude
the minor contributors [10, 22|. To what extent the contribution is needed
to become a qualified contributor or state the copyright ownership is still
a complicated problem under discussion.

Another threat requiring consideration is the effectiveness of the sam-
pling. To achieve an accurate result, a lot of manual works are included in
our proposed method to detect copyright inconsistency, for which we have
introduced sampling. To validate the effectiveness of the sampling and the
manual works, we have conducted a comparison experiment. We first de-
signed a fully-automatic method without manual works to detect copyright
inconsistency and then used it to detect copyright inconsistencies targeting
all 38,932 source files in the Linux kernel and 500 source files the sam-
ple dataset respectively. For all source files in the Linux kernel, 19,261
source files out of 38,932 total source files are detected as having hold-not-
committer inconsistency, accounting for 49.5%, and 24,143 source files are
detected as having committer-not-hold inconsistency, accounting for 62.0%.
For the sample dataset, 228 source files out of 500 files are detected as hav-
ing hold-not-committer inconsistency, accounting for 45.6%, and 309 source

25



Figure 2.1: The impact of the selection of the minimum threshold percent-
age on the results of the detection of the committer-not-holder inconsis-
tency.

files are detected as having committer-not-hold inconsistency, accounting
for 61.8%. It is easy to find that the results are similar, which suggests that
the sampling is effective. Also, this sampling method based on population
size, confidence interval, and confidence level is well established. It is first
proposed by Krejcie and Morgan in 1970 [44], and widely used and proven
by other related works [15, 23, 36]. Then we have compared the results
detected by the proposed method in Table 2.5 and the results detected by
the newly designed fully-automatic method targeting the sample dataset.
The proportions detected by the proposed method are smaller. Because of
the manual works in the proposed method, the copyright inconsistencies
detected by the proposed method are all actual ones while the copyright
inconsistencies detected by the newly designed fully-automatic method are
not. The results suggest that the manual works are effective and could
improve accuracy.

Threats to internal validity concern factors internal to the study that
could impact our results. Such a kind of threat does not affect exploratory
study like the one in this chapter. The only case worthwhile of being
discussed is our answering to RQ2, where we classify the reasons manually
based on our knowledge.

Threats to external validity are related to the ability to generalize the
finding in our study. Our empirical study is only conducted on the Linux
kernel. Linux kernel is the most popular and successful open-source op-
erating system kernel, receiving contribution from 13,500 developers from

26



Table 2.8: The reasons why holder-not-committer inconsistencies happened
in the Linux kernel version 5.80.

Categorization #Source files Proportion
Code reuse 38 30.2%
Affiliation change 21 16.7%
Refactoring 12 9.5%
Support function 17 13.5%
Others’ contributions 8 6.3%
Typo 2 1.6%

None 28 22.2%
Total 126 100.0%

more than 1,300 organizations. These features make Linux kernel a suit-
able target to study copyright inconsistencies. But according to the differ-
ent requirements about the copyright, other open-source projects may have
different results. We agree that it is necessary to replicate our empirical
study on different projects.

Another case worthwhile of being discussed is the generalization of our
findings in RQ2. To address this issue, we have repeated our experiment
targeting another version of the Linux kernel and checked whether or not
we can achieve similar results. The new experiment targeted version 5.80
of the Linux kernel, from which we randomly selected 500 source files to
construct the sample dataset. After removing the source files once moved
or renamed, we ended up with a sample dataset of 390 source files. We then
repeated the detection. Among these 390 source files, 126 source files are
detected as having hold-not-committer inconsistency, accounting for 32.3%,
while 205 source files are detected as having committer-not-hold inconsis-
tency, accounting for 52.6%. Among the 205 source files where committer-
not-hold inconsistency are detected, 111 source files are detected as having
only committer-not-hold inconsistency and no hold-not-committer incon-
sistency. Then we have used the same method to find reasons behind the
occurrence of the copyright inconsistency. Table 2.8 and Table 2.9 show
the results. The similar results suggest the ability to generalize the finding
in RQ2.

27



Table 2.9: The reasons why committer-not-holder inconsistencies happened
in the Linux kernel version 5.80.

Categorization #Source files Proportion
Code reuse 25 22.5%
Affiliation change 9 8.1%
Refactoring 6 5.4%
Others’ contributions 2 1.8%

None 69 62.1%
Total 111 100.0%

2.7 Related Work

2.7.1 Software Ownership

Some studies in software engineering investigated software ownership. Girba
et al. built the ownership based on the percentage of source code lines mod-
ified by contributors [31]. Tsikerdekis et al. proposed a code contribution
ranking algorithm to build the ownership by tracking the survival of in-
dividual characters [66]. Bird et al. explored the effects of ownership on
software quality[10]. Compared with their works, we use a more accurate
and reasonable measure - token - to measure contributions. KEspecially,
different from the above works, we also included copyright notice into con-
sideration. Our work opens up a new way to study software ownership.

2.7.2 OSS Contributor

There are some studies that devoted to investigate OSS contributors and
their contributions. German et al. studied the committers of the Post-
greSQL project and found that apart from the core team, a large number
of contributors sent source code patches to the project [24|. Hindle et al.
discovered that the large commits including a large number of files are re-
lated to license or copyright owners [38]. Hammad et al. proposed two
measures to measure the contribution of software developers in the evolved
structural design of software systems [35]. Different from their works, we
discussed the discrepancy between the contributors’ contributions and the
recorded copyright notices. Our work creates a possibility of importing the
existing works on OSS Contributor into the software copyright management
of the FOSS projects.

28



2.7.3 Software License

There are some studies that devote to identify licenses [27, 32|. Based on
these studies, some researchers analyzed software licenses in open source
projects and revealed some license issues. German et al. proposed a method
to understand licensing compatibility issues in software packages [28]. Wu
et al. proposed an approach to find license inconsistencies in similar files
[78]. By investigating the revision history of these files, they summarized
the factors that caused these license inconsistencies and tried to decide
whether they are legally safe or not. Studies on software license are also
closely related to this work. Many studies in software engineering investi-
gated software license. However, to solve the legal risks in reusing FOSS,
only the studies on software license are not sufficient. This work is a sup-
plement to works on software license by studying the software ownership.

2.8 Conclusion of This Chapter

In this chapter, we first proposed the issue of copyright inconsistency, and
then we defined copyright inconsistency and categorized different types of
it. After that, we conducted an empirical study on the Linux kernel to study
the prevalence of copyright inconsistency. To the best of our knowledge,
this study is the first in this field to address this issue. We observed that
the copyright inconsistency is prevalent in the Linux kernel. It suggests
that the copyright notices recorded in the source files do not always reflect
the actual contributors. To find how copyright inconsistency happens, we
had a deeper look at the commit logs and the comments in source code
to find the reasons why the copyright inconsistencies happened. We found
that code reuse, affiliation change, refactoring, support function, and others’
contributions are the main reasons.

The proposed method and results of this work can be reused in the
following aspects: (1) The proposed method of detecting copyright incon-
sistency can be reused in other OSS projects to study the situation of copy-
right inconsistency in them. (2) Our findings on the prevalence of copyright
inconsistency and the reasons causing them can be used as a benchmark
to study the difference in the copyright-related issue among different OSS
projects. (3) Our findings also provide a new perspective to study soft-
ware development management, code reuse, and the organizational culture
in OSS projects. (4) The datasets constructed in this work can be reused
in other highly related works such as the participation of developers or
companies in OSS projects and the collaboration between them.

In our future work, we will make some guidelines for developers to help
them in dealing with copyright notices. We also aim to find a solution to
manage the copyright notices in the FOSS projects.

29



30



Chapter 3

A Machine Learning Method
for Automatic Copyright
Notice Identification of
Source Files

3.1 Introduction

Software copyright grants the copyright owner declared in the copyright
notice a legal right to determine under what conditions this software can
be redistributed, reused, and modified. Copyright notice is a few sentences
mostly placed in the header part of a source file as a comment or in a license
document in a FOSS project. Identifying the copyright notices of source
files is important for several reasons: a) the copyright owner is allowed to
change its license or to grant a commercial one to a third party; b) the
copyright owner is allowed to start legal proceedings to enforce its license
[33]; ¢) several FOSS licenses (e.g. the BSD family of licenses) require that
the copyright owner of FOSS projects being reused should be acknowledged
in the documentation and other materials of the system that reuses it [52].

However, copyright notice identification of source files is difficult. On
one hand, different from proprietary software, FOSS projects are developed
in a collaborative manner, receiving contributions from a large number of
developers who potentially declare the copyright notice. On another hand,
a large FOSS project usually consists of a large number of source files in
which the copyright notices are buried.

To overcome these difficulties, a tool named FOSSology!' has been de-
veloped to automatically identify copyright notice [32]. FOSSology iden-
tifies copyright notices in the comments of the source files using regular

"https://www.fossology.org/

31



Table 3.1: Examples of the identified copyright notices using FOSSology
for bonito64.h.

1 copyright message in any source redistribution in whole or part.
2 Copyright (c) 1999 Algorithmics Ltd
3 Copyright (C) 2001 MIPS Technologies, Inc. All rights reserved.

expression-based matching. However, some sentences related to copyright
could be wrongly identified as copyright notices by FOSSology. Table 3.1
shows examples of the identified copyright notices using FOSSology to a
source file named bonito64.h in the Linux kernel. We can see that sentence
1 is identified as a copyright notice incorrectly. This is because the target
sentence contained a keyword "copyright", and FOSSology’s regular ex-
pression matches this keyword and all the following words in that sentence.
To solve this problem, we propose a machine learning method in this chap-
ter. The results of experiments suggest that Decision Tree and Random
Forest perform best on automatic copyright notice identification of source
files, and the proposed machine learning method outperforms FOSSology.

3.2 Machine Learning Method

In this section, we introduce a machine learning method for automatic
copyright notice identification of source files. The proposed method consists
of four steps.

1) Copyright-related sentence extraction and pre-processing: We first
use a keyword-based method to extract copyright-related sentences from the
comments in the source files. A sentence is extracted as a copyright-related
sentence when it includes any copyright-related keywords and signals such
as "copyright", "@©", and "(C)". Some other potentially relevant words,
such as "authored by", "written by", etc., are included as well. These
heuristics are similar to FOSSology. The difference is that FOSSology uses
the keywords to construct regular expressions. Although FOSSology may
wrongly identify some copyright-related sentences as copyright notices, it
still performs well in identifying all actual copyright notices with the help of
these heuristics. Therefore, we use similar heuristics in this step to achieve
a good recall. Our method will outperform FOSSology in achieving bet-
ter precision by using the machine learning method. For each extracted
copyright-related sentence, we tokenize it into words, lemmatize and con-
vert each word to lowercase, and then remove punctuation.

2) Vectorization: We use the numbers of words of different categories
as features to vectorize the copyright-related sentence. We categorize the

32



Table 3.2: The word categorization and the tokens we use to replace words.

Category Token Example
Copyright-related keyword COPYRIGHT copyright, author
Copyright-related signal SIGNAL ©), (C), (¢

Year YEAR 1991, 2002, 2013
E-mail address EMAIL addr@email.com
Others OTHER license, above

words into five categories, i.e. copyright-related keyword, copyright-related
signal, year, e-mail address, and others. For each word in the copyright-
related sentence extracted in Step 1, we replace it into a particular token.
Table 3.2 shows the tokens we used to replace the words of different cate-
gories. After replacement, we count the number of tokens of each category
and then construct a 5-dimension vector. We end up with a list of vectors
representing the extracted copyright-related sentences.

