
Title A Study on Adaptive Algorithms of Mobile Agents
on Dynamic Environments

Author(s) 五島, 剛

Citation 大阪大学, 2021, 博士論文

Version Type VoR

URL https://doi.org/10.18910/82285

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A Study on

Adaptive Algorithms of Mobile Agents on

Dynamic Environments

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2021

Tsuyoshi GOTOH

iii

List of Related Publications

Journal Papers

1. Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, and Toshimitsu Masuzawa, “Dynamic

ring exploration with (H, S) view," Algorithms, MDPI, Vol. 13, No. 6, p.141, 2020.

2. Tsuyoshi Gotoh, Yuichi Sudo, FukuhitoOoshita, HirotsuguKakugawa, and ToshimitsuMa-

suzawa, “Exploration of dynamic tori by multiple agents," Theoretical Computer Science,

Elsevier, Vol. 850, p.202–220, 2021.

Conference Papers

3. TsuyoshiGotoh, FukuhitoOoshita, HirotsuguKakugawa, andToshimitsuMasuzawa, “How

to simulate message passing algorithms by mobile agents with faults," Proceedings of the

19th International Symposium on Stabilization, Safety, and Security of Distributed Systems,

LNCS 10616, p.234–249, Boston USA, Nov. 2017.

4. Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu

Masuzawa, “Group exploration of dynamic tori," Proceedings of the 38th IEEE Interna-

tional Conference on Distributed Computing Systems, p.775–785, Vienna Austria, July

2017.

5. Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, and Toshimitsu Masuzawa, “Exploration

of dynamic ring networks by a single agent with the H-hops and S-time step view," Pro-

ceedings of the 21st International Symposium on Stabilization, Safety, and Security of

Distributed Systems, LNCS 11914, p.165–177, Pisa Italy, Oct. 2019.

6. TsuyoshiGotoh, Paola Flocchini, ToshimitsuMasuzawa, andNicola Santoro, “Tight bounds

on distributed exploration of temporal graphs," Proceedings of the 23rd International

Conference on Principles of Distributed Systems, Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, p.22:1–22:16 Neuchatel Switzerland, Dec. 2019.

iv

Technical Reports

7. Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu

Masuzawa, “Exploration of dynamic tori by mobile agents," Technical Report of IEICE,

COMP2017-25, p.37–44, Oct. 2017.

Abstract

A distributed computing system consists of a collection of individual autonomous computers

that are connected through a network. The networked computers communicate with each other,

cooperate toward common tasks or solution of a shared problem, and act autonomously and spon-

taneously. Due to its scalability and flexibility, the distributed computing system has attracted

considerable attention, and is widely prevailing, for example, the Internet, wireless sensor net-

works, cloud computing, and inter-vehicle networks. As a systemmodel of distributed computing

systems, message-passing model, in which the computers communicate by sending and receiving

bounded sequences of bits, is traditionally applied in many systems. However, the design of

distributed systems based on the message passing model is growing increasingly complex as the

network becomes larger, more dynamic and diverse.

As a programming paradigm, an agent can be considered as encapsulation of data and actions

and allows a new philosophy of protocol and communication software design. This makes

algorithm design easier in mobile agent systems than in message-passing systems where nodes

communicate with each other by sending and receiving messages. As a computational universe,

an agent opens a variety of new challenging problems, and many researchers continue to study the

principles and algorithms of the mobile agent based distributed systems. So far many agent-based

algorithms have been proposed for several tasks, such as leader election, naming, locating agents,

rendezvous, stabilization, termination detection, exploration, topology recognition, black-hole

search, network decontamination, and intruder capture.

While most of the above works assume that a network is static, recent large-scale distributed

systems can no longer make such an assumption. For example, as systems become larger, they

are subject to faults or in an inter-vehicle network, the network topology changes with time due

v

vi

to the flexibility of the system caused by movement of its nodes (or its vehicle). For this reason, it

gets important to design algorithms adapting by themselves to dynamic changes, e.g., the changes

of the network topology and the faults which remove agents from the network, called crash faults

(of agents). The networks whose topology changes with time are called dynamic networks.

In this dissertation, we consider algorithms adapting to dynamic networks or crash faults.

For dynamic networks, we consider exploration which requires that all the nodes should be

visited by at least one agent. The exploration is important for solving foundational tasks because

it can be used for network maintenance, data collection, or data distribution. There are two kinds

of exploration: one is perpetual exploration (considered in Chapter 3) which requires every node

should be visited infinite times; the other is exploration with termination (considered in Chapters

4 and 5) which requires all the agents should stop their actions in finite time after every node is

visited at least once.

For crash faults, as an approach to realize agent-based algorithms for many tasks, we focus on,

in Chapter 6, simulation ofmessage-passing algorithms in mobile agent systems. Such simulation

is important in design of mobile agent systems since many message-passing algorithms proposed

so far can be utilized in mobile agent systems by the simulation.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Overview of This Dissertation . 2

1.2.1 Exploration of dynamic networks with arbitrary footprints 2

1.2.2 Exploration of dynamic tori . 4

1.2.3 Exploration of dynamic rings with (H, S) view 5

1.2.4 Fault-tolerant simulation of message-passing algorithms by mobile agents 7

1.3 Related Works . 8

1.3.1 Dynamic networks . 8

1.3.2 Graph Exploration in Static Networks 9

1.3.3 Graph Exploration in Dynamic Networks 10

1.3.4 Agents in dynamic networks . 10

1.3.5 Simulation of message-passing algorithms by agents 11

1.4 Organization of This Dissertation . 11

2 Preliminary 13

3 Exploration of Dynamic Graphs with Arbitrary Footprints 17

3.1 Introduction . 17

3.2 Preliminary . 18

3.2.1 Network . 18

3.2.2 Connectivity . 19

vii

viii CONTENTS

3.2.3 Agents . 19

3.2.4 Configuration and Execution . 20

3.2.5 Augmented Configuration and Execution 20

3.3 Exploration of Temporally Connected TVGs . 21

3.3.1 Impossibility . 21

3.3.2 Semi Synchronous Exploration by 2η(G) + 1 Agents 23

3.4 Exploration of 1-Interval Connected TVGs by Anonymous Agents 26

3.4.1 Semi-synchronous model . 26

3.4.2 Fully-Synchronous Model . 28

3.5 Exploration of 1-Interval Connected Graphs with a Leader 33

3.5.1 Semi-Synchronous Model . 34

3.5.2 Fully-Synchronous Model . 38

3.6 Conclusion . 45

4 Exploration of Dynamic Tori 47

4.1 Introduction . 47

4.2 Preliminary . 48

4.2.1 Network . 48

4.2.2 Agents . 49

4.2.3 Configuration . 49

4.3 Subroutines for 1-interval connected rings . 50

4.4 Exploration without the link presence detection in tori 54

4.4.1 Impossibility of exploration . 54

4.4.2 Exploration by ν + 2 agents . 55

4.4.3 Exploration by ν + 1 agents . 56

4.5 Exploration with the link presence detection in tori 61

4.5.1 Impossibility of exploration . 61

4.5.2 Exploration by dν/2e + 2 agents . 64

4.5.3 Exploration by dν/2e + 1 agents . 67

4.5.4 Exploration by three agents for ν = 3 72

CONTENTS ix

4.6 Concluding Remarks . 79

5 Exploration of Dynamic Rings with (H, S) view 81

5.1 Introduction . 81

5.2 Preliminary . 82

5.2.1 Network . 82

5.2.2 Agents . 83

5.3 Impossibility Result . 83

5.4 Possibility Result and Upper Bounds of Exploration Time 85

5.5 Upper Bound of Exploration Time for S ≥ N − 1 92

5.6 Lower Bound of Exploration Time . 95

5.7 Discussion . 96

5.8 Concluding Remarks . 97

6 Fault-Tolerant Simulation of Message-Passing Algorithms by Mobile Agents 99

6.1 Introduction . 99

6.2 Preliminary . 100

6.2.1 Network . 100

6.2.2 Mobile agent model . 100

6.2.3 Message-passing model . 101

6.2.4 Lower bound of move complexity . 102

6.3 Simulation of message-passing algorithms with a finite number of messages . . . 102

6.3.1 The description of a simulating algorithm 102

6.3.2 The pseudo codes . 107

6.3.3 Correctness . 111

6.3.4 Complexities . 115

6.4 Simulation of message-passing algorithms with an infinite number of messages . 117

6.4.1 Pseudo codes . 121

6.4.2 Correctness . 123

6.4.3 Complexities . 129

6.5 Concluding Remarks . 130

x CONTENTS

7 Conclusion 131

7.1 Summary of the Results . 131

List of Figures

3.1 Example of a graph for ` = 2 and k = 2` = 4 that cannot be explored by 2`

agents. There are four stars Si for 0 ≤ i ≤ 3 in the figure. Each star Si has one

center node ci and three leaf nodes {b(i,0), b(i,1), b(i,2)}. 22

3.2 Example of a graph for ` = 4 and k = 2` − 1 = 7 that cannot be explored by

2` − 1 agents and its coloring. The bold lines are the edges of E (0)8 29

3.3 Example of a graph for ` = 3 and k = 2` − 1 = 5 that cannot be explored by

2` − 1 agents with a leader. 34

3.4 Example of a graph for ` = 5 and k = 2` − 2 = 8 that cannot be explored by

2` − 2 agents with one leader. It is constructed with the graph in Figure 3.2 and

nodes u and w being connected to v2`−3. 39

4.1 Example of an ν × µ torus and Ri and Cj of the torus. 49

4.2 Impossible case without the link presence detection; ν = 4 and k = 4. 54

4.3 The configuration at the end of ArrangementLeft(j ′) at line 5 in the (µ−ν+3)-

th iteration of the for-loop at lines 4–7 for ν = 6, µ = 8, and k = 7: there are two

agents in Ri′′ and there are no agents in Vup. 59

4.4 Impossible case with the link presence detection; ν = 6 and k = 3. 62

4.5 Impossible case with the link presence detection; ν = 4 and k = 3. 63

4.6 At the end of ArrangementLeft(j ′) at line 7 in the (dµ/2e − dν/2e + 3)-th

iteration of the for-loop at lines 5–10 for ν = 7, µ = 10, and k = 5: there are two

agents in Ri′′ and there are no agents in Vup. 71

4.7 An initial configuration where one agent a is in v0,0 and two agents are in R2. . . 73

xi

xii LIST OF FIGURES

4.8 (a) Configuration at the start of MeetingV(i, j). (b) Move of agents when

(vi, j, vi−1, j) exists in the first round. (c) Move of agents when (vi, j, vi−1, j) does

not exist in the first round. (d) The move following the move of (c) when

(vi, j, vi+1, j) exists in the second round. (e) The move following the move of (c)

when (vi, j, vi+1, j) does not exists in the second round. 80

5.1 Illustrating the proof of Theorem 5.1 for the case of H + S < n and S ≥ dn/2e. . . 85

5.2 The moves of A by ExpH(t, vi) where t ′ = t + 2H ′ + |V t | − 2 in the case where vi
is the right extremity of V t . (a) At the start of ExpH(t, vi), A exists on vi. (b) If A

can reach vi′+H by moving to right by the t ′-th step, A moves to right and reaches

vi+H′ by the t ′-th step. (c) Otherwise, A moves to left and reaches vi−|V t |+1−H′ by

the t ′-th step. 87

5.3 The moves of A by ExpOne(t, vi) in the case where vi is the right extremity.

(a) Unless A sees ei appear, A moves to left. (b) If A sees ei appear before

reaching vi−H , A starts to move to right and reaches vi+1. (c) If A reaches vi−H
without seeing ei appear, A keeps moving to left until reaching vi+1 and finishes

the exploration. 89

5.4 The moves of A by ExpHalf(t, vi) where t ′ = t + n − 1 in the case where vi is

the right extremity of V t . (a) At the start of ExpHalf(t, vi), A exists on vi. (b)

If A can reach v
i+ |V t |/2 by moving to right by the t ′-th step, A moves to right and

reaches v
i+ |V t |/2 by the t ′-th step. (c) Otherwise, A moves to left and reaches

v
i+ |V t |/2 by the t ′-th step. 94

5.5 The situation where A exists on vi at the t-th step (vi is the right extremity of V t).

The adversary deletes ei+H−1 until the (t + |V t | + H − 1)-th step in this situation. 96

6.1 An example where Conditions 1 and 2 leave an undelivered message. 104

6.2 An example where the locking mechanism are applied. White nodes are locked. . 106

6.3 An examplewhere the algorithmproposed in Section 6.3 cannot simulatemessage-

passing algorithm Zinf . 117

6.4 An example without sharing the number of delivered messages where ` = 3. In

this case, x remains locked with an undelivered message msg4. 119

LIST OF FIGURES xiii

6.5 An example with sharing the number of distinct delivered messages where ` = 3. 120

6.6 An example where an agent can deliver message while another agent has already

returned. In this case, v remains locked with an undelivered message msg2. . . . 120

xiv LIST OF FIGURES

List of Tables

3.1 Tight bounds on the number of agents. 18

4.1 Exploration time on dynamic tori. 48

5.1 Upper and lower bounds of the exploration time on 1-interval connected rings. . 82

xv

xvi LIST OF TABLES

List of Algorithms

3.1 Computation at node v . 24

3.2 Computation at node v . 32

3.3 Computation of the leader at node v . 36

3.4 Computation of a non-leader at node v . 37

3.5 Computation of a non-leader at node v . 42

4.1 ExplorationUp . 51

4.2 ArrangementUp(i) . 53

4.3 Exploration by ν + 2 agents . 55

4.4 Exploration by ν + 1 agents . 57

4.5 ArrangementV(i) . 65

4.6 Exploration by dν/2e + 2 agents . 66

4.7 Exploration by dν/2e + 1 agents . 68

4.8 ExplorationUp(j) . 74

4.9 ArrangementV_3(i) . 74

4.10 MeetingV(i, j) . 76

4.11 Exploration by three agents for ν = 3 and µ ≥ 5 78

5.1 ExpH(t, vi) . 86

5.2 ExpOne(t, vi) . 88

5.3 Exploration algorithm for H + S ≥ n . 91

5.4 ExpHalf(t, vi) . 93

5.5 Exploration algorithm for S ≥ n − 1 . 95

6.1 Simulation algorithm for Z . 109

xvii

xviii LIST OF ALGORITHMS

6.2 Deliver() . 111

6.3 GoBack(p) . 112

6.4 Process(msg, p) . 112

6.5 Simulation algorithm for Zinf . 122

6.6 DeliverInit() . 123

6.7 DeliverInf() . 124

6.8 GoBackInf(p) . 125

6.9 ProcessInf(msg, p) . 126

Chapter 1

Introduction

1.1 Background

A distributed computing system consists of a collection of individual autonomous computers

that are connected through a network. The networked computers communicate with each other,

cooperate toward common tasks or solution of a shared problem, and act autonomously and spon-

taneously. Due to its scalability and flexibility, the distributed computing system has attracted

considerable attention, and is widely prevailing, for example, the Internet, wireless sensor net-

works, cloud computing, and inter-vehicle networks. As a systemmodel of distributed computing

systems, message-passing model, in which the computers communicate by sending and receiving

bounded sequences of bits, is traditionally applied in many systems. However, the design of

distributed systems based on the message passing model is growing increasingly complex as the

network becomes larger, more dynamic and diverse.

As a programming paradigm, a mobile agent (or simply agent) can be considered as encapsu-

lation of data and actions and allows a new philosophy of protocol and communication software

design. This makes algorithm design easier in mobile agent systems than in message-passing

systems where nodes communicate with each other by sending and receiving messages. As a

computational universe, an agent opens a variety of new challenging problems, and many re-

searchers continue to study the principles and algorithms of the mobile agent based distributed

systems. So far many agent-based algorithms have been proposed for several tasks, such as leader

1

2 CHAPTER 1. INTRODUCTION

election, naming, locating agents, rendezvous, stabilization, termination detection, exploration,

topology recognition, black-hole search, network decontamination, and intruder capture [1].

While most of the above works assume that a network is static, recent large-scale distributed

systems can no longer make such an assumption. For example, as systems become larger, they are

subject to faults or in an inter-vehicle network, the network topology changes with time due to the

flexibility of the system caused by movement of its nodes (or its vehicle). For this reason, it gets

important to design algorithms adapting by themselves to dynamic changes, e.g., the changes of

the network topology and the faults which remove an agent from the network, called crash faults

(of agents). The networks whose topology changes with time are called dynamic networks.

1.2 Overview of This Dissertation

In this dissertation, we consider algorithms adapting to dynamic networks or crash faults.

For dynamic networks, we consider exploration which requires that all the nodes should be

visited by at least one agent. The exploration is important for solving foundational tasks because

it can be used for network maintenance, data collection, or data distribution. There are two kinds

of exploration: one is perpetual exploration (considered in Chapter 3) which requires every node

to be visited infinitely many times; one is exploration with termination (considered in Chapters 4

and 5) which requires all the agents to stop their actions in finitely many times after every node

is visited at least once.

For crash faults, as an approach to realize agent-based algorithms for many tasks, we focus

on, in Chapter 6, simulation of message-passing algorithms in mobile agent systems. Such a

simulation is important in design of mobile agent systems sincemanymessage-passing algorithms

proposed so far (e.g. those in [2, 3]) can be utilized in mobile agent systems by the simulation.

1.2.1 Exploration of dynamic networks with arbitrary footprints

In Chapter 3, we consider perpetual exploration by mobile agents in the most general dynamic

networks, that is, whose underlying topology is arbitrary and whose dynamic changes are least

restrictive. Actually, the dynamic changes only guarantee, for any two nodes, by choosing its path

cleverly, an agent can always reach one of the nodes from the other nodes. The dynamic networks

1.2. OVERVIEW OF THIS DISSERTATION 3

satisfying the condition is said temporally connected.

We focus on solvability of the exploration of such dynamic networks, and specifically on the

number of agents that are necessary and sufficient for exploration under different assumptions on

synchrony, the Fsync and Ssync.

Clearly, if the graph is not temporally connected, exploration is trivially impossible to achieve.

We thus start our investigation with the classH of temporally connected dynamic networks. We

first prove that the number of agents sufficient to perform exploration is related to the number of

its transient edges which eventually cease to appear, a parameter η(G) we call evanescence of the

network. More precisely, we prove that any G ∈ H can be explored by a team of k ≥ 2η(G) + 1

identical agents. We show that this bound is tight by proving that there are G ∈ H that cannot be

explored by 2η(G) agents.

The impossibility holds under very strong conditions: Fsync scheduler, agents and nodes

with distinct IDs, knowledge on n and k, unbounded-size whiteboards. On the other hand, the

proposed exploration algorithm works under very weak conditions: Ssync scheduler (under the

weakest transport condition), anonymous agents, no knowledge of topological parameters, and

O(log δv) bits whiteboard at node v (where δv denotes the degree of v in the footprint of the

dynamic network). Our exploration algorithms are based on the classical rotor router technique,

which was introduced as a deterministic alternative to random walk and was studied in a variety

of contexts including static graph exploration (e.g., [4, 5, 6, 7, 8]).

We then turn our attention to the stronger assumption on the dynamics of the network, 1-

interval connectivity: the network is always connected. LetW(`) ⊂ H be the class of these

always-connected dynamic networks where the number of missing edges at each time is at most

`.

We start by considering the case of anonymous agents. We first prove a tight bound of 2` + 1

agents under the Ssync scheduler. The proposed algorithm performs exploration even if the

network size and the number of agents are not known, and with the weakest transport condition;

the impossibility with 2` agents holds even if the network size and the number of agents are

known and with whiteboards of unbounded-size.

We then clarify a difference between Fsync and Ssync when the network size and the number

of agents are known. In fact, in this case, we show a tight bound of 2` for Fsync, which is smaller

4 CHAPTER 1. INTRODUCTION

by one than that forSsync. Moreover, we show that with 2`+1 agents explorationwith termination

is possible in Fsync.

Finally, we consider the case of non-anonymous agents, assuming the presence of a leader

agent. While the lower bound on the number of agents needed for the exploration of H holds

regardless of the existence of a leader, we prove that non-anonymity has an impact on the

exploration of W(`). In fact, by exploiting the presence of a leader, the tight bound on the

number of agents decreases by one both in Fsync and in Ssync. Moreover, we show that, with a

leader, 2` agents can explore with termination in Fsync.

Our results indicate, among other things, that the much weaker condition of semi-synchrony

(with respect to full-synchrony) is enough to undermine the advantages provided by the much

stronger connectivity assumption ofW (with respect toH). Indeed, when considering the class

H(`) of temporally connected graphs with at most ` transient edges and the classW(`) ⊂ H(`)

of `-bounded 1-interval connected network, we have that the bound on the number of agents for

H(`) is the same as the one forW(`) for Ssync, while the two differs by one in the case of

Fsync.

1.2.2 Exploration of dynamic tori

In Chapter 4, we consider the influence of a very weak view, focusing on exploration with

termination on ν × µ dynamic tori under the settings of full synchrony and globally-consistent

node labelings. An agent with the view can see which incident links of its current node is present

at the current time. Such a view is called the link presence detection. Note that in Chapter 3,

exploration by agents without any view (agents cannot see any information about the presence

of links) is considered. A torus is a natural extension of rings and grids which have many

applications and it is worth considering. We consider an ν × µ dynamic torus with a constraint,

that is, each graph appearing in a TVG is a torus consisting of ν row rings and µ column rings

where each ring is 1-interval connected. The notion of 1-interval connected is that every static

graph in TVG is connected. Note that the dynamic torus is 1-interval connected and is a strict

subset of 1-interval connected tori.

We analyze the necessary and sufficient number of agents to explore a dynamic torus and

present time-optimal exploration algorithms in a variety of settings. Especially, we consider

1.2. OVERVIEW OF THIS DISSERTATION 5

exploration with and without the link presence detection: an agent can detect which incident links

of the current node are present or not before determining its next move.

Without the link presence detection, we prove that ν + 1 agents are necessary and sufficient

to explore the ν × µ dynamic torus (3 ≤ ν ≤ µ). We propose two algorithms for this setting.

One is an algorithm by which ν + 1 agents explore the ν × µ dynamic torus in O(νµ(µ − ν + 1))

rounds. This algorithm is optimal with respect to the number of agents. Moreover, the algorithm

is asymptotically optimal with respect to the time complexity when µ − ν = O(1). The other one

is an algorithm by which ν + 2 agents explore the ν × µ dynamic torus in O(νµ) rounds. This

algorithm is asymptotically optimal with respect to the time complexity. We can see a trade-off

between the number of agents and time complexities: ν + 2 agents can explore the ν × µ dynamic

torus faster than ν + 1 agents.

With the link presence detection, we prove that dν/2e + 1 agents are necessary and sufficient

except for ν = 4 and dν/2e + 2 agents are necessary and sufficient for ν = 4 to explore the

ν × µ dynamic torus. We propose two algorithms for this setting. One is an algorithm by which

dν/2e + 1 agents explore the ν × µ dynamic torus in O(νµ(µ − ν + 1)) rounds. This algorithm is

optimal with respect to the number of agents. Moreover, the algorithm is asymptotically optimal

with respect to the time complexity when µ − ν = O(1). The other one is an algorithm by

which dν/2e + 2 agents explore the ν × µ dynamic torus in O(νµ) rounds. This algorithm is

asymptotically optimal with respect to the time complexity. For this case, we can see a similar

trade-off between the number of agents and time complexities: dν/2e + 2 agents can explore the

ν × µ dynamic torus faster than dν/2e + 1 agents.

1.2.3 Exploration of dynamic rings with (H, S) view

In Chapter 5, we further investigate the influence of a partial view.

Most of the works about the exploration of dynamic networks consider two extreme cases:

an agent has the a priori complete knowledge about changes of all the links for all the future time

steps [9, 10, 11, 12]; or an agent can only see whether the links adjacent to its current node are

present or not at the moment [13, 14, 15, 16, 17]. The former one models the situation where

the network changes are completely predictable as the public transportation networks in which

the network changes are introduced by totally scheduled movements of the nodes. The latter one

6 CHAPTER 1. INTRODUCTION

models the situation where the network changes are caused by unscheduled events, for example,

faults or unscheduled movements of the nodes.

Although the above twomodels are plausible and also theoretically important, the intermediate

model, i.e., an agent with partial information or, in other words, capability to know link changes

within some distance in the near future should be considered due to the following reasons: even in

the totally scheduled situation (if exists), computing all the future changes often costs computation

time and it is desirable to compute only the necessary information to solve a problem to save

computing time or memories; the ability of an agent to monitor whether there are faults or

environmental changes roughly depends on the quality (or costs) of its sensor and it can save

some costs to compute only the necessary information for a problem. Moreover, such a model is

so interesting from a theoretical viewpoint: how the amount of information available for an agent

influences the solvability or the time complexity of problems.

In Chapter 5, we consider the exploration of dynamic networks by a single agent with partial

information about network changes. As a first step in this research direction, we focus on 1-

interval connected rings as dynamic networks. To formalize the concept of partial information

and analyze its influences, in this chapter, we first propose the (H, S) view such that the agent

with the view can see the link scheduling (when and which links disappear or appear) of the links

within H hops from its location for S time steps from the current time. Then, we consider how

the value of H or S influences the possibility or the time complexity of the exploration by a single

agent of 1-interval connected rings in which at most one link is missing at each time step. While

the 1-interval connected rings are probably too restrictive from a practical point of view, they are

adequate targets to investigate in the novel direction as investigated in many works (e.g., in the

field of mobile agents on dynamic networks, [11, 15, 18, 19, 20, 21] consider 1-interval connected

rings).

For the proposed model, we show that H+S ≥ n and S ≥ dn/2e (n is the size of networks) are

the necessary and sufficient conditions to explore 1-interval connected rings by a single agent. We

also show that in the case where the above conditions holds, the exploration can be achievedwithin

O(n2) time if 2H ′−1 > S or otherwiseO(n2/H+nH) time where H ′ = min(H, bn/2c). Moreover,

we show that when S ≥ n − 1, the exploration time can be reduced to O(n2/H + n log H). This

leads to O(n log n) time when H = Θ(n/log n). Finally, we show a lower bound of the exploration

1.2. OVERVIEW OF THIS DISSERTATION 7

time, Ω(n2/H), for any S. This implies that we have tight bound Θ(n2/H) when H + S ≥ n,

max(dn/2e, 2H ′ − 1) ≤ S, and H is O(n0.5) and when S ≥ n − 1 and H = O(n/log n).

1.2.4 Fault-tolerant simulation of message-passing algorithms by mobile agents

In Chapter 6, we turn our attention to simulation algorithms in the network where crash faults

happen. We propose two fault-tolerant simulating algorithms by k asynchronous agents with

distinct IDs. The algorithms have fewer numbers of agent moves than the previous work [22].

We classify message-passing algorithms into two types depending on whether they eventually

terminate (with a finite number of messages) or they never terminate (with an infinite number

of messages). The first class contains algorithms for spanning tree construction, coloring and so

on, and the second class contains mutual exclusion, token circulation and so on. Our algorithms

assume at most f agents crash for a given f ≤ k − 1 (in the analysis, when f is not given, f is

replaced by k − 1).

For themessage-passing algorithmswith a finite number ofmessages, we propose a simulating

algorithm with O((m + M) f) total agent moves and thus O(f) agent moves per message when

m = O(M) where m is the number of links and M is the number of messages of the simulated

algorithm. Note that because crashed agents cannot be distinguished from those moving very

slowly in asynchronous systems (where the time required to move along a link is unbounded

and unpredictable), every message should be delivered by f + 1 agents and every link should be

passed by f + 1 agents to tolerate f faulty agents in the worst case. This means our algorithm is

asymptotically optimal concerning of the number of agent moves.

The improvement in the number of agent moves from [22] is achieved by adopting a different

strategy to determine the order in delivering messages. Intuitively, we adopt the depth-first

simulation while the previous one adopts the breadth-first one. More precisely, the previous

algorithm simulates the synchronous execution of a message-passing algorithm. To realize a

synchronous round, each agent traverses the network to find messages to transfer in the round,

which requires O(n) redundant moves per message in the worst case. To avoid such redundant

moves, our algorithm traces a message to find another message to transfer. That is, the algorithm

allows each agent to deliver messages in the depth-first fashion; when an agent visits a node with

carrying a message (to deliver it to the node) and finds another message to transfer from the

8 CHAPTER 1. INTRODUCTION

node, it takes the message and transfers it to the destination node. Note that these two simulating

algorithms simulate different executions of the message-passing algorithm, each of which is a

possible execution.

For message-passing algorithms with an infinite number of messages, the above depth-first

strategy does not work: agents may trace an infinitely long message chain and messages not

on the chain (if exist) are never delivered. Thus, we propose another simulating algorithm that

delivers messages based on the above depth-first strategy but with a limited number of message

deliveries. By repeating such depth-first deliveries with a limited number of message deliveries,

the algorithm can make simulation with O(f) agent moves per message. As for this algorithm,

the number of agent moves per message is asymptotically optimal.

1.3 Related Works

1.3.1 Dynamic networks

In the recent (and now pervasive) generation of highly dynamic networks, the topological changes

are not sporadic or anomalous; rather they are extensive, continuous, inherent in the nature of the

network. These networks, variously called delay-tolerant, disruptive-tolerant, challenged, epi-

demic, opportunistic, have been long and extensively investigated by the engineering community

and, more recently, by distributed computing researchers. Various models have been proposed to

describe some of their aspects, under a variety of names. A unifying model that describes these

networks in a simple and natural way is the one of time-varying graph (TVG), formally defined in

[23], where main classes of systems studied in the literature and their computational relationship

were identified.

When time is assumed to be discrete (i.e., the system is synchronous), the dynamics of the

network can be equivalently described as a sequence of static graphs, 〈G0,G1,G2, ...〉, called

evolving graph or temporal graph, where Gi describes the topology of the network at time t = i;

this representation was originally suggested in [24] and first formalized in [25]. Each Gi is called

a snapshot, while the aggregate graph G = ∪i{Gi} is called the footprint of the temporal graph.

Computations in temporal graphs have been investigated in distributed computing quite ex-

tensively. If the dynamics of the changes is arbitrary and unrestricted, clearly any non-trivial

1.3. RELATED WORKS 9

computation is unfeasible and any non-trivial problem is unsolvable. Hence, all the studies are

carried out under some assumptions restricting the arbitrariness of the dynamics.

The minimal (i.e., less restrictive) assumption is temporal connectivity: starting at any time,

from any node there exists a temporal path, called journey, to any other node (e.g., [13, 14, 26, 27]).

Let us stress that, if temporal connectivity does not hold, any non-trivial task and computation is

impossible.

Stronger assumptions include periodicity : the network is temporally connected and there

is (a known) p > 1 such that, for all i ≥ 0, Gi = Gi+p (e.g., [11, 28, 29, 30, 31]); 1-interval

connectivity : every Gi is connected (e.g., [32, 33, 34]); and T-interval connectivity : for every i,

the graphs Gi,Gi+1, ...,Gi+(T−1) contain the same spanning-tree (e.g., [11, 32]). A classification

of the most common assumptions was done in [23].

1.3.2 Graph Exploration in Static Networks

The exploration problem, first introduced by Shannon [35], is a fundamental problem in theoretical

computer science, in particular in the field of distributed computing by mobile entities. It requires

each node of the graph to be visited by one or more mobile computational entities, called agents,

a finite number of times (exploration with termination) or infinitely often (perpetual exploration).

In addition to its theoretical importance, exploration is relevant from a practical viewpoint in

networked systems supporting mobile entities (e.g., software agents, vehicles, or robots): by

visiting all nodes, agents can check whether there are some nodes with problems in the network,

propagate some data across the network, or collect (or search) specific information from the whole

network.

This problem has been extensively studied over a variety of assumptions and settings de-

pending on whether the nodes have distinct labelings or are anonymous, on whether the agents

have Ids or are anonymous, the type of mechanism available to the agents for interaction or

communication (i.e., whiteboards, tokens, face-to-face, vision), on the degree of synchronization

(i.e., asynchronous, semi-synchronous, fully-synchronous), on the level of knowledge the agents

have about the graph, on their memory, etc. (e.g., see [36, 37, 38, 39, 40, 41, 42, 43, 44], and [45]

for a recent survey). In spite of all the differences, the existing literature has until very recently

made a common assumption: the graph is static, i.e., the link structure does not change during

10 CHAPTER 1. INTRODUCTION

the exploration. Static graphs are a common representation of traditional networks, where the

changes are typically due to failures; such graphs however fail to describe the new generation of

infrastructure-less highly dynamic networks.

1.3.3 Graph Exploration in Dynamic Networks

Many results on exploration of Dynamic Networks are centralized (or off-line); that is, they

assume that the exploring agents have complete a priori knowledge of the topological changes

and the times of their occurrence. They include: the study of the complexity of computing a

foremost exploration schedule under the 1-interval-connectivity assumption [46], generalized and

extended in [10] and then in [12]; the computation of an exploration schedule for rings under the

stronger T-interval-connectivity assumption [11]; the computation of an exploration schedule for

cactuses under the 1-interval-connectivity assumption [9].

