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Summary

The proliferation of Artificial Intelligence (AI) has a wide range of impact on the world-
wide daily life such as medicine, finance, and even industry. In many AI applications
such as image, video, and speech processing, deep neural network (DNN) has been
recognized as a vital solution in terms of its high quality and generality. DNN attains
astonishing accuracy for tackling non-trivial and complicated Big Data analysis, though,
at the cost of high computation. Even inference with a pre-trained DNN model requires
considerable computation, and what is more, training stage demands further overwhelm-
ing amount of computation.

When pursuing a high-quality and general solution through DNN, we often rely
on a large size of data for training in addition to sophisticated, i.e., very deep, DNN
models, elevating the amount of parameters and computation. To make matter worse,
to stabilize and converge the model parameters, several iterations (epochs) in training
phase are indispensable, which elevates the computing cost. Both inference and train-
ing algorithms primarily perform matrix multiplication, which consists of a series of
MAC (multiply-accumulate) computations. When the size of DNN models and input
data increases, the amount of MAC computations also increases. Modern DNN train-
ing widely applies GPU in servers or cloud systems. The parallel-computing property
of GPU can provide higher bandwidth for large-scale matrix multiplications and con-
tribute to DNN training acceleration. On the other hand, while DNN training accelerates
with the aid of GPUs, GPU is substantially a compute-intensive system and also highly
demands power. Therefore, solutions for achieving an efficient DNN training scheme
could undoubtedly save the resource and cost for many AI applications and facilitate the
AI marketing revenue. Meanwhile, since the training quality is the most essential factor
for a competitive DNN model, it is challenging yet worth studying to enhance a DNN
training efficiency while sustaining its quality.

Besides GPUs, the demands for accommodating training capability in edge terminal
servers or mobile ASICs also raise. These platforms have the advantage to provide more
local services with privacy preservation. On the other hand, regarding the limited size
and tiny-volume battery, developing an efficient training hardware becomes an essential
requirement from AI service providers.

Approximate computing (AC) is a set of techniques providing cost-effective tuning
knobs that make the applications enhance their efficiency such as speed, power, and area,
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at the sacrifice of minor quality loss. DNN is one of the applications highly compatible
with AC according to its natural characteristics of error tolerance and resilience. Several
AC techniques are already explored to achieve efficiency improvement of DNN but
mainly for inference purpose, assuming an accurate pre-trained model is ready. On
the other hand, the training result is thought to be more sensitive and susceptible to
computation inaccuracy once the DNN structure gets more complex, and then there
is always a concern for final training quality once applying too much approximation
in training stage. Therefore, the applicability of AC to DNN training is insufficiently
explored. Only bit-width scaling (BWS) is majorly studied since it is intuitive and the
approximation degree can be controlled gradually.

Due to gradient computation in the back-propagation algorithm, training is per-
formed with a wide dynamic range of values, and therefore, many mainstream systems
exploit floating-point (FP) expression for training. To attain sufficient quality, training
of modern DNN models conventionally relies on 32-bit FP (FP32). On the other hand,
some literatures claim that training with FP32 is more than necessary. While FP16 is
recognized with its advantage of high computation and memory efficiencies, it is still
controversial whether FP16 can attain the same training quality as FP32 without coop-
erating with other crafted strategies or techniques. In most of the cases, training with
FP16 still requires FP32 to assist some computing that FP16 cannot well cover. Experi-
mental results reproduced in this work reveal that the precision of FP16 training has not
been well certified if tackling new real-world datasets or applications. The results also
indicate that when there are only two choices of FP32 and FP16, it is difficult to well
balance the quality and efficiency.

Voltage scaling (VS) is a general means to reduce the power dissipation of integrated
circuits in a quadratic manner, whereas AC is effective for applications possessing in-
herent error tolerance. However, the delay of logic gates would increase and the cir-
cuits become risky to occur timing error as the voltage decreases. In order to achieve
aggressive voltage scaling while preventing the timing errors, activation-aware slack as-
signment (ASA) is proposed to reallocate the timing margin for timing critical paths
that might be activated during the operation. The previous works of ASA introduce
mean-time-to-failure (MTTF) analysis regarding the timing error as stochastic events.
MTTF-aware ASA can aggressively scale down the voltage for power reduction at the
cost of allowing less but not zero timing error. Though ASA is thought effective, the pre-
vious works did not provide a methodology to maximize its benefit with guaranteeing
no timing errors, which restricts its generality and consequently application domains.
Then, an interesting question is raised; how much can ASA benefit VS efficiency with
ensuring no timing errors?