3) Training Classifier: Four supervised classifiers are considered, i.e.
Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), and Sup-
port Vector Machine (SVM). These four classifiers are widely used in text
classification tasks [21], [62] and related work addressing similar problem
[65]. We implemented them with the Scikit-learn library? [60]. We train
the classifiers with a manually labeled dataset. Each vector in this dataset
is manually labeled as actual copyright notice (i.e. positive copyright no-
tice) or false copyright notice (i.e. negative copyright notice). The task of
the trained classifier is to classify a vector representing a copyright-related
sentence as a positive copyright notice or a negative one. The details of
how we train and evaluate the classifiers will be described in Section 3.3.

4) Copyright notice identification: For each vector, the trained classifier
predicts whether it represents a copyright notice or not using the trained
classifier. A copyright-related sentence is identified as a copyright notice
if the corresponding vector is classified as representing a copyright notice.
Finally, we identify all copyright notices of a source file.

3.3 Comparison of Four Supervised Classifiers
In this section, we first describe how we construct the datasets. We then

aim to find which supervised classifier performs best by comparing the
performance of the four classifiers.

Zhttps://scikit-learn.org/stable/

33



Table 3.3: Summary of the target version of the Linux kernel.

Version 4.14
Date Nov 13, 2017
#File 45,477

3.3.1 Dataset Construction

To achieve this goal, we choose the Linux kernel - the most popular and
successful open-source operating system kernel - as the target dataset. The
source code of the Linux kernel is downloaded from Github3. Table 3.3
shows a summary of the target version of the Linux kernel.

We first randomly select 2000 source files from 45,477 source files in the
Linux kernel and extract copyright-related sentences using the keyword-
based method we described in Step 1 in Section 3.2. We end up with
2,297 copyright-related sentences. Note that the duplicate sentences are
removed here. It means that even if a sentence exists in two or more
source files, we only record it once. For each sentence, we manually inspect
and label it as a positive copyright notice or a negative one. As a result,
2,146 sentences are labeled as positive copyright notices, and 151 sentences
are labeled as negative ones respectively. The positive copyright notices
and the negative ones are unbalanced, so balancing techniques have to be
applied [39], [7]. To address the issue of unbalanced data, we manually
create the negative copyright notices by randomly replacing words in 151
found negative copyright notices. A similar manual method has been proven
effective in handling imbalance datasets in other software engineering tasks
[73]. Note that the words used to do replacement are from the words in
all 2,297 copyright-related sentences. In this way, we successfully extend
the number of negative copyright notices to 2,146. We finally construct
a dataset consisting of 2,146 positive copyright notices and 2,146 negative
ones.

3.3.2 Experiment and Results

To evaluate the performance of four supervised classifiers, we first randomly
split the dataset into two parts, 17% for the testing dataset and 83% for
the training dataset. To train the classifiers, 5-fold cross-validation is per-
formed for the training dataset [59]. In 5-fold cross-validation, the training
dataset is partitioned into five equal-sized subsets. Each subset has the
same percentage of labels. Every time, four subsets are used to train the
classifiers and the remaining one is used for validation. This process iterates

3https://github.com/torvalds/linux

34



Table 3.4: Comparison of four classifiers.

Classifier Label Precision Recall F1l-score
NB Positive  0.98 0.83 0.90

NB Negative 0.85 0.98 0.91

DT Positive 1.0 1.0 1.0

DT Negative 1.0 1.0 1.0

RF Positive 1.0 1.0 1.0

RF Negative 1.0 1.0 1.0
SVM Positive 1.0 0.98 0.99
SVM Negative 0.98 1.0 0.99

5 times until every fold has been used for testing once. Hyperparameter
tuning - the process of determining a good set of hyperparameters - is
conducted here to achieve the best performance. We train the classifiers
with the best hyperparameters and then evaluate their performance with
the testing dataset. To evaluate the performance of four classifiers, we use
the following metrics: (1) Precision, which refers to the ratio of the num-
ber of correct identification to the total number of identifications made of
copyright notices; (2) Recall, which refers to the ratio of the number of
correct identification to the total number of manually extracted copyright
notices; and (3) Fl-score, which is the harmonic mean of the precision and
the recall. The results are shown in Table 3.4.

The results suggest that Decision Tree and Random Forest perform
best on automatic copyright notice identification of source files. We will
use Random Forest to conduct the evaluation experiment in Section 3.4.

3.4 Comparison to FOSSology

In this section, we first describe how we construct the dataset. We then
aim to evaluate the proposed method by comparing the performance of
the proposed method and FOSSology, an existing method based on regular
expression.

3.4.1 Dataset Construction

We still use the source files of the Linux kernel as the target to construct
the dataset. To achieve this goal, we randomly select 500 source files from
the source files in the same Linux kernel. Note that all these 500 source files
are unseen in training classifier. For each source file, we manually check
the comments to extract the copyright notices. We extract 537 copyright

35



Table 3.5: Evaluation of the proposed method.

Method Precision Recall Fl-score
Proposed method (RF) 1.0 1.0 1.0
Fossology 0.78 1.0 0.88

notices from these randomly selected 500 source files. Among them 351
copyright notices are not duplicated. The task of the evaluation experiment
is to identify all 537 copyright notices from the source files.

3.4.2 Experiment and Results

In our evaluation experiment, we first use the proposed method and FOS-
Sology to identify the copyright notices in the selected 500 source files re-
spectively, and then compare their performances. To evaluate our classifier,
we use precision, recall, and F1-score as metrics as well.

Table 3.5 shows the results. It is easy to know that the proposed method
outperforms FOSSology. Especially, both the proposed method and FOS-
Sology achieve 100% recall, which suggests that both two methods do not
miss any copyright notice. This is important because identifying all copy-
right notices is an important metric to evaluate the automatic copyright
notice identification. However, the proposed method outperforms FOSSol-
ogy by achieving 100% precision. Specifically, 152 sentences that are not
copyright notices are wrongly identified as copyright notices by FOSSology.
The results suggest the effectiveness of the proposed method in filtering out
sentences that are not copyright notices.

3.5 Conclusion of This Chapter

In this chapter, we proposed a machine learning method for automatic copy-
right notice identification of source files. The results of experiments suggest
that Decision Tree and Random Forest perform best on automatic copy-
right notice identification of source files, and the proposed machine learning
method outperforms the existing method. Our work highlights the possibil-
ity of applying machine learning method to solve software copyright-related
issues, and also creates a possibility of studying the copyright notices in
FOSS projects, which is overlooked by the software engineering researchers.
In our future work, we will implement a tool to provide the copyright notice
identification service to end-users, and also test the proposed method on
a larger scale. We also plan to study the copyright notice issues in FOSS
projects, such as the reliability of the copyright notices in source files.

36



Chapter 4

Study on
Dependency-related License
Violation in the JavaScript
Package Ecosystem

4.1 Introduction

Software reuse has long been proved to be a good method to increase soft-
ware productivity [11, 56, 64]. As a practice, reusing open source software
(OSS) has become more and more popular.

Open source license describes the terms and conditions when OSS is
used, modified, and shared. OSS should be distributed under one or multi-
ple open source licenses so that it can be reused by others. These licenses
are usually included in the header comments of source files. To standardize
the use of open source licenses, the Open Source Initiative (OSI) determines
the definition of open source licenses and publishes the list of all approved
licenses'. When developers reusing OSS, they should pay special attention
to open source licenses to prevent potential legal risks [80].

As the definition of open source license describes, OSS can only be
reused as long as the particular terms and conditions are satisfied. There-
fore, the developed software should satisfy all the terms and conditions in
licenses of all reused OSS. In other words, the developed software should
select a license that does not violate the licenses of all reused OSS. In this
chapter, we define license A wviolates license B as the situation that the
software licensed under license B can not be combined into the software
licensed under license A according to their terms and conditions. If the

https://opensource.org/licenses/alphabetical

37


https://opensource.org/licenses/alphabetical

selected license violates any license of the reused OSS, potential legal risks
may occur.

OSS ecosystem consists of software projects that are developed and
evolve together in a shared environment [54]. The user-contributed OSS
ecosystem is an ecosystem where software projects are contributed by its
users. When a developer develops a new software project, other software
projects in the user-contributed OSS ecosystem can be reused easily by be-
ing declared as dependencies. In this chapter, a dependency of a package
refers to the other packages in the user-contributed OSS ecosystem used
by this package. Meanwhile, this package is defined as a dependent. Gen-
erally, the dependency can also refer to the dependency relation between
the packages [18], but note that in this chapter we define dependency as
the “package” instead of the “relation”. Introducing dependencies makes a
project dependent on them.

The license of the new software project under development should not
violate the licenses of any dependencies as well. Dependency-related license
violation occurs when the selected license violates any license of the depen-
dencies. In a user-contributed OSS ecosystem, it is more difficult to judge
whether the selected license violates the licenses of its dependencies or not.

To address the dependency-related license violation issue, in this chapter
we propose an approach to detect dependency-related license violations of
software projects in such OSS ecosystems. We are interested in studying
the prevalence of dependency-related license violation in user-contributed
OSS ecosystems and the developers’ attitudes.

We select npm? as the target in our research. npm serves as a large
repository of JavaScript-based software packages. It hosts over 1.3 million
JavaScript packages and becomes the largest JavaScript ecosystem, with
millions of packages being installed from the npm repository on an everyday
basis. We select npm for 3 reasons: (1) npm is one of the most popular
and successful OSS ecosystems and hosts a large number of packages. (2)
npm has a perfect mechanism of including other packages as dependencies,
which make the usage of dependencies prevalent in npm. (3) npm has a strict
requirement of adding meta-data, for which we can utilize the meta-file of
packages conveniently. These features make npm a suitable target to study
dependency-related license violations. Studying dependency-related license
violations in such typical OSS ecosystems will benefit the practitioners. The
findings will also be a good baseline to study dependency-related license
violations in other OSS ecosystems.

Our research questions are set as follows:

RQ1: How prevalent are dependency-related license violations in npm?

RQ2: What are the developers’ attitude towards dependency-related
license violation?

’https://www.npmjs.com

38


https://www.npmjs.com

Many studies in software engineering have been done on the software
license. Some effective approaches and tools are proposed to identify the
license of source code files automatically [27, 32]. Some works aim to detect
and understand the license violation in code siblings or similar files [26, 78],
but no research has been done to understand the license violation occurring
in the dependencies of packages in the OSS ecosystem.

The contributions of this study are as follows.

1. An empirical study on npm to understand the prevalence of dependency-
related license violation with the proposed method of detecting dependency-
related license violation.

2. A preliminary questionnaire on the authors of packages detected as
having dependency-related license violation to reveal the developers’
attitudes.

This chapter is organized as follows. Section 4.2 first provides a brief
background on dependency-related license violation. Our empirical study
on npm is described in Section 4.3, followed by Section 4.4 with the pre-
liminary questionnaire. Section 4.5 describes threats to validity. After a
description of related work in Section 4.6, Section 4.7 concludes this chap-
ter.

4.2 Background

4.2.1 License Violation

A software license permits software to be reused under certain terms and
conditions. An open source license is a software license that follows Open
Source Definition® and is approved by Open Source Initiative. Here is an
example of a license statement abstracted from grunt package in npm, which
states that the file is licensed under MIT license:

Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files ( the "Software" ) , to deal in the
Software without restriction, including without limitation
the rights to wuse, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the

Shttps://opensource.org/definition

39


https://opensource.org/definition

Software.

Licenses can be basically grouped into two types - the permissive license
and copyleft (protective) license. Some examples of the permissive license
are MIT License, BSD licenses, and Apache license. A typical example of
the copyleft ones is the GNU General Public License. When OSS reuses
another OSS, if the reused OSS is licensed under a permissive license, the
developed OSS does not need to open its source code. But if the reused
OSS is licensed under a copyleft one, the developed OSS is enforced to open
its source code. Usually, a permissive license violates a copyleft one.