Fewer studies use a decentralized (i.e., distributed) approach. On the probabilistic side, there

is an early seminal work on random walks [47] and a recent work [48]. On the deterministic

side, exploration has been studied under particular constraints on the network connectivity and

on its underlying topology. Exploration with termination by a single agent of periodic temporal

networks, including carrier networks, has been studied in [11, 28, 29, 30]. Perpetual exploration

by three agents on temporally connected rings has been studied in [13, 14]. Exploration with

termination of 1-interval connected rings by two and three agents has been studied in [15], where,

in addition to the traditional fully-synchronous (Fsync) scheduler (where all the agents are active

at every round), they considered also the semi-synchronous (Ssync) scheduler where only a subset

of the agents is active at each round.

1.3.4 Agents in dynamic networks

The problems other than exploration are also considered on dynamic networks, summarized in

[49]; gathering on 1-interval connected rings [18, 21] which requires all the agents to gather at one

node or at adjacent two nodes; dispersion [50] which stipulates that every node must be occupied

by exactly one agent where the number of agents is the same as that of nodes on permuting rings

in which the nodes may be permuted at each time step, i.e., the neighbors of a node may change

1.4. ORGANIZATION OF THIS DISSERTATION 11

at each time step while the topologies are rings or paths at each time step; patrolling on 1-interval

connected rings [19] which requires the maximum length of the interval between two visits to a

node to be minimized; compacting on 1-interval connected rings [20] which stipulates that all the

agents in a network must be located in a continuous part of the ring and at each node there exists

at most one agent.

1.3.5 Simulation of message-passing algorithms by agents

The agent model and the message-passing model have been compared for the first time in [51]

from a systems engineering point of view. The fact that any mobile agent algorithm can be

simulated in message-passing model has been proved in [52], which immediately implies that

all the impossibility results under the message-passing model, also hold for the agent model.

Recently, simulation in the other direction was shown in [53]. These results imply that the two

models are computationally equivalent. In [54], a simulation algorithm was proposed to simulate

a message-passing algorithm for the leader-election. The simulation in a fault-tolerant manner

was proposed for the first time in [22]. They propose two algorithms to simulate message-passing

algorithms by k asynchronous agents where at most k −1 of them crash. One algorithm simulates

a message-passing algorithm with O((m + nM)k) total agent moves by agents having distinct IDs

and with O(nk) agent moves per message when m = O(nM), where m is the number of links, n

is the number of nodes and M is the number of messages created in the simulated execution of

the message-passing algorithm. Another algorithm simulates a message-passing algorithm with

O((m + nk)M) total agent moves by anonymous agents (or agents without IDs).

1.4 Organization of This Dissertation

This dissertation consists of seven chapters. In Chapter 2, we describe definitions of our system

model, agent model, and each problem. In Chapter 3, we propose algorithms to solve the g-partial

gathering problem in ring networks. In Chapter 4, we propose algorithms to solve the g-partial

gathering problem in tree networks. In Chapter 5, we propose algorithms to solve the uniform

deployment problem in ring networks. In Chapter 6, we propose fault-tolerant agent algorithms

simulating message-passing algorithms. We conclude this dissertation in Chapter 7.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary

In this chapter, we describe a general definition of a network model, an agent model, and the

exploration problem.

Network and Agent. A network is modeled as a undirected, connected, and simple graph

G = (V, E), where V is a set of nodes and E is a set of links (or edges). We use a link and an

edge interchangeably in the following chapters. We denote the number of nodes by n (= |V |) and

the number of links by m (= |E |). A link connecting v and u is denoted as evu or (v, u). Let E(v)

denote the set of links incident to node v, let δv (or degv) = |E(v)| be the degree of node v, and

let ∆ = maxv{δv} be the maximum degree of G. Each link incident to node v is locally labeled

by a bijection λv : E(v) → {0, . . . , δv − 1}; no other assumption is made about the label. Using

these labels, an agent in v distinguishes the neighbors of v.

A dynamic network is modeled as a time-varying graph (TVG), G = (V, E,T, ρ), where T is

the temporal domain, and ρ : E ×T→ {0, 1}, called presence function, indicates whether a given

link is available at a given time. In this dissertation, for dynamic networks, we always assume

discrete time, that is, T = Z∗. When we consider G, the graph G = (V, E) is also called underlying

graph (or footprint) of G. When or which links are deleted is determined by an adversary. The

adversary can see the contents of the memory of nodes and agents, knows the agent’s algorithm

and deletes links under the given restriction to prevent agents from completing their goal.

A set A = {a0, a1, . . . , ak−1} of k agents operates in G, initially occupying arbitrary positions.

Each agent a ∈ A is a computational entity endowed with private memory (called notebook), and

13

14 CHAPTER 2. PRELIMINARY

capable of moving from a node to a neighboring node (in dynamic networks, provided that the

link between the nodes exists at the time). A node v has buffer space for each link to store at most

one agent, called a port or a room. An agent in a node v can write to and read from memory space

of v when v has such memory space. Such memory space (writable and readable for agents) in a

node is called a whiteboard.

In a dynamic network, an agent sometimes use a view. The view contains information of

presence nearby links in near future, i.e., an agent with a view can see when and which links are

present. How long ahead and/or how far an agent can see by the view depends on models and is

specified in each chapter when we use it.

An agent iteratively makes the following actions, Look, Compute, Move in this order. The

details of each action are as follows:

Look: Agent ai observes the content of its notebook and, if any, the contents of the whiteboard

and the ID of the node where it currently resides which is also called its current node. It

also checks the node memory, its location and the ports of the node to determine if there

are other agents at this node and where (e.g., which ports). If a view is given, it sees when

and which links are present using its view.

Compute: On the basis of the information obtained in the Look phase, ai decides whether to

move or not, and it can update the whiteboard of the current node. If it decides to move, it

places itself in correspondence of the selected port (if it is not occupied by another agent).

Move: If ai is at a port, it tries to move; (in a dynamic network) if the corresponding link exists,

ai reaches the other side, otherwise it stays on the port. If ai does not occupy a port, it does

not move.

Look and Compute phases are executed as an atomic action. Atomic actions of agents in

the same node are executed with mutual exclusion access to the whiteboard. The order of actions

of agents is determined by an adversary.

If all the agents complete exactly one cycle of Look-Compute-Move in every specified time

unit, we say that agents are activated fully synchronously and call the model Fsync. If a subset

of agents completes exactly one cycle of Look-Compute-Move and agents not in the subset do

15

nothing in every specified time unit, we say that agents are activated semi-synchronously and call

the model Ssync. Otherwise, we say that agents are activated asynchronously and call the model

Async. In Fsync and Ssync model, we call a specified time unit a round. Note that in Fsync

and Ssync model, at most one agent moves through each edge in every round from the definition.

Exploration. We say that a node v is visited at round t if v has an agent at the beginning of t

and that a node v is visited by round t if v is visited at round t ′ for some t ′ (0 ≤ t ′ ≤ t). We say

that the network is explored by round t if every node is visited by round t.

A perpetual exploration algorithm is one where, in every execution, every node is visited at

an infinite number of rounds. An exploration with termination algorithm is one where, in every

execution, all the agents terminate after all nodes have been visited at least once.

16 CHAPTER 2. PRELIMINARY

Chapter 3

Exploration of Dynamic Graphs with
Arbitrary Footprints

3.1 Introduction

In this chapter, we consider the problem of exploring temporal graphs of arbitrary unknown

topology. We study the feasibility of exploration, under both the fully synchronous (Fsync) and

semi-synchronous (Ssync) activation schedulers, focusing on the number of agents necessary and

sufficient to explore such graphs.

We first consider the minimal (i.e., less restrictive) assumption on the dynamics of the graph

under which exploration is still feasible: temporal connectivity. LetH be the class of temporally

connected graphs; we show that for any temporal graph G ∈ H the number of anonymous agents

sufficient to perform exploration is related to the number of its transient edges, a parameter η(G)

we call evanescence of the graph. More precisely, any G ∈ H can be explored by k ≥ 2η(G) + 1

anonymous agents; this bound is tight as we prove there are G ∈ H that cannot be explored by

2η(G) agents.

We then turn our attention to the well-known stronger assumption on the dynamics of the

graph, called 1-interval connectivity: the graph is connected at any time step. LetW ⊂ H be

the class of these always-connected temporal graphs. For this class, we prove the existence of a

difference between Fsync and Ssync and between anonymous and non-anonymous agents when

17

18 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

there is a bound ` on the number of edges missing at each time. In fact, we first show a tight

bound of 2` + 1 on the number of anonymous agents necessary and sufficient in Ssync, and a

smaller tight bound of 2` in Fsync. We then turn to agents with a leader, where we provide a

tight bound of 2` on the number of agents necessary and sufficient in Ssync, and a smaller tight

bound of 2` − 1 in Fsync.

The results are summarized in Table 3.1

Table 3.1: Tight bounds on the number of agents.

anonymous with leader

Temporally connected: H Fsync, Ssync 2η + 1 2η + 1

`-bounded 1-interval : W(`)
Ssync 2` + 1 2`

Fsync 2` 2` − 1

3.2 Preliminary

3.2.1 Network

In this chapter, we consider the perpetual exploration of dynamic networks with arbitrary foot-

prints, i.e., G = (V, E) is arbitrary. The nodes in V are anonymous (i.e., they have no IDs).

A journey is a temporal walk in G and it is defined as a sequence of couples J = {(e1, t1),

(e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek} is a walk in G and ∀i, 1 ≤ i < k, ρ(ei, ti) = 1 and

ti+1 > ti. Let J(u, v, t) denote the set of journeys from u to v starting at time t ′ ≥ t.

In this case, the TVG G of discrete time is usually called temporal graph (or evolving graph),

and can be viewed as a sequence of static graphs: SG = G0,G1, . . . ,Gt, . . ., where Gt = (V, Et)

is the graph induced by the edges present at time t (called snapshot of G at time t). We denote by

Ēt = E \ Et (⊆ E) the set of edges that do not appear in the snapshot at time t.

An edge e ∈ E is said to be recurrent if ∀t ∈ Z+, ∃t ′ > t : ρ(e, t ′) = 1; in other words,

a recurrent edge appears infinitely often. An edge e ∈ E that is not recurrent is said to be

transient; in other words, a transient edge appears only in a finite number of snapshots. Let E∗

and E− denote the set of recurrent and of transient edges, respectively; the number σ(G) = |E∗ |

3.2. PRELIMINARY 19

of recurrent edges is called the solidity of G; while the number η(G) = |E− | = |E | − σ(G)) of

transient edges is called the evanescence of G.

3.2.2 Connectivity

Temporal graphs can be clasified in terms of the effect that the dynamic topological changes have

on their connectivity. In this chapter, we consider the following connectivities.

Definition 3.2.1 (Temporally Connected). A temporal graph G is temporally connected (or

connected over time) if ∀t ∈ Z+, ∀u, v ∈ V , J(u, v, t) , ∅.

Note that temporal connectivity is the minimal condition to be able to perform any global task

when an adversary determines the initial locations of agents; in particular, any problem requiring

every node to be involved (e.g., exploration) is trivially unsolvable ifG is not temporally connected.

LetH denote the class of temporally connected TVGs.

A variety of stronger assumptions have been studied in the literature. In this chapter we

are interested also in the well-known class of temporal graphs where connectivity is actually

guaranteed at every time, and in particular when the number of missing edges at any given time

is bounded.

Definition 3.2.2 (`-Bounded 1-Interval Connected). A temporal graph G is 1-interval connected

(or always connected) if ∀Gi ∈ SG , Gi is connected. Moreover, G is `-bounded 1-interval

connected if it is always connected and |Ēt | ≤ `.

LetW(`) ⊂ H denote the class of `-bounded 1-interval connected temporal graphs.

3.2.3 Agents

Aset Aof k agents initially occupies arbitrary positions. When the agents are all undistinguishable,

we say that they are anonymous; if one of them is different from all the others, we say that they

have a leader (and are not-anonymous).

When at a node v, an agent has access to the node’s ports and rotor-router mechanism. More

precisely, in correspondence of each edge e ∈ E(v), there is in v a port pi where i = λv(e),

used by agents (at most one at a time) intending to leave v through e. Additionally, v provides

20 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

a rotor-router mechanism, which indicates one of the ports; this indication, called a pointer, can

be read and modified by the agents; access to this mechanism is in fair mutual exclusion. This

mechanism is implemented by a whiteboard of O(log δv) bits in the following.

In Ssync, the scheduler is an adversary which knows the algorithm of the agents, has infinite

computing capacity, and tries to prevent agents from completing their task; however, it must

activate every agent infinitely often. An agent which is not activated at round t is said to be

sleeping at that round. The length of the sleeping time is finite but unbounded.

Under the semi-synchronous scheduler, it is necessary to specify the behavior of the agents

that fall asleep on a port when the corresponding edge is missing. We consider the weakest

condition, eventual transport, according to which the agent sleeping at a port will eventually be

activated at a time when the edge corresponding to the port is present; this prevents the adversary

from using semi-synchronicity to block an agent forever on a recurrent edge.

In this chapter, every agent has no view, i.e., an agent cannot use the information about when

and which links are deleted at all.

3.2.4 Configuration and Execution

A configuration Ct is defined by: the contents of the whiteboards, the local memory of the agents,

and the locations of the agents at the start of round t.

An execution E(A) = C0C1 . . . of an algorithm A is an infinite sequence of configurations

such that C0 is an initial configuration (i.e., a configuration at round 0) and Ct+1 is obtained from

Ct by executing one round of algorithm A. This execution is subject to two types of adversarial

actions: those by the activation scheduler deciding which agents are activated in that round, and

those of the topological scheduler deciding which edges are missing in that round. When no

ambiguity arises, we use E instead of E(A).

3.2.5 Augmented Configuration and Execution

We use an augmented configuration and an augmented execution in Sections 3.4.2 and 3.5.2. To

define an augmented configuration, we introduce variable visitedv for all v ∈ V which is written

and read only by an external observer. The initial value of visitedv is 0. When v is visited, visitedv

3.3. EXPLORATION OF TEMPORALLY CONNECTED TVGS 21

is set to 1 by the external observer.

Then, an augmented configuration Caug
t is defined by: configuration Ct and the value of

visitedv of every node v at round t. We say that an augmented configuration is terminal when

visitedv = 1 for any node v.

An augmented execution Eaug(A) = Caug
0 Caug

1 . . .Caug
r is a sequence of augmented config-

urations such that Caug
0 is an initial augmented configuration; Caug

t+1 is obtained from Caug
t by

executing one round of algorithm A; Caug
r is a unique terminal configuration in Eaug. An aug-

mented execution is also subject to the two types of adversarial actions. Note that the agents

may keep executing A after round r , but augmented configurations after round r are ignored in

Eaug. When no ambiguity arises, we use Eaug instead of Eaug(A) and an “execution” instead of

an “augmented execution”.

3.3 Exploration of Temporally Connected TVGs

In this section, we consider theminimal class of explorable temporal graphs: temporally connected

TVGs, and we show that the feasibility of the exploration of G is related to its evanescence η,

providing a tight bound of 2η(G) + 1 agents.

3.3.1 Impossibility

Let H(`) = {G ∈ H : η(G) ≤ `} be the class of temporally connected TVGs with evanescence

at most `. In this section we show that it is impossible to perform perpetual exploration of all

G ∈ H(`) with 2` agents. The result is quite strong as it applies also to TVGs that are connected

at every time step, with uniquely labeled nodes and agents, under a fully-synchronous scheduler,

and in presence of topological knowledge.

Theorem 3.3.1. There exist temporally connected time-varying graphs G ∈ H(`) that cannot be

explored by k = 2` agents. The result holds even if nodes and/or agents have distinct IDs, the

network is always connected, the agents n, m or k, and the scheduler is fully-synchronous.

Proof. We show the theorem by constructing a graph G ∈ H(`) that cannot be explored by 2`

agents by any algorithm. The main point of this proof is that an agent can eventually have only

22 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

one of these two behaviors when wishing to traverse an edge that is missing: (i) the agent stays

permanently on the chosen port, waiting for the appearance of the continuously missing edge;

(ii) the agent eventually chooses a different edge. The agents of the former type are called (with

respect to the number of changes of a selected edge) finite agents and those of the latter are infinite

agents.

The components for constructing the graph are as follows. For 0 ≤ i ≤ 2` − 1 (= k − 1), let

Si be a star with center node ci and 3 leaf nodes {b(i,0), b(i,1), b(i,2)}. We construct the graph using

Si for 0 ≤ i ≤ 2` − 1 and an additional node u.

Each component is connected as follows. For 0 ≤ i ≤ 2` − 1 and j ∈ {0, 1}, each b(i, j) is

connected with u by edge (b(i, j), u); and for 0 ≤ i ≤ ` − 1, each b(2i,2) connected with b(2i+1,2) by

(b(2i,2), b(2i+1,2)). A graph for ` = 2 (k = 4) is depicted in Figure 3.1.

Figure 3.1: Example of a graph for ` = 2 and k = 2` = 4 that cannot be explored by 2` agents.

There are four stars Si for 0 ≤ i ≤ 3 in the figure. Each star Si has one center node ci and three

leaf nodes {b(i,0), b(i,1), b(i,2)}.

For the constructed graph, we first show that, given any exploration algorithm using 2` agents,

the adversary can construct an execution for the algorithm such that in the execution G cannot be

explored while the adversary may violate the restriction of H(`), i.e., η(G) may be more than `.

Then, we give a way to convert the execution into another execution such that η(G) is at most ` in

the new execution and the agents cannot distinguish these two executions and thus cannot explore

G also in the new execution.

We start by showing that, given any exploration algorithm, say A, using 2` agents, the

adversary can construct an execution E1 of A in which the agents cannot explore G. The

adversary puts agent ai on ci for 0 ≤ i ≤ 2` − 1 in the initial configuration of E1. During

3.3. EXPLORATION OF TEMPORALLY CONNECTED TVGS 23

execution E1 of A, the adversary deletes the edge leading to u or the other star whenever ai is

on b(i, j). Clearly, this prevents any agent executing A from visiting u and thus G is not explored

permanently while the adversary violates the restriction for the number of transient edges (it is at

most 2` in E1).

We now show how the adversary converts E1 into another execution, say E2, so that the agents

cannot distinguish E1 and E2 and η(G) is at most ` in E2. The adversary first separates the agents

into two groups: finite agents and infinite agents depending on their behavior when faced with

a missing edge during E1. Let f (0 ≤ f ≤ k) be the number of finite agents. In the following,

finite agents are denoted by afin
0 , . . . , a

fin
f−1. In the initial configuration of E2, each agent (ai) is put

on the same node (ci) as in E1.

Then, the adversary constructs a new assignment of the port labels and the node ID (if any)

of nodes so that every agent cannot distinguish E1 and E2 as follows. For infinite agents, the

adversary does nothing. For finite agents, let afin
i = ai′ and b(i′,xi) be the node where afin

i finally

waits for a missing edge permanently in E1. For 0 ≤ i ≤ f − 1, the adversary does the following:

if xi = 2, the adversary does nothing; and otherwise, the adversary swaps the assignment of the

port labels and the node ID of b(i′,2) and b(i′,xi) and accordingly permutes the port labeling of ci′.

Execution E2 with the initial configuration, the node ID, and the assignment of port labels is

constructed similarly to E1: the adversary deletes the edge leading to u or the other star when ai

exists on b(i, j). Obviously, every agent cannot distinguish E1 and E2: for all the agents, the node

IDs and the port labeling observed in E2 is the same as E1. Thus, G cannot be explored since u

is not visited by any agent also in E2.

Since the edges waited permanently by an agent are only (b(2i,2), b(2i+1,2)) for 0 ≤ i ≤ ` − 1,

η(G) is at most ` in E2. �

3.3.2 Semi Synchronous Exploration by 2η(G) + 1 Agents

In this section, we show that every temporally connected time-varying graph G ∈ H can be

explored by 2η(G) + 1 anonymous agents that do not know the topology. In fact, we propose an

exploration algorithm for 2η(G) + 1 anonymous agents in an anonymous network, which works

under the semi-synchronous scheduler with eventual transport.

The strategy is simple and it is based on the classical rotor router mechanism, which was

24 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

introduced as a deterministic alternative to random walk and was studied in a variety of contexts,

including static graph exploration (e.g., [4, 5, 6, 7, 8]).

In rotor router, each node v has a variable written on its whiteboard, pointerv , indicating one

of its incident ports. When an agent a visits node v, a checks each port in ascending order from

the port pointed by pointerv . If a finds some unoccupied port p, a moves to that port and sets

pointerv to p + 1. If a finishes to check all the ports and they all are occupied, a does nothing.

Algorithm 3.1 Computation at node v
1: if not on a port then

2: i ← 0

3: p← pointerv
4: while i < δv ∧ port p is occupied do

5: p← (p + 1) mod δv
6: i ← i + 1

7: if i < δv then

8: pointerv ← (p + 1) mod δv
9: move to port p

We first show that, in any round, there exists at least one agent succeeding to move within

finite time (Lemma 3.3.1). We then show that, 2` + 1 agents achieve perpetual exploration using

Algorithm 3.1 (Theorem 3.3.2).

Lemma 3.3.1. For any round t, if 2η(G) + 1 agents execute Algorithm 3.1 in a temporally

connected temporal graph G, at least one of them eventually moves after t.

Proof. By contradiction, assume that there exists a round t such that every agent never succeeds

to move after t. We consider two cases: (i) there exists a node v containing more than δv − 1

agents, and (ii) there does not exist such a node.

In the first case, every agent on v is activated within finite time after t because of the fairness

of the scheduler, which means that every port of v is eventually occupied by an agent. Since

at least one of the edges incident to v is a recurrent edge, say e, the agent sleeping on the

corresponding port of e eventually succeeds to move because of the eventual transport rule. This

is a contradiction.

3.3. EXPLORATION OF TEMPORALLY CONNECTED TVGS 25

Also in the second case, every agent on v is activated within finite time after round t because

of the fairness of the scheduler. Since there is no node containing more agents than its degree,

every agent eventually stays on a port. When this happens, at least one of the agents is sleeping at

the port of a recurrent edge since the number of agents is 2η(G)+ 1 and there exist at most 2η(G)

ports corresponding to transient edges. This means that, by the eventual transport rule, the agent

sleeping at the port of a recurrent edge eventually succeeds to move after t; a contradiction. �

Then, the following theorem holds.

Theorem 3.3.2. Any G ∈ H can be explored by 2η(G) + 1 anonymous agents under the semi-

synchronous scheduler.

Proof. Consider Algorithm 3.1. By the definition of transient edges, there exists a time step te

for any transient edge e such that ρ(e, t) = 0 for all t > te. Let tE be maxe∈E− te, i.e., a time when

all the transient edges have ceased to exist and all the edges that appear from this moment are

recurrent. Let x(t) be the sum of the number of agent moves from a node to another node over all

the agents from the beginning of the execution up to time t.

We now show that, from an arbitrary initial configuration, 2η(G) + 1 agents following Algo-

rithm 3.1 visit all the nodes infinitely often.

First, note that there exists a node, say v, that is visited infinitely often (for t → ∞) because

x(t) goes to infinity (for t →∞) by Lemma 3.3.1.

We now show that every neighbor of v connected by a recurrent edge is also visited at an

infinite number of rounds. We prove it by contradiction. Suppose that a neighbor u of v connected

by a recurrent edge is visited at only a finite number of times and let t ′ be the last round when u is

visited at. Since v is visited at an infinite number of rounds and the agents execute Algorithm 3.1

perpetually, some agent a visiting v eventually chooses (v, u) as the edge from which a moves out

of v after time t ′. Recall that (v, u) is a recurrent edge and the agents are activated by the eventual

transport rule. It follows that a eventually visits u after round t ′; a contradiction.

Since Gr is temporally connected, we can apply inductively the claim (e.g., the neighbors of

a neighbor of v are also visited infinitely often) to all the nodes, proving the theorem. �

From Theorems 3.3.1 and 3.3.2, the following Theorem holds.

26 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

Theorem 3.3.3. Exploration of all temporal graphs inH(`) by k agents is possible iff

k ≥ 2` + 1

Note that, if a graph is temporally connected, then its solidity σ(G) ≥ n−1; as a consequence,

we have:

Theorem 3.3.4. Every temporally connected temporal graph with n nodes and whose footprint

has m edges can be explored by 2(m − n) + 3 agents.

3.4 Exploration of 1-IntervalConnectedTVGsbyAnonymousAgents

In this Section, we turn our attention to the classW(`) of 1-interval connected temporal graphs

where the number of missing edges is bounded in each round by a constant `. In other words,

at any time t the TVG is connected, and no more than ` edges are missing. We establish tight

bounds for the exploration of this class of temporal graphs by anonymous agents, in Ssync and

in Fsync.

3.4.1 Semi-synchronous model

We first consider `-bounded, 1-interval connected TVGs operating under a semi-synchronous

scheduler and we show that there exist TVGs that cannot be explored by 2` anonymous agents.

Theorem 3.4.1. There exist 1-interval connected time-varying graphs G ∈ W(`) that cannot be

explored by k = 2` anonymous agents. The result holds even if the agents know n, m and k and

whiteboards are of unbounded size.

Proof. We use the same graph G constructed for the proof of Theorem 3.3.1. The construction

is omitted in this proof.

We first show that, given any exploration algorithm, say A, using 2` agents, the adversary

can construct an execution E1 of A, possibly violating the eventual transport rule, in which the

agents cannot explore G. We then show that it is always possible to convert this execution into

another execution E2 that does not violate the eventual transport rule, and where the agents cannot

explore G.

3.4. EXPLORATION OF 1-INTERVAL CONNECTED TVGS BY ANONYMOUS AGENTS 27

In execution E1, the adversary puts agent ai on ci for 0 ≤ i ≤ k − 1 = 2` − 1 in the initial

configuration of E1. During E1, exactly one agent is activated at each round: ai is activated at

round t when t ≡ i (mod k). When the adversary activates ai and ai exists on b(i, j), the adversary

deletes the edge leading to u or the other star whereas all the other edges are present. Note

that the agents and the nodes are anonymous and thus either they are all finite (i.e., every agent

permanently waits for appearance of its selected edge if the edge is permanently missing) or they

are all infinite (i.e., every agent eventually changes its selected edge if the edge remains missing)

in E1.

If the agents are infinite, the eventual transport rule is not violated even in E1 and thus the

adversary can prevent the agents from completing the exploration in E1.

If the agents are finite, the adversary converts E1 into another execution, say E2, as follows.

The adversary first puts ai (0 ≤ i ≤ k − 1) on ci in the initial configuration of E2. Then, the

adversary changes the assignment of the port labels and the node ID (if any) of each node in Si

in the same way explained in the proof of Theorem 3.3.1 (also omitted in this proof). In E2, the

adversary activates each agent in the same order as in E1 and deletes an edge leading to u or the

other star whenever ai is on b(i, j). After some round t from which every agent ai does not change

its selected edge, i.e., b(i,2), and waits at a port of b(i,2) forever for 0 ≤ i ≤ 2`, the adversary deletes

(b(2j,2), b(2j+1,2)) for 0 ≤ j ≤ l − 1 at every round. Obviously, every agent cannot distinguish E2

from E1 and G cannot be explored since u is not visited by any agent in E2. It is also clear that

the eventual transport rule is not violated in E2. �

Clearly,W(`) ⊂ H(`), thus any G ∈ W(`) can be explored by Algorithm 3.1; that is:

Theorem 3.4.2. Any G ∈ W(`) can be explored by 2` + 1 anonymous agents under the semi-

synchronous scheduler with eventual transport.

From Theorems 3.4.1 and 3.4.2 it follows that:

Theorem 3.4.3. Under a semi-synchronous scheduler, exploration of all `-bounded 1-interval

connected TVG by k anonymous agents is possible iff k ≥ 2` + 1.

28 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

3.4.2 Fully-Synchronous Model

In this section, we show that, if the network size and the number of agents are known, there exists

a difference between Fsync and Ssync in the exploration of `-bounded 1-interval TVGs. In fact,

we show that, G ∈ W(`) can be explored if k ≥ 2`, while there exist graphs that cannot be

explored with 2` − 1 agents.

Impossibility

We now consider `-bounded, 1-interval connected TVGs operating under a fully-synchronous

scheduler and we show that there exist TVGs that cannot be explored by 2` − 1 agents, even if the

agents know n,m, and k.

Theorem 3.4.4. There exist `-bounded 1-interval time-varying graphs G ∈ W(`) that cannot be

explored by k = 2` − 1 anonymous agents in Fsync. The result holds even if the agents know n,

m, and k, and whiteboards are of unbounded size.

Proof. Let K2` = (V2`, E2`) be the complete graph with 2` nodes where V2` = {v0, v1, . . . , v2`−1}.

It iswell known that the edges ofK2` can be coloredwith 2`−1 colors, that is, E2` can be partitioned

into 2` − 1 disjoint independent edge sets (or complete matchings): E (0)2` , E
(1)
2` , . . . , E

(2`−2)
2` . For

example, the following separation leads to disjoint independent edge sets: each E (i)2` has ` edges,

(vi, v2`−1), (vi−1, vi+1), (vi−2, vi+2), . . . , (vi−`+1, vi+`−1), see Figure 3.2 (for simplicity, mod 2` is

omitted).

The execution where v2`−1 remains unvisited is constructed as follows. For 0 ≤ i ≤ 2` − 1,

the adversary places each agent ai on vi and for 0 ≤ j ≤ 2` − 2 assigns a label j to the port of vi
corresponding to e, if e ∈ E (j)2` . Note that, since agents and nodes are anonymous, all the agents

make the same action and select the port with the same label to move at each round. Thus, the

adversary can prevent any agent from moving by deleting all the edges of E (i)2` when the agent

selects port i; as a consequence, none of the agents can move out of their current nodes. This

means that v2`−1 remains unvisited forever.

In this execution, the number of missing edges is always ` and the network is obviously kept

connected. Thus, the theorem holds. �

3.4. EXPLORATION OF 1-INTERVAL CONNECTED TVGS BY ANONYMOUS AGENTS 29

Figure 3.2: Example of a graph for ` = 4 and k = 2` − 1 = 7 that cannot be explored by 2` − 1

agents and its coloring. The bold lines are the edges of E (0)8 .

Bound on Exploration Time

Let G ∈ W(`). SinceW(`) ⊂ H(`), 2` + 1 agents can clearly completes the exploration by

Algorithm 3.1 in graph G. Interestingly, when executed on G ∈ W(`), it can be shown that

the time complexity of exploration can be bounded under the fully-synchronous scheduler. More

specifically, we show that within ∆n(∆ + 1)k(n − 1)k rounds, all nodes of the graph have been

visited at least once by a team of k = 2` + 1 agents.

We prove the theorem by a sequence of lemmas. First of all, we can easily show that 2` + 1

agents executing Algorithm 3.1 cannot be all prevented from moving at any given round.

Lemma 3.4.1. If 2`+ 1 agents activated fully-synchronously execute Algorithm 3.1 in `-bounded

1-interval TVGs, at least one of them succeeds to move at every round.

Proof. There exist two cases as in the proof of Lemma 3.3.1: at round t, (i) there exists a node v

containing more than δv − 1 agents, and (ii) there does not exist such a node.

In the first case, since there are more than δv − 1 agents at v, every port is occupied by one

agent at t since every agent is activated. In addition to that, v has at least one adjacent edge

present at t by the connectivity of the TVG. This implies that at least one agent succeeds to move

at round t.

30 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

In the second case, each agent occupies one port by assumption and by fully-synchronous

activation, which means that 2` + 1 ports are occupied. Moreover, at most ` edges are missing at

each round, which means that at most 2` ports are blocked at each round. It follows that at least

one agent can move at round t also in this case.

�

For Eaug of Algorithm 3.1, the following lemma holds.

Lemma 3.4.2. In an augmented execution of Algorithm 3.1 by 2` + 1 agents, any two augmented

configurations are different.

Proof. First note that Lemma 3.4.1 precludes the same two consecutive augmented configurations

Caug
t and Caug

t+1 in an augmented execution Eaug of Algorithm 3.1 where no agents move between

Caug
t and Caug

t+1 .

Suppose that there exist two augmented configurations Caug
t and Caug

t′ for t < t ′ in Eaug. Let

E
aug
t,t′ = Caug

t Caug
t+1 · · ·C

aug
t′−1 be a subsequence of Eaug. In this case, the adversary can create an

infinite augmented execution from Eaug by repeating Eaug
t,t′ , which means that the adversary can

create an (augmented) execution where 2` + 1 agents cannot complete the exploration forever.

This contradicts Theorem 3.3.2. Thus, the lemma holds. �

We are now ready to show an upper bound on the exploration time of Algorithm 3.1, which

is obtained by calculating the maximum length among all the augmented executions.