This dissertation aims at providing a design methodology to achieve energy mini-
mization for DNN training with useful implementation techniques. First, to reduce the
primary MAC computation in training with FP, this work proposes to use logarithm-
approximate multiplier (LAM) for training. By approximating float-point multiplica-
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tion to cheap fixed-point addition, the NN training engine is expected to be imple-
mented with smaller delay, fewer gates, and lower power consumption. With a dedi-
cated hardware for NN training engine and a 2-D classification dataset, this dissertation
demonstrates that LAM-based training can achieve 10% speed-up, 2.3X power and area
improvement, respectively, compared with traditional training with FP32 exact compu-
tation. In addition, LAM also reveals its high compatibility with conventional BWS. If
LAM is applied to NN where BWS is already implemented, LAM and BWS can en-
joy synergy effect and up to 4.9X power reduction is attained with sacrificing up to 1%
accuracy loss. Also, the processor level design can exploit the advantage of LAM. An
experimental GPGPU embedded with LAM executing a NN training workload presents
28% power reduction improvement and the improvement reaches 41% with LAM +

BWS. Finally, LAM is qualified for deeper-layer NN training. Up to four hidden lay-
ers, LAM- based training yields the same level of accuracy as training with accurate
multipliers, even with aggressive BWS.

Next, this dissertation addresses the disadvantage of non-zero timing error risk in-
volved in conventional ASA methods and provide a design applying to mode-wise
voltage-scaling (MWVS) design with enhancing ASA benefit on VS efficiency yet guar-
anteeing zero timing errors. First, the MWVS design is formulated as an optimization
problem that minimizes the overall power consumption considering each mode duration,
as well as the achievable voltage reduction, and accompanied circuit overhead. The pro-
posed method explores the solution space with the downhill simplex algorithm (DSA).
To attain a solution, i.e., a design, the feature of multi-corner multi-mode (MCMM)
in a commercial tool is exploited to perform mode-wise ASA, where the ASA is re-
alized by assigning with sets of false paths specialized for individual modes to obtain
the maximum voltage scaling for each mode. Experimental results based on a popular
RISC-V hardware design show that the proposed MWVS design can save 20% more
energy compared with the conventional VS approach and acquire 15% more gain com-
pared with single-mode ASA. In addition, the cycle-by-cycle fine-grained false paths
identification is also proposed and it successfully reduced 42% leakage power.

Finally, this dissertation provides an overall scheme for minimizing NN training en-
ergy as the main contribution of this work and gave it a name as adaptive bit-width and
voltage scaling (ABVS) which can leverage the FP units with configurable bit-width.
The key idea is that the NN training starts with smaller fraction bit-width (FB), and
then FB is gradually increased depending on present training quality during the training
phase. Since smaller FB possesses shorter latency, this training scheme can concurrently
adapt the bit-width and voltage scaling and hence intensify energy reduction. Experi-
mental results across a various scale of training datasets and DNN applications reveal
that the proposed ABVS flow in training can achieve the comparable training quality as
FP32, but up to 62% energy reduction, and at most 37% reduction even compared with
the training under the least sufficient FB, with at most 0.5% quality loss. This work
also gave an explanation of why ABVS works in modern DNN training. Furthermore,
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the investigation of different rounding schemes is conducted. Results show that conven-
tional round-to-the-nearest (RTNE) provides better trade-off between training quality
and energy efficiency than round-to-zero (RT0).

Overall, this dissertation seeks for achieving energy minimization with two main
countermeasures, “approximate computing” and “voltage scaling.” LAM and BWS
techniques are exploited in this work as the former, while MWVS belonging to the
latter combines MCMM and ASA to achieve further voltage reduction. The ABVS flow
can be recognized as an integrated solution for all the aforementioned strategies. In ad-
dition, all the methods apply to GPUs and the dedicated ASICs for achieving efficient
DNN training.
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Chapter 1

Introduction

This chapter provides the background and the objectives of this dissertation. This disser-
tation aims at providing a design methodology for energy-efficient deep neural network
(DNN) training system. First of all, this dissertation briefly describes the basic of neuron
networks and then describes the survey for approximate computing and voltage-scaling
design paradigms. The major challenge of efficient training with approximate comput-
ing and voltage scaling are then discussed. Finally, this chapter provides the objective
and the overall organization of the dissertation.

1.1 Background
Artificial intelligence (AI) has become the ubiquitous technology indispensable for per-
sonal daily life. It drives Big Data analysis and benefits many areas such as medical
treatment, finance, and industry. Statistical data also reveals that the investment of AI
incredibly grows up in recent years and could even burst in the near future. Fig. 1.1
[1] shows that AI market/revenue grows up to 22.6 billion USD by 2020, and the data
forecast that the value would reach 126 billion USD by 2025.