For example, MIT license*, which is a permissive license, violates GPL-
2.0+ license®, which is a copyleft one. GPL-2.0+ license declares:

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.

According to the terms of GPL-2.0+ license, if OSS licensed under MIT
license reuse another OSS licensed under GPL-2.0+ license, illegal reuse
occurs since OSS licensed under GPL-2.0+ license can only be redistributed
and/or modified under the terms of the GNU General Public License either
version 2, or (at your option) any later version as published by the Free
Software Foundation.

Furthermore, some licenses share the same name but are with different
versions. An example is the GNU General Public License. GNU General
Public License has versions 1, 2, and 3. Each version has different terms
and conditions. According to these different terms and conditions, three
versions violate each other. Usually, licenses share the same name are called
a license family. For example, the GPL family includes GNU General Public
License versions 1, 2, 3, and some other versions and MPL family includes
Mozilla Public License versions 1, 1.1, 2.0, and some other versions.

4.2.2 Package Dependency

Introducing other packages in the user-contributed OSS ecosystem makes
the package under development dependent on them. At the same time,
the introduced packages may have their dependencies, seen as the indi-
rect dependencies of the package under development. In this chapter, a
direct dependency of package A refers to package B whose name is explic-
itly recorded in package A’s meta-data as its dependency. The indirect

4https://opensource.org/licenses/MIT
Shttps://opensource.org/licenses/GPL-2.0+

40


https://opensource.org/licenses/MIT
https://opensource.org/licenses/GPL-2.0+

Dependent Y\ /.

Figure 4.1: The examples of direct dependency and indirect dependency.

Commander
miT)

graceful-readlink
wim)

traverjs
(GPL-2.0)

injectjson
i)

Figure 4.2: A part of the dependency network of cstar package in npm.

dependencies of package A refer to the transitive collection of package A’s
dependencies excluding package A’s direct dependencies. Figure 4.1 shows
examples of direct dependency and indirect dependency.

Finally, direct dependencies and indirect dependencies could form a
dependency network. The dependency network is prevalent in the user-
contributed OSS ecosystem [18]. For example, the number of dependencies
of packages in npm has grown 60% over 2016 and the mean number of the
dependencies per package has grown to 60.1 [42]. Figure 4.2 shows an
example of the dependency network of cstar package.

Developers are not likely to update the dependencies of their packages
[8, 49]. Developers might also overlook the indirect dependencies since
they do not include those dependencies by themselves [42]. These problems
harm the health of the OSS ecosystem, causing problems such as security
vulnerability, API breaking conflicts, and illegal reuse.

4.2.3 Dependency-related License Violation

License violation related to dependency occurs when a package’s license
violates any license of its dependencies. To achieve our research goal, we
will define dependency-related license violation.

We first construct a license compatibility network to specify the com-
patibility between two licenses. Our license compatibility network is con-
structed based on the one created by David A. Wheeler [75]. Our license

41



\ N LGPL30 | GPL30 |_____ Affero

N, |LGPL30+ GPL-3.0+ GPL-3.0
N\[WPLTO
MPL-1.1
MPL-2.0

Figure 4.3: License compatibility network.

compatibility network is shown in Figure 4.3. Each arrow denotes one-
directional compatibility. An arrow pointing from license A to license B
means that license B does not violate license A. In other words, software li-
censed under license A is allowed to be combined into the software licensed
under license B according to the proposed definition of violation in Section
4.1.

In this chapter, we define dependency-related license violation of a pack-
age X licensed under license A for another package Y licensed under license
B, as the situation that Y is a dependency of X but no path from B to A
exists in the license compatibility network (i.e. A violates B).

For example, walk- json package licensed under MIT license has dependency-
related license violation for traverjs package licensed under GPL-2.0 li-
cense since traverjs package is a dependency of walk-json package, as
shown in Figure 4.2, and there is no path from GPL-2.0 license to MIT
license in the license compatibility network (i.e. MIT license violates GPL-

2.0 license), as shown in Figure 4.3. This is an example of dependency-
related license violation caused by direct dependency.

An example of dependency-related license violation caused by indirect
dependency is cstar package. cstar package has two direct dependen-
cies. The MIT license does not violate the licenses of these two direct
dependencies. However, traverjs package licensed under GPL-2.0 license
is also reused by cstar package as an indirect dependency. Because there
is no path from GPL-2.0 license to MIT license in the license compatibility
network, dependency-related license violation occurs in cstar package as
well.

Note that our detection method proposed in Section 4.3.2 only detects
dependency-related license violation using the dependency network and the
license compatibility network constructed in this chapter. Although we can
define license violation in different ways, we use the above definition for
simplicity and clarity of the implementation.

42



4.3 The Prevalence of Dependency-related License
Violation

In this section, we aim to answer RQ1.
We first introduce the proposed method and then report the results of
our empirical study.

4.3.1 Data collection

We collect the target packages in npm. The observation period is from
October 1st, 2010 to April 7th, 2017. We end up with 419,708 packages
in total. Note that for each package, we only count it once no matter how
many versions it has. We use the public API® of npm to get the historical
meta-data of all versions of the target packages.

For each version, the license and direct dependencies are recorded. For
example, a part of the historical meta-data of cstar package is shown as
follows:

"version": "0.0.5",

"dependencies":

"commander": "*","mucbuc-filebase": "*"
"license": "MIT",

"version": "0.0.2",
"dependencies":"mucbuc-filebase": "*",

"license": "MIT",

4.3.2 Method

It is not easy to detect dependency-related license violations of a package
in the user-contributed OSS ecosystem. There are three main challenges:

1. A dependency is not always with the latest version, since packages in
the user-contributed OSS ecosystem usually evolve frequently.

2. Using dependencies is very common in the user-contributed OSS
ecosystem. As a result, a package has a high probability of having a
deep and complex dependency network.

3. The same license is not always written in the same ways. For example,
both GPL-2.0 and GPL version 2 refer to the same license.

Shttps://registry.npmjs.org/-/all. Note that for some reason, npm has stopped
providing this public API. Therefore, we can not get the historical meta-data by using
this API now.

43


https://registry.npmjs.org/-/all

To address these issues, we proposed a method that consists of five
steps.

1) Constructing the license dictionary:

As mentioned above, the same license is usually written in different
ways by different developers. We first construct a license dictionary, with
which we can transform different forms of a license into a normalized one.
The license dictionary includes the popular licenses published by the Open
Source Initiative.

We collect all licenses written in the historical meta-data of the col-
lected packages in npm and remove the duplicate one. We then use regular
expression matching to do a preliminary classification. Regular expression
matching is able to classify most licenses. We then manually check the
results and move the license wrongly classified into the correct one. For
the licenses which can not be matched by the regular expression, we man-
ually classify them into the correct category. Note that since the license
is written by the developer manually, some developers may not write the
version number of the license. For example, some developers declare their
packages are licensed under “GPL”, but no version is declared. For these
cases, we record them as “license no version” such as “GPL no version” and
“MPL no version”. “License no version” is seen as not violating any license
in its family, but if a license violates any license in the family of “license no
version”, it will be detected as violating “license no version”. For licenses
that are not published by the Open Source Initiative, we classify them into
a special category named “unknown” license.

All the normalized forms of our selected licenses are listed in Table
4.1. By constructing the license dictionary, we succeed in solving the third
challenge - the various ways of writing the same license.

44



i

Table 4.1: The list of the selected licenses.

License ‘ Normalized form | License family
Public Domain License Public Domain None

MIT License MIT None

ISC License ISC None
Apache License 2.0 Apache-2.0 None
3-clause BSD License/"New" or "Revised" license BSD-3-Clause BSD family
2-clause BSD License/"Simplified" or "FreeBSD" license BSD-2-Clause BSD family
Mozilla Public License version 1.0 MPL-1.0 MPL family
Mozilla Public License version 1.1 MPL-1.1 MPL family
Morzilla Public License version 2.0 MPL-2.0 MPL family
GNU General Public License version 2 GPL-2.0 GPL family
GNU General Public License version 2 or any later version GPL-2.0+ GPL family
GNU General Public License version 3 GPL-3.0 GPL family
GNU General Public License version 3 or any later version GPL-3.0+ GPL family
GNU Lesser General Public License version 2.1 LGPL-2.1 GPL family
GNU Lesser General Public License version 2.1 or any later version | LGPL-2.1+ GPL family
GNU Lesser General Public License version 3.0 LGPL-3.0 GPL family
GNU Lesser General Public License version 3.0 or any later version | LGPL-3.0+ GPL family
GNU Affero General Public License version 3 AGPL-3.0 GPL family




2) Constructing the license compatibility network:

We implement the license compatibility network proposed in Section
4.2.3. By searching this license compatibility network, we can check whether
or not a license violates another one.

3) Constructing the historical meta-data dataset:

OSS in the user-contributed OSS ecosystem usually evolves frequently.
With the evolution of software, source code, license, and dependencies are
also changing. However, OSS does not always reuse the latest version of
its dependencies, thus deciding the proper version of dependencies is im-
portant. To accelerate the detection, we construct the historical meta-data
dataset, in which the license and the direct dependencies with the proper
versions of all historical versions of each package are recorded.

We have collected the historical meta-data of all versions of the target
packages. However, it is necessary to process historical meta-data. Firstly,
for licenses, we normalize them according to the license dictionary con-
structed in step 1. Secondly, for direct dependencies, we list all direct
dependencies and choose the proper version for each direct dependency.
Note that npm uses semantic versioning standard to manage versions. The
first release should start from 1.0.0. After this, changes should be handled
according to Table 4.2. Developers can specify acceptable version ranges of
the dependencies of their packages based on the semantic versioning stan-
dard used by npm. The specification is flexible by using different symbols
to achieve different goals. Table 4.3 shows some examples of how to specify
the ranges. Note that we identify the version of a dependency as the lat-
est version in the acceptable version ranges recorded in the meta-data of a
package, which is consistent with the mechanism of npm. The details of the
semantic versioning standard used by npm can be found in the documents
of npm”.

"https://docs.npmjs.com/getting-started/semantic-versioning

46


https://docs.npmjs.com/getting-started/semantic-versioning

Ly

Table 4.2: The rules of how changes should be handled in npm.

CODE STATUS STAGE | RULE | EXAMPLE
First Release New Product | Start with 1.0.0 1.0.0
Bug fixes, other minor changes Patch Release | Increment the third digit 1.0.1
New feature that don’t break existing features | Minor release | Increment the middle digit | 1.1.0
Changes that break backward compatibility Major release | Increment the first digit 2.0.0




Table 4.3: The examples of how to specify the ranges.

TYPE EXAMPLE
All patch releases of major release 1.0 | 1.0 or 1.0.x or ~1.0.0
All minor releases of major release 1 lorlxor "1.0.0
All releases *or x

Table 4.4: The historical meta-data dataset constructed for cstar package
in npm.

Version | License Direct dependency (Version)
0.0.5 MIT | commander (2.9.0), mucbuc-filebase (0.0.4)
0.0.4 MIT commander (2.9.0), mucbuc-filebase (0.0.4)
0.0.3 MIT mucbuc-filebase (0.0.4)

0.0.2 MIT mucbuc-filebase (0.0.4)
0.0.1 MIT mucbuc-filebase (0.0.4)
0.0.0 GPL-2.0 mucbuc-filebase (0.0.4)

After we process the historical meta-data, we can build the historical
meta-data dataset for this package. The historical meta-data dataset in-
cludes information on license and direct dependencies of all versions of a
package. Table 4.4 shows the historical meta-data dataset constructed for
cstar package in npm.