Lemma 3.4.3. The length of any possible augmented execution by k = 2` + 1 agents is bounded

by ∆n(∆ + 1)k(n − 1)k .

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma

3.4.2, α is bounded by the number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node setV ′ ⊆ V is bounded by∆ |V ′ |(|V ′ |(∆+

1))k , which corresponds to all the combinations of the possible values of pointerv (i.e., ∆ |V ′ |)

and all of the the agents’ locations (i.e., (|V ′ |(∆ + 1))k). Notice that only pointerv of each node

v is used as a variable in Algorithm 3.1. Since the number of nodes visited by an agent is not

decreasing during the exploration, the exploration time is smaller than or equal to the sum of

3.4. EXPLORATION OF 1-INTERVAL CONNECTED TVGS BY ANONYMOUS AGENTS 31

∆ |V
′ |(|V ′ |(∆+1))k for 1 ≤ |V ′ | ≤ n−1, i.e., α ≤

∑n−1
|V ′ |=1 ∆

|V ′ |(|V ′ |(∆+1))k ≤ ∆n(∆+1)k(n−1)k

rounds. �

It then follows that:

Theorem 3.4.5. In Fsync, Algorithm 3.1 executed by k = 2` + 1 anonymous agents explores any

`-bounded 1-interval connected TVG within ∆n(∆ + 1)k(n − 1)k rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for `-bounded

1-interval connected TVGs.

Theorem 3.4.6. InFsync, with knowledge of n and k, exploration with termination of an arbitrary

`-bounded 1-interval connected temporal graph W(`) can be achieved in nn+2k rounds by

k = 2` + 1 agents.

Exploration by 2` Agents

The result of the previous section can be used to obtain a perpetual exploration algorithm of `-

bounded 1-interval connected graphs by 2` agents (which know n and k). The solution (Algorithm

3.2 below) is obtained by applying to Algorithm 3.1 bounding the waiting time of an agent blocked

on a missing edge.

In fact, while an agent keeps waiting for a missing edge forever in Algorithm 3.1, in Algorithm

3.2 an agent waits for a missing edge up to kT rounds where T is calculated on the basis of the

results of Section 3.4.2.

Apart from the waiting time, the rest of the algorithm is the same as in Algorithm 3.1: each

node has pointerv pointing at a port. When agent a visits v, a checks each port in ascending order

from the port pointed by pointerv . If a finds some unoccupied port p, a moves to the port and sets

pointerv to p + 1. If a finishes to check all the ports and they all are occupied, a does nothing.

Variable Waiting of an agent represents the elapsed time since the last round when the agent

moved to the current port.

Lemma 3.4.4. Let 2` agents execute Algorithm 3.2. If an agent waits at u for a missing edge

e = (u, v) for kT rounds, during this time either another agent starts to wait for e at v, or every

node is visited by an agent at least once.

32 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

Algorithm 3.2 Computation at node v
1: if on a port then

2: Waiting← Waiting + 1

3: if Waiting > kT then

4: exit the current port

5: if not on a port then

6: Waiting← 0

7: i ← 0

8: p← pointerv
9: while i < δv ∧ port p is occupied do

10: p← (p + 1) mod δv
11: i ← i + 1

12: if i < δv then

13: pointerv ← (p + 1) mod δv
14: move to the port p

Proof. Suppose that an agent a at u starts to wait for a missing edge (u, v) at round t and (u, v) is

kept missing for the next kT rounds (including t).

We first show that there exist T successive rounds in [t, t + kT) during which all the agents

but a do not satisfy predicate Waiting > kT even if their selected edge remains missing.

We show the claim by contradiction. We assume that in any interval of T successive rounds

in [t, t + kT), there is an agent that satisfies Waiting > kT .

By assumption, at least k agents other than a must satisfy Waiting > kT , since kT/T = k.

This means that at least one agent (different from a) satisfies the predicate twice since the number

of the agents (excluding a) is k − 1. However, once an agent satisfies Waiting > kT at round

t ′ ∈ [t, t + kT), the agent never satisfies the predicate again in [t, t + kT) since the length of the

interval is kT . This is a contradiction. Thus, there exist T successive rounds in [t, t + kT) during

which all the agents (except for a) do not satisfy Waiting > kT even if their chosen edge is kept

missing.

Now, we show the lemma, i.e., show that another agent at v starts to wait for e = (u, v) or the

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 33

exploration is completed. Suppose that no agent at v starts to wait for e in these T rounds. Since

e is missing during these T rounds, during that time the network (without e) can be considered

as a (` − 1)-bounded 1-interval connected TVG. By Theorem 3.4.5, every node of the network

without e is visited at least once by an agent during these T rounds, because none of them starts

to wait for e at v during that time by assumption. Thus, the lemma holds. �

Theorem 3.4.7. In Fsync, any `-bounded 1-interval connected temporal graph G ∈ W(`) can

be explored by k = 2` anonymous agents with knowledge of n and k.

Proof. There clearly exists at least one node v which is visited at an infinite number of rounds.

We then show that all the neighbors of v are also visited at an infinite number of rounds by agents.

We prove it by contradiction. Suppose that a neighbor u of v is visited at only a finite number of

rounds and let t ′ be the last round when u is visited. Since v is visited at an infinite number of

rounds and the agents execute Algorithm 3.2, some agent a visiting v eventually chooses (v, u) as

the edge from which a moves after t ′. If (v, u) appears by the kT-th round since a chooses it, a

visits u as soon as (v, u) appears. Otherwise, another agent visits u by Lemma 3.4.4. It follows

that u is eventually visited after t ′, which is a contradiction.

By the connectivity assumption, we can apply inductively the claim (e.g., the neighbors of

a neighbor of v are also visited at an infinite number of rounds) to all the nodes, proving the

theorem. �

From Theorems 3.4.4 and 3.4.7, we have:

Theorem 3.4.8. In Fsync, with knowledge of n and k, the exploration of all `-bounded 1-interval

connected TVGs is possible iff k ≥ 2`.

3.5 Exploration of 1-Interval Connected Graphs with a Leader

In this section, we continue to consider the classW(`) of 1-interval connected temporal graphs

with bounded missing edges, but we turn our attention to the case when one agent, the leader, is

distinguishable from the others (the non-leaders). Also in this setting, we establish tight bounds

for the exploration of this class of temporal graphs in Ssync and in Fsync showing that the

presence of the leader allows the exploration to be performed using one fewer agent.

34 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

3.5.1 Semi-Synchronous Model

In this section, we show that, if there exists a leader, the bounds decrease by one in the exploration

of `-bounded 1-interval TVGs. In fact, we show that, G ∈ W(`) can be explored by 2` agents

with one leader, while there exist graphs G ∈ W(`) that cannot be explored by 2` − 1 agents with

one leader.

Impossibility

We start by showing the impossibility result.

Theorem 3.5.1. There exist 1-interval connected time-varying graphs G ∈ W(`) that cannot be

explored by k = 2` − 1 agents with a leader. The result holds even if the agents know n, m and k,

and whiteboards are of unbounded size.

Proof. We construct a graph G′ using the graph G employed in the proof of Theorem 3.4.1,

where two new nodes v and w are connected to u and we use 2` − 2 copies of stars instead of 2`

copies (see Figure 3.3). The subgraph corresponding to G (including u) is denoted by G′1 and the

subgraph induced by u, v and w is denoted by G′2.

Figure 3.3: Example of a graph for ` = 3 and k = 2` − 1 = 5 that cannot be explored by 2` − 1

agents with a leader.

Let each non-leader agent ai be on one of the nodes ci, and the leader agent â be on w.

Consider G′2 and the following behavior of the adversary: whenever â chooses the port

corresponding to (v, w) the adversary deletes (v, w), otherwise it deletes (u, w). With these

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 35

dynamics, â never visits u; moreover â has no effect on the exploration of G′1.

Consider now G′1: we let the adversary delete at most ` − 1 edges at each round. Then, by

Theorem 3.4.1 and since â has no effect on the exploration of G′1, the 2`−2 = 2(`−1) non-leader

agents are also prevented from visiting u. Clearly, the number of missing edges at each round is

at most ` and the graph is always connected. �

Exploration by 2` Agents with a Leader

We now describe a strategy for 2` agents (one of which is a leader) to explore `-bounded 1-interval

connected graphs. The general idea is simple: the leader agent always changes its chosen edge

whenever it is blocked by a missing edge, while a non-leader agent always waits for its chosen

edge to appear.

However, if we implement this strategy using one pointer for each node, like we did in Sections

3.3 and 3.4, two problems can occur: (i) a broken rotor and (ii) a skipped port.

A broken rotor is a pointer that can be changed by the adversary freely. Since the leader

changes a pointer whenever it is blocked, the adversary can make the leader choose pointers in

such a way that the leader is repeatedly blocked. To avoid this situation, we use an additional

pointer pointerLv for each node v that only the leader can change.

A skipped port is a port that remains unused. Suppose that a port pv at node v is occupied

by the leader. Since non-leaders skip an occupied port, they continue to skip pv as long as the

leader occupies pv . However, the leader changes its port from pv once it is blocked at pv . In this

way, the adversary can keep pv unused, which can prevent a node from being explored. To avoid

this situation, (a) pointerLv is changed so that pointerLv points to an occupied port p if and only if

the agent occupying p is the leader, (b) a non-leader waits for an occupied port to be unoccupied

when the port is pointed by pointerLv , and (c) the leader does not move to a port as long as there

is a non-leader existing at the same node and is not on a port.

Algorithm 3.3 is the exploration algorithm of the leader and Algorithm 3.4 is the exploration

algorithm of the non-leaders. In Algorithms 3.3 and 3.4, Setting pointerLv to −1 is done to prevent

pointerLv from pointing to a port occupied by a non-leader. We assume that pointerLv is initialized

to −1.

First, we show that pointerLv behaves correctly.

36 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

Algorithm 3.3 Computation of the leader at node v
1: if on a port then

2: exit the current port

3: if (not on a port) ∧ (there is no non-leader not on a port) then

4: i ← 0

5: p← pointerLv + 1

6: while i < δv ∧ port p is occupied do

7: p← (p + 1) mod δv
8: i ← i + 1

9: if i < δv then

10: pointerLv ← p

11: move to the port p

12: else

13: pointerLv ← −1

Lemma 3.5.1. Variable pointerLv points at an occupied port if and only if the agent occupying

the port is the leader.

Proof. (⇐) When the leader moves to a port p, it changes pointerLv to p.

(⇒) Let us show the contraposition of the claim: if the agent occupying port p is a non-leader,

pointerLv never points to p. At the beginning, the value of each pointerLv is −1 and thus the claim

holds. If a non-leader, say ai, decides to move to a port p and pointerLv points to p, then ai changes

pointerLv to −1 before moving to p. By induction, pointerLv never points to a port occupied by a

non-leader. �

Theorem 3.5.2. Any `-bounded 1-interval connected temporal graph G ∈ W(`) can be explored

by k = 2` agents with a leader under the semi-synchronous scheduler with eventual transport.

Proof. Consider the leader executing Algorithm 3.3 and the 2` − 1 non-leaders executing Al-

gorithm 3.4. First, we show that unless 2` − 1 non-leaders are all blocked forever, the 2` − 1

non-leaders visit all the nodes infinitely often. Note that the adversary needs ` transient edges to

block 2` − 1 non-leaders.

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 37

Algorithm 3.4 Computation of a non-leader at node v
1: if not on a port then

2: i ← 0

3: p← pointerv
4: while i < δv ∧ port p is occupied do

5: if p = pointerLv then

6: i ← δv , pointerv ← p

7: break from this loop

8: p← (p + 1) mod δv
9: i ← i + 1

10: if i < δv then

11: pointerv ← (p + 1) mod δv
12: if p = pointerLv then

13: pointerLv ← −1

14: move to the port p

First assume that some non-leader agents can move from a node to another node infinitely

often. Let Am be the non empty set of such non-leaders, let te be the round such that after te,

every agent b < Am is kept blocked forever, and let x(t) be the total number of agent moves from

a node to another node over all the agents in Am from round te of the execution up to time t.

Since a ∈ Am is never blocked by a transient edge, x(t) goes to infinity (for t → ∞). Thus, there

exists a node, say v, which is visited at an infinite number of rounds by a ∈ Am. Then, by an

argument similar to the one used in the proof of Theorem 3.3.2, we can show that every neighbor

of v connected with a recurrent edge is also visited at an infinite number of rounds by a ∈ Am

and, inductively, that all the nodes are visited at an infinite number of rounds.

Suppose instead that every non-leader agent is blocked at some port forever after some round,

and let t ′e > te be a round when they are all blocked and all the 2` transient edges have disappeared

forever. In this case, we show that the leader completes the exploration. First observe that, since

all the non-leaders are blocked at some port, after round t ′e the leader is never required to stop to

wait for non-leaders to move to a port.

38 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

Moreover, since ` missing edges are transient and do not exist anymore after time t ′e, from this

time, the network can be regarded as a static network with 2` unusable ports: the 2` − 1 occupied

by non-leaders and one unoccupied. The leader, by construction, just skips the ports that are not

available. In doing so, it executes the rotor-router algorithm on the static network induced by

deleting all the transient edges from the footprint of the network. Hence, by the property of the

rotor-router algorithm, the leader correctly performs the exploration. �

From Theorems 3.5.1 and 3.5.2, we have:

Theorem 3.5.3. In Ssync, with the existence of a leader, the exploration of all `-bounded 1-

interval connected TVGs is possible iff k ≥ 2`.

3.5.2 Fully-Synchronous Model

In this section, we show that, if there exists one leader and the agents are activated in Fsync, the

bounds on the number of agents for exploration in `-bounded 1-interval TVGs decreases even

further. In fact, we show that, with a leader, G ∈ W(`) can be explored by 2` − 1 agents if ` ≥ 2

(it is clear that when ` = 1 and k = 2` − 1 = 1, the exploration is impossible), while there exist

graphs G ∈ W(`) that cannot be explored by 2` − 2 agents.

Impossibility

We now consider `-bounded, 1-interval connected TVGs operating under a fully-synchronous

scheduler and we show that there exist TVGs that cannot be explored by 2` − 2 agents with one

leader (2` − 3 non-leaders and one leader agent), even if the agents know n,m, and k.

Theorem 3.5.4. In Fsync, there exist 1-interval connected time-varying graphs G ∈ W(`) that

cannot be explored by k = 2`− 2 agents with one leader. The result holds even if the agents know

n, m and k, and whiteboards are of unbounded size.

Proof. We construct a graph K ′2`−2 by adding two nodes u and w to the graph K2`−2 used

in the proof of Theorem 3.4.4 and connecting them to v2`−3 (see Figure 3.4). The subgraph

corresponding to K2`−2 (including v2`−3) is denoted by K(1) and the subgraph induced by v2`−3,

u, and w is denoted by K(2).

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 39

Figure 3.4: Example of a graph for ` = 5 and k = 2` − 2 = 8 that cannot be explored by 2` − 2

agents with one leader. It is constructed with the graph in Figure 3.2 and nodes u and w being

connected to v2`−3.

Let each non-leader ai be on each vi and let the leader agent â be on w. Consider K(2) and

the following behavior of the adversary: whenever â chooses the port corresponding to (v2`−3, w)

the adversary deletes (v2`−3, w), otherwise it deletes (u, w). With these dynamics, â never visits

v2`−3; moreover, â has no effect on the exploration of K(1).

For K(1), we let the adversary delete at most ` − 1 edges at each round. Then, by Theorem

3.4.4 and since â has no effect on the exploration of K(1), the 2` − 3 = 2(` − 1) − 1 non-leaders

are also prevented from visiting v2`−3. Clearly, the number of missing edges at each round is at

most ` and the graph is always connected. �

Bound on Exploration Time

For the exploration algorithm using 2` − 1 agents with one leader, we first consider the upper

bound of exploration time of the exploration algorithm using 2` agents with one leader, i.e.,

Algorithms 3.3 and 3.4. By a similar argument as the one used in Section 3.4.2, it can be shown

that the time complexity of the exploration can be bounded under the fully-synchronous scheduler.

More specifically, we show that within ∆n(∆ + 1)k+n(n − 1)k rounds, all nodes of the graph have

been visited at least once by k = 2` agents with one leader.

40 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

We prove the theorem by a sequence of lemmas. First of all, we show that the leader

executing Algorithm 3.3 and 2` − 1 non-leaders executing Algorithm 3.4 cannot be all prevented

from moving or changing their port at any given round.

Lemma 3.5.2. If 2` agents activated fully-synchronously execute Algorithms 3.3 (for the leader)

and 3.4 (for the non-leaders) in `-bounded 1-interval TVGs, at least one of them succeeds to

change its location at every round (i.e., moving to a port or a neighbor, or changing its port).

Proof. We have two cases as in the proof of Lemma 3.3.1: at round t, (i) there exists a node v

containing more than δv − 1 agents, or (ii) there does not exist such a node.

In the first case, we can show the claim by the same argument used in the proof of Lemma

3.3.1.

We then consider the second case. If some agent is not on a port, this agent moves to a port

or a neighbor. If every agent is on a port, the leader tries to change its port by construction. Note

that since every node v is occupied by at most δv − 1 agents, there is at least one unoccupied port

at every node. Thus, the leader succeeds to change its port.

�

Using the same argument as the one of the proof of Lemma 3.4.2, we have:

Lemma 3.5.3. In an augmented execution of Algorithm 3.3 executed by the leader and Algorithm

3.4 executed by the 2` − 1 non-leaders, any two augmented configurations are different.

Proof. We can show the lemma by the same argument used in the proof of Lemma 3.4.2.

�

We are now ready to show an upper bound on the exploration time of Algorithms 3.3 and 3.4,

which is obtained by calculating the maximum length among all the augmented executions.

Lemma 3.5.4. The length of any possible augmented execution of Algorithm 3.3 executed by the

leader and Algorithm 3.4 executed by the 2` − 1 non-leaders is bounded by ∆n(∆+ 1)k+n(n− 1)k .

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma

3.5.3, α is bounded by the number of possible augmented configurations in an execution.

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 41

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by (∆(∆ +

1)) |V ′ |(|V ′ |(∆+ 1))k , which corresponds to all the combinations of the possible values of pointerv
and pointerLv (i.e., (∆(∆+ 1)) |V ′ |) and all of the the agents’ locations (i.e., (|V ′ |(∆+ 1))k). Notice

that only pointerv and pointerLv of each node v are used as variables in Algorithms 3.3 and 3.4.

Since the number of visited nodes is not decreasing during the exploration, the exploration time

is smaller than or equal to the sum of (∆(∆ + 1)) |V ′ |(|V ′ |(∆ + 1))k for 1 ≤ |V ′ | ≤ n − 1, i.e.,

α ≤
∑n−1
|V ′ |=1(∆(∆ + 1)) |V ′ |(|V ′ |(∆ + 1))k ≤ ∆n(∆ + 1)k+n(n − 1)k rounds. �

It then follows that:

Theorem 3.5.5. In Fsync, the leader executing Algorithm 3.3 and 2` − 1 non-leaders executing

Algorithm 3.4 explore any `-bounded 1-interval connected TVG within ∆n(∆ + 1)k+n(n − 1)k

rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for `-bounded

1-interval connected TVGs.

Theorem 3.5.6. In Fsync, with knowledge of n and k, and the existence of a leader, exploration

with termination of an arbitrary `-bounded 1-interval connected temporal graphW(`) can be

achieved in n2(n+k) rounds by k = 2` agents.

Exploration by 2` − 1 Agents with a Leader

The result of the previous section can be used to obtain a perpetual exploration algorithm of

`-bounded 1-interval connected graphs by 2` − 1 agents (which know n and k) one of which is

a distinguishable leader. The solution (Algorithm 3.5 below) is obtained by applying Algorithm

3.4, appropriately bounding the waiting time of a non-leader blocked on a missing edge. The

algorithm for the leader is the same as the one used in the previous section (i.e., Algorithm 3.3).

In fact, while a non-leader keeps waiting for a missing edge forever in Algorithm 3.4, in

Algorithm 3.5 a non-leader waits for a missing edge up to (k − 1)T rounds where T is calculated

on the basis of the results of Section 3.5.2.

Apart from the waiting time, Algorithm 3.5 is the same as Algorithm 3.4: each node has

pointerv pointing at a port and pointerLv for the leader. When a non-leader ai visits v, ai checks

42 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

each port in ascending order from the port pointed by pointerv . If ai finds the port occupied by

the leader, ai waits till the leader leaves the port. If ai finds an unoccupied port p, ai moves to

the port and sets pointerv to p + 1 and additionally if p is equal to pointerLv , pointerLv to −1. If

ai finishes to check all the ports and they all are occupied, ai does nothing.

Variable Waiting of a non-leader represents the elapsed time since the last round when the

non-leader moved to the current port.

Algorithm 3.5 Computation of a non-leader at node v
1: if on a port then

2: Waiting← Waiting + 1

3: if Waiting > (k − 1)T then

4: exit the current port

5: if not on a port then

6: Waiting← 0

7: i ← 0

8: p← pointerv
9: while i < δv ∧ port p is occupied do

10: if p = pointerLv then

11: i ← δv , pointerv ← p

12: break from this loop

13: p← (p + 1) mod δv
14: i ← i + 1

15: if i < δv then

16: pointerv ← (p + 1) mod δv
17: if p = pointerLv then

18: pointerLv ← −1

19: move to the port p

Lemma 3.5.5. Let the leader execute Algorithm 3.3 and the 2`−2 non-leaders execute Algorithm

3.5. If a non-leader waits at u for a missing edge e = (u, v) for (k−1)T rounds starting from round

t, then in [t, t + (k − 1)T) rounds there exist T successive rounds during which all the non-leaders

3.5. EXPLORATION OF 1-INTERVAL CONNECTED GRAPHS WITH A LEADER 43

do not satisfy predicate Waiting > (k − 1)T even if their selected edge remains missing.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and

(u, v) is kept missing for the next (k − 1)T rounds (including t).

We show the lemma by contradiction. We assume that in any interval of T successive rounds

in [t, t + (k − 1)T), there is a non-leader that satisfies Waiting > (k − 1)T .

By assumption, at least k − 1 non-leaders other than ai must satisfy Waiting > (k − 1)T

since (k − 1)T/T = k − 1. This means that at least one non-leader (different from ai) satisfies

the predicate twice since the number of non-leaders (excluding ai) is k − 2. However, once a

non-leader satisfiesWaiting > (k −1)T at round t ′ ∈ [t, t+ (k −1)T), the non-leader never satisfies

the predicate again in [t, t + (k − 1)T) since the length of the interval is (k − 1)T . This is a

contradiction. �

Lemma 3.5.6. Let the leader execute Algorithm 3.3 and the 2`−2 non-leaders execute Algorithm

3.5. If a non-leader waits at u for a missing edge e = (u, v) for (k − 1)T rounds, during this time

either another non-leader starts to wait for e at v, or every node is visited by an agent at least

once.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and

(u, v) is kept missing for the next (k − 1)T rounds (including t).

By Lemma 3.5.5, in interval [t, t + (k − 1)T) there exist T successive rounds, say I, during

which all the non-leaders do not satisfy predicate Waiting > (k − 1)T even if their selected edge

remains missing. Suppose that no non-leader starts to wait for e at v in I. Since e is missing

during I, the network (without e) can be considered as a (` − 1)-bounded 1-interval connected

TVG during I. By Theorem 3.5.5, 2` − 2 = 2(` − 1) agents with one leader complete the

exploration of the (` − 1)-bounded TVGs in the T successive rounds. This means that every

node of the network (without e) is visited by an agent during I at least once because none of the

non-leaders starts to wait for e at v during that time by assumption. Thus, the lemma holds.

�

Lemma 3.5.7. Let the leader execute Algorithm 3.3 and the 2`−2 non-leaders execute Algorithm

3.5. If there is a node visited at only a finite number of rounds (by the leader or non-leaders)

44 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

and there is another node visited at only a finite number of rounds by non-leaders, every node is

visited at only a finite number of rounds by non-leaders.

Proof. Suppose that a node v is visited at only a finite number of rounds by agents and another

node u is visited at only a finite number of rounds by non-leaders. Let t1 be the last round when

v is visited by an agent or u is visited by non-leaders.

We first show that all the neighbors of u are visited at only a finite number of rounds by

non-leaders. We prove this by contradiction, assuming that a neighbor w of u is visited at an

infinite number of rounds by non-leaders. Eventually, an agent a1 at w chooses (w, u) to move

after t1. Since u is never visited at after t1, a1 is kept blocked on w at the port of (w, u) for (k −1)T

rounds. By Lemma 3.5.6, however, another non-leader visits u or every node is visited by an

agent at least once after t1. Both cases contradict to the assumption and thus all the neighbors of

u are visited at only a finite number of rounds by non-leaders. Since the network is connected,

we can apply inductively the claim to all the nodes, proving the lemma. �

Theorem3.5.7. InFsync, with knowledge of n and k, if ` ≥ 2, any `-bounded 1-interval connected

temporal graph G ∈ W(`) can be explored by k = 2` − 1 agents with one leader.

Proof. Consider the leader executing Algorithm 3.3 and non-leaders executing Algorithm 3.5.

The proof follows the same lines of the one of Theorem 3.4.7. There clearly exists at least one

node v which is visited at an infinite number of rounds. We then show that all the nodes are visited

at an infinite number of rounds. Two cases are considered: Case a) v is visited at an infinite

number of rounds by non-leaders and Case b) v is visited at only a finite number of rounds by

non-leaders.

Case a) Suppose that v is visited at an infinite number of rounds by non-leaders. We show

that all the neighbors of v are also visited at an infinite number of rounds by agents. We prove

it by contradiction, assuming that a neighbor u of v is visited at only a finite number of rounds

by agents and letting t1 be the last round when u is visited by an agent. Since v is visited at

an infinite number of rounds by the non-leaders executing Algorithm 3.5, some non-leader ai

visiting v eventually chooses (v, u) to move. If (v, u) appears within (k − 1)T rounds, ai visits

u in the period, which is a contradiction. Otherwise, another agent visits u by Lemma 3.5.6. It

follows that u is eventually visited after t1, which is a contradiction.

3.6. CONCLUSION 45

Case b) Suppose that v is visited at only a finite number of rounds by non-leaders. We show

by contradiction that all the neighbor of v is visited at an infinite number of rounds. Assume that

a neighbor of v is visited at only a finite number of rounds by agents. It follows by Lemma 3.5.7

that every node is visited at only a finite number of rounds by non-leaders. This means that no

non-leader exists in the network by the definition. This is a contradiction since ` ≥ 2 and at least

two non-leaders exist in the network.

In either case, all the neighbors of v is visited at an infinite number of rounds. Since the

network is connected, we can apply inductively the claim to all the nodes, proving the theorem.

�

From Theorems 3.5.4 and 3.5.7, we have:

Theorem 3.5.8. Under the fully-synchronous scheduler, with knowledge of n and k and the

existence of a leader, if ` ≥ 2, the exploration of all `-bounded 1-interval connected TVGs is

possible iff k ≥ 2` − 1.

3.6 Conclusion

In this chapter, we considered perpetual exploration of temporal graphs with arbitrary and un-

known topology, focusing on the number of agents that are necessary and sufficient to perform

the task. We considered two common dynamic models: temporally connected networks, and

1-interval connected (or always connected) networks with a bounded number of missing edges

at each round. We derived tight bounds for both models under fully synchronous and semi-

synchronous settings, both when the agents are anonymous and when there is a leader.

Our algorithms use at each node v a rotor-router mechanism; this can be implemented with

either a constant number of movable tokens that can be placed on the ports of v, or with a

whiteboard of size O(log δv) bits.

46 CHAPTER 3. EXPLORATION OF DYNAMIC GRAPHS

Chapter 4

Exploration of Dynamic Tori

4.1 Introduction

In this chapter, we consider exploration of a dynamic torus under some constraints on the dynamics

(or topology changes).

An ν × µ torus (3 ≤ n ≤ µ) is considered as a collection of ν row rings and µ column rings.

The constraint on the dynamics is that each ring should be 1-interval connected, which allows at

most one link to be missing at any time in each ring.

For the ν × µ dynamic torus, we propose exploration algorithms with and without a view. In

this chapter, an agent with the view can detect which incident links are missing (if some link is

missing) before determining its next move. On the other hand, without the view, an agent has

to determine its next move without knowing which incident links are missing, which makes the

agent stay on the same node when it tries to move through a missing link.

The main contribution of this chapter is to clarify the necessary and sufficient number of

agents to explore an ν× µ dynamic torus with and without the view. Specifically, it is proven that,

without the view, ν + 1 agents are necessary and sufficient to explore the ν × µ dynamic torus. It

also proven that, with the view, dν/2e + 1 agents are necessary and sufficient when ν , 4 and,

dν/2e + 2 (i.e., four) agents are necessary and sufficient when ν = 4 to explore the ν × µ dynamic

torus. With respect to the time complexity, we propose asymptotically time-optimal algorithms

with and without the view.

47

48 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

The results are summarized in Table 4.1

Table 4.1: Exploration time on dynamic tori.

#agents #rounds

without the view
3 ≤ ν ≤ µ

less than ν + 1 The exploration is impossible.

ν + 1
O(νµ(µ − ν + 1))

(optimal when µ − ν = O(1))

ν + 2 O(νµ) (optimal)

with the view

less than dν/2e + 1 The exploration is impossible

5 ≤ ν ≤ µ dν/2e + 1
O(νµ(µ − ν + 1))

(optimal when µ − ν = O(1))

3 ≤ ν ≤ µ dν/2e + 2 O(νµ) (optimal)

4.2 Preliminary

4.2.1 Network

In this chapter, we consider the exploration with termination on dynamic networks whose foot

print is a ν × µ torus where ν (resp., µ) is the number of rows (resp., columns) of the torus,

V is {vi, j | 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ µ − 1}, and E is {(vi, j, vi+1 mod ν, j), (vi, j, vi, j+1 mod µ)

| 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ µ − 1}. We assume 3 ≤ ν ≤ µ to avoid self-loops or multiple edges.

Hereafter, we omit the notations of mod ν or mod µ from modulo operations when it is clear

from the context. Intuitively, G consists of ν row rings and µ column rings. A row ring Ri (resp, a

column ring Cj) is a subgraph of G induced by {vi, j | 0 ≤ j ≤ µ− 1} (resp, {vi, j | 0 ≤ i ≤ ν − 1})

(see Figure 4.1). Each row and column ring is a discrete time-varying graph and 1-interval

connected (or connected at any round) where, at each round t ∈ Z+, one of its links may be

missing. Since each of the row and column rings is 1-interval connected, the dynamic torus G is

also 1-interval connected.

Each node vi, j is labeled by a pair (i, j) of its row number i and column number j. In this

chapter, we assume four links incident to vi, j are locally labeled at vi, j : (vi, j, vi, j+1), (vi, j, vi, j−1),

4.2. PRELIMINARY 49

Figure 4.1: Example of an ν × µ torus and Ri and Cj of the torus.

(vi, j, vi+1, j), (vi, j, vi−1, j) are labeled by right, left, down, up, respectively.

Each node has four rooms, rightv , leftv , upv and downv , which correspond to the right, left,

up, and down links, respectively.

4.2.2 Agents

A set A of k agents initially occupies arbitrary positions. An agent has knowledge of the torus

size, that is, both ν and µ. An agent has no tool to communicate with other agents.

An agent may use a view giving the agent which incident links of its current node is present

at the current round. When an agent use the view, we say that the model is with the link presence

detection. Otherwise, we say that the model is without the link presence detection.

The actions of all agents is fully synchronized, i.e., we consider Fsync model in this chapter.

4.2.3 Configuration

We call the locations of all the agents a configuration. That is, a configuration is a multiset

(or bag) W : V → Z+ with size k, i.e.,
∑
v∈V W(v) = k. For any integer t ≥ 0, we define the

configuration in round t as Wt such that for any v ∈ V , Wt (v) = x holds if and only if exactly x

agents stay on node v at the beginning of round t. Note that Wt does not give the information

50 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

about the rooms where the k agents stay.

We call configuration W0 an initial configuration. The initial configuration W0 is arbitrary,

i.e., an adversary can put each agent on any node in W0. We assume that all the agents are not in

rooms in round 0. This assumption does not lose generality: even when an agent is in any room

in round 0, it can move out from a room by the beginning of round 1 and then all agents are not

in any room in round 1.