Deep neural network (DNN) has thrived and formed the foundation for many ad-
vanced AI applications [2, 3] such as image classification, object detection [4, 5], and
speech recognition [6]. DNN model performs excellent feature extraction for the given
input data e.g., images, videos, audios, or speech, and it possesses even superior capa-
bility than human perception. Therefore, DNN contributes to unprecedented success in
many AI tasks thanks to its outstanding accuracy and generality. While DNN already
achieves state-of-the-art accuracy, it pays the cost of considerably intensive computation
[2, 7].

Generally, a DNN computing system consists of two stages; training and inference.
A DNN model needs to optimize its parameters of the network, e.g., weights and bias,
during the training stage with a set of data, and then the trained model can perform the
inference with the newly given input.
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Figure 1.1: Market size/revenue comparison for artificial intelligence worldwide from
2015 to 2025.

Empirically, a DNN with more sophisticated structure, e.g., deeper layers, possesses
higher capability for inference, Fig. 1.2 shows the top competitive DNN models at
ILSVRC, a worldwide top contest for image classification and object detection, from
2012 to 2015 (collected by the reference [4, 7, 8]). The ImageNet database [9], which
is used for this public challenge, is very popular and representative in academia and in-
dustry for evaluating the contemporary DNN models regarding their inference strength.
The database includes 1.3 million images for training, 50,000 images for testing, and
1000 classes. Fig. 1.2 shows that more layers would offer higher accuracy. In 2015,
ResNet, which is a well-acknowledged DNN model, achieves 4% top-5 error with uti-
lizing up to 152 layers. It is conceivable that such a huge DNN model would demand
considerable computations even merely for inference, and the amount of computations
for training is further huge. Training needs to conduct more operations according to
the algorithm than inference. Besides, compared with inference, training a model re-
quires an even large amount of dataset. Moreover, several iteration cycles are required
to optimize and converge the model during the training. Therefore, a more compli-
cated algorithm, a large-size dataset, and many numbers of iterations contribute to the
overwhelming amount of computations for training compared with inference.

Table 1.1 based on ImageNet [9] reveals that the CPU time difference between train-
ing and inference can lead to 1,300X according to large-scale of dataset (1.3 million
images) and tremendous iterations (250,000 times with the batch size of 256). Since
Energy = Power × Time, even if not considering the power difference, the overwhelm-
ing energy cost in training compared with inference is understandable. In order to save
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Figure 1.2: Accuracy vs. number of layers in DNN for ImageNet classification (#train-
ing dataset: 1.3 million). Empirically, models with more layers achieve higher accuracy.

Table 1.1: Processing time comparison between training and inference phases to train
ImageNet for 50 epochs with CPU: Intel E5-v4 + GPU: Tesla V100 DGXS.

ImageNet dataset on Darknet reference model [12]
Phase Processing Time (sec) Ratio

Training 52,131 1,303X
Inference 40 1X

the necessary run time, modern DNN training relies on GPUs (graphic processing units)
to achieve higher throughput and shorter latency. GPU contains numerous arithmetic
logic units (ALUs) and allows tens-of-thousands of parallel computing assuming it has
1000 cores. Such outstanding capability of parallel computing benefits DNN for real-
izing training acceleration. However, GPU is known for its huge power consumption
[10], considering that the real-time data surges with an astonishing number (about 10
fold from 2014 to 2020) as shown in Fig.1.3 [11], the even bigger data keeps threatening
the resource of inference and, not to mentioned, the training systems. Energy-efficient
training would benefit GPU for the heat removal and power delivery, which improves
the chip-level and system-level reliability and reduces the cost for heat removal and
power delivery. To facilitate the marketing revenue in modern AI applications, the trend
for the increasing amount of data drives the strong motivation for developing an efficient
training mechanism.

Besides GPUs, efficient training based on more size-limited devices, such as FPGA
[13, 14], or dedicated application-specific integrated circuit (ASIC) is also demanded
[15]. Commercially available products developed based on different platforms to yield
machine learning or DNN throughput improvement are exemplified in Table 1.2. Re-
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Figure 1.3: Annual size of real-time data in the global datasphere. The Global Data-
sphere quantifies and analyzes the amount of data created, captured, and replicated in
any given year across the world.

Table 1.2: Commercially available products for AI/DNN acceleration.
GPU NVIDIA A100, V100

FPGA Xilinx Zynq DPU
ASIC Google Coral Edge TPU, Nvidia Jetson Nano, Intel Movidius VPU

cently, the emerging markets of on-line or transfer learning move the infrastructures of
training from the cloud to edge server-level computing [10, 16, 17] or mobile devices,
e.g. Internet-of-Things (IoT). Training on server- or device- levels can provide more
local and in situ services because they have the benefits of shorter latency and privacy
protection. However, due to the size and power limitation, it is essential to provide a
solution for efficient training systems [18, 19].