4) Constructing the dependency network: In this step, we construct the
dependency network. The direct and indirect dependencies in the depen-
dency network are attached to its version and license. Figure 4.2 shows
a part of the dependency network constructed for cstar package in npm.
For each dependency in the dependency network, the attached information
of version and license is shown in Table 4.5. Note that the version of the
cstar package is the latest version. The version of the direct dependency
consists with the dependency’s version recorded in the meta-data of the
cstar package. The version of indirect dependency is selected in a similar
way.

By constructing the dependency networks for the packages in npm, we
succeed in solving the first and the second challenges mentioned above
- the variability of the dependencies’ versions and the complexity of the
dependency networks.

5) Dependency-related license violation detection:

Since we have constructed the dependency network and the license com-
patibility network, it becomes possible to detect dependency-related license
violations. We detect whether or not the license of this package violate the
licenses of direct and indirect dependencies in the dependency network ac-

48



Table 4.5: The attached information of version and license for the depen-
dencies in the dependency network constructed for cstar package.

Dependency | Version ‘ License

cstar 0.0.5 MIT
mucbuc-filebase 0.0.4 ISC
walk-json 0.0.2 MIT
commander 2.9.0 MIT
graceful-readlink 1.0.1 MIT
traverjs 0.0.7 GPL-2.0
inject-json 0.0.9 MIT

cording to the license compatibility network. Dependency-related license
violation is detected when the violation is found.

For example, by observing the dependency network constructed for
cstar package (Figure 4.2 and Table 4.5), we can find that MIT license
- the license of cstar package - violates GPL-2.0 license - the license of
traverjs package which is an indirect dependency. Therefore, cstar pack-
age is detected as having a dependency-related license violation.

4.3.3 Results and discussion

We detect dependency-related license violations in the collected 419,708
packages in npm. As a result, only 2,704 packages are detected as having
dependency-related license violations, accounting for 0.644% of all pack-
ages. The result suggests that only a few packages (0.644%) in npm have
dependency-related license violations. We also observe that among these
2,704 packages, 3,624 dependency-related license violations are detected.
Table 4.6 shows the top 10 list of those violations classified by licenses. The
result shows that most dependency-related license violations are caused by
the violation between the permissive licenses and copyleft licenses, while
usually copyleft licenses do not violate each other.

A potential reason is the developers’ manner of choosing licenses for
their packages. To ascertain this reason, we count the proportion of the
different licenses in npm. Table 4.7 shows the result. We observe that the
permissive licenses take a large part of all licenses while the copyleft licenses
are not widely used in npm. The preference of the permissive licenses may
be the reason for the low proportion of the packages detected as having
dependency-related license violations in npm.

Furthermore, because of the high proportion of the permissive licenses
and low proportion of the copyleft licenses used in npm, we could assume
that including the packages licensed under copyleft licenses in the depen-
dency network highly potentially causes dependency-related license viola-

49



Table 4.6: The top 10 dependency-related license violations.

Package ‘ Dependence Number ‘ Proportion
MIT GPL-3.0 582 16.1%
MIT LGPL-3.0 349 9.6%

Public Domain GPL-3.0 300 8.3%
MIT LGPL no version 281 7.8%
ISC GPL-3.0 231 6.4%
MIT GPL no version 224 6.2%
MIT LGPL-2.1 159 4.4%
MIT GPL-2.0 134 3.7%
Public Domain | GPL no version 114 3.1%
Public Domain LGPL-3.0 104 2.9%

Table 4.7: The proportion of the selected licenses in npm.

License Number | Proportion
MIT 254,972 60.75%
None 80,331 19.14%
ISC 33,827 8.06%

Apache-2.0 13,598 3.24%

BSD family 17,794 4.24%

GPL family 9,158 2.18%
Unlicense/Public Domain 2,098 0.50%
MPL family 1,132 0.27%
Unknown 6,798 1.62%

All 419,708 100%

tion. To ascertain it, we selected GPL family licenses as the target to
study. We collected the packages having direct or indirect dependencies
with GPL family licenses. As a result, we collected 4,067 packages. Among
them, 2,704 packages are detected as having dependency-related license vi-
olations, accounting for 66.84%. Note that all packages detected as having
dependency-related license violations in the detection of 419,708 packages
are included in these 4,067 packages. The result proves our assumption.
A possible explanation is that the developers do not understand the copy-
right notice well and overlook the license violation when they use a pack-
age as a dependency. Another possible explanation is that the developers
overlook the indirect dependencies since they do not include those pack-
ages by themselves. To ascertain it, we calculate the proportion of the
dependency-related license violation caused by direct and indirect depen-
dency respectively. As a result, among 2,704 packages detected as having

50



dependency-related license violations, 2,115 packages are detected as hav-
ing violations caused by direct dependencies, accounting for 78.2%. Mean-
while, 1,507 packages are detected as having violations caused by indirect
dependencies, accounting for 55.7%. The result suggests that both direct
dependency and indirect dependency play an important role in the occur-
rence of dependency-related license violations.

We will study more on developers’ attitudes in Section 4.4.

Hence, we answer RQ1:

Only a few packages (0.644%) in npm have dependency-related li-
cense violations. However, including the packages licensed under copy-
left licenses as dependency is highly related with the occurrence of
dependency-related license violations.

4.4 Preliminary Questionnaire

In this section, we aim to answer RQ2.
We first introduce the preliminary questionnaire we conducted and then
report the results.

4.4.1 Questionnaire Design

Our preliminary questionnaire targets the authors of packages detected as
having dependency-related license violations. Therefore, our questionnaire
first describes how the license of the target package violates the licenses
of its dependencies by explaining the terms and conditions of the licenses.
The second part of the questionnaire then asked developer opinions on the
following two questions: 1) Do you think this is a kind of risk? If so, were
you aware of this kind of risk when you are developing your packages? 2)
In this question, you can share anything you want to say with this kind of
risk with us.

For the analysis, we first record the responses of the first question ac-
cording to whether or not the developer thinks the dependency-related li-
cense violations in their packages as issues. We then analyze the responses
of the second question through a systematic method: (i) reading of each
response, (ii) checking, summarizing and categorizing text, and (iii) looking
for similarities or differences in other responses. We finally end up with a
list of important observations in the responses.

4.4.2 Data collection

In Section 4.3, 2,704 packages are detected as having dependency-related
license violations. We randomly select 100 packages and send their authors

51



email invitations for our preliminary questionnaire. In the end, we received
20 responses which equals a response rate of 20%.

4.4.3 Results and discussion
Question 1

For the first question in our questionnaire, 11 participants out of 20 partici-
pants regard the dependency-related license violations as risks. On the con-
trary, 6 participants do not regard the dependency-related license violations
as risks and 3 participants are not sure whether or not the dependency-
related license violations are risks respectively. The results suggest the
divergence of developers towards dependency-related license violations. To
study the reasons why developers regard or do not regard the dependency-
related license violations as risks, we also analyze the developers’ explana-
tions for their choices.

Among 11 participants regarding the dependency-related license viola-
tions as risks out of all 20 participants, 5 participants were aware of the
dependency-related license violation issue when they were developing their
packages while 6 participants were not. Only one participant out of 6
participants who was not aware of this issue explains the reason: as an
individual developer, this participant will not take time to properly study
the licenses in dependencies, especially in the case that the package is not
developed for commercial use. Meanwhile, 4 participants out of 5 partici-
pants who were aware of this issue explain the reasons: 1) Developers will
not check the licenses of the dependencies for personal projects. 2) The
project is weakly maintained so the license violation issue is not addressed
carefully. 3) The developer is the authors of both the detected package
and its dependency. 4) The developer knows the license violation issue but
is not well informed. The results suggest that the developers potentially
overlook the dependency-related license violations even they regard them
as risks.

All 6 participants who do not regard the dependency-related license
violations as risks out of all 20 participants explain their reasons. There
are two main reasons: 1) There is no need to care about the license violation
issue if the package is not developed for commercial use. 2) Reusing other
packages as dependencies is not “redistribution”.

The first reason is obviously wrong since the terms and conditions in
licenses are effective no matter the package is not developed for commercial
use or not. For the second reason, judging whether or not reusing other
packages as dependencies is “redistribute” is a complicated legal problem
and may differ in different countries. However, even reusing other packages
as dependencies is not regarded as “redistribution”, it could potentially

52



become a risk for the end-users who will reuse these packages for various
purposes.

The results reveal the developers’ overlooking and misunderstanding of
the dependency-related license violations.

Question 2

We analyze the responses of the second question through a systematic
method and observe the following important observations:

1) It is not easy to understand the terms and conditions of the licenses.
Most participants describe their understanding of the terms and conditions
of the licenses. For the same license, participants may have different un-
derstanding. The most important problem is understanding the meaning
of particular words in the licenses such as “redistribute”, “reuse”, and “mod-
ify”. It is also difficult for developers to identify the difference between two
licenses in the same license family, such as “GPL-2.1” and “GPL-3.0”. The
difficulties in understand the terms and conditions also hinder developers
in choosing the proper licenses.

2) Managing dependency-related license violations is difficult in prac-
tice. Some participants describe the difficulty in managing dependency-
related license violations in practice. One participant says that a lot of
open source components are reused in his project, and the collection of
dependencies grows and changes during the life cycle of the project. He
usually generates reports on the licensing requirements for dependencies
manually and thus it takes a lot of time. Another participant says that
he always has to re-write his packages because of the license of the depen-
dencies. Note that the licenses of the dependencies may change during the
life cycle and it is difficult to trace [49]. The dependency-related license
violations may also occur when a developer is required to change the license
of his package to meet the requirement of the end-users.

3) Help in managing the dependency-related license violations is de-
manded. Some participants agree that tools that help to manage the
dependency-related license violations will help a lot. The following func-
tions are wanted: 1) detecting the dependency-related license violations;
2) tracing the change of the licenses of the dependencies; 3) choosing the
proper license.

The results highlight the difficulties in managing dependency-related
license violations and the developers’ demands for help.

Hence, we answer RQ2:

The attitudes of developers towards dependency-related license vi-
olations vary. The dependency-related license violations are overlooked
and misunderstood by the developers for various reasons. Managing

53



dependency-related license violations is difficult and the developers are
demanding help.

4.5 Threats to Validity

This section discusses the threats to the validity of our research. Threats
to construct validity concern the relationship between theory and outcome,
and relate to possible measurement imprecision when extracting data we
used in this study. npm hosts over 1.3 million JavaScript packages. This
number is still increasing rapidly every day. It is impossible to conduct the
empirical study on packages of this large number, especially considering
that the packages depend on each other. Otherwise, because of the rapid
increment of the packages in npm, the public API we use to get the historical
meta-data is not accessible. The collected data is the only one we can use to
study dependency-related license violations in npm. We set the observation
period from October 1st, 2010 to April 7th, 2017, and collect the meta-
data of 419,708 packages finally. 419,708 packages are enough to represent
all packages in npm statistically. Furthermore, these 419,708 packages only
depend on each other and do not depend on other packages in npm, which
makes the empirical study executable.

Threats to internal validity concern factors internal to the study that
could impact our results. Such threat does not affect exploratory study
like the one in this chapter. The only case worthwhile being discussed is
our answering to RQ2, where we observe and understand the responses
manually based on our knowledge.