4.3 Subroutines for 1-interval connected rings

In this section, we present several subroutines for 1-interval connected rings that are used as

building blocks utilized in exploration algorithms of a dynamic torus. In the subroutines, we use

the procedure Move(dir | p1 : s1 ; p2 : s2 ; . . . ; p` : s`) which is associated with each agent

state, where dir ∈ {right, left, down, up, nil}, pi is a predicate and si is a state that an agent enters

when pi is satisfied. At each round, an agent decides its state by repeating the following process

until it enters state Return or a state where no predicate is satisfied: it tries to find the satisfied

predicate with the smallest index among p1, p2, . . . , pl in Move of the current state, and changes

to the state corresponding to the predicate if it exists. If an agent decides its state as Return, it

returns from the current operation. If an agent decides its state as a state other than Return, the

agent moves to the room in the direction dir of the state. If dir is nil, an agent stays in the current

node but not in a room. In Move, the following local variables are used.

• time: the number of rounds from the start of the subroutine called last. It is initialized to 0

when this subroutine is called.

• current: the node that the agent currently exists on.

The following predicate is used.

• catches: the predicate of an agent a holds if and only if the room corresponding to dir is

occupied by an agent and the current room of a is different from the room in the current

snapshot.

4.3. SUBROUTINES FOR 1-INTERVAL CONNECTED RINGS 51

Exploration: ExplorationUp [15], which is defined by the pseudo code of Algorithm 4.1, is

an algorithm to explore (1-interval connected) column rings of the torus. ExplorationUp guaran-

tees that, if two or more agents staying in a column ring Cj start ExplorationUp simultaneously,

then they succeed in exploring Cj within the following 3ν rounds.

The execution of each agent is as follows. If an agent in Cj invokes ExplorationUp, then it

starts to move up and tries to explore Cj until time reaches 3ν. If it catches another agent at node

v during the exploration, that is, finds another agent in upv of the current node, then it bounces

back and starts to move down until time reaches 3ν.

ExplorationLeft for a row ring Ri is similarly defined by replacing up, down, and ν in

Algorithm 4.1 to left, right, and µ, respectively. ExplorationLeft finishes at the 3µ-th round.

The following lemma holds.

Algorithm 4.1 ExplorationUp
1: In state Init:

2: Move(up | time ≥ 3ν : Return; catches : Bounce);

3: In state Bounce:

4: Move(down | time ≥ 3ν : Return);

Lemma4.3.1. If two ormore agents are in a column (resp, row) ring and they startExplorationUp

(resp, ExplorationLeft) simultaneously, they explore the column (resp, row) ring by the 3ν-th

(resp, 3µ-th) round from the start of ExplorationUp (resp, ExplorationLeft).

Proof. In [15], authors proved that ExplorationUp explores a 1-interval connected ring when

there are two agents in the ring. So we show that, when there are three or more agents in a

(1-interval connected) column ring Cj , ExplorationUp explores Cj .

Hereinafter, we use renaming by which we can ignore the case where an agent cannot move

because of mutual exclusion rule. Suppose that agent a on node v cannot move dir in a round

because of mutual exclusion rule. At the round, there must exist another agent a′ in a room on v

corresponding to dir, and a′ is renamed a. As a result, we can consider a is in the room.

Now, we show the lemma. There exists at least one agent b that always tries to move up during

the execution of ExplorationUp since an agent bounces back only when there is another agent

52 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

moving up. By the 2ν-th round, b succeeds to move up in ν rounds or fails to move in ν rounds

by missing links. In the former, exploration is completed. In the latter, there exists an (renamed)

agent b′ which succeeds to move up in ν + 1 rounds or catches b during the 2ν rounds since there

is at most one missing link in Cj in each round. If b′ succeeds to move ν + 1 rounds, exploration

is completed. When b′ catches b, b′ starts to move down. Then, in ν additional rounds, b and

(renamed) b′ complete exploration of Cj since at most one link is missing from Cj and either b

or b′ succeeds to move at any round unless they are on adjacent nodes: b′ is present in the node

just above the node that b exists on. Thus, by the 3ν-th round, agents complete exploration of Cj .

Similarly, the lemma holds for ExplorationLeft. �

Node arrangement: ArrangementUp(i) which is defined by the pseudo code of Algorithm

4.2 works on a 1-interval connected column ring. By ArrangementUp(i), from an arbitrary

initial configuration, one of two agents in a column ring Cj reaches vi, j if the two agents exist,

two of three agents in Cj reach vi, j if the three agent exist, and three of four or more agents in Cj

reach vi, j if the agents exist.

Agent behavior is similar to that in ExplorationUp during the first 3ν rounds, except that an

agent changes its state to Wait when it reaches vi, j . Once an agent changes its state to Wait, it

keeps its state and location until the end of ArrangementUp(i). At the 3ν-th (resp, 6ν-th) round

from the start of ArrangementUp(i), unless an agent is on vi, j , it starts the second (resp, third)

exploration that is exactly same as the first part. Agents stop their actions at the 9ν-th round from

the start of ArrangementUp(i).

ArrangementLeft(j) for a row ring is similarly defined by replacing up, down, i, Ri, and ν

in Algorithm 4.2 to left, right, j, Cj , and µ, respectively. ArrangementLeft(j) finishes at the

6µ-th round. The following lemma holds.

Lemma 4.3.2. If k agents (k ≥ 2) are in a column (resp, row) ring, sayCj (resp, Ri), and they start

ArrangementUp(i) (resp, ArrangementLeft(j)) simultaneously, min(k − 1, 3) agents in Cj (resp,

Ri) reach and stay on vi, j by the 9ν-th (resp, 9µ-th) round from the start of ArrangementUp(i)

(resp, ArrangementLeft(j)).

Proof. Suppose that there are two or more agents in Cj and they invoke ArrangementUp(i)

4.3. SUBROUTINES FOR 1-INTERVAL CONNECTED RINGS 53

Algorithm 4.2 ArrangementUp(i)
1: In state Init:

2: Move(up | time ≥ 3ν : Init’; current ∈ Ri : Wait; catches : Bounce);

3: In state Bounce:

4: Move(down | time ≥ 3ν : Init’; current ∈ Ri : Wait);

5: In state Init’:

6: Move(up | time ≥ 6ν : Init”; current ∈ Ri : Wait; catches : Bounce’);

7: In state Bounce’:

8: Move(down | time ≥ 6ν : Init”; current ∈ Ri : Wait);

9: In state Init”:

10: Move(up | time ≥ 9ν : Return; current ∈ Ri : Wait; catches : Bounce”);

11: In state Bounce”:

12: Move(down | time ≥ 9ν : Return; current ∈ Ri : Wait);

13: In state Wait:

14: Move(nil | time ≥ 9ν : Return);

simultaneously. We first show by contradiction that, by the 3ν-th round from the start of Ar-

rangementUp(i), one agent reaches vi, j . We assume that no agent reaches vi, j by the 3ν-th round

from the start of ArrangementUp(i). Then, the agents behave in the same way as if they invoke

ExplorationUp during the first 3ν rounds. By Lemma 4.3.1, at least one agent reaches vi, j ,

which shows that the assumption was incorrect. Hence, one of the agents reaches and stays on

vi, j . Similarly, by the 6ν-th round from the start of ArrangementUp(i), another agent must

visit vi, j if there are three or more agents in the column ring and only one agent exists in vi, j .

Furthermore, by the 9ν-th round from the start of ArrangementUp(i), another agent must visit

vi, j if there are four or more agents in the column ring and only two agents exist in vi, j . Similarly,

the lemma holds for ArrangementLeft(j). �

In the following sections, we use ExplorationUp, ExplorationLeft, ArrangementUp(i)

and ArrangementLeft(j) as modules. Note that, as ExplorationUp, ExplorationLeft,

ArrangementUp(i) and ArrangementLeft(j) finish in exactly 3ν, 3µ, 9ν and 9µ rounds,

54 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

respectively, agents can detect and share their termination at the same time. Notice that the

subroutines work in both models with and without the link presence detection.

4.4 Exploration without the link presence detection in tori

In this section, we consider the exploration of the ν × µ dynamic torus without the link presence

detection. We first prove in Section 4.4.1 that a group of ν (or fewer) agents cannot explore a

dynamic torus. In Section 4.4.2, we give a time-optimal (but not optimal with respect to the

number of agents) algorithm by which a group of ν + 2 (or more) agents explores the dynamic

torus in O(νµ) rounds, which is shown to be asymptotically optimal. In Section 4.4.3, we give an

algorithm bywhich a group of ν+1 (or more) agents explores the dynamic torus inO(νµ(µ−ν+1))

rounds. We also show that the algorithm is asymptotically optimal in terms of the number of

rounds when µ − ν = O(1).

4.4.1 Impossibility of exploration

Lemma 4.4.1. Without the link presence detection, a group of ν (or fewer) agents cannot explore

the ν × µ dynamic torus.

Proof. Suppose that there is an agent on each node vi,i of T (i = 0, 1, . . . , ν − 1) in the initial

configurationW0 (see Figure 4.2). In this case, an adversary can delete all the links through which

agents try to move since there is only one agent in each row and column ring. Then, all the agents

cannot leave the current nodes forever. �

Figure 4.2: Impossible case without the link presence detection; ν = 4 and k = 4.

4.4. EXPLORATION WITHOUT THE LINK PRESENCE DETECTION IN TORI 55

4.4.2 Exploration by ν + 2 agents

In this section, we propose an algorithm by which a group of ν + 2 agents explores the ν × µ

dynamic torus within O(νµ) rounds. The pseudo code is presented in Algorithm 4.3.

The algorithm makes two agents move to and explore Ri for each i (0 ≤ i ≤ ν − 1) one by

one. In order to explore Ri, agents first execute ArrangementLeft(0) at line 2, which locates

two or three agents in C0. Then, they execute ArrangementUp(i) at line 3 so that at least two

agents are in Ri, and finally, two or more agents in Ri explore Ri by ExplorationLeft at line 4.

By repeating this for R0, R1, . . . , Rν−1, a group of ν + 2 agents explores the ν × µ dynamic torus.

The following theorems hold.

Algorithm 4.3 Exploration by ν + 2 agents
1: for i = 0 to ν − 1 do

2: ArrangementLeft(0);

3: ArrangementUp(i);

4: ExplorationLeft;

5: end for

Theorem 4.4.1. Without the link presence detection, for ν ≥ 3, a group of ν + 2 agents explores

the ν × µ dynamic torus in O(νµ) rounds by Algorithm 4.3.

Proof. Correctness: We show that at least two agents are in Ri at the start of ExplorationLeft

at line 4 because two or more agents in Ri explore Ri by ExplorationLeft at line 4 by Lemma

4.1.

We consider two cases, one is that there is only one agent in Ri and the other is that there is

no agent in Ri at the start of ArrangementLeft(0) at line 2.

Suppose that only one agent is in Ri at the start of ArrangementLeft(0) at line 2. At this

moment, ν + 1 agents are in ν − 1 row rings. Therefore, 1) there are two row rings with two

or more agents or 2) there is one row ring with three or more agents. Hence, at the end of

ArrangementLeft(0) at line 2, at least two agents are in C0 and one of them reaches Ri by

ArrangementUp(i) at line 3.

Suppose that no agent is in Ri at the start of ArrangementLeft(0) at line 2. At this moment,

56 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

ν + 2 agents are in ν − 1 row rings. Therefore, 1) there are three row rings with two or more

agents, 2) there is one row ring with two or more agents and there is another row ring with

three or more agents, or 3) there is one row ring with four or more agents. Hence, at the end of

ArrangementLeft(0) at line 2, at least three agents are in C0. Therefore, two of the agents in

C0 reach Ri by ArrangementUp(i) at line 3.

Thus, at least two agents are in Ri at the start of ExplorationLeft at line 4.

Time complexity: It takes 9µ, 9ν and 3µ rounds to executeArrangementLeft(0),Arrange-

mentUp(i) and ExplorationLeft, respectively and the number of repetitions of the for-loop at

lines 1–5 is ν. Hence, it takes (12µ + 9ν)ν = O(νµ) (ν ≤ µ) rounds that a group of ν + 2 agents

explore the ν × µ dynamic torus by Algorithm 4.3. �

Theorem 4.4.2. Without the link presence detection, the required number of rounds to explore

the ν × µ dynamic torus is Ω(νµ) when k = ν + c for any constant c ≥ 1.

Proof: Suppose that there are ν + c agents in the ν × µ dynamic torus where c ≥ 1. The

adversary can make ν agents stay on their current nodes by the claim in the proof of Lemma 4.4.1.

Thus, the remaining nodes should be visited by other c agents. Since the number of the remaining

nodes is νµ − ν, it takes (νµ − ν)/c = Ω(νµ) rounds to visit all the nodes with ν + c agents. �

From Theorems 4.4.1 and 4.4.2, Algorithm 4.3 is asymptotically optimal in terms of the

number of rounds when k = ν +O(1).

4.4.3 Exploration by ν + 1 agents

In this section, we present an algorithm by which a group of ν + 1 (or more) agents explore the

ν × µ dynamic torus within O(νµ(µ− ν + 1)) rounds. The pseudo code is presented in Algorithm

4.4.

The algorithm makes two agents move to and explore each Ri (0 ≤ i ≤ ν − 1) one by one.

An agent executes ArrangementLeft(0) and ArrangementUp(i) at lines 2 and 3 where Ri is

the row ring to be explored in the i-th iteration of the for-loop at lines 1–9. At the end of these

executions, there exists at least one agent in Ri, which is shown in the proof of Theorem 4.4.3.

4.4. EXPLORATION WITHOUT THE LINK PRESENCE DETECTION IN TORI 57

Then, an agent executes the for-loop at lines 4–7 2(µ − ν) + 5 times to locate another agent in

Ri; in each of the first µ − ν + 3 iterations, letting j ′ = j mod (µ − ν + 3), an agent tries to move

to the destination in Cj′ by ArrangementLeft(j ′) at line 5 and executes ArrangementUp(i) at

line 6 from j = 0 to µ − ν + 2, and in the following µ − ν + 2 iterations, an agent tries to move

to the destination in Cj′ by ArrangementLeft(j ′) at line 5 and executes ArrangementUp(i) at

line 6 from j = 0 to µ − ν + 1 again. Note that an agent which reaches Ri stays in Ri during the

for-loop at lines 4–7.

When the for-loop at lines 4–7 finishes, at least two agents are in Ri, which is shown in the

proof of Theorem 4.4.3, and these agents explore Ri by ExplorationLeft at line 8. By repeating

this for R0, R1, . . . , Rν−1, a group of ν + 1 agents explores the ν × µ dynamic torus. The following

theorem holds.

Algorithm 4.4 Exploration by ν + 1 agents
1: for i = 0 to ν − 1 do

2: ArrangementLeft(0);

3: ArrangementUp(i);

4: for j = 0 to 2(µ − ν) + 4 do

5: ArrangementLeft(j mod (µ − ν + 3));

6: ArrangementUp(i);

7: end for

8: ExplorationLeft;

9: end for

Theorem 4.4.3. Without the link presence detection, for ν ≥ 3, a group of ν + 1 (or more) agents

explores the ν × µ dynamic torus in O(νµ(µ − ν + 1)) rounds by Algorithm 4.4.

Proof. Correctness: Without loss of generality, it suffices to show that the agents explore

ring R0 during the first execution (when i = 0) of the for-loop at lines 1–9. To prove that, it

suffices to show that two agents exist in R0 at the beginning of the first execution (when i = 0) of

ExplorationLeft at line 8 because, by Lemma 4.3.1, two or more agents can explore a single

row ring by ExplorationLeft at line 8.

58 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

First, we show that at least one agent is in R0 at the end of ArrangementUp(0) at line 3. If

one or more agents are already in R0 at the beginning of ArrangementLeft(0) at line 2, they are

still in R0 at the end of ArrangementUp(0) at line 3 by the definitions of ArrangementUp(i)

and ArrangementLeft(j). If no agent is in R0 at the beginning of ArrangementLeft(0) at

line 2, ν + 1 agents are in ν − 1 row rings other than R0. Thus, there are two or more row rings

with two agents or there is one or more row rings with three or more agents. Hence, Lemma

4.3.2 implies that at least two agents reach C0 by ArrangementLeft(0) at line 2 and one of them

reaches R0 by ArrangementUp(0) at line 3. This means that at least one agent exists in R0 at the

end of ArrangementUp(0) at line 3.

In the following, we show that at least two agents are in R0 at the end of the for-loop at lines

4–7, which directly gives the lemma. This proposition trivially holds if two or more agents exist

in R0 at the start of the for-loop. Hence, we consider only the case where exactly one agent, say

a0, exists in R0 at the beginning of the for-loop. In what follows, we show by contradiction that

another agent reaches R0 during the execution of the for-loop. We assume that no agent other

than a0 reaches R0 during the execution of the for-loop at lines 4–7. For simplicity, we ignore

agent a0 in the following discussion. For example, “there is at most one agent in each Cj” means

“there is at most one agent other than a0 in each Cj” in the following discussion.

We first consider global configurations during the for-loop at lines 4–7. At most one agent is in

each Cj at the beginning of ArrangementUp(0) at line 6 since no agent reaches R0 by Arrange-

mentUp(0) at line 6. Therefore, for each j ′ = j mod (µ− ν + 3) where 0 ≤ j ≤ 2(µ − ν) + 4, two

agents do not reach Cj′ by ArrangementLeft(j ′) at line 5. This means that there must not be

two or more row rings with two agents and there must not be one or more row rings with three

or more agents at the start of ArrangementLeft(j ′) at line 5. Otherwise, at least two agents

reach Cj′ by ArrangementLeft(j ′) at line 5, which gives a contradiction. Note that ν agents

exist in the ν − 1 row rings R1, R2, . . . , Rν−1 during the for-loop at lines 4–7. Hence, at the start

of ArrangementLeft(j ′) at line 5, two agents are in some row ring Ri′′ (i′′ > 0) and, for each

i′ , i′′, only one agent is in Ri′ (see Figure 4.3). Notice that i′′ may differ for different iterations

of the for-loop at lines 4–7.

Next, we consider the movements of agents. Agents do not move down since there is at

most one agent in each Cj at the start of ArrangementUp(0) at line 6 (agents move down by

4.4. EXPLORATION WITHOUT THE LINK PRESENCE DETECTION IN TORI 59

ArrangementUp(i) only when they catch another agent). It means that i′′ does not increase

throughout an execution. Moreover, since there must exist at least one agent in each Ri, an agent

in Ri for i > i′′ do not move up. Additionally, since any two of the agents which are not in Ri′′

are not in the same row ring by the definition of i′′, they do not move right.

Figure 4.3: The configuration at the end of ArrangementLeft(j ′) at line 5 in the (µ − ν + 3)-th

iteration of the for-loop at lines 4–7 for ν = 6, µ = 8, and k = 7: there are two agents in Ri′′ and

there are no agents in Vup.

Let ĩ denote the value of i′′ at the end of ArrangementLeft(j ′) at line 5 in the (µ − ν + 3)-

th iteration of the for-loop at lines 4–7. We show that, at the end of ArrangementLeft(j ′)

at line 5 in the (µ − ν + 3)-th iteration of the for-loop at lines 4–7, there exists no agent in

Vup = {vi, j |1 ≤ i ≤ ĩ − 1, 0 ≤ j ≤ µ − ν + 1}. By the above claims, no agent enters into Vup

from left (i.e., through C0), up (i.e., through R0), or down (i.e., through Ri′′). Besides, no agent

is in Cj other than vi′′, j for each j where 0 ≤ j ≤ µ − ν + 2 during ArrangementLeft(j ′) at

line 5. Otherwise two agents exist in Cj for some j because one of the two agents in Ri′′ always

reaches Cj by ArrangementLeft(j ′) at line 5, which gives a contradiction. It means that no

agent enters into Vup from right since agents cannot move left in the period from the end of

ArrangementLeft(j ′) at line 5 to the start of ArrangementLeft(j ′ + 1) at line 5. Therefore,

at the end of ArrangementLeft(j ′) at line 5 in the (µ− ν + 3)-th iteration of the for-loop at lines

60 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

4–7, there exists no agent in Vup.

Now,we show that there is at least one agent inVdown = {vi, j | ĩ+1 ≤ i ≤ ν−1, 0 ≤ j ≤ µ−ν+1}

at the end of ArrangementLeft(j ′) at line 5 in the (µ− ν + 3)-th iteration of the for-loop at lines

4–7. There are at least two agents in any µ− ν+2 column rings since there is at most one agent in

each Cj and there are ν agents (except for a0). Thus, there are at least two agents in Vup ∪Vdown∪

{vĩ, j | 0 ≤ j ≤ µ − ν + 1}. There is no agent in Vup from the above claim. There is at most one

agent in {vĩ, j | 0 ≤ j ≤ µ − ν + 1} because there must exist exactly one agent on vi′′,µ−ν+2 at the

end of ArrangementLeft(j ′) at line 5 in the (µ− ν + 3)-th iteration of the for-loop at lines 4–7.

Hence, there is at least one agent in Vdown (see Figure 4.3).

By the above claims, an agent inVdown does not move up and right, and one of the agents in Ri′′

is always inCj′ at the end of ArrangementLeft(j ′) at line 5. Thus, during the following µ−ν+2

iterations, there is some iteration where two agents are inCj′ at the end of ArrangementLeft(j ′)

at line 5. One of the agents in Cj′ reaches R0 by ArrangementUp(0) at line 6. This is a

contradiction. Hence, a group of ν + 1 (or more) agents explores the ν × µ dynamic torus by

Algorithm 4.4.

Time complexity: As each execution of lines 5 and 6 takes 9(ν + µ) rounds and the number

of repetitions of the for-loop in lines 4–7 is 2(µ − ν) + 5, each execution of the for-loop at lines

1–9 takes 9(ν+ µ)(2(µ− ν)+5)+9ν+12µ = O(µ(µ− ν+1)) rounds since ν ≤ µ. As the number

of repetitions of the for-loop at lines 1–9 is ν, the total number of rounds required by Algorithm

4.4 is O(νµ(µ − ν + 1)) rounds. �

From Lemma 4.4.1 and Theorem 4.4.3, the following theorem and corollary hold.

Theorem 4.4.4. Without the link presence detection, for ν ≥ 3, ν + 1 agents are necessary and

sufficient to explore the ν × µ dynamic torus.

Corollary 4.4.1. Without the link presence detection, a group of ν + 1 agents explores the ν × µ

dynamic torus in O(ν2) rounds by Algorithm 4.4 when µ − ν = O(1).

In other words, Algorithm 4.4 is optimal in terms of the number of agents. It is also

asymptotically optimal in terms of the number of rounds when µ − ν = O(1).

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 61

4.5 Exploration with the link presence detection in tori

In this section, we consider the exploration of the ν × µ dynamic torus with the link presence

detection. We first prove in Section 4.5.1 that a group of dν/2e (or fewer) agents cannot explore a

dynamic torus and, for ν = 4, a group of three (i.e., dν/2e + 1) agents cannot explore the dynamic

torus. In Section 4.5.2, we give a time-optimal (but not optimal with respect to the number of

agents) algorithm by which a group of dν/2e + 2 (or more) agents explores the dynamic torus in

O(νµ) rounds for any ν ≥ 3. In Section 4.5.3, we give an algorithm by which a group of dν/2e+1

(or more) agents explores the dynamic torus in O(νµ(µ− ν + 1)) rounds for ν ≥ 5. We also show

that the algorithm is asymptotically optimal in terms of the number of rounds when µ− ν = O(1).

Finally, in Section 4.5.4, we propose an algorithm for ν = 3 and k = 3 (= dν/2e + 1). Note that,

for ν ≥ 3, we present optimal results with respect to the number of agents.

4.5.1 Impossibility of exploration

First, we show a building block of the proof of the impossibility result: an adversary can forever

contain an agent in a 2×2 subgrid consisting of four nodes, vi, j , vi+1, j , vi, j+1 and vi+1, j+1. Suppose

that an agent, say a, is located at node vi, j . By removing two links connecting vi, j to the nodes

outside the subgrid (i.e., vi−1, j and vi, j−1), the adversary can prevent a from going out from the

subgrid. So a can move only in the subgrid. By repeating the argument, we can show that a

cannot go out of the subgrid forever. Notice that even when another agent, say a′, comes into the

subgrid, the adversary can still prevent a from going out from the subgrid while a′ may go out

from the subgrid: the adversary always removes the two links by which a cannot go out from the

subgrid, ignoring the location of a′.

Lemma 4.5.1. With the link presence detection, for ν ≥ 3, a group of dν/2e or fewer agents

cannot explore the ν × µ dynamic torus.

Proof. We consider two cases, one is that ν is even and the other is that ν is odd. First, suppose

that ν is even. Let a0, a1, . . . , aν/2−1 be ν/2 agents in the torus and suppose ai is located at v2i,2i

in W0 (see Figure 4.4). In this case, by the above building block, the adversary can contain each

ai in the subgrid consisting of v2i,2i, v2i+1,2i, v2i,2i+1 and v2i+1,2i+1 forever. Thus, when ν is even,

a group of dν/2e agents cannot explore the dynamic torus.

62 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

Figure 4.4: Impossible case with the link presence detection; ν = 6 and k = 3.

Next, we consider the case where ν is odd. Let a0, a1, . . . , a(ν−1)/2 be (ν + 1)/2 agents in

the torus and suppose that aj (0 ≤ j ≤ (ν − 3)/2) are located at v2j,2j and a(ν−1)/2 is located at

any node other than vν−1,ν−1. By the building block, the adversary can contain aj in the subgrid

consisting of v2j,2j , v2j+1,2j , v2j,2j+1 and v2j+1,2j+1 forever. Furthermore, the adversary can prevent

a(ν−1)/2 from visiting vν−1,ν−1 forever by removing the link to vν−1,ν−1 every time it comes to a

neighboring node of vν−1,ν−1. Consequently, no agent can visit vν−1,ν−1 and thus a group of dν/2e

agents fails to explore the dynamic torus. �

The following slightly stronger impossibility holds for ν = 4.

Lemma 4.5.2. With the link presence detection, for ν = 4, a group of three (dν/2e + 1) or fewer

agents cannot explore the 4 × µ dynamic torus.

Proof. Let V0,0 = {v0,0, v0,1, v1,0, v1,1}, V1,0 = {v2,0, v2,1, v3,0, v3,1}, V0,1 = {vi, j |0 ≤ i ≤ 1, 2 ≤

j ≤ µ − 1} and V1,1 = {vi, j |2 ≤ i ≤ 3, 2 ≤ j ≤ µ − 1}, and suppose that each V0,0, V1,0 and V0,1

contains one agent. We show that no algorithm can change the situation where each of V0,0, V1,0

and V0,1 contains one agent and, thus, all the nodes of V1,1 remain unexplored. Let a0 be the agent

in V0,0, a1 be the agent in V1,0 and a2 be the agent in V0,1.

If a0 and a1 are in different column rings (e.g., a0 is on v0,0 and a1 on v2,1) or they are on

neighboring nodes (e.g., a0 is on v1,0 and a1 is on v2,0), the adversary can easily prevent a0 and a1

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 63

from moving to V1,0 and V0,0, respectively. Moreover, we do not consider the possibility that a1

moves left or right direction. This is because, when a1 tries to move left or right, the adversary

can easily prevent a1 from leaving from V1,0. For a0 and a2, we do not consider the possibility

that a0 and a2 are in different row rings, they are on neighboring nodes, or a2 move up and down.

So it suffices to consider the case where a0 and a1 are in the same column ring and a0 and a2 are

in the same row ring, but no pair of agents is on neighboring nodes. Without loss of generality,

we assume that a0 is on v0,0, a1 is on v2,0 and a2 is on v0,2 (see Figure 4.5).

Figure 4.5: Impossible case with the link presence detection; ν = 4 and k = 3.

Then, we consider behavior of agents and prove that, in any execution, the adversary can keep

the situation where each ofV0,0,V0,1 andV1,0 contains one agent unchanged. At first, the adversary

simulates the behavior of agents when no link is deleted. Then, depending on that simulation, the

adversary decides whether it deletes a link or not and, if so, which link it deletes.

If a0 and a1 move in the same column direction, the adversary lets a0 and a1 move and deletes

(v0,1, v0,2) and (v0,2, v3,2) so that a2 cannot move out fromV0,1. If a0 moves down and a1 moves up,

the adversary deletes (v1,0, v2,0), (v2,0, v2,m−1), (v0,1, v0,2) and (v0,2, v3,2) so that a1 and a2 cannot

move out from V1,0 and V0,1, respectively. In this case, a0 moves down and remains in V0,0

If a0 moves up and a1 moves down, the adversary deletes (v0,0, v3,0). In this case, as a0 can

decide the direction using the knowledge that (v0,0, v3,0) is missing, the adversary simulates the

movement of a0 with the knowledge. If a0 moves down, the adversary deletes (v0,1, v0,2) and

(v0,2, v3,2) additionally. If a0 and a2 move in the same direction, the adversary lets them move.

If a0 moves left and a2 moves right, the adversary deletes (v0,0, v0,µ−1) additionally. If a0 moves

right and a2 moves left, the adversary deletes (v0,1, v0,2) and (v0,2, v3,2) additionally.

64 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

From the above claim, the situation where each of V0,0, V0,1 and V1,0 contains one agent does

not change by any execution and, thus, all the nodes of V1,1 remain unexplored. Thus, for ν = 4

and k = 3 (dν/2e + 1), the dynamic torus cannot be explored. �

4.5.2 Exploration by dν/2e + 2 agents

With the link presence detection, at each round t, an agent can move down or up (if it wants to

do) since each column ring has at most one missing link. This also holds for the direction right

or left.

A main idea of exploration is that each agent moves to a neighboring node (if necessary) so

that all agents should be in row rings with even row numbers or row rings with odd row numbers,

and executes an algorithm similar to that in Section 4.4. Hereinafter, we call row rings with odd

(resp, even) row numbers odd (resp, even) row rings, and call column rings with odd (resp, even)

column numbers odd (resp, even) column rings.

ArrangementV(i) (Algorithm 4.5) makes every agent move one hop vertically (if necessary)

to an even (resp, odd) row ring when i is even (resp, odd). The only exception is the case that both

ν and i are odd: the algorithm allows agents in Rν−1 to move to R0 in addition to odd row ring

Rν−2. Remind that at most one agent can move in each direction of each link at each round by

the mutual exclusion rule. Thus, ArrangementV(i) is executed for five rounds so that one of the

conditions in Lemma 4.5.3 holds. In the following pseudo codes, we use the following notation

and predicate.

• vp,q: It denotes the current node of the agent which is executing the pseudo code.

• stay (predicate): It is true if i and p are even, i and p are odd, or ν and i are odd and p = 0.

ArrangementH(j) locating agents in even column rings or odd column rings (with exception

that C0 is included) is similarly defined by replacing i, up, down, vp,q, and vp−1,q in Algorithm

4.5.3 to j, left, right, vq,p, and vq,p−1, and i and ν in the definition stay to j and µ, respectively.

ArrangementH(j) also finishes at the fifth round. The following lemma holds.

Lemma 4.5.3. At the end of ArrangementV(i) (resp, ArrangementH(j)), one of the following

conditions holds.

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 65

Algorithm 4.5 ArrangementV(i)
1: In state Init:

2: Move(nil | time ≥ 5 : Return; ¬stay : Leave_Up);

3: In state Leave_Up:

4: Move(up | time ≥ 5 : Return; stay : Init; (vp,q, vp−1,q) is missing : Leave_Down);

5: In state Leave_Down:

6: Move(down | time ≥ 5 : Return; stay : Init; (vp,q, vp−1,q) is not missing : Leave_Up);

1. Predicate stay is true for every agent.

2. There is one row (resp, column) ring with two or more agents and there is another row

(resp, column) ring with three or more agents.

3. There is one row (resp, column) ring with four or more agents.

Proof. We consider the case where i is even because the following discussion also holds, with

slight modification, for the case where i is odd. We assume that at least one agent stays on a node

v of an odd row ring at the end of ArrangementV(i) (i.e., claim 1 does not hold), and show that,

at this moment, there is one row ring with two or more agents and there is another row ring with

three or more agents (i.e., claim 2 holds), or there is one row ring with four or more agents (i.e.,

claim 3 holds).

ArrangementV(i) continues for five rounds and at least one agent on v succeeds to move in

each round. Since one agent stays on v at the end of ArrangementV(i), there must be at least

six agents on v at the start of ArrangementV(i). Since five of them move up or down from v

and they never move again by ArrangementV(i), there is one row ring with two or more agents

and there is another row ring with three or more agents, or there is one row ring with four or more

agents, that is, Condition 2 or 3 holds. Similarly, the lemma holds for ArrangementH(j). �

In the following, we present an algorithm by which a group of dν/2e + 2 agents explores an

ν × µ dynamic torus within O(νµ) rounds. The pseudo code is presented in Algorithm 4.6.

The algorithm makes two agents move to and explore Ri for each i (0 ≤ i ≤ ν−1) one by one.

In order to explore each Ri, agents first execute ArrangementV(i) and ArrangementLeft(0)

66 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

at lines 2 and 3, which locates two or more agents in C0 by Lemmas 4.3.2 and 4.5.3. Then, they

execute ArrangementUp(i) at line 4 so that at least two agents are in Ri, and finally, these agents

explore Ri by ExplorationLeft at line 5. By repeating this for R0, R1, . . . , Rν−1, a group of

dν/2e + 2 agents explores the ν × µ dynamic torus. The following theorems and corollary hold.

Algorithm 4.6 Exploration by dν/2e + 2 agents
1: for i = 0 to ν − 1 do

2: ArrangementV(i);

3: ArrangementLeft(0);

4: ArrangementUp(i);

5: ExplorationLeft;

6: end for

Theorem 4.5.1. With the link presence detection, for ν ≥ 3, a group of dν/2e + 2 agents explores

the ν × µ dynamic torus in O(νµ) rounds by Algorithm 4.6.

Proof. Correctness: It suffices to show that at least two agents are in Ri at the start of

ExplorationLeft at line 5 because two or more agents in Ri explore Ri by ExplorationLeft at

line 5 by lemma 4.1.

We consider two cases, one is that there is only one agent in Ri and the other is that there is

no agent in Ri at the end of ArrangementV(i) at line 2.

Suppose that only one agent is in Ri at the end of ArrangementV(i) at line 2. At the time,

by Lemma 4.5.3, the other dν/2e + 1 agents are in dν/2e − 1 row rings. Therefore, there are two

row rings with two or more agents or there is one row ring with three or more agents. Thus, by

Lemma 4.3.2, at least two agents are in C0 at the end of ArrangementLeft(0) at line 3 and one

of them reaches Ri by ArrangementUp(i) at line 4.

Suppose that no agent is in Ri at the end of ArrangementV(i) at line 2. At the time, by

Lemma 4.5.3, dν/2e + 2 agents are in dν/2e − 1 row rings. Hence, there are three row rings with

two or more agents, there is one row ring with two or more agents and there is another row ring

with three or more agents, or there is one row ring with four or more agents. Thus, by Lemma

4.3.2, at least three agents are in C0 at the end of ArrangementLeft(0) at line 3 and two of them

reach Ri by ArrangementUp(i) at line 4.

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 67

Thus, at least two agents are in Ri at the start of ExplorationLeft at line 5.

Time complexity: It takes 5, 9µ, 9ν and 3µ rounds to execute ArrangementV(i), Ar-

rangementLeft(0), ArrangementUp(i) and ExplorationLeft, respectively, and the number

of repetitions of the for-loop at lines 1–6 is ν. From these, by Algorithm 4.6, ν + 2 (or more)

agents explore the ν× µ dynamic torus in (12µ+9ν+5)ν = O(νµ) rounds. (Note that ν ≤ µ.) �

Corollary 4.5.1. With the link presence detection, four agents are necessary and sufficient to

explore the 4 × µ dynamic torus for any µ ≥ 4.

Theorem 4.5.2. With the link presence detection, the required number of rounds to explore the

ν × µ dynamic torus with k agents is Ω(νµ) when k = dν/2e + c for any constant c ≥ 1.

Proof. Suppose that there are dν/2e + c agents in the dynamic torus where c ≥ 1.

The adversary can make each of bν/2c agents stay in their current 2 × 2 subgrids as shown

in the proof of Lemma 4.5.1. Thus, the remaining nodes must be visited by at most c + 1

agents (the number of agents other than ones kept in subgrids is at most c when ν is even and

c + 1 when ν is odd). Since the number of the remaining nodes is νµ − 4(bν/2c), it takes

(νµ− 4(bν/2c))/(c + (ν mod 2)) = Ω(νµ) rounds to visit all the nodes with dν/2e + c agents. �

From Theorem 4.5.1 and 4.5.2, Algorithm 4.6 is asymptotically optimal in terms of the

number of rounds when k = dν/2e +O(1).

4.5.3 Exploration by dν/2e + 1 agents

In this section, we present an algorithm with the link presence detection by which a group of

dν/2e + 1 (or more) agents explores the ν× µ dynamic torus within O(νµ(µ− ν+ 1)) rounds. The

pseudo code is presented in Algorithm 4.7.

The algorithm makes two agents move to and explore Ri for each i (0 ≤ i ≤ ν − 1) one by

one. At line 2, an agent executes ArrangementV(i) to move to an even row ring or an odd

row ring (with the exception that R0 is included). An agent executes ArrangementLeft(0) and

ArrangementUp(i) at lines 3 and 4 where Ri is the row ring to be explored in the i-th iteration

68 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

of the for-loop at lines 1–12. At the end of these executions, there exists at least one agent in Ri

(we explain this in the proof of Theorem 4.5.3).

Then, an agent executes the for-loop at lines 5–10 to locate another agent in Ri. Let j ′

denote 2(j mod (dµ/2e − dν/2e + 3)). A set of executions of ArrangementV(i) and Arrange-

mentLeft(j ′) at lines 6 and 7 works like ArrangementLeft(j mod (µ − ν + 3)) at line 5 in

Algorithm 4.4. An agent executes the for-loop at lines 5–10 for 2(dµ/2e − dν/2e) + 5 times; in

each of the first dµ/2e − dν/2e + 3 iterations, an agent tries to move to the destination in C2j from

j = 0 to dµ/2e − dν/2e + 2, and in the following dµ/2e − dν/2e + 2 iterations, an agent tries to

move to C2j from j = 0 to dµ/2e − dν/2e + 1 again. Note that an agent which reaches Ri stays in

Ri until the for-loop at lines 5–10 finishes.

At the end of the for-loop at lines 5–10, at least two agents are in Ri, which we prove in

the proof of Theorem 4.5.3 and these agents explore Ri by ExplorationLeft at line 11. By

repeating this for R0, R1, . . . , Rν−1, a group of dν/2e + 1 agents explores the ν × µ dynamic torus.

The following theorem holds.

Algorithm 4.7 Exploration by dν/2e + 1 agents
1: for i = 0 to ν − 1 do

2: ArrangementV(i);

3: ArrangementLeft(0);

4: ArrangementUp(i);

5: for j = 0 to 2(dµ/2e − dν/2e) + 4 do

6: ArrangementV(i);

7: ArrangementLeft(2(j mod (dµ/2e − dν/2e + 3)));

8: ArrangementH(0);

9: ArrangementUp(i);

10: end for

11: ExplorationLeft;

12: end for

Theorem 4.5.3. With the link presence detection, for ν ≥ 5, a group of dν/2e + 1 agents explores

the ν × µ dynamic torus in O(νµ(µ − ν + 1)) rounds by Algorithm 4.7.

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 69

Proof. Correctness: As we showed in Lemma 4.4.3, it is sufficient to show that two agents

exist in R0 at the beginning of the first execution (when i = 0) of ExplorationLeft at line 11.

Thus, we fix i = 0 throughout this proof.

First, we show that at least one agent is in R0 at the end of ArrangementUp(0) at line 4.

If one or more agents are already in R0 at the start of ArrangementV(0) at line 2, they are

still in R0 at the end of ArrangementUp(0) at line 4 by the definitions of ArrangementUp(i),

ArrangementLeft(j) and ArrangementV(i). Thus, we consider the case where there is no

agent in R0 at the start of ArrangementV(0) at line 2. At the end of ArrangementV(0) at line

2, by Lemma 4.5.3, at least one of the followings holds: dν/2e + 1 agents are in dν/2e − 1 even

row rings other than R0, there is one row ring with two or more agents and there is another row

ring with three or more agents, or there is one row ring with four or more agents. In the first

case, there are two row rings with two or more agents or there is one row ring with three or more

agents. Thus, Lemma 4.2 implies that at least two agents reach C0 by ArrangementLeft(0) at

line 3. In the second and third cases, Lemma 4.2 implies that at least three agents reach C0 by

ArrangementLeft(0) at line 3. This means that at least two agents exist in C0 at the start of

ArrangementUp(0) at line 4 and at least one of them reaches R0 by ArrangementUp(0) at line

4. Hence, at least one agent exists in R0 at the end of ArrangementUp(0) at line 4.

In the following, we show that at least two agents are in R0 at the end of the for-loop at lines

5–10, which directly gives the lemma. This proposition trivially holds if two or more agents exist

in R0 at the start of the for-loop. Hence, we consider only the case where exactly one agent, say

a0, exists in R0 at the start of the for-loop. In what follows, we show by contradiction that another

agent reaches R0 during the execution of the for-loop. We assume that no agent other than a0

reaches R0 during the execution of the for-loop at lines 5–10. For simplicity, we ignore a0 in the

following discussion. For example, “there is at most one agent in each Cj” means “there is at

most one agent other than a0 in each Cj” in the following discussion.

We first consider global configurations during the for-loop at lines 5–10. At most one

agent is in each Cj at the start of ArrangementUp(0) at line 9 since no agent reaches R0 by

ArrangementUp(0) at line 9. Therefore, for each j ′ = 2(j mod (dµ/2e − dν/2e + 3)) such that

0 ≤ j ≤ 2(dµ/2e − dν/2e) + 4, two agents do not reach Cj′ by ArrangementLeft(j ′) at line

7. This means that there must not be two row rings with two or more agents or there must

70 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

not be one row ring with three or more agents at the start of ArrangementLeft(j ′) at line 7.

Otherwise, at least two agents reach Cj′ by ArrangementLeft(j ′) at line 7 and one of them

reaches R0 by ArrangementUp(0) at line 9, which gives a contradiction. Hence, at the end

of ArrangementV(0) at line 6, neither Conditions 2 nor 3 of Lemma 4.5.3 hold and, thus,

Condition 1 of Lemma 4.5.3 holds, that is, agents are in even row rings. Since dν/2e agents are

in dν/2e − 1 row rings, two agents are in some even row ring Ri′′ (i′′ > 0), and for each even

number i′ , i′′, only one agent is in Ri′ and there is no agent in odd row rings at the end of

ArrangementV(0) at line 6 (see Figure 4.6). Similarly, there is no agent in odd column rings at

the end of ArrangementH(0) at line 8.

Next, we consider the movements of agents. Agents do not move down by Arrange-

mentUp(0) at line 9 since there is at most one agent in each Cj during the execution of Ar-

rangementUp(0) at line 9 (agents move down by ArrangementUp(i) only when they catch

another agent). Moreover, since there must be at least one agent in each even row ring at the

end of ArrangementV(0), an agent in even row ring Ri such that i > i′′ exists in the same row

ring Ri after executing ArrangementUp(0) and ArrangementV(0) at lines 9 and 6, that is,

the agent moves up at most one hop by ArrangementUp(0) at line 9 and does not move up by

ArrangementV(0) at line 6. Hence, the value of i′′ at the start of ArrangementLeft(j ′ + 1) at

line 7 is no more than the value of i′′ at the start of ArrangementLeft(j ′) at line 7. Additionally,

since any two of the agents which are not in Ri′′ are not in the same row ring by the definition of

i′′, they do not move right.

Let ĩ denote the value of i′′ at the end of ArrangementLeft(j ′) at line 5 in the (µ− ν + 3)-th

iteration of the for-loop at lines 5–10. We show that, at the end of ArrangementLeft(j ′) at line

7 in the (dµ/2e − dν/2e + 3)-th iteration of the for-loop at lines 5-10, there exists no agent in

Vup = {vi, j |1 ≤ i ≤ ĩ−1, 0 ≤ j ≤ 2(dµ/2e−dν/2e+1)}. By above claims, no agent enters intoVup

from left (i.e., through C0), up (i.e., through R0), or down (i.e., through Ri′′). Besides, no agent is

inC2j other than vi′′,2j for each j where 0 ≤ j ≤ dµ/2e − dν/2e+2 during ArrangementLeft(j ′)

at line 7. Otherwise two agents exist in C2j for some j because one of the two agents in Ri′′

always reaches vi′′,2j by ArrangementLeft(j ′) at line 7, which gives a contradiction. It means

that no agent enters into Vup from right since agents cannot move left in the period from the end

of ArrangementH(0) at line 7 (at the time, agents are in even collumn rings) to the start of

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 71

Figure 4.6: At the end of ArrangementLeft(j ′) at line 7 in the (dµ/2e − dν/2e + 3)-th iteration

of the for-loop at lines 5–10 for ν = 7, µ = 10, and k = 5: there are two agents in Ri′′ and there

are no agents in Vup.

ArrangementLeft(j ′ + 1) at line 7. Therefore, at the end of ArrangementLeft(j ′) at line 7 in

the (dµ/2e − dν/2e + 3)-th iteration of the for-loop at lines 5–10, there exists no agent in Vup.

Now, we show that there is at least one agent in Vdown = {vi, j | ĩ + 1 ≤ i ≤ n − 1, 0 ≤ j ≤

2(dµ/2e − dν/2e +1)} at the end of ArrangementLeft(j ′) at line 7 in the (dµ/2e − dν/2e +3)-th

iteration of the for-loop at lines 5–10. There are at least two agents in any dµ/2e − dν/2e + 2

even column rings since there is at most one agent in each Cj and there are dν/2e agents except

for R0. Thus, there are at least two agents in Vup∪ Vdown∪ {vi′′, j | 0 ≤ j ≤ 2(dµ/2e − dν/2e + 1)}

at the end of ArrangementLeft(j ′) at line 5 in the (dµ/2e − dν/2e + 3)-th iteration of the

for-loop at lines 5–10. There is no agent in Vup from the above claim. There is at most one

agent in {vi′′, j | 0 ≤ j ≤ 2(dµ/2e − dν/2e + 1)} because there must exist exactly one agent on

vi′′,2(dµ/2e−dν/2e+2) at the end of ArrangementLeft(j ′) at line 7 in the (dµ/2e − dν/2e + 3)-th

iteration of the for-loop at lines 5–10. Hence, there is at least one agent in Vdown (see Figure 4.6).

By the above claims, an agent in Vdown does not move up or right, and one of the agents in

Ri′′ is always in Cj′ at the end of ArrangementLeft(j ′) at line 7. Thus, during the following

dµ/2e − dν/2e + 2 iterations, there is some iteration where two agents are in Cj′ at the end of

72 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

ArrangementLeft(j ′) at line 7. One of the agents in Cj′ reaches R0 by ArrangementUp(0) at

line 9. This is a contradiction. Hence, a group of dν/2e + 1 (or more) agents explores the ν × µ

dynamic torus by Algorithm 4.7.

Time complexity: As each execution of the for-loop at lines 5–10 takes 9(ν + µ)+ 10 rounds

and the number of repetitions of the for-loop at lines 5–10 is 2(dµ/2e − dν/2e)+5, each execution

of the for-loop at lines 1–12 takes no more than (9(ν+µ)+10)((µ+1)−(ν+1)+5)+9ν+12µ+5 =

O(µ(µ − ν + 1)) rounds. As the number of repetitions of the for-loop at lines 1–12 is ν, the total

number of rounds required by Algorithm 4.7 is O(νµ(µ − ν + 1)) rounds. �

Additionally, the following corollary holds.

Corollary 4.5.2. With the link presence detection, a group of dν/2e + 1 agents explores the ν × ν

dynamic torus in O(ν2) rounds by Algorithm 4.7 when µ − ν = O(1).

In other words, Algorithm 4.7 is optimal in terms of the number of agents. It is also

asymptotically optimal in terms of the number of rounds when µ − ν = O(1).

4.5.4 Exploration by three agents for ν = 3

In this section, we propose an algorithm by which a group of three agents explores the 3 × µ

dynamic torus. This means that dν/2e + 1 agents is sufficient to explore the ν × µ dynamic torus

for ν = 3. Note that, as explained below, there is a case where agents fail to explore the dynamic

torus by Algorithm 4.7 when ν = 3 and k = 3 (= dν/2e + 1).

Suppose that ν = 3, k = 3 and one agent, say a, is on v0,0 and two agents are in R2 at the

initial configuration (see Figure 4.7). Let us consider the first iteration of the for-loop at lines

1–12 (when i = 0). By ArrangementV(0) at line 2, agents do not move. An adversary lets only

one of the two agent in R2 move and reach C0 by ArrangementLeft(0) at line 3 and prevents the

agent from moving to R0 by ArrangementUp(0) at line 4. Then, only a is in R0 (on v0,0) at the

start of the for-loop at lines 5–10. In the for-loop at lines 5–10, the adversary can prevent agents

from exploring R0 by the following strategy. The adversary makes agents other than a move to

R2 by ArrangementV(0) at line 6, prevents a from moving and two agents in R2 from meeting

by ArrangementLeft(j ′) and ArrangementH(0) at lines 7 and 8 and prevents agents other

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 73

than a from moving to R0 by ArrangementUp(0) at line 9. By repeating these, the adversary

can prevent agents from exploring the nodes in R0 other than v0,0 during the first iteration of the

for-loop at lines 5–10.

Figure 4.7: An initial configuration where one agent a is in v0,0 and two agents are in R2.

In the following two iterations of the for-loop at lines 1–12, the adversary makes a stay in

v0,0 and lets the other agents explore R1 and R2. Consequently, agents terminate Algorithm 4.7

without visiting the nodes in R0 other than v0,0.

Subroutines for ν = 3

Before we propose the exploration algorithm, we propose subroutines ExplorationUp(j), Ar-

rangementV_3(i) and MeetingV(i, j) which are presented in Algorithms 4.8, 4.9 and 4.10,

respectively.

ExplorationUp(j) is the same as ExplorationUp defined in Algorithm 4.1, but with the

addition of state Wait. Agents in Cj act as if they executed ExplorationUp. The other agents

become Wait and stay at their current node during ExplorationUp(j). The following lemma

holds.

Lemma4.5.4. ByExplorationUp(j), if two ormore agents are inCj and they startExplorationUp(j)

simultaneously, they explore Cj by the 3ν-th round from the start of ExplorationUp(j) while the

other agents stay at their current nodes.

Proof. Agents executing ExplorationUp(j) inCj act as if they were executing ExplorationUp

since current < Cj does not hold for them. Thus, Cj is explored if two or more agents are in Cj

74 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

Algorithm 4.8 ExplorationUp(j)
1: In state Init:

2: Move(up | time ≥ 3ν : Return; current < Cj : Wait; catches : Bounce);

3: In state Bounce:

4: Move(down | time ≥ 3ν : Return);

5: In stateWait:

6: Move(nil | time ≥ 3ν : Return);

at the start of ExplorationUp(j) by Lemma 4.3.1. Agents which are not in Cj change their state

to Wait by satisfying current < Cj as soon as they start ExplorationUp(j). Once they become

Wait, they do not move till the end of ExplorationUp(j). �

ArrangementV_3(i) is the algorithm by which the three agents move to Ri or Ri−1. Agents

which exist in Ri+1 at the start of ArrangementV_3(i) succeed to move to Ri or Ri−1. Agents

which exist in Ri or Ri−1 stay at their current nodes. The following lemma holds.

Algorithm 4.9 ArrangementV_3(i)
1: In state Init:

2: Move(nil | time ≥ 3 : Return; p = i + 1 : Leave_Up);

3: In state Leave_Up:

4: Move(up | time ≥ 3 : Return; p = i ∨ p = i − 1 : Init; (vp,q, vp−1,q) is miss-

ing : Leave_Down);

5: In state Leave_Down:

6: Move(down | time ≥ 3 : Return; p = i ∨ p = i − 1 : Init; (vp,q, vp−1,q) is not miss-

ing : Leave_Up);

Lemma 4.5.5. When ν = 3 and k = 3, at the end of ArrangementV_3(i), the three agents are in

Ri or Ri−1.

Proof. Agents in Ri or Ri−1 do not move during ArrangementV_3(i) since p = i + 1 does

not hold for them and their states remain Init. Now, we consider agents in Ri+1 at the start of

ArrangementV_3(i). First, suppose that there are three agents in the same node, say vi+1, j

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 75

(0 ≤ j ≤ µ), in Ri+1 at the start of ArrangementV_3(i). They first change their states to

Leave_Up. After that, they try to move to Ri if (vp,q, vp−1,q) exists; otherwise, they change their

states to Leave_Down and try to move to Ri−1. Note that by the mutual exclusion rule, one of the

agents succeeds to move for both cases. At the start of the second round of ArrangementV_3(i),

the states of the two agents staying in vi+1, j is Leave_Up or Leave_Down. Starting from either

state, they change their states to Leave_Up (resp., Leave_Down) and try to move to Ri (resp.,

Ri−1) if (vp,q, vp−1,q) exists (resp., does not exist) and one of them succeeds to move. At the third

round, the remaining agent surely succeeds to move to Ri or Ri−1. For the cases where there is

one agent or are two agents in vi+1, j at the start of ArrangementV_3(i), we can show by the

similar way that the agent(s) is in Ri or Ri−1 at the end of ArrangementV_3(i). �

MeetingV(i, j) makes an agent on vi, j and another agent on vi−1, j meet at vi, j or vi−1, j if they

exist and makes the other agents wait two rounds at their current nodes. Algorithm 4.10 is a

pseudo code of MeetingV(i, j). For simplicity, let us suppose that exactly one agent (say a) is

on vi, j , exactly one agent (say b) is on vi−1, j , and no agent is on vi+1, j as in Figure 4.8a. The

movement of a and b is as follows.

In the first round, if (vi, j, vi−1, j) exists, a stays at its current node (line 6) and b moves to vi, j
(line 15) as in Figure 4.8b and, in the second round, both the agents stay at vi, j (lines 6 and 16).

Otherwise, a stays at vi, j (line 8) and b moves to vi+1, j in the first round (line 18) as in Figure

4.8c. In this case, a and b can share the node to meet at the second round depending on whether

(vi, j, vi+1, j) exists or not in the second round: a stays at vi, j (line 10) while b moves to vi, j (line 22)

if (vi, j, vi+1, j) exists (see Figure 4.8d) or both of them move to vi−1, j (lines 12 and 24) otherwise

(see Figure 4.8e).

For agents in column rings other than Cj , they stay their current nodes (lines 1 and 2). When

there are several agents on vi, j (resp, vi−1, j) at the start of MeetingV(i, j), exactly one of them

behaves as a (resp, b) due to the mutual exclusion rule and other agents stay at vi, j (resp, vi−1, j at

line 20).

Lemma 4.5.6. The agents existing on vi, j or vi−1, j at the start of MeetingV(i, j) exist on vi, j or

vi−1, j at the end of MeetingV(i, j). Moreover, if an agent (say a) exists on vi, j and another agent

(say b) exists on vi−1, j at the start of MeetingV(i, j), these agents exist on the same node vi, j or

76 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

Algorithm 4.10 MeetingV(i, j)

1: if (q , j) then

2: wait two rounds;

3: else

4: if (p = i) then

5: if ((vi, j, vi−1, j) exists) then

6: wait two rounds;

7: else

8: wait one round;

9: if ((vi, j, vi+1, j) exists) then

10: wait one round;

11: else

12: move to vi−1, j ;

13: else

14: if ((vi, j, vi−1, j) exists) then

15: move to vi, j ;

16: wait one round;

17: else

18: move to vi+1, j ;

19: if the current node is vi−1, j then

20: wait one round;

21: else if ((vi, j, vi+1, j) exists) then

22: move to vi, j ;

23: else

24: move to vi−1, j ;

vi−1, j at the end of MeetingV(i, j).

Proof. Since we can see that the second part holds as explained above, we only show the first

part. The only possibility of exiting from vi, j and vi−1, j is at line 18 (in other parts, agents only

move through (vi, j, vi−1, j)). If an agent moves to vi+1, j at line 18, it always succeeds to move vi, j

4.5. EXPLORATION WITH THE LINK PRESENCE DETECTION IN TORI 77

or vi−1, j at line 22 or 24. Thus, the first part holds. �

Exploration algorithm

An exploration algorithm by three agents for the 3 × µ dynamic torus is presented in Algorithm

4.11.

Algorithm 4.11 aims to explore all the row rings or all the column rings. During the for-loop

at lines 4–12, the three agents succeed to explore Ri or Cj (we will prove this in the proof of

Theorem 4.5.4). Hence, the agents explore Ri or all the column rings during the for-loop at lines

3–13. Therefore, the agents explore all the row rings or all the column rings during the for-loop

at lines 1–14.

First, agents execute ArrangementV_3(i) to move to Ri or Ri−1. In the for-loop at lines

4–12, agents execute ExplorationLeft at line 5 to explore Ri. Then, agents execute Arrange-

mentLeft(j) and ExplorationUp(j) at lines 6 and 7 to explore Cj and execute Arrange-

mentV_3(i) and ExplorationLeft at lines 8 and 9 to explore Ri. Finally, agents execute

ArrangementLeft(`) and MeetingV(i, `) at lines 10 and 11 to meet another agent.

By repeating this for 0 ≤ ` ≤ µ2 − µ, agents succeed to explore Cj or Ri and, by repeating

this for 0 ≤ j ≤ µ − 1 and 0 ≤ i ≤ 2, agents complete exploration of the dynamic torus. The

following theorem holds.

Theorem 4.5.4. With the link presence detection, a group of three agents explores the 3 × µ

dynamic torus by Algorithm 4.11.

Proof. It suffices to show that Cj or Ri is explored during the for-loop at lines 4–12.

First, it holds that, at the start of each iteration of the for-loop at lines 4–12, agents are in Ri

or Ri−1. This is because agents execute ArrangementV_3(i) at line 2 before the for-loop and

execute ArrangementV_3(i) at line 8 just after ExplorationUp(j) at line 7 which may make

agents exit from Ri or Ri−1 (MeetingV(i, `) does not make agents in Ri or Ri−1 exit from Ri and

Ri−1 by Lemma 4.5.6).

In the following, we show the theorem by contradiction. We assume that neither Cj nor Ri

are explored during the for-loop at lines 4–12.

78 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

Algorithm 4.11 Exploration by three agents for ν = 3 and µ ≥ 5
1: for i = 0 to 2 do

2: ArrangementV_3(i);

3: for j = 0 to µ − 1 do

4: for ` = 0 to µ2 − µ do

5: ExplorationLeft;

6: ArrangementLeft(j);

7: ExplorationUp(j);

8: ArrangementV_3(i);

9: ExplorationLeft;

10: ArrangementLeft(`);

11: MeetingV(i, `);

12: end for

13: end for

14: end for

First, it holds that one agent, say a, is in Ri and two agents, are in Ri−1 at the start of each

iteration of the for-loop at lines 4–12 (∗). The reason is that, if there are two or three agents in

Ri at this moment, Ri is explored by ExplorationLeft at line 5 and, if there are three agents in

Ri−1 at this moment, Cj is explored by ArrangementLeft(j) and ExplorationUp(j) at lines 6

and 7.

Next, we show that a does not exist at vi, j at the start of ExplorationUp(j) at line 7, which

means a does not move by ExplorationUp(j) at line 7. At the start of ExplorationUp(j) at

line 7, one of the two agents in Ri−1 must exist at vi−1, j by ArrangementLeft(j) at line 6. If a

is on vi, j at the start of ExplorationUp(j) at line 7, two agents exist in Cj and Cj is explored by

ExplorationUp(j) at line 7, which leads to a contradiction.

Additionally, at the start of MeetingV(i, `) at line 11, a is in Ri and the other two agents are

in Ri−1. This is because agents move to Ri or Ri−1 (note that a is already in Ri and does not move)

by ArrangementV_3(i) at line 8 and, since Ri is not explored by ExplorationLeft at line 9,

there exists only one agent in Ri at the end of ExplorationLeft at line 9.

4.6. CONCLUDING REMARKS 79

Then, we show that agents do not meet by MeetingV(i, `) at line 11. By the above claims, a

is in Ri and two agents are in Ri−1 at the start of MeetingV(i, `) at line 11, and by Lemma 4.5.6,

meeting of agents leads to a configuration where two agents are in Ri or three agents are in Ri−1.

This contradicts to the above claim (labeled (∗)).

Finally, we show that a moves left at least once during µ iterations of the for-loop at lines

4–12, which meas that a moves at least (µ − 1) times during µ(µ − 1) iterations of the for-loop at

lines 4–12 and, thus, by the claim that a does not move right, a explores Ri during the for-loop

at lines 4–12. We show that by contradiction. We assume that a does not move left during µ

iterations of the for-loop at lines 4–12. From the above claims, a does not move from Ri and

a does not move right. Thus, a stays at a node vi, ja during µ iterations of the for-loop at lines

4–12. However, one of the two agents in Ri−1 reaches Cja by ArrangementLeft(ja) at line 10

and a meets the agent. It leads to a contradiction. Therefore, a moves left at least once during

µ iterations of the for-loop at lines 4–12, which means that a explores Ri during the for-loop at

lines 4–12. This is a contradiction. �

By Lemma 4.5.1, Theorems 4.5.3 and 4.5.4, the following theorem holds.

Theorem 4.5.5. With the link presence detection, for ν ≥ 5 and ν = 3, dν/2e + 1 agents are

necessary and sufficient to explore the ν × µ dynamic torus.

4.6 Concluding Remarks

We considered group exploration of the dynamic torus consisting 1-interval connected rings. We

proposed exploration algorithms with termination and we showed that the link presence detection

has a considerable influence on the number of agents required to explore the dynamic torus.

Specifically, we showed that, without the link presence detection, ν + 1 agents are necessary and

sufficient to explore and, with the link presence detection, dν/2e + 1 agents are necessary and

sufficient when ν , 4 and dν/2e + 2 agents are necessary and sufficient when ν = 4 to explore

the dynamic torus.

80 CHAPTER 4. EXPLORATION OF DYNAMIC TORI

(a) (b) (c)

(d) (e)

Figure 4.8: (a) Configuration at the start of MeetingV(i, j). (b) Move of agents when (vi, j, vi−1, j)

exists in the first round. (c) Move of agents when (vi, j, vi−1, j) does not exist in the first round. (d)

The move following the move of (c) when (vi, j, vi+1, j) exists in the second round. (e) The move

following the move of (c) when (vi, j, vi+1, j) does not exists in the second round.

Chapter 5

Exploration of Dynamic Rings with
(H, S) view

5.1 Introduction

In this chapter, we consider the exploration of dynamic networks by a single agent with partial

information about network changes, i.e., a view. We focus on 1-interval connected rings as

dynamic networks in this chapter.

We assume that the single agent has partial information called the (H, S) view by which it

always knows whether or not each of the links within H hops is available in each of the next S

time steps. In this setting, we show that H+S ≥ n and S ≥ dn/2e (n is the size of the network) are

necessary and sufficient conditions to explore 1-interval connected rings. Moreover, we investigate

the upper and lower bounds of the exploration time. It is proven that the exploration time is O(n2)

for dn/2e ≤ S < 2H ′ − 1, O(n2/H + nH) for S ≥ max(dn/2e, 2H ′ − 1), O(n2/H + n log H) for

S ≥ n − 1, and Ω(n2/H) for any S where H ′ = min(H, bn/2c).

The results are summarized in Table 5.1

81

82 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

Table 5.1: Upper and lower bounds of the exploration time on 1-interval connected rings.

H and S Upper bound Lower bound

H + S < n or
The exploration is impossible.

S < dn/2e

H + S ≥ n and
O(n2)

Ω(n2/H)

dn/2e ≤ S < 2H ′ − 1

H + S ≥ n and
O(n2/H + nH)

max(dn/2e, 2H ′ − 1) ≤ S < n − 1

n − 1 ≤ S O(n2/H + n log H)

5.2 Preliminary

5.2.1 Network

In this chapter, we consider the exploration with termination on dynamic networks whose foot

print is a ring i.e., V = {v0, v1, . . . , vn−1} is a set of n nodes and E = {e0, e1, . . . , en−1} is a set of

n links such that ei = (vi, vi+1 mod n). The nodes of the network are anonymous. For simplicity,

we omit mod n in the following. In this chapter, a time unit is called a step. We assume that G is

1-interval connected, i.e., in each step t, a network is connected. In other words, in each step t,

at most one link is missing.

We say the ascending (resp., descending) order of node indices is the right (resp., left)

direction. Each port of ei has a globally consistent label at vi and vi+1 which gives an agent on the

ring a global direction (the right direction at vi and the left direction at vi+1) of the ring. Given a

connected component V ′ (V , the right (resp., left) extremity of V ′ is the node vi ∈ V ′ such that

vi+1 < V ′ (resp., vi−1 < V ′). If |V ′ | = 1, the unique node in V ′ is both the right extremity and the

left extremity of V ′.

5.3. IMPOSSIBILITY RESULT 83

5.2.2 Agents

In the network, a single agent A is operational (i.e., k = 1). Agent A knows the network

size n. Agent A have a view showing which link is missing within H hops from the current

node and within S steps in the future including the current step. The view is called the (H, S)

view. Formally speaking, for dn/2e ≥ H ≥ 1 and S ≥ 1, A gets the (H, S) view βH,S(i, s) =

{(ej, t, ρ(ej, t)) | i − H ≤ j ≤ i + H − 1, s ≤ t ≤ s + S − 1} when A exists on vi at step s. For

example, when H = 2, S = 2, and A exists on v0 at step 5, A can see β2,2(0, 5) = {(e1, 5, 0),

(e0, 5, 1), (en−1, 5, 1), (en−2, 5, 1), (e1, 6, 1), (e0, 6, 0), (en−1, 6, 1), (en−2, 6, 1)}.