Threats to external validity are related to the ability to generalize the
findings in our study. Our empirical study is only conducted on npm. npm
is one of the most popular and successful OSS ecosystem, which makes
itself a suitable target to study copyright inconsistencies. However, we
find that the developers in npm do not prefer to choose copyleft licenses for
their packages, which is a possible reason for the low proportion of packages
having dependency-related license violations. But according to the different
situations, other OSS ecosystems may have different results. As the first
work focusing on dependency-related license violations in OSS ecosystems,
our findings could be a good baseline to study dependency-related license
violations in them. We agree that it is necessary to replicate our empirical
study on different OSS ecosystems.

Another threat worthwhile being discussed is the scale of our prelimi-
nary questionnaire. Our preliminary questionnaire only selects 100 pack-
ages from 2,704 packages detected as having dependency-related license
violations. Compared with the large numbers of packages and developers

54



in npm, the scales of the target packages and developers are not enough
to achieve a result with statistical sense. However, as a preliminary qual-
itative analysis of dependency-related license violations, it can still reveal
developers’ attitudes, some of which are important. But we also agree that
a large-scale developer survey is necessary in our future works.

4.6 Related Work

4.6.1 Software License

Many studies in software engineering investigated software license. There
are some studies that devote to identify licenses [27, 32, 67]. Based on these
studies, some researchers analyzed software licenses in open source projects
and revealed some license issues. Di Penta et al. [20] provided an automatic
method to track changes occurring in the licensing terms of a system and
did an exploratory study on license evolution in six open source systems
and explained the impact of such evolution on the projects. German et al.
[28] proposed a method to understand licensing compatibility issues in soft-
ware packages. They mainly focused on the compatibility between licenses
declared in packages and those in source files. Different from their work, we
mainly focused on the compatibility between licenses declared in packages
and its dependencies in this chapter. In another research by Di Penta et
al. [26], they analyzed license inconsistencies of code siblings (a code clone
that evolves in a different system than the code from which it originates)
between Linux, FreeBSD, and OpenBSD, but they did not explain the rea-
sons underlying these inconsistencies. Wu et al. proposed an approach to
find license inconsistencies in similar files [78]. By investigating the revision
history of these files, they summarized the factors that caused these license
inconsistencies and tried to decide whether they are legally safe or not. [26]
and |78] focused on the license violations on the source file level and source
code level, while we focused on the package level. [26] analyzed license in-
consistencies of code siblings between Linux, FreeBSD, and OpenBSD. [78|
analyzed license inconsistencies in Debian and concluded the reasons why
license inconsistencies occurred. Alspaugh et al. 3] proposed an approach
for calculating conflicts between licenses in terms of their conditions. Ven-
dome et al. |71] performed a large empirical study of Java applications and
found that changing license is a common event and a lack of traceability
between when and why the license of a system changes. Vendome et al.
performed a study on GitHub and found that developers adopt a license
may depend on various factors and they discovered the lack of traceabil-
ity of when and why licensing changes are made and highlighted the need
for better tool to support in guiding developers in choosing and changing
licenses and in keeping track of the rationale of license changes [72].

55



4.6.2 License Compliance

License compliance is an important area of research that draws attention
from many researchers. Zhang et al. have developed a tool named LCheck
that utilizes Google Code Search service to check whether a local file exists
in an OSS project and whether the licenses are compatible [80]. German
et al. proposed a tool named Kenen that checks license compliance for
Java components that uses component identification, provenance discovery,
license identification, and licensing requirements analysis [25]. Van et al.
proposed an approach that can uncover license compliance inconsistencies
by analyzing the Concrete Build Dependency Graph of a software system
[69]. They proposed an approach to construct and analyze the Concrete
Build Dependency Graph of a software system by tracing system calls that
occur at build-time. Kapitsaki et al. proposed an approach of automating
license compliance with a process that examines the structure of Software
Packages Data Exchange [41]. Different from the above works, we mainly
focused on dependency-related license violations in OSS ecosystems. We
utilize the meta-data of the packages to detect license violations, which is
an important characteristic of OSS ecosystems. Vendome et al. studied the
rationale of developers in choosing and changing licenses and investigated
the problem of traceability of license changes [70]. They provided a vision
of ensuring license compliance of a system.

4.7 Conclusion of This Chapter

In this chapter, we propose a method to detect dependency-related li-
cense violations in OSS ecosystems, with which we conduct an empirical
study on npm to study the prevalence of dependency-related license vio-
lations. The result suggests that only a few packages (0.644%) in npm
have dependency-related license violations, but including the packages li-
censed under copyleft licenses in the dependency network still highly po-
tentially causes dependency-related license violation. We also conduct a
preliminary questionnaire on the authors of packages detected as having
dependency-related license violations, revealing the developers’ overlook-
ing and misunderstanding of the dependency-related license violations, the
difficulties in managing dependency-related license violations, and the de-
velopers’ demands for help. Our work highlights the importance of the
dependency-related license violation issue, and also creates a possibility of
studying dependency-related license violations in OSS ecosystems, which is
overlooked by the software engineering researchers.

In our future work, we plan to extend our study on dependency-related
license violations to other OSS ecosystems. Furthermore, based on the
results of the preliminary questionnaire, we also consider a new large-scale

56



developer survey as our future works. We also plan to implement some tools
to help developers in maintaining licenses and managing license violations.

o7



58



Chapter 5

Study on Popularity Growth
of Packages in the JavaScript
Package Ecosystem

5.1 Introduction

A software ecosystem consists of software projects that are developed and
evolve together in a shared environment [54|. Open-source software (OSS)
ecosystem is software ecosystem consisting of open-source software (OSS)
software projects. Usually, these OSS software projects are contributed by
the users of this OSS ecosystem. The development of software ecosystems
has resulted in an abundance of free software packages that are easily reused
by both new and existing projects. Also, this kind of software reuse has
long been proved to be a good method to increase software productivity
[11, 56, 64]. Omne example is npm, which serves as a large repository of
JavaScript-based software packages. It hosts over 650,000 JavaScript pack-
ages to become the largest software ecosystem, with millions of packages
being installed from the npm repository on an everyday basis. In such a
large number of packages, some packages are significantly more attractive
than others, being downloaded more times by end users. Software popu-
larity is used to measure this difference. It is a useful indicator of whether
a package is successful and is attracting and gaining acceptance in the
software ecosystem [12]. Understanding the popularity growth of packages
in OSS ecosystem is very important. Firstly, developers are continually
wanting to know whether or not their software is attracting and gaining
acceptance. Especially, the competition of packages in OSS ecosystem is
becoming more and more fiercely nowadays. For example, it’s reported by
the homepage of npm! that about 200,000 new packages were uploaded onto

"https://www.npmjs.com/

59



npm during the last year, which account for nearly 30% of all the packages
uploaded in the past 8 years. It’s no doubt that the large and rapidly grow-
ing number of packages makes OSS ecosystem more competitive. Therefore,
understanding the popularity growth will also help developers on improving
their packages to survive in the competitive OSS ecosystem. Secondly, the
software with the rapid growth of popularity is a double-edged sword for
the OSS ecosystem and its reusers. On one hand, the vulnerabilities or de-
fects involved in this software will propagate quickly in the OSS ecosystem
with the rapid growth of its popularity. On the other hand, if the software
with the rapid growth of popularity is removed from the OSS ecosystem,
much other software that depends on this software will be impacted as well.

Studies of popularity are firstly conducted on the social platforms such
as YouTube [1] and Twitter [53] aimed for recommendations on how to
produce successful content. Unfortunately, to date, there have been few
studies on software popularity growth. One exception is an effort on un-
derstanding the evolution of popularity by case study [77], but they only
examine the top 5 popular packages in npm. Borges et al. aim to investi-
gate common patterns of popularity growth of the projects on GitHub [12].
They use KSC algorithm [50] to achieve this, but due to the restriction of
the algorithm, this approach can hardly be applied to a large and irregular
dataset.

In this chapter, we would like to understand how fast packages be-
come popular (defined as popularity growth). We propose that popular-
ity growth over time can be modeled as a mathematical equation, and is
plotted visually as a growth curve. Actually, this kind of application of the
mathematical models is very common in many fields of biology, medicine,
economics and the social sciences [4]. Especially, growth curve models have
been used in various disciplines as well, for example in biological sciences
to study crop growth, population processes, and bacterial growth. They
are often estimated to understand defining characteristics, including initial
levels, rates of change, periods of acceleration and deceleration, and final or
asymptotic levels [34]. In software engineering, different models have been
applied in the context of software reliability (e.g., [2], [79]) and modeling
the evolution of library usage [47].

For an empirical evaluation of our popularity growth models, we con-
ducted an exploratory study of packages in npm to understand: (1) the
characteristics of popularity growth, and (2) the factors that could affect
popularity growth. This chapter aims at answering two research questions:
(RQ1) Do packages in npm share common characteristics of pop-
ularity growth? If so, what are these characteristics? The goal is
to find different kinds of characteristics of popularity growth and the pro-
portion of them. The answer to this question will provide a general view
of how fast the popularity grows for packages in npm.

60



180000

160000
140000
4 /5 120000
8 100000
g 80000
&

2 ol 60000

40000

20000

srlz= okr
200 400 600 800 1000 1200 1400 1600 1800 100 200 300 400
Days Days

(a) accelerated growth model (b) steady growth model

35000

30000
25000
3 20000

H
8 15000
10000

50001 -,

)
100 200 300 400 500 600 700 800
Days

(c) decelerated growth model

Figure 5.1: The popularity growth for three packages representing the three
proposed models. In each plot, the blue curve is the one created with the
original data while the red curve is the model that fits best. Note that Fig-
ure 5.1(a) represents the accelerated growth model (grunt), Figure 5.1(b)
represents the steady growth model (wcsize) and Figure 5.1(c) illustrates
the best-fits for decelerated growth model (active).

(RQ2) Are there some factors which could affect the popularity
growth of packages in npm? If so, what are the effects of these
factors? This investigation can reveal the factors that could be utilized to
accelerate popularity growth or to prevent the deceleration of it.

To answer RQ1, we first proposed a method of modeling popularity
growth as a curve. To answer RQ2, we select some main factors includ-
ing total downloads count, age, the number of contributors, dependencies,
dependents, versions, and functionalities. We reveal the impact of these
selected factors by examining their significant difference across proposed
models. We also give some suggestions based on the results we observed.

5.2 Modeling Popularity Growth as a Curve

In this chapter, we are interested in the popularity growth of the packages
in npm. Kula et al. have succeeded in modeling the evolution of library

61



-0
00

Figure 5.2: The effect of dependencies on downloads in npm. When package
a is installed, package b, ¢ and d is downloaded at the same time.

Table 5.1: Mathematical models

Model Equation
accelerated growth model — Popularity = at?(a > 0)
steady growth model Popularity = at(a > 0)

decelerated growth model Popularity = av/t(a > 0)

usage as a curve to study the library aging [47]. Inspired by this work, we
proposed a method of modeling popularity growth as a curve. We assume
that popularity growth has the following three types: (1) grow slowly at
first but accelerate over time, (2) grow steadily, with no sign of accelerating
or decelerating, (3) grow rapidly at first but gradually decelerate.

We define these three kinds of growth as the accelerated growth model,
steady growth model and decelerated growth model. When popularity
growth is modeled as a curve, the accelerated growth can be represented by
a convex while the decelerated growth can be represented by a concave. The
convex on curve indicates the speed of growth is accelerating over time while
the concave indicates the speed is decelerating. Similarly, the steady growth
can be represented by a straight line, indicating that the speed is steady
over time. Furthermore, we use three mathematical equations to represent
the characteristics of the proposed three growth models. The linear growth
model is the most commonly fit growth curve to describe a steady growth.
For nonlinear change, many researchers turn to the quadratic growth model
when a linear change model does not fit well or when a nonlinear trend is
seen in the longitudinal plot [34]. When we limit the coefficient to be
positive, the quadratic growth model becomes a good choice to describe an
accelerated growth. Another reason we select quadratic equation is that its
rate of growth increases slowly and gently. So if popularity growth has a
tendency to accelerate, even not dramatically, it will still be well fitted by
this equation. For the same reason, we select square root equation as the
opposite equation to describe the decelerated growth.