We say that A reaches a node at the t-th step when A visits the node at the end of the (t − 1)-th

step and that A explores a node v at the t-th step if v is visited by the (t − 1)-th step and A reaches

v at the t-th step. The set of explored (resp., unexplored) nodes at the start of the t-th step is

denoted by V t (resp., V t). Without loss of generality, we assume A starts the exploration from v0.

In the following, we use “to move to right (resp., left)” instead of “to move in the right (resp.,

left) direction” for simplicity.

5.3 Impossibility Result

We show an impossibility result in this section. Specifically, we show that the exploration is

impossible when H + S < n or S < dn/2e holds.

Lemma 5.3.1. If H+S < n or S < dn/2e, a deterministic single agent with the (H, S) view cannot

explore 1-interval connected rings.

Proof. We first consider the condition S < dn/2e. We assume H = dn/2e. It suffices to show

that the exploration is impossible when S = dn/2e − 1. We assume for contradiction, that there

is an algorithm by which A can explore any ring under any link scheduling when S = dn/2e − 1.

Since A can explore the ring, A starting from v0 eventually reaches vn−1 (no matter whether the

exploration is completed or not).

The adversary decides a link scheduling so that en−1 (resp., en−2) is missing when A exists on

v0 (resp., vn−2). The adversary first keeps showing a link scheduling where en−1 is kept deleted

for S steps from the current step until A moves to vn−dn/2e . If A does not move to vn−dn/2e and

84 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

stays vi for 0 ≤ i < n − dn/2e, en−1 is kept deleted and A cannot reach vn−1 (A must pass through

en−1 or en−dn/2e−1 to reach vn−1 from v0), which is a contradiction. Thus, A eventually reaches

vn−dn/2e at some step, say t.

Then, the adversary deletes en−2 from the (t+S−1)-th step (the (t+ dn/2e −2)-th step) until A

moves to vn−dn/2e−1. By the scheduling, since A reaches vn−2 at earliest at the (t+n−2−(n−dn/2e))-

th step (the (t + dn/2e − 2)-th step) from vn−dn/2e , en−2 starts to disappear when (or before) A

reaches vn−2 and keeps disappearing unless A moves to vn−dn/2e−1. Thus, if A does not move to

vn−dn/2e−1, A cannot reaches vn−1. This is a contradiction.

This means that A moves to vn−dn/2e−1 after the t-th step. However, by the similar way, the

adversary can prevent A from reaching vn−1. This is a contradiction. Hence, when S < dn/2e, a

single agent cannot explore 1-interval connected rings.

Secondly, we consider the condition H + S < n and S ≥ dn/2e. It is sufficient to show that A

cannot explore the ring when S = n − H − 1 for 1 ≤ H ≤ bn/2c − 1 since H < bn/2c from the

conditions. Again, we assume for contradiction, that there is an algorithm by which A can explore

any ring under any link scheduling. Since A can explore the ring, A starting from v0 eventually

reaches vn−1 (no matter whether the exploration is completed or not).

The adversary first keeps showing a link scheduling where en−1 is kept deleted for S steps from

the current step until A moves to vH . If A does not move to vH and stays at vi for 0 ≤ i ≤ H − 1,

en−1 is kept deleted and A cannot reach vn−1, which is a contradiction. Thus, A eventually reaches

vH at some step, say t. After step t, depending on whether A reaches vH−1 before vn−H−1 or not,

the missing link is decided (Figure 5.1). Note that since H ≤ bn/2c −1, (n−H −1) − (H −1) ≥ 2

and there exists a node vi such that H ≤ i ≤ n−H − 2. Moreover, A can see neither en−1 nor en−2

in its view when existing at vi for H ≤ i ≤ n − H − 2.

If A reaches vH−1 before vn−H−1, the adversary keeps deleting en−1. By the link scheduling,

unless A decides to reach vn−H−1 from vH , en−1 is kept deleted and A cannot reach vn−1, which

is a contradiction. This means that A eventually reaches vn−H−1. Let t ′ be the last step before A

reaches vn−H−1 such that A exists at vH−1 at the start of t ′.

When A leaves vH−1 at the t ′-th step, the adversary makes a scheduling so that en−2 starts and

keeps disappearing from the (t ′ + n−H − 1)-th step until A comes back to vn−H−2. This does not

conflict with the link scheduling in the past view of A since at the t ′-th step, en−1 is scheduled to

5.4. POSSIBILITY RESULT AND UPPER BOUNDS OF EXPLORATION TIME 85

Figure 5.1: Illustrating the proof of Theorem 5.1 for the case of H + S < n and S ≥ dn/2e.

be deleted for the next S = n − H − 1 steps and for the next n − H − 1 − x steps at the (t ′ + x)-th

step.

Since it takes at least n − H − 2 steps to reach vn−2 from vH , A reaches vn−2 at earliest at

the (t ′ + n − H − 1)-th step. However, at the (t ′ + n − H − 1)-th step, en−2 is missing and the

adversary keeps deleting en−2 until A reaches vn−H−2. Then, A cannot reach vn−1 unless moving

to vn−H−2. However, by the similar way, the adversary can prevent A from reaching vn−1. This is

a contradiction. Hence, when H + S < n or S < dn/2e, a single agent cannot explore 1-interval

connected rings. �

5.4 Possibility Result and Upper Bounds of Exploration Time

In this section, we prove the exploration is possible when H + S ≥ n and S ≥ dn/2e by giving an

exploration algorithm by a single agent. The algorithm also gives upper bounds of the exploration

time, O(n2/H + nH) if 2H ′ − 1 ≤ S or otherwise O(n2). Note that S ≥ H since S ≥ dn/2e and

H ≤ dn/2e.

We first introduce two operations ExpH(t, vi) and ExpOne(t, vi) that are used as building

blocks to construct the exploration algorithm.

In the algorithms, Extremity(t, v) is a function which returns right if v is the right extremity

of V t , left if v is the left extremity, or otherwise nil. Variable dir is used to store the direction and

dir denotes the other direction (e.g., if dir is right, dir is left).

86 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

ExpH. ExpH(t, vi) described in Algorithm 5.1 is an algorithm by which A explores H ′ nodes

when A starts ExpH(t, vi) from vi at the t-th step under the assumption that vi is the right or left

extremity of V t and 2H ′ + |V t | − 1 ≤ min(S + 1, n). Note that in the following, when A executes

ExpH(t, vi), A is always on the right or left extremity of V t .

Algorithm 5.1 ExpH(t, vi)
1: dir← Extremity(t, vi)

2: if A can move H ′ hops to dir by the (t+2H ′+ |V t |−2)-th step then

3: Move H ′ hops to dir

4: else

5: Move |V t | − 1 + H ′ hops to dir

6: Wait until the (t + 2H ′ + |V t | − 2)-th step

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores

right if vi is the right extremity or otherwise left in dir. If A can move H ′ hops to dir by the

(t + 2H ′ + |V t | − 2)-th step according to the view, A does so (Figure 5.2b). Otherwise, A moves

|V t | − 1 + H ′ hops to dir (Figure 5.2c). Notice that A can decide this condition because H ′ ≤ H

and 2H ′ + |V t | − 2 ≤ S.

Lemma 5.4.1. Suppose that at the t-th step, A exists at the right or left extremity, say vi, of V t

and starts ExpH(t, vi). If 2H ′ + |V t | − 1 ≤ min(S + 1, n), A explores H ′ nodes by the t ′-th step

(the end of ExpH(t, vi)) and exists on the right or left extremity of V t′ at the t ′-th step where

t ′ = t + 2H ′ + |V t | − 2.

Proof. Without loss of generality, we assume vi is the right extremity of V t . Let m = |V t |,

Er = {ei, ei+1, . . . , ei+H′−2, ei+H′−1}, and El = {ei−H′−m+1, ei−H′−m+2, . . . , ei−2, ei−1}. Note that

since |Er | + |El | = 2H ′ + m − 1 and 2H ′ + m − 1 ≤ n, Er ∩ El = ∅.

Now, consider the move of A. Since 2H ′ + m − 1 ≤ S + 1, i.e, 2H ′ + m − 2 ≤ S, A can see

whether it can move H ′ hops to right by the (t + 2H ′ + m − 2)-th step or not.

If A can, A moves H ′ hops to right and thus the lemma holds.

Otherwise, A can move at most H ′ − 1 hops to right by the (t + 2H ′ + m − 2)-th step, which

means during the 2H ′ + m − 2 steps, there exists at least 2H ′ + m − 2 − (H ′ − 1) = H ′ + m − 1

5.4. POSSIBILITY RESULT AND UPPER BOUNDS OF EXPLORATION TIME 87

Figure 5.2: The moves of A by ExpH(t, vi) where t ′ = t + 2H ′ + |V t | − 2 in the case where vi is

the right extremity of V t . (a) At the start of ExpH(t, vi), A exists on vi. (b) If A can reach vi′+H
by moving to right by the t ′-th step, A moves to right and reaches vi+H′ by the t ′-th step. (c)

Otherwise, A moves to left and reaches vi−|V t |+1−H′ by the t ′-th step.

steps at each of which one of the links in Er is missing. Since at most one link is missing at each

step and Er ∩ El = ∅, every link in El exists at each of the H ′ +m − 1 steps. Thus, A succeeds to

move H ′ + m − 1 hops to left and the lemma holds. �

ExpOne. ExpOne(t, vi) described in Algorithm 5.2 is an algorithm by which A explores at

least one node or completes the exploration when A starts ExpOne(t, vi) from vi at the t-th step

under the assumption that vi is the right or left extremity of V t . Note that in the following, when

A executes ExpOne(t, vi), A is always on the right or left extremity of V t .

88 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

Algorithm 5.2 ExpOne(t, vi)
1: dir← Extremity(t, vi)

2: if dir is right then

3: i′← i + 1, i′′← i

4: else

5: i′← i − 1, i′′← i − 1

6: d ← 0

7: S′← max(n − H, dn/2e)

8: while (d < H) do

9: if ei′′ is always missing until the (t + d + S′ − 1)-th step then

10: Move one hop to dir

11: d ← d + 1

12: else

13: Move d hops to dir (reach vi)

14: Wait for ei′′ to appear and pass through ei′′ as soon as it appears

15: Exit from the while loop

16: if (d ≥ H) then

17: Move n − H − 1 hops to dir (reach vi′)

18: Wait until the (t + n)-th step

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores

the direction in dir. Variables i′ and i′′ are used to remember the dir neighbor of vi and the dir

incident edge of vi respectively, e.g., i′ = i+1 (resp., i′ = i−1) if dir is right (resp., left). Then, A

stores max(n−H, dn/2e) to S′ which is not larger than S and is used instead of S in the algorithm.

After that, if ei′′ appears by the (t + S′−1)-th step, A waits at vi until ei′′ appears and moves to

vi′ when ei′′ appears. Otherwise, for each 0 ≤ d ≤ H − 1, A moves one hop to dir at the (t + d)-th

step if ei′′ is missing at the (t + S′ − 1 + d)-th step in its view (Figure 5.3a). If A sees ei′′ appear

at the (t + S′ − 1 + d)-th step in its view at the (t + d)-th step, then A starts to move dir from

the (t + d)-th step, returns to vi, waits at vi until ei′′ appears, and reaches vi′ through ei′′ (Figure

5.3b). When d reaches H, i.e., A moves H hops to dir and ei′′ is no longer included in the view

5.4. POSSIBILITY RESULT AND UPPER BOUNDS OF EXPLORATION TIME 89

of A, A starts to keep moving to dir until reaching vi′ and the exploration finishes when reaching

vi′ (Figure 5.3c).

Figure 5.3: The moves of A by ExpOne(t, vi) in the case where vi is the right extremity. (a)

Unless A sees ei appear, A moves to left. (b) If A sees ei appear before reaching vi−H , A starts to

move to right and reaches vi+1. (c) If A reaches vi−H without seeing ei appear, A keeps moving

to left until reaching vi+1 and finishes the exploration.

Lemma 5.4.2. Suppose that at the t-th step, A exists at the right (resp., left) extremity, say vi, of

V t and starts ExpOne(t, vi). Then, A completes the exploration or reaches vi+1 (resp., vi−1) by the

(t + n)-th step (the end of ExpOne(t, vi)). In addition to that, A exists on the right or left extremity

of V t+n at the (t + n)-th step when the exploration has not been completed.

Proof. Without loss of generality, we assume vi is the right extremity of V t . As in Algorithm 5.2,

90 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

let S′ = max(n−H, dn/2e). We first show the lemma for the case ei appears by the (t+d+S′−1)-th

step in A’s view at the (t + d)-th step for 0 ≤ d ≤ H − 1.

For d = 0, A can clearly reach vi+1 by the (t + S′ − 1)-th step.

For 1 ≤ d ≤ H − 1, when A sees ei appear for the first time at the (t + d + S′ − 1)-th step in

its view at the (t + d)-th step, ei must appear at the (t + d + S′ − 1)-th step and be missing at the

t ′-th step for t + d ≤ t ′ ≤ t + d + S′ − 2 by the construction. This means that all the other links

than ei are present at the t ′-th step (t + d ≤ t ′ ≤ t + d + S′ − 2), and thus A can move for S′ − 1

steps from vi−d to right without interference by missing links until reaching vi.

Since d ≤ H − 1 and H ≤ S′, A always reaches vi by the (t + d + S′ − 1)-th step at which ei

appears. Then, A reaches vi+1 as soon as ei appears. Since A moves at most H − 1 hops to left, ei

appears S′ steps after A starts to move to right, and H − 1+ S′ ≤ n from S′ = max(n−H, dn/2e),

A reaches vi+1 through ei by the (t + n)-th step.

We then show for the other case, i.e., A reaches vi−H at the (t+H)-th step. When this happens,

ei must be deleted for at least S′ − 1 steps from the (t + H)-th step and all the other links than ei

are present in the S′ − 1 steps. Thus, A can move for S′ − 1 ≥ n − H − 1 steps from vi−H to left

without interference by missing links until reaching vi+1 since S′ = max(n − H, dn/2e). Since

H + n − H − 1 = n − 1, A reaches vi+1 after n − H − 1 steps, i.e., at the (t + n − 1)-th step, and the

exploration is completed at the same time. �

Exploration algorithm. Algorithm 5.3 describes the exploration algorithm. Let S′′ =

min(S, n − 1). The algorithm repeats ExpH(t, vi) for b(S′′ + 1 − H ′)/H ′c times (lines 2-6) and

ExpOne(t, vi) for n − H ′b(S′′ + 1 − H ′)/H ′c − 1 times (lines 7-13). We call the part repeating

ExpH(t, vi) (lines 2-6) the first part and the part repeating ExpOne(t, vi) the second part (lines

7-13). In the first part, H ′b(S′′ + 1 − H ′)/H ′c + 1 nodes are explored and, in the second part, the

remaining n − H ′b(S′′ + 1 − H ′)/H ′c − 1 nodes are explored.

Theorem 5.4.1. For H + S ≥ n and S ≥ dn/2e, the exploration time of 1-interval connected

rings by a single agent with the (H, S) view is upper-bounded by O(n2/H + nH) if 2H ′ − 1 ≤ S

or otherwise it is upper-bounded by O(n2).

Proof. It suffices to show that Awith the (H, S) view completes exploration within O(n2/H+nH)

steps if 2H ′ − 1 ≤ S or otherwise O(n2) steps by executing Algorithm 5.3 when H + S ≥ n and

5.4. POSSIBILITY RESULT AND UPPER BOUNDS OF EXPLORATION TIME 91

Algorithm 5.3 Exploration algorithm for H + S ≥ n

1: S′′← min(S, n − 1)

2: p← 1 //starting the first part

3: while (p ≤ b(S′′ + 1 − H ′)/H ′c) do

4: Let t be the current step and vi be the current node

5: ExpH(t, vi)

6: p← p + 1

7: p← 1 //starting the second part

8: while (p ≤ n−H ′ · b(S′′+1−H ′)/H ′c−1) do

9: Let t be the current step and vi be the current node

10: ExpOne(t, vi)

11: if Exploration is completed then

12: Exit from the while loop

13: p← p + 1

S ≥ dn/2e.

We first consider the case where 2H ′ − 1 ≤ S. In this case, since b(S′′ + 1 − H ′)/H ′c ≥ 1,

the first part is executed at least once. Consider the first part. Let tp be the step when A starts the

p-th ExpH(t, vi).

We show by induction that for 1 ≤ p ≤ b(S′′ + 1 − H ′)/H ′c, |V tp | = (p − 1)H ′ + 1 and A

explores H ′ nodes by ExpH(tp, vi).

For the base case, i.e., p = 1, |V t1 | is clearly 1 = (p − 1)H ′ + 1. This leads to that

2H ′ + |V t | − 1 = 2H ′ ≤ min(n, S + 1). Then, by Lemma 5.4.1, A explores H ′ nodes by

ExpH(t1, vi).

Now, for k ≤ b(S′′ + 1 − H ′)/H ′c − 1, assume that |V tk | = (k − 1)H ′ + 1 and A explores

H ′ nodes by ExpH(tk, vi). Then, clearly |V tk+1 | = (k − 1)H ′ + 1 + H ′ = kH ′ + 1. Since

k ≤ b(S′′+1−H ′)/H ′c −1, 2H ′+ |V tk+1 | −1 < n and 2H ′+ |V tk+1 | −1 < S+1. Thus, A explores

H ′ nodes by ExpH(tk+1, vi).

92 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

By Lemma 5.4.1, S′′ = O(n), and H ′ = Θ(H), the exploration time of the first part is

b(S′′+1−H′)/H′c∑
p=1

(2H ′ + |V tp | − 2) =
b(S′′+1−H′)/H′c∑

p=1
((p + 1)H ′ − 1) = O(n2/H).

We then consider the second part. By Lemma 5.4.1, A exists at the right or left extremity of

V t and |V t | = n − H ′b(S′′ + 1 − H ′)/H ′c − 1 = O(H) at the start of the second part. Thus, since

A explores one node within n steps by Lemma 5.4.2, the exploration time of the second part is

O(nH).

As a result, the exploration time of Algorithm 5.3 is O(n2/H + nH) when 2H ′ − 1 ≤ S.

When 2H ′ − 1 > S, the first part is never executed and then the number of remaining nodes

at the start of the second part is n − 1. Thus, in this case, the exploration time of Algorithm 5.3

is O(n2). �

From Lemma 5.1 and Theorem 5.4.1, the following theorem holds.

Theorem 5.4.2. If and only if H + S ≥ n and S ≥ dn/2e, a single agent with the (H, S) view can

explore of 1-interval connected rings within finite time steps.

5.5 Upper Bound of Exploration Time for S ≥ N − 1

In this section, we consider the upper bound of the exploration time when S ≥ n − 1. We show

that the upper bound of the exploration time is reduced toO(n2/H+n log H) in this case by giving

an exploration algorithm.

We first introduce a new operation ExpHalf(t, vi) that is used as a building block to construct

the exploration algorithm.

ExpHalf. ExpHalf(t, vi) described in Algorithm 5.4 is an algorithm by which A explores

d|V t |/2e nodes when A starts ExpHalf(t, vi) from vi at the t-th step under the assumption that vi
is the right or left extremity of V t , |V t | ≤ 2H, and S ≥ n − 1. Note that in the following, when A

executes ExpHalf(t, vi), A is always on the right or left extremity of V t .

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores

right if vi is the right extremity or otherwise left in dir. If A can move d|V t |/2e hops to dir by the

5.5. UPPER BOUND OF EXPLORATION TIME FOR S ≥ N − 1 93

Algorithm 5.4 ExpHalf(t, vi)
1: dir← Extremity(t, vi)

2: if A can move d|V t |/2e hops to dir by the (t+n−1)-th step then

3: Move d|V t |/2e hops to dir

4: else

5: Move n − d|V t |/2e hops to dir

6: Wait until the (t + n − 1)-th step

(t + n− 1)-th step according to the view, A does so (Figure 5.4b). Otherwise, A moves n− |V t |/2

hops to dir (Figure 5.4c).

Lemma 5.5.1. Suppose that at the t-th step, A exists at the right or left extremity, say vi, of V t

and starts ExpHalf(t, vi). If |V t | ≤ 2H and S ≥ n − 1, A can explore at least dV t/2e nodes by

the t ′-th step (the end of ExpHalf(t, vi)) and exists on the right or left extremity of V t′ at the t ′-th

step where t ′ = t + n − 1.

Proof. Without loss of generality, we assume vi is the right extremity of V t . Let m = |V t |,

Er = {ei, ei+1, . . . , ei+ dm/2e−1, ei+ dm/2e}, and El = {ei+ dm/2e+1, ei+ dm/2e+2, . . . , ei−1}.

Now, consider the move of A. Since S ≥ n − 1 and m ≤ 2H, A can see whether it can move

dm/2e hops to right by the (t + n − 1)-th step or not.

If A can move dm/2e hops, A moves dm/2e hops to right and thus the lemma holds.

Otherwise, A can move at most dm/2e −1 hops to right by the (t +n−1)-th step, which means

during the n − 1 steps, there exist at least n − 1 − (dm/2e − 1) = n − dm/2e steps at each of which

one of the links in Er is missing. Since at most one link is missing at each step and Er ∩ El = ∅,

every link in El exists at each of the n − dm/2e steps. By this and |El | = n − dm/2e, A succeeds

to reach vi+ dm/2e by moving to left, which means at least dm/2e nodes are explored. �

Exploration algorithm. Algorithm 5.5 describes the exploration algorithm. The algorithm

repeats ExpH(t, vi) for b(n − H ′)/H ′c times (lines 1–5) and ExpHalf(t, vi) for dlog(n − H ′b(n −

H ′)/H ′c−1)e times (lines 6–10). We call the part repeatingExpH(t, vi) (lines 1-5) the first part and

the part repeatingExpHalf(t, vi) the second part (lines 6–10). In the first part, H ′b(n−H ′)/H ′c+1

94 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

Figure 5.4: The moves of A by ExpHalf(t, vi) where t ′ = t + n − 1 in the case where vi is the

right extremity ofV t . (a) At the start of ExpHalf(t, vi), A exists on vi. (b) If A can reach v
i+ |V t |/2

by moving to right by the t ′-th step, A moves to right and reaches v
i+ |V t |/2 by the t ′-th step. (c)

Otherwise, A moves to left and reaches v
i+ |V t |/2 by the t ′-th step.

nodes are explored and, in the second part, the remaining n − H ′b(n − H ′)/H ′c − 1 nodes are

explored.

Theorem 5.5.1. For S ≥ n − 1, the exploration time of 1-interval connected rings by a single

agent with the (H, S) view is upper-bounded by O(n2/H + n log H).

Proof. It suffices to show that A completes exploration within O(n2/H + n log H) steps by

Algorithm 5.5 when S ≥ n − 1. It is proven that the total exploration time of the first part is

O(n2/H) and that of the second part is O(n log H).

5.6. LOWER BOUND OF EXPLORATION TIME 95

Algorithm 5.5 Exploration algorithm for S ≥ n − 1
1: p← 1 //starting the first part

2: while (p ≤ b(n − H ′)/H ′c) do

3: Let t be the current step and vi be the current node

4: ExpH(t, vi)

5: p← p + 1

6: p← 1 //starting the second part

7: while (p ≤ dlog(n − H ′b(n − H ′)/H ′c − 1)e) do

8: Let t be the current step and vi be the current node

9: ExpHalf(t, vi)

10: p← p + 1

We first consider the first part. Note that, since 2H ′ ≤ n, 1 ≤ b(n−H ′)/H ′c and thus the first

part is always executed at least once. Let tp be the step when A starts the p-th ExpH(t, vi). We

can show that for 1 ≤ p ≤ b(n − H ′)/H ′c, A can explore H ′ nodes by ExpH(tp, vi) by induction

and the exploration time of the first part is O(n2/H) as in the proof of Lemma 5.4.1.

We then consider the second part. By Lemma 5.4.1, A exists at the right or left extremity

of V t and |V t | = n − H ′b(n − H ′)/H ′c − 1 ≤ 2H ′ at the start of the second part. Thus, since A

explores a half of V t within n − 1 steps by Lemma 5.5.1, the exploration time of the second part

is O(n log H). As a result, the exploration time of Algorithm 5.3 is O(n2/H + n log H). �

5.6 Lower Bound of Exploration Time

A lower bound of the exploration time for any S is given in this section. The following theorem

holds.

Theorem 5.6.1. The exploration time of 1-interval connected rings by a single agent with the

(H, S) view is lower-bounded by Ω(n2/H).

96 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

Proof. We first show that, provided that A is at the right or left extremity, say vi, of V t at the t-th

step where |V t | ≤ n − 2H + 1, it takes at least |V t | + H − 1 steps for A to explore H nodes from

the circumstance under the following link scheduling: ei+H−1 (resp., ei−H) is deleted until the

(t + |V t | + H − 1)-th step if vi is the right (resp., left) extremity of V t . Without loss of generality,

we assume that vi is the right extremity of V t in the following. Figure 5.5 depicts the situation.

Figure 5.5: The situation where A exists on vi at the t-th step (vi is the right extremity of V t). The

adversary deletes ei+H−1 until the (t + |V t | + H − 1)-th step in this situation.

Assume for contradiction that A explores the H nodes within |V t | + H − 1 steps under the

scheduling. Since ei+H−1 is missing until the (t + |V t | + H − 1)-th step, A never reaches vi+H .

Therefore, A must explore at least one node on the left side of V t . This and exploring H nodes

take at least |V t | + H − 1 steps; a contradiction.

Now, apply the above claim from the first step repeatedly. When applying the claim for the

p-th time, |V t | = (p − 1)H + 1 and then it takes |V t | + H − 1 = pH steps. Note that we can apply

the claim while (p − 1)H + 1 ≤ n − 2H + 1, i.e., p ≤ b(n − H)/Hc. We then derive the lower

bound of the exploration time,
∑ b(n−H)/H c

p=1 pH = Ω(n2/H). �

5.7 Discussion

In this chapter, we studied the exploration problem on dynamic networks with its partial informa-

tion, where we focused on 1-interval connected rings as a first step. In this section, we discuss

what happens when we consider other connectivity and/or general graphs.

5.8. CONCLUDING REMARKS 97

When considering 1-interval connected rings, we yields the restriction that at most one link

is missing at each step. By this restriction, an agent gets to know that all the links outside its view

exist when a link in its view is missing and can make the action plan to visit an unvisited node

using the information. It is interesting to investigate such conditions on the space and the time of

a view (H and S in this chapter) for more general graphs under some assumptions on the temporal

connectivity and/or more general graphs. On the other hand, even under the assumption of 1-

interval connectivity and/or the restriction on the number of missing links at each step, an agent

cannot necessarily get the whole information of the temporal topology, which may prevent the

agent from making the action plan to visit an unvisited node and makes the exploration problem

more challenging.

We also conjecture that the space and the time of a view which are necessary and sufficient for

an agent to explore depend on temporal diameter. Intuitively, temporal diameter is the maximum

duration of the foremost path (the path with the least duration from a node to another node

departing at specified time) in a dynamic network (see e.g., Section 4.6 of [23] for a formal

definition). The fact that the temporal diameter of a 1-interval connected graph with n nodes is

at most n − 1 fits a possibility result of this chapter, i.e., H + S ≤ n. To investigate the relation of

temporal distance and the power of a view is one of the intriguing research directions.

5.8 Concluding Remarks

In this chapter, we introduced the (H, S) view which can be used to model some situations where

an agent (or robot) can partly see their nearby environment or can predict the near-future changes

of the environment. For a single agent with the (H, S) view, we studied the exploration of 1-

interval connected rings. We give some fundamental results, i.e., impossibility of the exploration

for H + S < n or S < dn/2e, possibility of the exploration for H + S ≥ n and S ≥ dn/2e, and

upper bounds and a lower bound of the exploration time for some cases.

98 CHAPTER 5. EXPLORATION OF DYNAMIC RINGS WITH VIEW

Chapter 6

Fault-Tolerant Simulation of
Message-Passing Algorithms by Mobile
Agents

6.1 Introduction

In this chapter, we consider simulation of message-passing algorithms in a mobile agent model

with k agents where f of them may crash for a given f (≤ k − 1). Two fault-tolerant algorithms

are proposed for the simulation.

Our first algorithm simulates a message-passing algorithm which eventually terminates (e.g.

spanning tree construction and coloring), say Z , with O((m + M) f) total agent moves and thus

O(f) agent moves per message when m = O(M), where m is the number of links in the network

and M is the total number of messages created in the simulated execution of Z . The previous

algorithm [22] can tolerate k − 1 agent crashes but requires O((m + nM)k) total agent moves,

where n is the number of nodes in the network. Therefore, our algorithm improves the total

number of agent moves for f = k −1 and requires a smaller number of total moves if f is smaller,

and moreover, our algorithm is asymptotically optimal in terms of the total number of agent

moves and the number of agent moves per message.

Our second algorithm simulates a message-passing algorithm which never terminates (e.g.

99

100 CHAPTER 6. FAULT-TOLERANT SIMULATION

mutual exclusion and token circulation)withO(f) agentmoves permessage. As for this algorithm,

the number of agent moves per message is asymptotically optimal.

6.2 Preliminary

6.2.1 Network

In this chapter, we consider static networks with arbitrary topology, i.e., all the links are always

present.

We consider two different computation models on the network, a mobile agent model for

simulating algorithms and a message-passing model for simulated algorithms, which are defined

in the following subsections. When a simulated message-passing algorithm requires a node ID,

a node has ID (and an agent can use the ID to simulate local computation of the message-passing

algorithm).

6.2.2 Mobile agent model

There is a set A of k agents. An agent can use a whiteboard. Each agent a has a unique ID a.id

and we assume each ID is represented in O(log k) bits. Every agent does not know n. Each agent

a is initially allocated to some node called a homebase of a. We assume k ≤ n and homebases of

agents are arbitrary.

Each link in the network is FIFO, that is, when agents a1 and a2 move from node u to node

v in this order, a1 arrives at v before a2 unless a1 crashes during the movement. The system is

asynchronous, that is, the time required for an agent to move from a node to its neighbor is finite

but unbounded.

We assume that the target model (or the message-passing model) is reliable but the host model

(or the mobile agent model) is prone to faults. An agent may crash (or disappear) when it moves

through a link, but it never crashes when it is on a node. We assume at most f ≤ k − 1 agents

crash. An agent knows f while it has no knowledge about k. (Note that even when an agent does

not know f and k, the number of agent moves can be bounded by k.) After an agent leaves a

node, it arrives at the next node eventually unless it crashes during the movement. Once an agent

6.2. PRELIMINARY 101

crashes, it disappears from the network forever. We say an agent is faulty (resp., non-faulty) if

it crashes (resp., never crashes) during the execution. Note that agents cannot recognize faulty

agents as long as they work correctly.

6.2.3 Message-passing model

In the message-passing model, a node u (not an agent) executes computation. A node v executes

the following operations atomically in each step:

1. it receives a message or initiates an algorithm spontaneously,

2. executes local computation and updates its own state, and

3. if necessary, sends messages to its neighbors by using the primitive SEND(msg, λv(euv))

repeatedly for all destinations (node u can send a message msg to node v by using the

primitive SEND(msg, λu(euv))).

The above actions are executed asynchronously: although 1 and 2 are instantly completed,

the required time to complete 3 is finite but unbounded. Every process executes computing and

(if any) sends a message only when it receives a message except for the case of spontaneous

initiation. There exists at least one spontaneous initiator, which is assigned the special initial state

and initiates an algorithm spontaneously (by receiving the null message). Note that, since the set

of initiators is unknown in advance, algorithms should work correctly for any set of initiators.

Communication in the message-passing model is reliable, that is, it satisfies the following:

• [A1] Every message sent by node u to its neighbor v is eventually received by v exactly

once.

• [A2] A message is received by node u only when it was previously sent to u by neighbor v.

Each link in the network is FIFO, that is, when u sends messages msg1 and msg2 to v in this

order, v receives msg1 before msg2.

102 CHAPTER 6. FAULT-TOLERANT SIMULATION

6.2.4 Lower bound of move complexity

We conclude this section by giving the lower bound of the move complexity to deliver a message

in the above model.

Theorem 6.2.1. It requires Ω(f) moves to deliver a message correctly.

Proof. We show that whether a message being delivered by f or less agents reaches its destination

correctly is undecidable. Suppose that message msg is delivered by f agents and all the f agents

crashes during the delivery. Although the message cannot be reached its destination, the system

has no way to distinguish that from the situation where at least one agent is alive and delivering

msg. This is because the network is asynchronous where the time required to move along a link is

unbounded and unpredictable. Thus, the number of agent moves per message isΩ(f). Therefore,

the theorem holds. �

6.3 Simulation of message-passing algorithms with a finite number

of messages

In this section, we propose an agent-based simulating algorithm of a message-passing algorithm

with a finite number of messages (i.e., an eventually terminating algorithm). We use Z to denote

the simulated message-passing algorithm.

6.3.1 The description of a simulating algorithm

Our algorithm consists of two parts, 1) searching initiators (search part) and 2) simulating

execution of nodes and delivering messages (delivery part). First, we present the search part, i.e.,

1) searching initiators. Each agent starts to search initiators from its homebase by the depth-first

search. When it finds an initiator, it starts the delivery part, i.e., 2) simulating execution of nodes

and delivering messages. After completing the delivery part, it resumes the search part to find

another initiator. An agent records its searching path of the search part by writing the incoming

port with its agent ID in the whiteboard of each visited node so that it can backtrack.

In the search part, an agent backtracks to the previous node when at least one of the following

conditions is satisfied.

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 103

1. There is no unsearched port at the current node.

2. A cycle is detected in its searching path of the search part.

3. The agent detects that other f + 1 agents have already visited the current node during their

search part.

Conditions 1 and 2 come from the depth-first search. Condition 3 is introduced to save the

total number of agent moves. Our algorithm can tolerate agent crashes by making multiple agents

transfer a message, however f + 1 agents are enough to transfer a message since at most f agents

crash (there is at least one non-faulty agent in the f + 1 agents). Thus, an agent backtracks when

it detects that other f + 1 agents execute the search part. The agent terminates its execution when

it completes the search part and returns to its homebase.

Next, we present the delivery part, i.e., 2) simulating execution of nodes and delivering

messages.

An agent starts the simulation when it finds an initiator during the depth-first search of the

search part. Note that, by Condition 3 of the search part, at most f + 1 agents start simulation at

an initiator.

An agent delivers messages successively in the depth-first fashion, that is, if agent a delivers

a message to node v and there exists message msg to transfer from v to a neighbor of v, a takes

msg from v and delivers msg to its destination node. An agent records its delivering path in the

same way as the search part so that it can backtrack.

Since a message is transfered by at most f + 1 agents for fault-tolerance, the message may

be delivered multiple times. However an agent simulates the action of a node on receipt of a

message only when the message is received for the first time so that it is processed only once at

the destination.

A message is deleted from a node when an agent which delivered the message returns after

delivering the message to its destination. For this purpose, when an agent takes a message from

a node to deliver it to a neighbor, the agent stores its ID to send-member of the message in the

whiteboard of the current node to indicate that the agent is transferring the message. If the agent

returns the node and finds its ID in send-member, the agent deletes the message corresponding to

send-member and resets send-member of the current node to empty.

104 CHAPTER 6. FAULT-TOLERANT SIMULATION

In the delivery part, an agent backtracks to the previous node when at least one of the following

conditions is satisfied.

1. There is no message to transfer from the current node.

2. A cycle is detected in its delivering path of the delivery part.

3. The current node is locked using the port other than the one the agent arrives through. We

describe the locking mechanism later.

4. The current node is locked but the agent is not a lock-member agent of the node when the

agent backtracks to the node.

Condition 1 realizes message deliveries in the depth-first fashion. Condition 2 is introduced to

prevent the delivering path from growing so long, which saves the memory space of nodes. Using

only Conditions 1 and 2 may leave an undelivered message as explained later. Thus, Conditions

3 and 4 are introduced to guarantee deliveries of all the messages.

crash
crash

Figure 6.1: An example where Conditions 1 and 2 leave an undelivered message.

Consider the case of Figure 6.1. First, agent a arrives at t and delivers messages msg1 and

msg2 from t to v and from v to u respectively, and agent b follows a and arrives at u. Then, a

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 105

backtracks to t and deletes the messages msg1 and msg2 at t and v while b is still in transit in link

euv (Figure 6.1-1). Second, an agent c arrives at y from x and delivers messages msg3, msg4 and

msg5 from y to z, from z to w and from w to v. Then, c generates two messages msg6 and msg7

at v, one is to y and the other is to u in this order, and crashes when it is transferring msg6 to y.

After that, agent b arrives at v from u and delivers messages msg6, msg3, msg4 and msg5 from

v to y, from y to z, from z to w and from w to v. Then, b detects a cycle at v, backtracks to w,

and deletes the message msg5. Then, while b backtracks from w to z, b crashes (Figure 6.1-2).

Here, node v has message msg7 to transfer to u but it is possible that no agent arrives at v after

the situation since there is no undelivered message toward v (Figure 6.1-3). Thus, in this case,

message msg7 from v to u may be left undelivered forever.

A possible way to avoid such undelivered messages is not to introduce Condition 2. In this

case, an agent continues to deliver messages as long as the current node has messages to transfer.

But this allows the delivering path to become so long when a longmessage chain exists. It requires

large memory spaces since the delivering path is recorded in the whiteboards of nodes. Thus,

we insist on Condition 2 to save the whiteboard space. So we introduce the locking of nodes as

another way to guarantee deliveries of all messages.

A reason why the above case happens is that agents which have distinct delivering paths

(agents b and c in the above example) deliver the same message (message msg6 in the above

example). So we design the locking to prevent such a situation.

An agent locks the current node bywriting, to the whiteboard, the port throughwhich it arrives

when the current node is unlocked. An agent that arrives at the locked node delivers a message

from the node only when it arrives through the port that is used for the locking. Otherwise, it has

to backtrack to the previous node in the delivering path. Note that, since all the delivering paths

of the delivery part of agents start from initiators, the above strategy guarantees that agents which

deliver the same message must have the same delivering path.

An agent stores its ID to lock-member in the whiteboard of a locked node when the agent

locks the node or arrives through the port that is used for the locking. When a lock-member

agent backtracks from the locked node, it unlocks the node and resets lock-member of the node to

empty.

Condition 4 makes an agent backtrack to the previous node in the delivering path when it

106 CHAPTER 6. FAULT-TOLERANT SIMULATION

backtracks to a node but is not a lock-member agent of the node. This implies that the node

was already unlocked for the locking such that the agent was a lock-member agent, that is, an

agent which made the current locking may have a distinct delivering path. This makes the agent

keep backtracking along its delivering path until the agent reaches a node where the agent is a

lock-member or it started the delivery part (simulation of nodes and delivering messages).

For clarification, consider the case of Figure 6.2, which is the same scenario as that in Figure

6.1. In Figure 6.2, the locking mechanism is adopted. In Figure 6.2-1, a delivers messages msg1

and msg2 from t to v and from v to u and locks t, v and u. Agent b follows a. At this moment,

a and b are lock-member agents of v. Then, in Figure 6.2-2, a backtracks to t, unlocks u, v and

t, and resets lock-member of v while b is still on a link euv . In Figure 6.2-3, c delivers messages

msg3, msg4 and msg5, locks them, and crashes when it is transferring msg6 to y. In this case,

since v is locked and b is not a lock-member agent of v, b backtracks to t through v, which makes

difference from the case in Figure 6.1. Thus, d which arrives at x delivers messages msg3 and

msg4 in order of y, z and w. Then it can arrive with msg5 at v from w through the port used for

locking v, so it continues to deliver messages msg6 and msg7 stored at v.

crash

Figure 6.2: An example where the locking mechanism are applied. White nodes are locked.

An agent resumes the message delivery when it finds its ID in lock-member. It terminates the

delivery part and resumes the search part (i.e., searching an initiator) when it reaches the node

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 107

where the agent started the delivery part but is not a lock-member agent.

6.3.2 The pseudo codes

Algorithms 6.1, 6.2, 6.3 and 6.4 are the pseudo codes of the fault-tolerant simulating algorithm.

We use operations enqueue(q, M), dequeue(q) and head(q) to handle message queue q at a

node. Operation enqueue(q, M) for message sequence M is used to append M to the tail of q,

dequeue(q) is used to delete the head element of q and head(q) is used to refer to the head element

of q. Notation v.var denotes variable var stored in the whiteboard of the current node v, and

a.var denotes variable var stored in the notebook of agent a.

We show the variables with their types and initial values in in the following. Actually,

v.portsearch, v.parentsearch, v.parentdeliver and v.receive are sets of triplets or pairs (e.g., v.portsearch

is a set of triplets (agentID, port, binary)) but, for convenience, we denote them as arrays in the

following and pseudo codes.

v.portsearch[agentID][port] : It is a binary variable. Its initial value is 1. “v.portsearch[a.id][p] =

1” implies port p of v is unsearched by agent a in the search part.

v.parentsearch[agentID] : It stores a port number. Its initial value is ⊥. “v.parentsearch[a.id] = p”

implies that agent a arrives at v for the first time from port p in the search part.

v.parentdeliver[agentID] : It stores a port number. Its initial value is⊥. “v.parentdeliver[a.id] = p”

implies that agent a arrives at v from port p for the first time since it has started a delivery

part.

v.init : It is a boolean variable. The variable indicates whether v is an initiator of the target

(message-passing) algorithm Z . It initially is true only if v is an initiator and is false

otherwise.

v.portlock : It stores a port number. Its initial value is ⊥. The variable indicates whether v is

locked or not. It is ⊥ when v is not locked, or port p if v is locked using p.

v.send : It is a message queue storing messages to transfer to neighbors. It initially is a empty

sequence.

108 CHAPTER 6. FAULT-TOLERANT SIMULATION

v.send_member : It is a set of agent IDs. It initially is ∅. “a.id ∈ v.send_member” implies a is

send-member of the head message of v.send.

v.lock_member : It is a set of agent IDs. It initially is ∅. “a.id ∈ v.lock_member” implies a is

lock-member of v.

v.staten : It stores a node state of v of the target algorithm Z . Its initial value is the initial state

in Z .

v.receive[port] : It stores a message. Its initial value is ⊥. v.receive[p] = m implies message m

is the latest message received from p.

a.msg : It stores a message. Its initial value is ⊥. It stores a message which a is delivering.

At themoment agent a starts Algorithm 6.1 at node v, if a finds f +1 other agents, a terminates

the algorithm (Algorithm 6.1, line 1). Agent a stores 0 to v.parentsearch[a.id] to declare that v is

the homebase of a (Algorithm 6.1, line 2). Then, a starts the depth-first search with recording

the port through which a arrives in v.parentsearch[a.id] at each visited node v (Algorithm 6.1,

line 19) and storing 0 to v.portsearch[a.id][p] for each searched port p (Algorithm 6.1, lines 8,

16, and 20). When a finds an initiator, a executes Deliver() (Algorithm 6.2) to simulate the

message-passing algorithm Z (Algorithm 6.1, line 5). For saving whiteboard space, if the current

node’s v.parentsearch[a.id] is not ⊥ (it means v is included in the path of a), a backtracks to

the previous node (Algorithm 6.1, lines 15-17). To decrease the number of movements, a also

backtracks to the previous node if the current node’s v.parentsearch has f +1 IDs (i.e., f +1 agents

have already visited the node during their search part) (Algorithm 6.1, lines 11 and 12). Agent

a terminates if the current node’s v.parentsearch[a.id] is 0 (it means v is the homebase of a) and

there is no v.portsearch[a.id][p] stored 1 (i.e., there is no unsearched port) (Algorithm 6.1, line

23).

At the moment agent a startsDeliver(), a simulates execution of an initiator byProcess(⊥,⊥)

if v is an initiator and is not processed yet (Algorithm 6.2, line 1). Then, a locks v if v is not

locked, adds a.id to v.lock_member, and a stores 0 to v.parentdeliver[a.id] to declare that v is

the starting node of Deliver() (Algorithm 6.2, lines 2-4). After that, a transfers and processes

messages successively in the depth-first fashion with recording the port through which a arrives

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 109

Algorithm 6.1 Simulation algorithm for Z

1: if ({a.id | v.parentsearch[a.id] , ⊥}| ≥ f + 1) then terminate;

2: v.parentsearch[a.id] ← 0;

3: while (1)

4: //the current node is an initiator

5: if (v.init = true) ∨ (v.portlock = 0) then Deliver();

6: //there is an unsearched port

7: if (there is p s.t. v.portsearch[a.id][p] , 0) then

8: v.portsearch[a.id][p] ← 0;

9: move through p, then arrive from q;

10: //the current node is visited by f + 1 agents

11: if (|{a.id | v.parentsearch[a.id] , ⊥}| ≥ f + 1) then

12: move through q; //return to the previous node

13: else

14: //find a’s own ID

15: if (v.parentsearch[a.id] , ⊥) then

16: v.portsearch[a.id][q] ← 0;

17: move through q; //return to the previous node

18: else //arrive at v for the first time

19: v.parentsearch[a.id] ← q;

20: v.portsearch[a.id][q] ← 0;

21: else //there is no unsearched port

22: p← v.parentsearch[a..id];

23: if (p = 0) then break;

24: else move through p; //return to the previous node

25: end while

in v.parentdeliver[a.id] (Algorithm 6.2, line 16) and its ID in v.send_member at each visited node

(Algorithm 6.2, line 9). For saving whiteboard space, if the current node’s v.parentdeliver[a.id]

is not ⊥ (it means v is included in the delivering path of a), a backtracks to the previous node

110 CHAPTER 6. FAULT-TOLERANT SIMULATION

(Algorithm 6.2, lines 17 and 18). Agent a also backtracks to the previous node when v is locked

using a port other than the one a arrives through, that is, v.portlock of the current node is not ⊥

and other than the one a arrives through (Algorithm 6.2, lines 17 and 18).

It stores a.id in v.lock_member when a arrives at v with carrying a message and v is not locked

or a arrives through the port used for the locking (Algorithm 6.2, line 15). If there is not a.id in

v.lock_member at the current node when a backtracks to v, a executes GoBack() until a finds

a.id in v.lock_member (Algorithm 6.2, lines 18 and 25). If GoBack() outputs 0, a terminates

Deliver() and resumes Algorithm 6.1. If GoBack() outputs 1, a continues Deliver() to transfer

messages.

Function GoBack() (Algorithm 6.3) is called in Deliver()when a backtracks to the previous

node. Agent a continues to backtrack through the port in v.parentdeliver[a.id] until a finds a.id in

v.lock_member (Algorithm6.3, lines 2-13). If a finds a.id in v.lock_member, GoBack() outputs

1 (Algorithm 6.3, line 6) and a restarts Deliver() to transfer messages from the node. If a does

not find a.id in v.lock_member, GoBack() outputs 0 (Algorithm 6.3, line 10) and a terminates

Deliver() and resumes the depth-first search for finding an initiator. While searching a.id, a

removes the messages which it delivered, i.e., a.id is included in v.send_member (Algorithm 6.3,

lines 4 and 5).

Function Process() (Algorithm 6.4) is used to simulate execution of nodes in Z . If the current

node is an unprocessed initiator, a simulates execution of the node (Algorithm 6.4, lines 2-4). To

simulate the execution of an initiator, a uses simulate(v.staten,⊥) and it gets a new node state s

and a new message sequence MSG. To simulate the execution of a node on receipt of a message

msg, a uses simulate(v.staten,msg) and it gets a new node state s and a new message sequence

MSG (Algorithm 6.4, lines 6-8).

Each message may be delivered multiple times by agents on Algorithm 6.2. To make sure

that each message is processed once, the latest message delivered from each port p is stored in

v.receive[p] (Algorithm 6.4, line 7). A message is not processed again if it has been already

stored in v.receive[p].

Note that when f is not given, agents ignore lines 14,15 in Algorithm 6.1.

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 111

Algorithm 6.2 Deliver()
1: Process(⊥,⊥); //process a unprocessed initiator

2: if (v.portlock = ⊥) then v.portlock ← 0;

3: v.lock_member← v.lock_member ∪ {a.id};

4: v.parentdeliver[a.id] ← 0; //mark 0 on the starting node of Deliver();

5: while (1)

6: if (v.send , ∅) then

7: //copy the head message of v.send

8: a.msg← head(v.send);

9: v.send_member← v.send_member ∪ {a.id};

10: move through the destination port p of a.msg;

11: arrive from q;

12: Process(a.msg, q); a.msg← ⊥;

13: if ((v.portlock = ⊥) ∨ (v.portlock = q)) ∧ (v.parentdeliver[a.id] = ⊥) then

14: if (v.portlock = ⊥) then v.portlock ← q;

15: v.lock_member← v.lock_member ∪ {a.id};

16: v.parentdeliver[a.id] ← q;

17: else //backtrack to a node

18: if (Go_back(q) = 0) then return;

19: else

20: if (a.id ∈ v.lock_member) then

21: v.portlock ← ⊥; v.lock_member← ∅;

22: q← v.parentdeliver[a.id]; v.parentdeliver[a.id] ← ⊥;

23: if (q = 0) then return;

24: else //backtrack to a node s.t. a is a lock-member

25: if (Go_back(q) = 0) then return;

26: end while

6.3.3 Correctness

In this section, we show that the proposed algorithm simulates Z correctly.

112 CHAPTER 6. FAULT-TOLERANT SIMULATION

Algorithm 6.3 GoBack(p)
1: move through p (return to the previous node);

2: while (1)

3: //a has delivered the head message of v.send

4: if (a.id ∈ v.send_member) then

5: v.send_member← ∅; dequeue(v.send);

6: if (a.id ∈ v.lock_member) then return 1; //a resumes deliveries

7: else

8: q = v.parentdeliver[a.id]; v.parentdeliver[a.id] ← ⊥;

9: if (q = 0) then //the starting node of Deliver();

10: return 0; //return from Deliver();

11: else //a is not a v.lock_member agent

12: move through q; // return to the previous node

13: end while

Algorithm 6.4 Process(msg, p)
1: //simulate the execution of an initiator

2: if (v.init = true) then

3: v.init← false; (s,MSG) ← simulate(v.staten,⊥);

4: v.staten ← s; enqueue(v.send,MSG);

5: //simulate the execution of a node receiving msg from q

6: if (msg , ⊥) ∧ (msg , v.receive[p]) then

7: v.receive[p] ← msg; (s,MSG) ← simulate(v.staten,msg);

8: v.staten ← s; enqueue(v.send,MSG);

First, we define the time instants of send and receive operations in the simulation of message-

passing algorithm Z .

• The time instant that v sends message msg in the simulation of Z is defined as the time

instant that an agent stores msg to v.send.

• The time instant that v receives message msg in the simulation of Z is defined as the time

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 113

instant that an agent with carrying message msg arrives at v for the first time and simulates

local computation of v initiated by receipt of msg.

Since an agent never crashes during an atomic step, it completes an atomic step of Z . Hence,

to prove the correctness of the proposed algorithm, it is sufficient to show that 1) local computation

of every initiator is started and 2) every message is delivered in a reliable and FIFO manner.

Hereafter, we say an agent is in the delivery mode when it executes procedures Deliver(),

GoBack() or Process(), and an agent is in the search mode otherwise. We say the node, say u,

specified by v.portlock is the locking node of v and u locks v. We first show that every initiator is

processed.

Lemma 6.3.1. In the execution of Algorithm 6.1, each node is visited by at least one non-faulty

agent of the search mode and hence every initiator starts execution of Z .

Proof. If a non-faulty agent in the search mode visits an initiator node that has not started its first

local computation, it starts the local computation. Hence it is sufficient to show that each node is

visited by at least one non-faulty agent.

We prove the lemma by contradiction. We assume that, when every agent terminates the

algorithm, there exists a node that is not visited by any non-faulty agent. Since the network is

connected, there exist adjacent nodes v1 and v2 such that v1 is visited by at least one non-faulty

agent and v2 is not visited by any non-faulty agent.

Let us assume a be a non-faulty agent that visits v1. Since a continues to make a forward

move of the depth-first search unless it visits a node that f + 1 agents have already visited. This

implies that, since a does not move from v1 to v2, f + 1 agents have already visited v1. Because

there exist at most f faulty agents, at least one of the f + 1 agents is non-faulty and the non-faulty

agent visits v2. This is a contradiction. �

Next, we show that agents simulate reliable communications in the following lemmas.

Lemma 6.3.2. In the execution of Algorithm 6.1, when a node, say v, has a message in v.send, v

is locked.

Proof. Node v has no message and is not locked initially. When a message is delivered or v is

114 CHAPTER 6. FAULT-TOLERANT SIMULATION

an initiator and is processed by an agent, v is locked. Node v is unlocked only when there is no

message in v.send. Thus, when v has a message in v.send, v is locked. �

Lemma 6.3.3. In the execution of Algorithm 6.1, agents simulate reliable communication.

Proof. First, we show that all messages which were transfered are eventually delivered. Since

messages are delivered if they are deleted, it is enough to prove that all messages have already

been deleted when execution of the algorithm terminates. We assume for contradiction that there

is a node v with a message in v.send after the execution of the algorithm terminates.

From Lemma 6.3.2, v is locked. Without loss of generality, we assume that v locks no node.

Let u be v’s locking node and p be the port of (u, v) at v. We show by contradiction that u is

never unlocked before v is unlocked. Assume that u is unlocked before v. Suppose that agent a

and agent b is at u and there is a message msg1 to v in u.send. Only the following two cases are

possible.

1. Agent a backtracks from v to u immediately after delivering msg1 and b delivers msg1 to v

from u before a reaches u, continues message delivery, and locks v. Then, u is unlocked

by a.

2. Agent a delivers msg1 to v and continues message delivery and b backtracks from u and

unlocks u.

Consider the first case. Since a backtracks from v, v has no message, v is locked by a port

other than p, or a cycle is detected (i.e., a has visited v in its current delivery mode).

Suppose that a detects a cycle at v but b detects no cycle at v. This leads to that there exists

node w such that w.parentdeliver[a.id] and w.parentdeliver[b.id] are different. An agent which

can deliver a message from w however comes from a port specified by w.portlock and either of

w.parentdeliver[a.id] and w.parentdeliver[b.id] is different from w.portlock. This is a contradiction.

Suppose that v has no message. This is a contradiction since b continues message delivery from

v. Suppose that v is locked by a port other than p. In this case, b backtracks from v immediately

after delivering msg1 since v is locked by a port other than p or v has no message if v is unlocked

when b visits v. This is a contradiction.

6.3. SIMULATION OF ALGORITHMS WITH A FINITE NUMBER OF MESSAGES 115

Consider the second case. Since b backtracks from v, v has no message, v is locked by a port

other than p, or a cycle is detected. By the similar argument, when b detects a cycle, a detects a

cycle. Since a continues message delivery, v has a message and is locked by p which is also used

by b. This is a contradiction.

By applying the above claim inductively, we get that an initiator is locked. By Lemma 6.3.1,

however, every initiator is unlocked eventually, which is a contradiction.

Thus, all messages which are generated on Z are deleted and delivered.

Because agents simulate local computation initiated by receipt of a message exactly once,

condition [A1] in Section 6.2.3 holds. Every message received by a node is carried by an agent

and before that it is put into a message queue of the sender node (otherwise, the message cannot

be delivered by an agent). This implies condition [A2] in Section 6.2.3 also holds. Hence, agents

simulate reliable communication. �

Lemma 6.3.4. In the execution of Algorithm 6.1, agents simulate the FIFO order of message

communication.

Proof. Let us consider two messages msg1 and msg2 from node v to node u such that msg1 is sent

before msg2. Then, we show that msg1 is received by u before msg2. Since an agent transfers the

message at the head of queue, msg1 is deleted before msg2 is sent. Message msg1 is deleted only

when the agent which delivers msg1 returns. At this time, msg1 has been received. Thus, msg1 is

received before msg2. �

FromLemmas 6.3.1, 6.3.3 and 6.3.4, the proposed algorithm initiates execution of all initiators

and delivers all messages to their destinations correctly. This implies the following theorem (about

the correctness of the proposed algorithm) holds.

Theorem 6.3.1. Algorithm 6.1 simulates Z correctly when at most f ≤ k − 1 agents are faulty.

6.3.4 Complexities

In this part, we evaluate the move and memory complexity of agents. Clearly it depends on

the target message-passing algorithm Z . Let M and L be the number and the maximum size of

messages created in the simulated execution of algorithm Z respectively, and Mv be the maximum

116 CHAPTER 6. FAULT-TOLERANT SIMULATION

number of messages created at node v in Z . Cardinality |array| denotes the number of elements of

array. Note that, if f is not given, f is replaced by k −1. This is because a search (resp, delivery)

mode agent a returns from a node v when it finds its a.id in v.parentsearch (resp, v.parentdeliver) of

v.

Theorem 6.3.2. Algorithm 6.1 simulates Z with O((m + M) f) total agent moves, O(f) agent

moves per message (when m = O(M)), O(L) agent memory and O((Mv + ∆)L + f∆ log(k∆))

additional memory for each node.

Proof. We first evaluate the number of total agent moves. For the search mode, at most f + 1

agents search each link in each direction. One search consists of a forward move and a backward

move. Thus, the move complexity of the search mode is 2 · 2 · m · (f + 1) = 4m(f + 1). For the

delivery mode, at most f + 1 agents carry each message of Z by forward moves. Every agent

makes one backwardmove for each forwardmove. Thus, the total move complexity of the delivery

mode is 2M(f + 1). Therefore, the move complexity is 4m(f + 1) + 2M(f + 1) = O((m + M) f)

and the number of agent moves per message is O(f).

Second, we evaluate the memory complexity of agents. Memory complexity of agents is

O(L) since an agent retains at most one message of Z .

And finally, we evaluate the additionalmemory complexity of nodes. Nodes retain variables of

our algorithm as additional variables. Variable v.send is used for storing messages that are gener-

ated at node v and waiting for being delivered to their destination, which requires O(MvL) space.

Variable v.portsearch requires O(f∆ log(k∆)) space since each element of v.portsearch is triplet

(agentID, port, boolean) and requires O(log k + log∆) and |v.portsearch | is O(f∆). Since each

element of v.parentsearch is pair (agentID, port) and requires O(log k + log∆) and |v.parentsearch |

is at most f + 1, v.parentsearch requires O(f log(k∆)) space. Since each element of v.parentdeliver

is pair (agentID, port) and requires O(log k + log∆) and |v.parentdeliver | is at most f + 1 (each

message is delivered by at most f + 1 agents), v.parentdeliver requires O(f log(k∆)) space. Since

v.init retains whether v is an initiator or not, v.init requires O(1) space. Since v.portlock retains the

port used for lock, v.portlock requires O(log∆) space. Since v.send_member retains IDs of agents

which deliver the head message of v.send, v.send_member requires O(f log k) space. Since

v.lock_member retains IDs of agents which arrived from the same port with carrying the same

6.4. SIMULATION OF MESSAGE-PASSING ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES117

message, v.lock_member requires O(f log k) space. Since v.receive retains the latest message for

each port, v.receive requires O(∆L) space.

From these, the amount of additional memory required at node v isO((Mv+∆)L+ f∆ log k∆).

�

Theorem 6.3.3. The number of moves of all the agents to simulate message passing algorithms

with a finite number of messages is Θ((m + M) f).

Proof. Because of asynchronous communication and f faulty agents, all the links must be

searched by at least f + 1 agents and all the messages must be transferred by at least f + 1 agents.

Thus, the number of total agent moves isΩ((m+M) f). From this and Theorem 6.3.2, the theorem

holds. �

6.4 Simulation of message-passing algorithms with an infinite num-

ber of messages

The simulating algorithmweproposed in Section 6.3 cannot simulate amessage-passing algorithm

Z with an infinite number of messages denoted by Zinf as explained below.

Consider the case of Figure 6.3. There are two independent infinitely long message chains

Ca and Cb. If all the agents in the network transfer the messages included in Ca in the depth-first

fashion, the messages included in Cb are not delivered forever.

Figure 6.3: An example where the algorithm proposed in Section 6.3 cannot simulate message-

passing algorithm Zinf .

To simulate message-passing algorithm Zinf , we introduce, to the depth-first message delivery,

restriction on the number of message deliveries and modify the algorithm as follows.

118 CHAPTER 6. FAULT-TOLERANT SIMULATION

1. Instead of the depth-first message delivery in Section 6.3, the depth-first delivery with

restriction ` on the number of delivered messages is adopted. It is a modification of the

depth-first delivery such that an agent backtracks to the node where it started the current

delivery mode when the (combined) number of (distinct) messages delivered by the agent

reaches `.

2. Each agent repeats the depth-first search of the search part infinitely and visits all nodes in

each of the depth-first search of the search part.

3. An agent of the search mode stops execution of the simulating algorithm when it finds f +1

(distinct) delivery mode agent names in the current node. Otherwise, it can happen that

either each message is delivered by more than f + 1 agents or an agent traverses whole

network during one message is delivered. In both cases, the move complexity per message

gets ω(f).

4. An agent starts the delivery part not only when it finds an initiator, but also when it finds a

message to transfer on a non-locked node.

We insist on the locking mechanism so that the number of agent moves per message becomes

O(f): without the locking, the number of delivered messages per traversal may become constant,

i.e., the number of agent moves per message is O(nk). Recall the example presented in Section

6.3. In the example, six messages are successfully delivered and an undelivered message is left

after all the agents finish their traversals. When this happens in every traversal, the number of

moves per message becomes O(nk), i.e., only six messages are delivered in every traversal.

To combine locking mechanism and restriction on the number of message deliveries, the

agents in the same message delivery tree have to share the combined number of distinct messages

delivered by the agents. Otherwise, some node can remain locked with an undelivered message.

For example, consider the following adversarial scenario depicted in Figure 6.4 where f = 1

and ` = 3. Also in the figure, locked (non-locked) nodes are colored white (black). Agent a first

delivers messages msg1 and msg2 from u to w via v and then backtracks to u. After that, a and b

deliver msg3 from u to x. Since a has delivered three messages, it backtracks to u and resumes

searching, whereas b delivers msg4 and crashes during the delivery. At this moment, x remains

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 119

crash

Figure 6.4: An example without sharing the number of delivered messages where ` = 3. In this

case, x remains locked with an undelivered message msg4.

locked by the port leading to u and msg4 remains undelivered. Furthermore, x is kept locked by

the port and msg4 is never delivered unless a message is delivered from u.

To share the number of distinct delivered messages, an agent stores the number to share in

a variable of a node. The variable of node v is updated to the variable of an agent reaching v

after the agent reaches v with a new message and increments the variable of the agent or when

the agent backtracks v and the agent is a lock-member of v. Otherwise, the value of the variable

is copied to the variable of an agent.

Let us consider the previous case again with sharing the number of distinct deliveredmessages

depicted in Figure 6.5. Agent a first has the value 0 for its variable. It delivers messages msg1

and msg2 from u to w via v and stores 1 in v and 2 in w. Then, a backtracks to u with storing 2

in v and u. At this moment, b also starts from u and it copies 2 from u to its variable. Before b

delivers msg3, a delivers msg3, stores 3 in x, and backtracks to u. When b delivers msg3, b also

has 3 and backtracks to u. In this case, even when one of the agents crashes, x does not remain

locked.

There is another problem: allowing a non-locked node to have a message can also lead to the

situation where some node may remain locked with an undelivered message.

120 CHAPTER 6. FAULT-TOLERANT SIMULATION

Figure 6.5: An example with sharing the number of distinct delivered messages where ` = 3.

For example, consider the following adversarial scenario depicted in Figure 6.6 where f = 1.

Suppose that v is locked at first and a and b are delivering msg1 from u to v. Agent a reaches v

before b and, when reaching, v is still locked. Since v is locked, a backtracks from v right after

delivering msg1. Then, v is unlocked with a message msg2 and, after that, b reaches v. Since v

is not locked, b locks v and delivers msg2 and, during delivering msg2, b crashes. In this case,

v remains locked by the port leading to u and msg2 remains undelivered. Furthermore, v is kept

locked by the port and msg2 is never delivered unless a message is delivered from u.

crash

Figure 6.6: An example where an agent can deliver message while another agent has already

returned. In this case, v remains locked with an undelivered message msg2.

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 121

To avoid the above case, an agent tells the other agents that it backtracks right after message

delivery by setting a flag.

6.4.1 Pseudo codes

Algorithms 6.5, 6.7, 6.8 and 6.9 are the pseudo codes of the fault-tolerant simulating algorithm

of Zinf .

Algorithm 6.5 is based on Algorithm 6.1 in Section 6.3.2. The difference from Algorithm 6.1

is as follows:

1. agents traverse all the node infinitely often (expressed in Algorithm 6.5 as infinite loop at

line 2),

2. an agent finding other f +1 agents executingDeliverInf() on a node terminates (Algorithm

6.5, line 5),

3. when an agent traverses all the links of the network for the first time, it constructs its DFS

tree, i.e. it labels ⊥ on a port p which is not included the DFS tree (Algorithm 6.5, lines 11

and 13).

By the third change, the agent can traverse all the nodes of the network with O(n) moves in

the second and later traversal.

Algorithm 6.6 and 6.7 which are based on Algorithm 6.2 in Section 6.3.2 are the pseudo

codes of function DeliverInit and DeliverInf.