62



To summarize, we use three models as shown in Table 5.1 and Figure
5.1 for our curve fitting. Thus, for the relationship between the popularity
and time ¢, key characteristics of each model are described below:

e Accelerated growth model. The quadratic equation is depicted in
Figure 5.1(a) as having a convex toward the lower right corner. The
curve of this model indicates that popularity grows slowly at first but
accelerates over time.

e Steady growth model. The linear equation is depicted in Figure
5.1(b) as having the single linear line and no convex and concave. It
indicates that the popularity grows steadily, with no sign of acceler-
ating or decelerating.

e Decelerated growth model. The square root equation is depicted
in Figure 5.1(c) as having a concave toward the lower right corner.
The growth of popularity fitting this model grows rapidly at first but
gradually decelerates.

For the metric to measure popularity, we choose downloads count.
Downloads count is incremented every time a package is installed from
npm in any cases — redistribution, test or development. We use downloads
count because it is a value to show how many times the package is down-
loaded, indicating how popular the package is used by end users intuitively.
Note that, as shown in Figure 5.2, when a package is installed from npm,
those packages which are in the dependency chain of this package are also
installed. In this case, downloads count is incremented for all these pack-
ages. We obtained the historical data of downloads counts for each package
on a daily basis through the web API of npm?. Finally, we accumulate the
downloads counts to represent popularity growth.

5.3 Empirical Evaluation

5.3.1 Research Question 1

— Research Method:

Our research method comprises of two steps. In the first step, we need to
collect empirical data that represents popularity and other main software
ecosystem factors for npm. Table 5.2 shows a summary of collected npm
packages. The observation period is from October 1st, 2010 to April 7th,
2017, and all data we collected only cover this range as well. At last,
we collect 152,812 packages. Then we filter out packages whose age is

Zsource: https://api.npmjs.org/downloads/range/2010-10-1:2017-04-
07 /packageName

63



Table 5.2: Summary Statistics of the collected dataset

Dataset statistics
observation period 2010-Oct to 2017-Apr
# packages 152,812
total size of projects 365 GB

Table 5.3: Best Fitting Results for the 102,341 target packages.

Model # Fitted % of Studied Packages
accelerated growth model 40,953 40.02%
steady growth model 52,769 51.56%
decelerated growth model 7,366 7.20%
Not Fit 1,253 1.22%
Total 102,341 100%

younger than 1 year or total downloads count is less than 1,000. This step
ensures the reliability of the following curve fitting because the popularity
growth of packages with few downloads or short lifetime is meaningless. For
example, a package was published two days ago and downloaded once for
each day. In this extreme case, this package will still be fitted by the steady
growth model, which is not expected. We end up with 102,341 packages in
total. Then for the second step, we run the experiment by which popularity
growth is fitting against the three proposed growth models. Firstly, for
the curve fitting, we rely on a Python-based package called scipy? to fit
popularity growth against the proposed three growth models. Secondly,
We use the widely-used the coefficient of determination [55], denoted by
R?, to evaluate the goodness of fit for each growth model. The one with
the largest R? value among three proposed models is determined as the
best-fitted model. Additionally, no matter which model is determined as
the best-fitted model, the R? value of it must be larger than 0.7. The value
is decided as 0.7 because if the R? value is larger than 0.7, this value is
generally considered strong effect size [17]. For the case that all R? values
of three proposed models are less than 0.7, the package is not well fitted by
any models. By this, we ensure that the best-fitted model fits the popularity
growth curve enough well. Meanwhile, we can also examine whether our
three proposed models are effective or not. If a large number of packages
could not be well fitted by any proposed models, our three proposed models
are obviously not good enough to model popularity growth.

https:/ /www.scipy.org/

64



— Findings:

Table 5.3 lists the percentage of packages that are best-fit by each model.
Notice that the percentage of not fit is only 1.22%. It suggests that only
a small part of all packages could not be fitted by any proposed growth
model. The percentage proves that our method is effective in modeling the
popularity growth of packages. The result shows that 51.56% of the studied
packages depict steady growth model, followed by accelerated growth model
and decelerated growth model, 40.02% and 7.20% respectively. The most
important finding is that only 7.20% of the studied packages are best-fitted
by decelerated growth model, which indicates that npm is still very active
and the number of packages installed from npm is still growing with no
sign of deceleration. Specifically, 40.02% of the studied packages are best-
fitted by accelerated growth model, which interprets that a large number
of packages in npm are gaining popularity in accelerating speed. The result
suggests that the reuse of packages in npm is still active, with more and
more packages being installed from the npm.

Hence, we answer RQ1:

Packages in npm do share common characteristics of popularity growth.
Specifically, 51.56% of the studied packages depict steady growth model,
followed by accelerated growth model (40.02%) and decelerated growth
model (7.20%). The distribution suggests that the reuse of packages in npm
is still active.

5.3.2 Research Question 2

65



99

Table 5.4: Summary Statistics of the 101,088 fitted packages.

Fitting Model Min. 1st Qu. Median 3rd Qu. Max. Mean p-value
accelerated growth model 1001.0 3091.0 8312.0  48718.0 800785605.0 2505140.14

# Total downloads steady growth model 1001.0 1511.0 2430.0 4876.0  92901071.0 49305.13  1.22e-09
decelerated growth model 1001.0 1619.0 2820.0  6039.75  15443288.0 24208.82
accelerated growth model  366.0 759.0 1179.0 1507.0 17263.0 1169.85

Age (# days) steady growth model 366.0 585.0 781.0 1017.0 2300.0 817.89 1.12e-54
decelerated growth model  366.0 423.0 533.0 796.0 2291.0 640.79
accelerated growth model 0.0 1.0 1.0 1.0 134.0 1.53

# Contributors steady growth model 0.0 1.0 1.0 1.0 64.0 1.27 0.63
decelerated growth model 0.0 1.0 1.0 1.0 55.0 1.29
accelerated growth model 0.0 1.0 2.0 4.0 106.0 3.79

# dependencies steady growth model 0.0 1.0 3.0 5.0 114.0 4.24 0.24
decelerated growth model 0.0 2.0 3.0 6.0 122.0 4.81
accelerated growth model 0.0 1.0 3.0 10.0 32130.0 38.13

# dependents steady growth model 0.0 1.0 1.0 2.0 3456.0 3.31  9.38e-49
decelerated growth model 0.0 1.0 1.0 2.0 61.0 2.29
accelerated growth model 0.0 3.0 6.0 13.0 4204.0 12.95

# versions steady growth model 0.0 2.0 3.0 7.0 742.0 6.55 0.005
decelerated growth model 0.0 4.0 7.0 14.0 1813.0 12.58




The result from RQ1 indicates that most studied packages depict steady
growth model and accelerated growth model while only a few packages
depict decelerated growth model. Hence our motivation for RQ2 is to make
use of a quantitative approach to examine the effect of some main software
ecosystem factors on popularity growth.

— Research Method:

To solve this research question, we select some main software ecosystem
factors and examine whether or not these factors are significantly different
among the packages fitted by three proposed growth models. By this way,
we aim to find the impact of these selected factors on popularity growth.
The main software ecosystem factors we selected include total downloads
count, age and the number of contributors, dependencies, dependents, ver-

S10NS.

The study on total downloads count could interpret if the packages
with accelerated popularity growth are also the popular ones. Note that
the downloads counts are accumulated on a daily basis. So the downloads
count of the last day is the total downloads count. The investigation on
age answers the question that whether or not the early packages are more
likely to gain popularity in accelerated speed than the new ones. The
age is represented by the number of passing through days after the first
publication of a package. The number of contributors is the indicator of
the scale of the development team. The contributors refer to any developer
who ever contributed to any version of a package. A package in npm is
usually maintained and contributed by an individual developer or some
developers working as a team. While the numbers of dependencies and
dependents reveal that if reusing or being reused by other packages have
effects on popularity growth. The study on the numbers of dependencies
and dependents will suggest the impact of relationships among packages on
popularity growth. At last, the study on the number of versions interprets
the impact of new features on popularity growth. Additionally, the larger
number of versions not only means frequent update and more new feature
but also suggests whether or not the package is continuously maintained.

For these selected factors, we make use of statistic analysis to examine
whether or not there is a strong relationship between them and the proposed
growth models. Specifically, we randomly pick 1,000 packages from each
growth models and run Kruskal-Wallis H test [46] on them to re-check
whether or not the selected factors are significantly different across three
proposed growth models. Kruskal-Wallis H test is an effective and widely
used method to test whether two or more samples of equal or different
sample sizes originate from the same distribution [16]. Additionally, We
investigate if the functionalities of packages play roles in popularity growth
as well. For this purpose, we collect the keywords of every package fitted by

67



mongpose

pa rsers:: hlter

s gunt
g generaqgg‘;% 1 F 1 pequire

Cll '(IIJAPHTUJ

i Tequest

path, “RALPE i1 image e Framework text

react Compoqen
react-reactars | modu

P

@

“n“ comnand line 2 ]““L JLFEE_

g llololué’:lﬁtm oES

(&)

ex c {0
g Fp)st(SS p?g}r\‘ & ) g Q
2 test £ 5.0
O 1zl react nativese w";fL-l»—J
: ] n st o wn

cordava cordova

(a) accelerated growth model

framework P middleware ;g
gruntpluglnf task
f 1 i mqm,emodule
E. egUIF’plug}oﬂve”angular build
[em late S-;,— am H a 008
ouser s ect
webpack m
tésting €Mber addonm ngddb
‘hek)b(prﬁssgnhuh async 7,
ackbone!Cuter e
t}’pESCIlDE

node-js

hubot! script
helper

cordova cordova log
nplugln cordova 105 reques(

model

functio

gra u
svg ecosystem] cordwautll = promlse
google t2 even[
color LESTEE PCSs clientd APl

front end+
search json g
react, react&ih data's

n ember

cache~
rest

(b) steady growth model

react component

me router

LppilL testlng

ifile emberuaddon ® data

event Ll]_en[log

5gﬂg}§@“ﬁﬁwn‘ﬁsjson

u‘n ie @ error

gulp 3

N e E r edl E
‘:- Jrongodb l - m

template OeCOgJuSe

2. react

[
W bootstrap
0]
4]

browserify

re

react

request - string

mo

;. COMpute 1

gruntpluglnstream rowser

yeoman ‘generator,

objectarray framework async

(c) decelerated growth model

Figure 5.3: The word-cloud graph using the keywords of every package
fitted by each growth models.

each growth models and draw the word-cloud graph using these keywords.
The keywords are extracted from the meta-files of packages and we believe
that they interpret the functionalities of packages to some extent.

— Findings:
Table 5.4 shows the summary of the statistic analysis result on total

downloads count, age and the number of contributors, dependencies, de-
pendents, versions for each growth model.

Total download count: The result shows that the packages with accel-
erated popularity growth are also the popular ones, which also conforms to
our general impression.

Age: The packages fitted by accelerated growth model are definitely
older than other two models, and the ones fitted by steady growth model
are also a bit older than decelerated model. It suggests that the early

68



packages in npm are much more easily to get popularity in accelerated speed
with the time passing by while the new packages are not.

The number of contributors: The number of contributors interprets the
scale of development team. The result suggests that there is no significant
difference across packages fitted by the proposed three growth models. It
interprets that the scale of development team have no definite impact on
popularity growth.