To memorize and share between agents the number of delivered messages, we introduce new

variables a.deliver for agent a and v.deliver[p] (assigned to a port p when 1 ≤ p ≤ degv and not

port when p = 0) for node v. When a for the first time reaches v with a newmessage or backtracks

to v and a.id is in v.lock_member, a.deliver gets stored in v.deliver[q] (Algorithm 6.7, lines 9,

13, and 19) where q is the port corresponding to v.parentdeliver[a.id]. Otherwise, v.deliver[q]

gets stored in a.deliver (Algorithm 6.7, lines 10, 14, and 20).

To tell agents that an agent backtracks right after message delivery, we also introduces a new

variable v.backtrack[p] (1 ≤ p ≤ degv) for node v. When agent a backtracks right after message

delivery from port p and v.backtrack[p] = 0, a sets 1 to v.backtracks[p] (Algorithm 6.2, lines 13

122 CHAPTER 6. FAULT-TOLERANT SIMULATION

Algorithm 6.5 Simulation algorithm for Zinf

1: v.parentsearch[a.id] ← 0;

2: while (1)

3: //the current node is initiator or has messages

4: if (v.init = true) ∨ (v.portlock = 0) ∨ ((v.portlock = ⊥) ∧ (v.send , ∅)) then

5: if (|v.lock_member | = f + 1) then terminate;

6: DeliverInf();

7: if (there is p s.t. v.portsearch[a.id][p] = 1) then //there is an unsearched port

8: v.portsearch[a.id][p] ← 0;

9: move through p, then arrive from q;

10: if (v.parentsearch[a.id] , ⊥) then //find a’s own ID

11: v.portsearch[a.id][q] ← ⊥;

12: move through q, then arrive from p; //return to the previous node

13: v.portsearch[a.id][p] ← ⊥;

14: else //arrive at v for the first time

15: v.parentsearch[a.id] ← q; v.portsearch[a.id][q] ← 0;

16: else //there is no unsearched port

17: v.portsearch[a.id][p] ← 1 for all p s.t. v.portsearch[a.id][p] = 0;

18: q← v.parentsearch[a.id];

19: if (q , 0) then move through q; //return to the previous node

20: end while

and 19). When an agent visits node v from port p and v.backtrack[p] = 1, the agent backtracks

the node corresponding to p.

Algorithm 6.8 which is based on Algorithm 6.3 in Section 6.3.2 is the pseudo code of

function GoBackInf. A main modification here is that when agent a backtracks node v and

a.id ∈ v.lock_member, a.deliver gets stored in v.deliver[q] where q is the port by which v is

locked.

Algorithm 6.9 which is based on Algorithm 6.4 in Section 6.3.2 is the pseudo code of function

ProcessInf. The only modification here is that when message m from port p is delivered to v for

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 123

Algorithm 6.6 DeliverInit()
1: a.deliver← 0; ProcessInf(⊥,⊥); //process an unprocessed initiator

2: v.lock_member← v.lock_member ∪ {a.id}; v.parentdeliver[a.id] ← 0;

3: if (v.portlock = ⊥) then v.portlock ← 0;

4: if (v.send_member = ∅) then v.deliver[0] ← a.deliver;

5: else a.deliver← v.deliver[0];

the first time, v.backtrack[p] is set to 0.

Note that when f is not given, agents ignore lines 5, 6 in Algorithm 6.5.

6.4.2 Correctness

In this subsection, we show that the proposed algorithm simulates Zinf correctly.

The time instants of send and receive operations in the simulation of message-passing algo-

rithm Zinf are defined in the similar way in Section 6.3.3 as follows:

• the time instant that v sends message msg in the simulation of Zinf is defined as the time

instant that an agent stores msg to v.send, and

• the time instant that v receives message msg in the simulation of Zinf is defined as the time

instant that an agent with carrying message msg arrives at v for the first time and simulates

local computation of v initiated by receipt of msg.

Also in for the algorithm, to prove the correctness of the proposed algorithm, it suffices to

show that 1) local computation of every initiator is started (which is proved in Lemma 6.4.5) and

2) each message is delivered in a reliable and FIFO manner (which is proved in Lemma 6.4.6).

Hereafter, we say an agent is in the delivery mode when it executes procedures DeliverInf(),

GoBackInf() or ProcessInf(), and an agent is in the search mode otherwise. We say the node,

say u, specified by v.portlock is the locking node of v and u locks v. The following lemmas hold.

Lemma 6.4.1. In the execution of Algorithm 6.5, there remains at least one non-faulty agent.

Proof. A non-faulty agent stops execution if it finds f +1 delivery mode agents during the search

mode. At least one of the f + 1 delivery mode agents must be a non-faulty agent. �

124 CHAPTER 6. FAULT-TOLERANT SIMULATION

Algorithm 6.7 DeliverInf()
1: DeliverInit();

2: while (1)

3: if (v.send , ∅) then

4: a.msg← head(v.send); //copy the head message of v.send

5: v.send_member← v.send_member ∪ {a.id};

6: move through the destination port p of a.msg, then arrive from q;

7: a.msg← ⊥; a.deliver = a.deliver + 1; ProcessInf(a.msg, q);

8: if (v.portlock ∈ {⊥, q})∧(v.parentdeliver[a.id] = ⊥)∧(a.deliver , `)∧(v.backtrack[q] = 0)

then

9: if (v.portlock = ⊥) then v.portlock ← q; v.deliver[q] ← a.deliver;

10: else a.deliver← v.deliver[q];

11: v.lock_member← v.lock_member ∪ {a.id}; v.parentdeliver[a.id] ← q;

12: else //backtrack to a node

13: if (v.backtrack[q] = 0) then v.backtrack[q] ← 1; v.deliver[q] ← a.deliver;

14: else a.deliver← v.deliver[q]

15: if (GoBackInf(q) = 0) then return;

16: else //there is no message

17: q← v.parentdeliver[a.id];

18: if (a.id ∈ v.lock_member) then

19: v.portlock ← ⊥; v.lock_member← ∅; v.backtrack[q] ← 1; v.deliver[q] ← a.deliver;

20: else a.deliver← v.deliver[q];

21: q← v.parentdeliver[a.id]; v.parentdeliver[a.id] ← ⊥;

22: if (q = 0) then return;

23: else //backtrack to a node s.t. a is a lock-member

24: if (GoBackInf(q) = 0) then return;

25: end while

Lemma 6.4.2. In the execution of Algorithm 6.5, when a node, say v, has a message in v.send, v

is locked.

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 125

Algorithm 6.8 GoBackInf(p)
1: move through p (return to the previous node);

2: while (1)

3: if (a.id ∈ v.send_member) then

4: //a has delivered the head message of v.send

5: v.send_member← ∅; dequeue(v.send);

6: q = v.parentdeliver[a.id];

7: if (a.id ∈ v.lock_member) then v.deliver[q] ← a.deliver;

8: else a.deliver← v.deliver[q];

9: if (a.id ∈ v.lock_member) ∧ (a.deliver < `) then return 1; //a resumes deliveries

10: else

11: v.parentdeliver[a.id] ← ⊥;

12: if (a.id ∈ v.lock_member) then

13: v.lock_member← ∅; v.portlock ← ⊥;

14: v.backtrack[q] ← 1;

15: if (q = 0) then //the starting node of DeliverInf()

16: return 0; //return from DeliverInf()

17: else //if a is not a v.lock_member agent

18: move through q; //return to the previous node

19: end while

Proof. The lemma can be proven by the same argument in the proof of Lemma 6.3.2 and its proof

is omitted here. �

Lemma 6.4.3. In the execution of Algorithm 6.5, after an agent, say a, starts its delivery mode,

a.deliver eventually reaches ` unless a crashes.

Proof. We show that a.deliver increases eventually. During the delivery mode, a.deliver is

changed at node v in the following cases:

1. a.deliver is incremented when a delivers a message and a is the first agent delivering the

message;

126 CHAPTER 6. FAULT-TOLERANT SIMULATION

Algorithm 6.9 ProcessInf(msg, p)
1: //simulate the execution of an initiator

2: if (v.init = true) then

3: v.init← false;

4: (s,MSG) ← simulate(v.staten,⊥);

5: v.staten ← s;

6: enqueue(v.send,MSG);

7: //simulate the execution of a node receiving msg from p

8: if (msg , ⊥) ∧ (msg , v.receive[p]) then

9: v.receive[p] ← msg;

10: v.backtrack[p] ← 0

11: (s,MSG) ← simulate(v.staten,msg);

12: v.staten ← s;

13: enqueue(v.send,MSG);

2. a.deliver is copied from v.deliver[p] where p is v.parentdeliver[a.id] when a delivers a

message and a is not the first agent delivering the message;

3. a.deliver is copied from v.deliver[p] when a backtracks to v and is not in v.lock_member.

In the first case, a.deliver increases and thus we show the lemma for the second and third

cases. We first show that in the third case, when a stops backtracking and resumes message

delivery, a.deliver is the number of messages delivered in its current delivery path. When a

unlocks node u and starts to backtrack from u, a.deliver is the number of messages delivered in its

current delivery path and a.deliver is copied to u.deliver[q]where q is u.parentdeliver[a.id]. When

a starts to backtrack from non-locked node u, a.deliver is copied from u.deliver[q]. By applying

the claim inductively, we have that a.deliver and v.deliver[p] is the number of messages delivered

in its current delivery path when a stops backtracking and resumes message delivery. Also for

the second case, by the above arguments, v.deliver[p] is the number of messages delivered in its

current delivery path when the second case occurs. Since the number of messages delivered in

its current delivery path keeps increasing until reaching `, a.deliver eventually reaches `. �

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 127

Lemma 6.4.4. In the execution of Algorithm 6.5, every agent terminates each of its delivery

modes or crashes.

Proof. An agent, say a, terminates its delivery mode if there is no message to deliver or a.deliver

reaches `. As long as there is a message to deliver, a keeps delivering a message and a.deliver

eventually reaches ` by Lemma 6.4.3 and terminates its delivery mode. �

Lemma 6.4.5. In the execution of Algorithm 6.5, each node is visited by a non-faulty agent of the

search mode infinitely often and hence every initiator starts execution of Zinf .

Proof. By Lemmas 6.4.1 and 6.4.4, there remains at least one non-faulty agent which keeps

traversing the whole network infinitely often. Thus, each node is visited an infinitely often and

every initiator is processed by a non-faulty agent. �

Lemma 6.4.6. In the execution of Algorithm 6.5, agents simulate reliable communication.

Proof. First, we show that all messages which were transfered are eventually delivered. Since

messages are delivered if they are deleted, it is enough to prove that all messages have already

been deleted when execution of the algorithm terminates. We assume for contradiction that there

is a node v with a message which is never delivered and v locks no node.

From Lemma 6.4.2, v is locked. Let u be v’s locking node and p be the port of (u, v) at v. We

show by contradiction that u is never unlocked before v is unlocked. Assume that u is unlocked

before v. Suppose that agent a and agent b is at u and there is a message msg1 to v in u.send.

Only the following two cases are possible.

1. Agent a backtracks from v to u immediately after delivering msg1 and b delivers msg1 to v

from u before a reaches u, continues message delivery, and locks v. Then, u is unlocked

by a.

2. Agent a delivers msg1 to v and continues message delivery and b backtracks from u and

unlocks u.

Consider the first case. Since a backtracks from v, v has no message, v is locked by a port

other than p, a cycle is detected (i.e., a has visited v in its current delivery mode), or a.deliver

128 CHAPTER 6. FAULT-TOLERANT SIMULATION

is `. We only consider the last case where a.deliver is ` since other cases can be shown by the

similar argument to the proof of Lemma 6.3.3. Since a.deliver is `, v.deliver[p] is also ` where

p is v.parentdeliver[a.id] from the argument in the proof of Lemma 6.4.3. When b delivers msg1,

v.deliver[p] is copied to b.deliver and then b also backtracks from u. This is a contradiction.

Consider the second case. Since b backtracks from v, v has no message, v is locked by a port

other than p, a cycle is detected, or b.deliver reaches `. Also in this case, we only consider the

last case where b.deliver reaches `. Let w be u’s locking node. Since both a and b pass through

w, both a.deliver and b.deliver are copied from w.deliver[q] where q is w.parentdeliver[a.id] or

a.deliver is copied to w.deliver[q] and b.deliver is copied from w.deliver[q]. In either case,

a.deliver equals to b.deliver and a.deliver also reaches ` at u. This is a contradiction.

By applying the above claim inductively, we get that a node where message delivery is started

is locked. By Lemma 6.3.1, however, every node is visited infinitely often and thus is unlocked

eventually, which is a contradiction.

Thus, all messages which are generated on Zinf are deleted and delivered.

Because agents simulate local computation initiated by receipt of a message exactly once,

condition [A1] in Section 6.2.3 holds. Every message received by a node is carried by an agent

and before that it is put into a message queue of the sender node (otherwise, the message cannot

be delivered by an agent). This implies condition [A2] in Section 6.2.3 also holds. Hence, agents

simulate reliable communication. �

Lemma 6.4.7. In the execution of Algorithm 6.5, agents simulate the FIFO order of message

communication.

Proof. This lemma can be proved in the same way in the proof of 6.3.4 and the proof of the

lemma is omitted here. �

FromLemmas 6.4.5, 6.4.6 and 6.4.7, the proposed algorithm initiates execution of all initiators

and delivers all messages to their destinations correctly. This implies the following theorem (about

the correctness of the proposed algorithm) holds.

Theorem 6.4.1. Algorithm 6.5 simulates Zinf correctly when at most f ≤ k − 1 agents are faulty.

6.4. SIMULATION OF ALGORITHMS WITH AN INFINITE NUMBER OF MESSAGES 129

6.4.3 Complexities

In this section, we show that the number of agent moves per message is O(f) in the modified

algorithm.

First, we define the start of the i-th traversal of agent a as the i-th moment when a is on its

homebase vh and v.h.portsearch[a.id][p] is 1 or ⊥ for all p, and define the i-th traversal of a as the

interval between the starts of the i-th and the (i + 1)-th traversals of a. We say the nodes which

are not locked and have messages (i.e. agents start deliveries of messages from the nodes) are

sub-initiators. Node set Va
i is a set of sub-initiators and initiators existing at the start of the i-th

traversal of a, e.g. Va
1 is a set of initiators.

The following lemma and theorem hold.

Lemma 6.4.8. In the execution of Algorithm 6.5, at least ` messages are delivered during the i-th

traversal of the search part of an agent.

Proof. We show that by induction on i that ` messages are delivered during the i-th traversal of

agent a. Note that, 1) since the number of messages of Zinf is infinite, there is always at least one

node from which message delivery continues infinitely and 2) by construction, when a unlocks

a node with a undelivered message (i.e., when a new sub-initiator is formed), a has delivered `

messages.

Basis : There are initiators in the network at the start of the execution of the algorithm. All the

initiators are processed before an agent completes the first traversal. When all the initiators are

processed, there must be at least one sub-initiator since Zinf continues execution forever. Thus,

for i = 1, ` messages are delivered.

Inductive step : Assume that ` messages have been delivered during the i-th traversal of

a. Note that when we count the number of messages delivered in the i-th traversal of a, the

messages generated from Va
i+1 and the messages generated by receipt of them are not included in

the number. Since all the nodes of Va
i+1 are processed by the start of the i + 2-th traversal of a, `

messages are delivered during the i + 1-th traversal. �

Theorem 6.4.2. Algorithm 6.5 simulates Zinf with O(f) agent moves per message.

Proof. In the modified algorithm, every message is transfered by at most f + 1 agents as in the

130 CHAPTER 6. FAULT-TOLERANT SIMULATION

algorithm in Section 6.3. From Lemma 6.4.8, at least ` messages are delivered during each

depth-first search of the search part of an agent, which takes m agent moves in the first search

and n agent moves in the second or later search. That is, at least ` messages are delivered during

O(kn + f `) (O(km + f `), for the first depth-first search) agent moves. Since an agent traverses

the whole network, every agent can get k and n in the first depth-first search of the search part.

With setting ` to be kn/ f , the number of agent moves per message becomes O(f). �

Consequently, themodified algorithm requiresO(f) agentmoves permessage as the algorithm

in Section 6.3, which not only improves the previous algorithm in [22] but also is asymptotically

optimal by Theorem 6.2.1 while each agent uses O(log(kn/ f)) spaces. Note that also in this case,

f is replaced by k when f is not given.

6.5 Concluding Remarks

In this chapter, we proposed two simulating algorithms to simulate a message-passing algorithm

in the mobile agent model, one is for message-passing algorithms which eventually terminate

and the other is for message-passing algorithms which never terminate. Our first (resp. second)

algorithm requires O((m + M) f) total agent moves and O(f) agent moves per message (resp.

O(f) agent moves per message) to tolerate at most f ≤ k − 1 faulty (or crashed) agents where m

is the number of links in the network and M is the number of messages in the simulated execution

of the message-passing algorithm. The existing algorithm requires O((m + nM)k) total agent

moves or O(nk) agent moves per message when at most k − 1 agents crash. Thus, our algorithm

improves the previous algorithm [22] in the number of agent moves.

Chapter 7

Conclusion

7.1 Summary of the Results

In this dissertation, we consider algorithms adapting to dynamic networks or crash faults.

In Chapter 3, we considered perpetual exploration of temporal graphs with arbitrary and

unknown topology, focusing on the number of agents that are necessary and sufficient to perform

the task. We considered two common dynamic models: temporally connected networks, and

1-interval connected (or always connected) networks with a bounded number of missing edges

at each round. We derived tight bounds for both models under fully synchronous and semi-

synchronous settings, both when the agents are anonymous and when there is a leader. Our

algorithms use at each node v a rotor-router mechanism; this can be implemented with either a

constant number of movable tokens that can be placed on the ports of v, or with a whiteboard of

size O(log δv) bits.

In Chapter 4, we considered group exploration of the dynamic torus consisting 1-interval

connected rings. We proposed exploration algorithms with termination and showed that the link

presence detection has a considerable influence on the number of agents required to explore the

ν × µ dynamic torus (ν ≤ µ). Specifically, we showed that, without the link presence detection,

ν+1 agents are necessary and sufficient to explore and, with the link presence detection, dν/2e+1

agents are necessary and sufficient when ν , 4 and dν/2e + 2 agents are necessary and sufficient

when ν = 4 to explore the ν × µ dynamic torus.

131

132 CHAPTER 7. CONCLUSION

In Chapter 5, we introduced the (H, S) view by which an agent can see when the links within

H hops from its current node appear during S time steps from the current time. The (H, S)

view can be used to model some situations where an agent (or robot) can partly see their nearby

environment or can predict the near-future changes of the environment. For a single agent with the

(H, S) view, we studied the exploration of 1-interval connected rings. We give some fundamental

results, i.e., impossibility of the exploration for H + S < n or S < dn/2e, possibility of the

exploration for H + S ≥ n and S ≥ dn/2e, and upper bounds and a lower bound of the exploration

time for some cases.

In Chapter 6, we proposed two simulating algorithms to simulate amessage-passing algorithm

in the mobile agent model, one is for message-passing algorithms which eventually terminate and

the other is for message-passing algorithms which never terminate. Our first (resp. second)

algorithm requires O((m + M) f) total agent moves and O(f) agent moves per message (resp.

O(f) agent moves per message) to tolerate at most f ≤ k − 1 faulty (or crashed) agents where m

is the number of links in the network and M is the number of messages in the simulated execution

of the message-passing algorithm. The existing algorithm requires O((m + nM)k) total agent

moves or O(nk) agent moves per message when at most k − 1 agents crash. Thus, our algorithm

improves the previous algorithm [22] in the number of agent moves.

Acknowledgments

I have been fortunate to receive assistance frommany people. I would especially like to expressmy

gratitude to my supervisor Professor Toshimitsu Masuzawa for his guidance and encouragement.

I have also received precious advice from Professors of the Graduate School of Information

Science and Technology, Osaka University. Among them, I would like to extend my gratitude to

Professor Shinji Kusumoto, Professor Fumihiko Ino, and Associate Professor Taisuke Izumi, for

their valuable comments on this dissertation.

I would like to acknowledge Professor Paola Flocchini at University of Ottawa, Professor

Nicola Santoro at Carleton University, Professor Hirotsugu Kakugawa at Ryukoku University,

and Associate Professor Fukuhito Ooshita at Nara Institute of Science and Technology, for their

constructive discussions. I would like to thank to Professors and staffs of Osaka University

Humanware Innovation Program for their financial support. I also thank to Ms. Hisako Suzuki

and Ms. Noriko Sato for their kind support. I am also grateful to the staffs and students of

Algorithm Engineering Laboratory, the Graduate School of Information Science and Technology,

Osaka University. In particular, I thank to Assistance Professor Yuichi Sudo for his time and

kindness.

Finally, I wishes to thank all of my families for their continuous encouragement and support.

133

134 CHAPTER 7. CONCLUSION

Bibliography

[1] J. Cao and S.K. Das. Mobile Agents in Networking and Distributed Computing. John Wiley

& Sons, 2012.

[2] G. Tel. Introduction to distributed algorithms. Cambridge university press, 2000.

[3] K. Erciyes. Distributed Graph Algorithms for Computer Networks. Springer Science &

Business Media, 2013.

[4] A.S. Fraenkel. Economic traversal of labyrinths. Mathematics Magazine, 43(3):125–130,

1970.

[5] Y. Afek and E. Gafni. Distributed algorithms for unidirectional networks. SIAM Journal on

Computing, 23(6):1152–1178, 1994.

[6] V.Yanovsky, A. Bruckstein, and I.Wagner. A distributed ant algorithm for\protect efficiently

patrolling a network. Algorithmica, 37(3):165–186, 2003.

[7] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, and T. Radzik.

Robustness of the rotor-router mechanism. Algorithmica, 78(3):869–895, 2017.

[8] A. Kosowski and D. Pajak. Does adding more agents make a difference? a case study of

cover time for the rotor-router. Journal of Computer and System Sciences, 106:80–93, 2019.

[9] D. Ilcinkas, R. Klasing, and A.M. Wade. Exploration of constantly connected dynamic

graphs based on cactuses. In Proc. 21st International Colloquium on Structural Information

and Communication Complexity (SIROCCO), pages 250–262, 2014.

135

136 BIBLIOGRAPHY

[10] T. Erlebach, M. Hoffmann, and F. Kammer. On temporal graph exploration. In Proc.

42th International Colloquium on Automata, Languages, and Programming (ICALP), pages

444–455, 2015.

[11] D. Ilcinkas and A.M. Wade. Exploration of the T-interval-connected dynamic graphs: the

case of the ring. Theory of Computing Systems, 62(5):1144–1160, 2018.

[12] T. Erlebach, F. Kammer, K. Luo, A. Sajenko, and J.T. Spooner. Two moves per time step

make a difference. In Proc. 46th International Colloquium on Automata, Languages, and

Programming (ICALP), pages 141:1–141:14, 2019.

[13] M. Bournat, S. Dubois, and F. Petit. Computability of perpetual exploration in highly

dynamic rings. In Proc. 37th IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 794–804, 2017.

[14] M. Bournat, A.K. Datta, and S. Dubois. Self-stabilizing robots in highly dynamic environ-

ments. Theoretical Computer Science, 772:88–110, 2019.

[15] G.A. Di Luna, S. Dobrev, P. Flocchini, and N. Santoro. Distributed exploration of dynamic

rings. Distributed Computing, 33(1):41–67, 2020.

[16] T.Gotoh, P. Flocchini, T.Masuzawa, andN. Santoro. Tight bounds on distributed exploration

of temporal graphs. In Proc. 23rd International Conference on Principles of Distributed

Systems (OPODIS), pages 22:1–22:16, 2020.

[17] T. Gotoh, Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Exploration of dynamic

tori by multiple agents. Theoretical Computer Science, 850:202–220, 2020.

[18] M. Bournat, S. Dubois, and F. Petit. Gracefully degrading gathering in dynamic rings. In

Proc. 20th International Symposium on Stabilization, Safety, and Security of Distributed

Systems (SSS), pages 349–364, 2018.

[19] S. Das, G.A. Di Luna, and L.A. Gasieniec. Patrolling on dynamic ring networks. In Proc.

45th International Conference on Current Trends in Theory and Practice of Informatics

(SOFSEM), pages 150–163, 2019.

BIBLIOGRAPHY 137

[20] S. Das, G. Di Luna, L. Pagli, and G. Prencipe. Compacting and grouping mobile agents

on dynamic rings. In Proc. 15th International Conference on Theory and Applications of

Models of Computation (TAMC), pages 114–133, 2019.

[21] G.A. Di Luna, P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, and G. Viglietta. Gathering

in dynamic rings. Theoretical Computer Science, 811:79–98, 2020.

[22] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Fault-tolerant simulation of message-

passing algorithms by mobile agents. In Proc. 14th International Colloquium on Structural

Information and Communication Complexity (SIROCCO), pages 289–303, 2007.

[23] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and

dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,

27(5):387–408, 2012.

[24] F. Harary and G. Gupta. Dynamic graph models. Mathematical and Computer Modelling,

25(7):79–87, 1997.

[25] A. Ferreira. Building a reference combinatorial model formanets. IEEE Network, 18(5):24–

29, 2004.

[26] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Deterministic computations in time-

varying graphs: Broadcasting under unstructured mobility. In Proc. IFIP International

Conference on Theoretical Computer Science (TCS), pages 111–124, 2010.

[27] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Measuring temporal lags in delay-

tolerant networks. IEEE Transactions on Computers, 63(2):397–410, 2014.

[28] D. Ilcinkas and A.M. Wade. On the power of waiting when exploring public transportation

systems. In Proc. 15th International Conference on Principles of Distributed Systems

(OPODIS), pages 451–464, 2011.

[29] P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Searching for black holes in subways.

Theory of Computing Systems, 50(1):158–184, 2012.

138 BIBLIOGRAPHY

[30] P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying networks.

Theoretical Computer Science, 469:53–68, 2013.

[31] T. Erlebach and J.T. Spooner. A game of cops and robbers on graphs with periodic edge-

connectivity. In Proc. 46th International Conference on Current Trends in Theory and

Practice of Informatics (SOFSEM), pages 64–75, 2020.

[32] F. Kuhn, N.A. Lynch, and R. Oshman. Distributed computation in dynamic networks. In

Proc. 42nd ACM Symposium on Theory of Computing (STOC), pages 513–522, 2010.

[33] F. Kuhn and R. Oshman. Coordinated consensus in dynamic networks. In Proc. 30th

Symposium on Principles of Distributed Computing (PODC), pages 1–10, 2011.

[34] B. Haeupler and F. Kuhn. Lower bounds on information dissemination in dynamic networks.

In Proc. 26th International Symposium on Distributed Computing (DISC), pages 166–180,

2012.

[35] C. Shannon. Presentation of a maze solving machine. In Proc. 8th Conference of the Josiah

Macy Jr. Foundation (Cybernetics), pages 169–181, 1952.

[36] S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal on Comput-

ing, 29(4):1164–1188, 2000.

[37] P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,

33(2):281–295, 1999.

[38] X. Deng and C.H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory,

32(3):265–297, 1999.

[39] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite

automaton. Theoretical Computer Science, 345(2–3):331–344, 2005.

[40] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration

capability. Discrete Applied Mathematics, 156(12):2310–2319, 2008.

BIBLIOGRAPHY 139

[41] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Label-guided graph

exploration by a finite automaton. ACM Transactions on Algorithms, 4(4):1–18, 2008.

[42] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and

oblivious robots. In Proc. 36th International Workshop on Graph-Theoretic Concepts in

Computer Science (WG), pages 208–219, 2010.

[43] Y. Dieudonné and A. Pelc. Deterministic network exploration by anonymous silent agents

with local traffic reports. ACM Transactions on Algorithms, 11(2):1–29, 2014.

[44] S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov. Exploration of high-dimensional

grids by finite automata. In Proc. 46th International Colloquium on Automata, Languages,

and Programming (ICALP), pages 1–16, 2019.

[45] S. Das. Graph exploration with mobile agents. Chapter 16 of [55], pages 403–422, 2019.

[46] O. Michail and P. Spirakis. Traveling salesman problems in temporal graphs. Theoretical

Computer Science, 634:1–23, 2016.

[47] C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world. In Proc.

35th International Colloquium on Automata, Languages and Programming (ICALP), pages

121–132, 2008.

[48] I. Lamprou, R. Martin, and P. Spirakis. Cover time in edge-uniform stochastically-evolving

graphs. Algorithms, 11(10):149, 2018.

[49] G.A. Di Luna. Mobile agents on dynamic graphs. Chapter 20 of [55], pages 549–584, 2019.

[50] A. Agarwalla, J. Augustine, W. Moses, S. Madhav, and A.K. Sridhar. Deterministic dis-

persion of mobile robots in dynamic rings. In Proc. 19th International Conference on

Distributed Computing and Networking (ICDCN), pages 19:1–19:4, 2018.

[51] M. Fukuda, L.F. Bic, M.B. Dillencourt, and J.M. Cahill. Messages versus messengers in

distributed programming. Journal of Parallel and Distributed Computing, 57(2):188–211,

1999.

140 BIBLIOGRAPHY

[52] L. Barrière, P. Flocchin, P. Fraigniau, and N. Santor. Can we elect if we cannot compare?

In Proc. 15th ACM symposium on Parallel algorithms and architectures (SPAA), pages

324–332, 2003.

[53] J. Chalopin, E.Godard, Y.Métivier, andR.Ossamy. Mobile agent algorithms versusmessage

passing algorithms. In Proc. 10th International Conference on Principles of Distributed

Systems (OPODIS), pages 187–201, 2006.

[54] T. Suzuki, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Move-optimal gossiping

among mobile agents. Theoretical Computer Science, 393(1–3):90–101, 2008.

[55] P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile Entities.

Springer, 2019.

	1 Introduction
	1.1 Background
	1.2 Overview of This Dissertation
	1.2.1 Exploration of dynamic networks with arbitrary footprints
	1.2.2 Exploration of dynamic tori
	1.2.3 Exploration of dynamic rings with (H, S) view
	1.2.4 Fault-tolerant simulation of message-passing algorithms by mobile agents

	1.3 Related Works
	1.3.1 Dynamic networks
	1.3.2 Graph Exploration in Static Networks
	1.3.3 Graph Exploration in Dynamic Networks
	1.3.4 Agents in dynamic networks
	1.3.5 Simulation of message-passing algorithms by agents

	1.4 Organization of This Dissertation

	2 Preliminary
	3 Exploration of Dynamic Graphs with Arbitrary Footprints
	3.1 Introduction
	3.2 Preliminary
	3.2.1 Network
	3.2.2 Connectivity
	3.2.3 Agents
	3.2.4 Configuration and Execution
	3.2.5 Augmented Configuration and Execution

	3.3 Exploration of Temporally Connected TVGs
	3.3.1 Impossibility
	3.3.2 Semi Synchronous Exploration by 2(G)+1 Agents

	3.4 Exploration of 1-Interval Connected TVGs by Anonymous Agents
	3.4.1 Semi-synchronous model
	3.4.2 Fully-Synchronous Model

	3.5 Exploration of 1-Interval Connected Graphs with a Leader
	3.5.1 Semi-Synchronous Model
	3.5.2 Fully-Synchronous Model

	3.6 Conclusion

	4 Exploration of Dynamic Tori
	4.1 Introduction
	4.2 Preliminary
	4.2.1 Network
	4.2.2 Agents
	4.2.3 Configuration

	4.3 Subroutines for 1-interval connected rings
	4.4 Exploration without the link presence detection in tori
	4.4.1 Impossibility of exploration
	4.4.2 Exploration by +2 agents
	4.4.3 Exploration by +1 agents

	4.5 Exploration with the link presence detection in tori
	4.5.1 Impossibility of exploration
	4.5.2 Exploration by "4264306 /2 "5265307 + 2 agents
	4.5.3 Exploration by "4264306 /2 "5265307 + 1 agents
	4.5.4 Exploration by three agents for =3

	4.6 Concluding Remarks

	5 Exploration of Dynamic Rings with (H, S) view
	5.1 Introduction
	5.2 Preliminary
	5.2.1 Network
	5.2.2 Agents

	5.3 Impossibility Result
	5.4 Possibility Result and Upper Bounds of Exploration Time
	5.5 Upper Bound of Exploration Time for S N-1
	5.6 Lower Bound of Exploration Time
	5.7 Discussion
	5.8 Concluding Remarks

	6 Fault-Tolerant Simulation of Message-Passing Algorithms by Mobile Agents
	6.1 Introduction
	6.2 Preliminary
	6.2.1 Network
	6.2.2 Mobile agent model
	6.2.3 Message-passing model
	6.2.4 Lower bound of move complexity

	6.3 Simulation of message-passing algorithms with a finite number of messages
	6.3.1 The description of a simulating algorithm
	6.3.2 The pseudo codes
	6.3.3 Correctness
	6.3.4 Complexities

	6.4 Simulation of message-passing algorithms with an infinite number of messages
	6.4.1 Pseudo codes
	6.4.2 Correctness
	6.4.3 Complexities

	6.5 Concluding Remarks

	7 Conclusion
	7.1 Summary of the Results