The number of the dependencies and dependents: In this investigation
we want to answer the question whether reusing or being reused by other
packages have effects on popularity growth or not. The result suggests
that the numbers of the dependencies are similar across the three proposed
growth models while the numbers of the dependents are significantly differ-
ent. The packages fitted by accelerated growth model attract a lot of depen-
dents while steady growth model and decelerated growth model attract few.
It illustrates that being reused by other packages plays a significant role
in accelerating popularity growth while the number of dependencies does
not. This can be explained by the download mechanism of npm — when a
package is installed from npm, those packages which are in the dependency
chain of this package are also installed.

Versions: The p-value tells that the numbers of versions are significantly
different across the three proposed growth models. The result suggests that
packages fitted by accelerated growth model and decelerated growth model
have a tendency to maintain more releases and add new features. On the
contrary, the releases of packages fitted by the decelerated growth model
are less. This illustrates that adding new features is a double-edged sword
to popularity growth: both of acceleration and deceleration are possible
due to adding new features. On the contrary, less changes make popularity
grow steadily.

Functionalities: Figure 5.3 shows the the word-cloud graphs created
with the keywords of every package fitted by three proposed growth mod-
els. The result shows that the functionalities have a large variation across
the three proposed growth models. The top 3 keywords of packages in ac-
celerated growth model are gruntplugin, gulpplugin and react-component,
which are all related with one particular popular package. Among them,
grunt* package is a JavaScript task runner, which can free developer from
repetitive tasks like minification, compilation, unit testing, linting, etc.
gulp® package is a toolkit that helps developer automate painful or time-
consuming tasks in the development workflow. react® package is a JavaScript
package for building user interfaces, a traditional client-side application on
web development. It illustrates that grunt, gulp, and react are probably

“https://gruntjs.com/

®http://gulpjs.com/
Shttps://github.com/facebook /react

69



most widely used packages in npm, so the packages related to them can eas-
ily gain popularity in accelerated speed. Additionally, the packages fitted
by decelerated model also get two significant hot keywords — plugin and
api. This might suggest that some packages of this kind suffer from higher
risk of losing popularity as time passes by.

Hence, we answer RQ2:

Some main factors including age, dependents, new features, and func-
tionalities have effects on popularity growth. Among them age and depen-
dents have a positive impact on popularity growth while the new features
have possibility of both acceleration and deceleration. We also reveal some
possible effects of functionalities on popularity growth.

5.4 Discussion

In this section, we aim to give some suggestions to practitioners in npm
community to help them on developing and evolving their packages.

e npm community is health and well maintained. Therefore, practition-
ers in such community could possibly get chances to publish successful
packages gaining a lot of acceptance.

e The popularity also complies with the Matthew Effect - the popular
and rapid growing packages gain more and more acceptance easily.
It’s not wise for developers to have their packages compete with these
packages.

e The early packages have strong advantage. The packages tested by
time are proved to be of good quality and much more easily to be
accepted. To compete with these early packages, developers should
aim to introduce their packages with the distinctive features and good
reliability to persuade other packages to make a change.

e Being widely reused by other packages will make a package popu-
lar. Easy-to-use features and well-maintained documents will help on
that. Especially, being merged into the dependency chain of a popu-
lar and rapid growing package is a convenient way to accelerate the
popularity growth of a package. So developers can find some popular
and rapid growing packages which could possibly reuse their packages
and provide more reliable and effective functionalities to them.

e Adding new features is a double-edged sword. On one hand, frequent
changes of versions usually refer to the package is well maintained.
On the other hand, the new features will also possibly result in depen-
dency chain breakages and confuse the re-users. Developers should
pay attention to the balance between them.

70



e Packages related to some popular packages also easily become popular
in npm. Developing packages related to popular packages may be a
good choice for practitioners in npm community.

5.5 Conclusion of This Chapter

In this chapter, we model the popularity growth of packages as curves and
fit it against the three proposed growth models to understand the common
characteristics of the popularity growth of packages in npm. We found that
51.56% of the studied packages depict the steady growth model, followed by
accelerated growth model (40.02%) and decelerated growth model (7.20%).
The result suggests that the reuse of packages in npm is still active, with
more and more packages being installed from the npm. Also, we select and
examine some main software ecosystem factors to understand their impacts
on popularity growth. Our study shows that age, dependents, new features,
and functionalities play significant roles in popularity growth. Based on
these findings, we give some suggestions to practitioners in npm commu-
nity. We hope our results provide valuable insights to help practitioners in
developing and evolving packages in a competitive OSS ecosystem.

For the future work, although our approach of modeling the popularity
growth of packages is proved to be effective because of the low percentage
of packages not fitted by any growth models, we still don’t know why these
packages could not be fitted. By observing several packages, we find that
the popularity of some packages not fitted is changing dramatically in a
short time. It will be very interesting to find out why it happens. Secondly,
although we have found the common characteristics of popularity growth
and some software ecosystem factors having an impact on the growth, the
detailed mechanism of how these factors impact popularity growth is still
not very clear. Additionally, we presume that there are other factors that
can have an impact on the popularity growth of packages since our selected
factors are only a portion of all the factors of a software ecosystem. We
consider these as future work. Our future work also includes extending the
research to different ecosystems such as RubyGems or CRAN R ecosystem.
Also, it would be interesting to do predictions on popularity growth based
on the factors we observed.

71



72



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation presented our studies on the four reuse issues in OSS:
copyright inconsistency, copyright notice identification, dependency-related
license violation, and popularity growth.

Firstly, we conducted an empirical study on the Linux kernel to analyze
the issue of copyright inconsistency. From the results, we found that copy-
right inconsistency is prevalent in the Linux kernel. Meanwhile, we investi-
gated the causes of these license inconsistencies and generalized them into
4 reasons: code reuse, affiliation change, refactoring, support function, and
others’ contributions. Our findings suggesting that the copyright notices
recorded in the source files do not always reflect the actual contributors. It
also provides a new perspective to study and improve the management of
software copyright in OSS projects.

Secondly, we proposed a machine learning method for automatic copy-
right notice identification of source files and evaluated it by comparing it
with FOSSology - a widely used regular expression matching-based method.
The results suggest that the proposed machine learning method outper-
forms the existing method. This work will help practitioners and researchers
in studying the copyright notices in OSS projects.

Thirdly, we conducted an empirical study on npm to analyze the issue
of dependency-related license violations. The result suggests that only a
few packages have dependency-related license violations. However, there is
a high possibility of the occurrence of dependency-related license violation
if the packages licensed under copyleft licenses is included in the depen-
dency network. Furthermore, we also designed a preliminary questionnaire,
which aims to find out the developers’ attitude towards dependency-related
license violations. We found that developers overlook and misunderstand
dependency-related license violations. The results also suggest the difficul-
ties in managing dependency-related license violations and the developers’

73



demands for help. Our work highlights the importance of dealing with the
dependency-related license violation in OSS.

Lastly, we conducted an empirical study on npm to understand the pop-
ularity growth of packages in it. The result suggests that the reuse of
packages in npm is still active. Meanwhile, we found that age, dependents,
new features, and functionalities have an impact on the popularity growth
of packages in npm. This study will help practitioners in developing and
evolving their OSS in a competitive OSS ecosystem. It will also help re-
searchers to study OSS reuse in OSS ecosystems.

We believe that the findings in this dissertation will help practition-
ers who reuse OSS in practice and researchers who are to create a better
platform for OSS reuse.

6.2 Future Directions

In our first study of software inconsistency and the second study of copy-
right notice identification, we discovered the difficulty of managing software
copyright of source code files in OSS. For example, how to trace the prove-
nance of source code to determine its original copyright notice. Future
research could be conducted to find a solution to manage the copyright
notices efficiently and effectively in OSS.

Our third study of the dependency-related license violation creates a
possibility of studying dependency-related license violations in OSS ecosys-
tems. For example, studies on the propagation of dependency-related li-
cense violations would reveal how dependency-related license violations im-
pact OSS ecosystems. We believe these researches will be helpful in main-
taining licenses and managing license violations.

As the future research of our fourth study of popularity growth, studies
could be done on predicting the popularity growth of OSS projects based
on the observed factors. It will help in understanding how an OSS project
becomes successful.

Furthermore, our studies are only conducted on some particular OSS
projects, studies on more OSS projects are worthwhile of being conducted
in further research.

74



Bibliography

[1] Ahmed, M., Spagna, S., Huici, F., and Niccolini, S. (2013). A peek
into the future: Predicting the evolution of popularity in user generated
content. In Proceedings of the Sixth ACM International Conference on
Web Search and Data Mining, WSDM ’13, pages 607-616, New York,
NY, USA. ACM.

[2] Almering, V., van Genuchten, M., Cloudt, G., and Sonnemans, P.
(2007). Using software reliability growth models in practice. Software,
IEEE, 24(6), 82-88.

[3] Alspaugh, T., Asuncion, H., and Scacchi, W. (2009). Intellectual prop-
erty rights requirements for heterogeneously-licensed systems. In 17th In-

ternational Requirements Engineering Conference (RE2009), pages 24—
33.

[4] Annadurai, G., Rajesh Babu, S., and Srinivasamoorthy, V. R. (2000).
Development of mathematical models (logistic, gompertz and richards
models) describing the growth pattern of pseudomonas putida (nicm
2174). Bioprocess Engineering, 23(6), 607-612.

[5] Apte, U., Sankar, C. S., Thakur, M., and Turner, J. E. (1990).
Reusability-based strategy for development of information systems: im-
plementation experience of a bank. MIS Quarterly, pages 421-433.

[6] Basili, V. R., Briand, L. C., and Melo, W. L. (1996). How reuse influ-
ences productivity in object-oriented systems. Communications of the
ACM, 39(10), 104-116.

[7] Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of
the behavior of several methods for balancing machine learning training
data. ACM SIGKDD explorations newsletter, 6(1), 20-29.

[8] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S.
(2015). How the apache community upgrades dependencies: an evolu-
tionary study. Empirical Software Engineering, 20(5), 1275-1317.

75



[9] Berger, T., Pfeiffer, R.-H., Tartler, R., Dienst, S., Czarnecki, K., Wa-
sowski, A.; and She, S. (2014). Variability mechanisms in software ecosys-
tems. Information and Software Technology, 56(11), 1520 — 1535. Special
issue on Software Ecosystems.

[10] Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P. (2011).
Don’t touch my code! examining the effects of ownership on software
quality. In 19th ACM SIGSOFT symposium and 13th Furopean confer-
ence on Foundations of software engineering (ESEC/FSE 2011), pages
4-14.

[11] Boehm, B. W. (1987). Improving software productivity. Computer,
20(9), 43-57.

[12] Borges, H., Hora, A. C., and Valente, M. T. (2016). Understanding
the factors that impact the popularity of github repositories. CoRR,
abs/1606.04984.

[13] Christley, S. and Madey, G. (2007). Analysis of activity in the open
source software development community. In 2007 40th Annual Hawaii
International Conference on System Sciences (HICSS’07), pages 166b—
166b. IEEE.

[14] Corbet, J. and Kroah-Hartman, G. (2017). 2017 linux kernel develop-
ment report. A Publication of The Linur Foundation.

[15] Da Veiga, A. (2016). A cybersecurity culture research philosophy and
approach to develop a valid and reliable measuring instrument. In 2016
SAI Computing Conference (SAI), pages 1006-1015. IEEE.

[16] Daniel, W. (1978). Applied nonparametric statistics. Houghton Mifflin.

[17] David, S. M., William, I. N., and Michael, A. F. (2013). The Basic
Practice of Statistics, page 138. W. H. Freeman.

[18] Decan, A., Mens, T., and Grosjean, P. (2019). An empirical com-
parison of dependency network evolution in seven software packaging
ecosystems. Empirical Software Engineering, 24(1), 381-416.

[19] Di Penta, M. and German, D. (2009). Who are source code contribu-
tors and how do they change? In 16th Working Conference on Reverse
Engineering (WCRE2009), pages 11-20.

[20] Di Penta, M., German, D. M., Guéhéneuc, Y.-G., and Antoniol, G.
(2010). An exploratory study of the evolution of software licensing. In

Proceedings of the 32nd International Conference on Software Engineer-
ing (ICSE2010), pages 145-154.

76



[21] Forman, G. (2003). An extensive empirical study of feature selection
metrics for text classification. Journal of machine learning research,
3(Mar), 1289-1305.

[22] Foucault, M., Falleri, J.-R., and Blanc, X. (2014). Code ownership in
open-source software. In 18th International Conference on FEvaluation
and Assessment in Software Engineering (EASE 2014 ), pages 1-9.

[23] Gao, Z., Bird, C., and Barr, E. T. (2017). To type or not to type:
quantifying detectable bugs in javascript. In IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE 2017), pages 758-769.
IEEE.

[24] German, D. (2006). A study of the contributors of postgresql. In 2006
International workshop on Mining software repositories (MSR 2006),
pages 163-164.

[25] German, D. and Di Penta, M. (2012). A method for open source license
compliance of java applications. IEEFE software, 29(3), 58-63.

[26] German, D., Di Penta, M., Gueheneuc, Y.-G., and Antoniol, G. (2009).
Code siblings: Technical and legal implications of copying code between
applications. In Proceedings of the 6th Working Conference on Mining
Software Repositories (MSR2009), pages 81-90.

[27] German, D., Manabe, Y., and Inoue, K. (2010a). A sentence-
matching method for automatic license identification of source code files.

In 25th International Conference on Automated Software Engineering
(ASE2010), pages 437-446.

[28] German, D., Di Penta, M., and Davies, J. (2010b). Understanding and
auditing the licensing of open source software distributions. In 18th In-

ternational Conference on Program Comprehension (ICPC2010), pages
84-93.

[29] German, D., Adams, B., and Stewart, K. (2019). cregit: Token-level
blame information in git version control repositories. Empirical Software
Engineering, 24, issue 4, 2725-2763.

[30] Gharehyazie, M., Ray, B., and Filkov, V. (2017). Some from here, some
from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR), pages
291-301. IEEE.

[31] Girba, T., Kuhn, A., Seeberger, M., and Ducasse, S. (2005). How
developers drive software evolution. In 8th international workshop on
principles of software evolution (IWPSE 2005), pages 113-122.

7



[32] Gobeille, R. (2008). The fossology project. In 2008 International
working conference on Mining software repositories (MSR2008), pages
47-50.

[33] Golder, T. and Mayer, A. (2009). Whose ip is it anyway? Journal of
Intellectual Property Law & Practice, 4(3), 165-175.

[34] Grimm, K. J., Nilam, R., and Fumiaki, H. (2011). Nonlinear growth
curves in developmental research. Child Dev., 82, 1357-1371.

[35] Hammad, M., Hammad, M., Bani-Salameh, H., and Fayyoumi, E.
(2014). Measuring developers’ design contributions in evolved software
projects. Journal of SOftware, 9(12), 3005-3011.

[36] Hata, H., Treude, C., Kula, R. G., and Ishio, T. (2019). 9.6 mil-
lion links in source code comments: purpose, evolution, and decay.
In IEEE/ACM /1st International Conference on Software Engineering
(ICSE 2019), pages 1211-1221. IEEE.

[37] Hauge, ., Sgrensen, C.-F., and Conradi, R. (2008). Adoption of open
source in the software industry. In IFIP International Conference on
Open Source Systems, pages 211-221. Springer.

[38] Hindle, A., German, D., and Holt, R. (2008). What do large commits
tell us? a taxonomical study of large commits. In 2008 International
working conference on Mining software repositories (MSR 2008), pages
99-108.

[39] Japkowicz, N. and Stephen, S. (2002). The class imbalance problem:
A systematic study. Intelligent data analysis, 6(5), 429-449.

[40] Jomes, T. C. (1984). Reusability in programming: A survey of the state
of the art. IEEE Transactions on Software Engineering, (5), 488-494.

[41] Kapitsaki, G. M., Kramer, F., and Tselikas, N. D. (2017). Automat-
ing the license compatibility process in open source software with spdx.
Journal of Systems and Software, 131, 386—401.

[42] Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017). Structure
and evolution of package dependency networks. In Proceedings of the
IEEE/ACM 1/th International Conference on Mining Software Reposi-
tories (MSR2017), pages 102-112.

[43] Koch, S. (2005). Free/open source software development. Igi Global.

[44] Krejcie, R. V. and Morgan, D. W. (1970). Determining sample size for
research activities. Educational and psychological measurement, 30(3),
607-610.

78



[45] Krueger, C. (1992). Software reuse. ACM Comput. Surv., 24, 131-183.
[46] Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-

criterion variance analysis. Journal of the American Statistical Asso-
ciation, 47(260), 583-621.

[47] Kula, R. G., German, D. M., Ishio, T., Ouni, A., and Inoue, K. (2017).
An exploratory study on library aging by monitoring client usage in a
software ecosystem. In 2017 IEEFE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 407—
411.

[48] Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K.
(2018a). Do developers update their library dependencies? Empirical
Software Engineering, 23(1), 384-417.

[49] Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K.
(2018b). Do developers update their library dependencies? Empirical
Software Engineering, 23(1), 384-417.

[50] Langone, R., Mall, R., Alzate, C., and Suykens, J. A. K. (2016). Kernel
Spectral Clustering and Applications, pages 135-161. Springer Interna-
tional Publishing, Cham.

[51] Larabel, M. (2020). The linux kernel enters 2020 at 27.8 million
lines in git but with less developers for 2019. Web page at linux.com,
https://www.phoronix.com/scan.php?page=news_item&px=  Linux-
Git-Stats-EOY2019, Jan.

[52] Laurent, A. M. S. (2004). Understanding open source and free software
licensing: guide to navigating licensing issues in existing €4 new software.
O’Reilly.

[63] Lehmann, J., Gongalves, B., Ramasco, J. J., and Cattuto, C. (2012).
Dynamical classes of collective attention in twitter. In Proceedings of the
21st International Conference on World Wide Web, WWW ’12, pages
251-260, New York, NY, USA. ACM.

[64] Lungu, M., Lanza, M., Girba, T., and Robbes, R. (2010). The small
project observatory: Visualizing software ecosystems. Science of Com-
puter Programming, 75(4), 264-275.

[55] Magee, L. (1990). R 2 measures based on wald and likelihood ratio
joint significance tests. The American Statistician, 44(3), 250-253.

[56] Mcllroy, M. D., Buxton, J., Naur, P., and Randell, B. (1968). Mass-
produced software components. In Proceedings of the 1st International
Conference on Software Engineering (ICSE1968), pages 88-98.

79



[57] Meeker, H. (2017). Patrick mchardy and copyright profiteering. Web
page at opensource.com, https://opensource.com/article/17/8 /patrick-
mchardy-and-copyright-profiteering, Aug.

[58] Oracle (2019). Oracle contributor agreement - version 1.7.1. Web page

at oracle.com, https://www.oracle.com/technetwork/community /oca-
486395.html#list.

[59] Ozdemir, S. (2016). Principles of Data Science. Packt Publishing.

[60] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.
(2011). Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12, 2825-2830.

[61] Scacchi, W. (2007). Free/open source software development: Recent
research results and methods. Advances in Computers, 69, 243-295.

[62] Sebastiani, F. (2002). Machine learning in automated text categoriza-
tion. ACM computing surveys (CSUR), 34(1), 1-47.

[63] Sojer, M. and Henkel, J. (2010). Code reuse in open source software
development: Quantitative evidence, drivers, and impediments. Journal
of the Association for Information Systems, 11(12), 868-901.

[64] Standish, T. A. (1984). An essay on software reuse. IEEE Transactions
on Software Engineering, SE-10(5), 494-497.

[65] Stanik, C., Montgomery, L., Martens, D., Fucci, D., and Maalej, W.
(Sept. 2018). A simple nlp-based approach to support onboarding and re-
tention in open source communities. In 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), Madrid, Spain,
pages 172-182.

[66] Tsikerdekis, M. (2018). Persistent code contribution: a ranking algo-
rithm for code contribution in crowdsourced software. Empirical Software
Engineering, 23(4), 1871-1894.

[67] Tuunanen, T., Koskinen, J., and Karkkédinen, T. (2009). Automated
software license analysis. Automated Software Engineering, 16(3-4), 455—
490.

[68] Uden, L., Damiani, E., Gianini, G., and Ceravolo, P. (2007). Activity

theory for oss ecosystems. In 2007 Inaugural IEEE-IES Digital EcoSys-
tems and Technologies Conference, pages 223-228. IEEE.

80



[69] Van Der Burg, S., Dolstra, E., McIntosh, S., Davies, J., German,
D. M., and Hemel, A. (2014). Tracing software build processes to uncover
license compliance inconsistencies. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 731—

742. ACM.

[70] Vendome, C. and Poshyvanyk, D. (2016). Assisting developers with
license compliance. In Proceedings of the 38th International Conference
on Software Engineering Companion, pages 811-814. ACM.

[71] Vendome, C., Linares-Vasquez, M., Bavota, G., Di Penta, M., German,
D. M., and Poshyvanyk, D. (2015). License usage and changes: A large-
scale study of java projects on github. In The 23rd IEEFE International
Conference on Program Comprehension, ICPC 2015.

[72] Vendome, C., Bavota, G., Di Penta, M., Linares-Vasquez, M., German,
D., and Poshyvanyk, D. (2017a). License usage and changes: a large-scale
study on github. Empirical Software Engineering, 22(3), 1537-1577.

[73] Vendome, C., Linares-Vasquez, M., Bavota, G., Di Penta, M., German,
D., and Poshyvanyk, D. (Aug. 2017b). Machine learning-based detection
of open source license exceptions. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), Buenos Aires, Argentina,
pages 118-129.

[74] Welte, H. (2018). Report from the geniatech vs. mchardy
gpl violation court hearing. Web page at gnumonks.org,
https://laforge.gnumonks.org/ blog/20180307-mchardy-gpl/, Mar.

[75] Wheeler, D. A. (2017). The free-libre / open source software (floss) li-
cense slide. Web page at https://www.dwheeler.com/essays/floss-license-
slide.html.

[76] Wikipedia (2020). Google llc v. oracle america, inc.
Web page at wikipedia.org, https://en.wikipedia.org/w
index.php?title=Google;, LC,.oracle smerica, nc.oldf ormat =
true, Dec.

[77] Wittern, E., Suter, P., and Rajagopalan, S. (2016). A look at the dy-
namics of the javascript package ecosystem. In Proceedings of the 13th In-

ternational Conference on Mining Software Repositories, MSR ’16, pages
351-361, New York, NY, USA. ACM.

[78] Wu, Y., Manabe, Y., Kanda, T., German, D. M., and Inoue, K. (2015). A
method to detect license inconsistencies in large-scale open source projects.
In 2015 International working conference on Mining Software Repositories
(MSR 2015), pages 324-333.

81



[79] Yamada, S., Ohba, M., and Osaki, S. (1983). S-shaped reliability growth
modeling for software error detection. Reliability, IEEE Trans., R-32(5),
475-484.

[80] Zhang, H., Shi, B., and Zhang, L. (2010). Automatic checking of license
compliance. In Software Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1-3. IEEE.

82