Different computing platforms have different training properties regarding their
quality and efficiency. Fig. 1.4 shows the trade-off between the accuracy (denoted as
prediction error) and power consumption based on four types of hardware platforms
[20]. According to the figures, though GPU can achieve the highest accuracy, it also
pays the largest power consumption. On the other hand, Fig. 1.4 shows that the dedi-
cated design (ASIC) is very convenient to trade accuracy with efficiency and could be
applicable for many different applications. In addition, ASIC can either operate stand-
alone or be embedded into GPU, FPGA, or even CPU, which provides high design
freedom and versatility.
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Figure 1.4: Prediction error and power consumption of hardware platform.

1.2 Basics of Neural Networks

Neural Network (NN) is one of the most widely-used techniques in machine learning,
and DNN is one of its subset where they share similar basic architecture. A basic feed-
forward NN model is composed of a few to hundreds of layers, each of which includes a
number of neurons. The neurons are connected layer by layer through synaptic weights.
The synaptic weights are optimized to provide sufficiently high accuracy through the
computationally expensive training phase. Hardware NN system is mainly categorized
into two types. The first one is the inference engine that processes a network with given
pre-trained weights, and the latter is the training engine that has the additional capabil-
ity of weight optimization in the training phase. Regardless of the inference or training
engine, multiply-accumulate (MAC) arithmetic computation is the primary operation.
The rapidly increasing trend of NN size to deal with more intricate and sophisticated
problems explodes the amount of MAC computation, resulting in a strong demand for
efficient hardware engines.

Fig. 1.5(a) illustrates a multilayer perceptron (MLP) structure [21], which is known
as a basic feedforward NN. For the sake of clarity, the structure contains only one hidden
layer, while the number of hidden layers can be extended to form deeper NNs. The state
of each neuron in the network is computed from all the states of neurons in the previous
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layer and then is propagated its state to the next layer. Taking the example in Fig. 1.5(b),
since all the states are pre-determined in the input layer I, the state computation starts at
each neuron in the hidden layer (neurons are denoted as H1, H2,. . . , Hh). Each neuron
in the hidden layer computes the sum of all the states of neurons in the input layer (I1,
I2,. . . , Ii) multiplied with corresponding synaptic weights (WH), passes the sum with a
bias term (BH) through a non-linear activation function to determine its state, and then
propagates the state to the output layer. This operation is repeated at the neurons in the
output layer (O1, O2, . . . , Oo) again, but here the sum of all the states of neurons in the
hidden layer is computed with weights (WO) and bias (BO) to determine the states. The
procedure finishes once all the states of neurons in the output layer are determined.

A basic unit for expressing the above operation is shown in Fig. 1.5(b). Suppose
there is the a-th neuron in the i-th layer, its state Y i

a can be computed by the following
formula:

Y i
a = Act

 N∑
k=1

W i
kaY i−1

k + Bi
a

 , (1.1)

where Y i−1
k denotes the state of the k-th neuron in the (i−1)-th layer. W i−1

ka represents the
synaptic weight connecting from the k-th neuron in the (i − 1)-th layer , and Bi

a denotes
the bias term for the a-th neuron in the i-th layer. Act(.) means the activation function,
which usually allows passing ≥ 0 values or limits the values between -1 and 1. This
procedure, so-called forward propagation, keeps going until the states of all the neurons
in the output layer are determined, which is the core and dominant operation that an
inference engine with pre-trained weights executes.

On the other hand, training NN aims at finding a set of synaptic weights and bias
values to minimize the loss function (Loss), which is usually defined as the error squared
between the state from the forward propagation results in output layer O and target
label T (T1,T2, ...,To) [21]. For illustration purposes, the below describes the standard
back-propagation. At the beginning of the training phase, all the weights are randomly
initialized, the biases may be initially set to 0, and then forward propagation is launched.
The next step is to reduce the loss function according to the contribution of each synaptic
weight (W) and bias (B), which can be obtained through computing their gradient, i.e.
∂Loss/∂W and ∂Loss/∂B. Based on the computed gradients, each synaptic weight and
bias can be numerically updated during each iteration. Let us take Fig. 1.5(c) as an
example. Suppose a synaptic weight W i

za connects the z-th neuron in the (i − 1)-th layer
(state = Y i−1

z ) with the a-th neuron in the i-th layer (state = Y i
a) and a bias Bi

a is for the
a-th neuron in the i-th layer. Then, W i

za and Bi
a are updated by:

W i
za += −η

∂Loss
∂W i

za
where

∂Loss
∂W i

za
= δi

aY i−1
z , (1.2)

Bi
a += −η

∂Loss
∂Bi

a
where

∂Loss
∂Bi

a
= δi

a. (1.3)
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The gradient terms ∂Loss/∂W i
za and ∂Loss/∂Bi

a in Eqs. (1.2) and (1.3) share the same
term δi

a while ∂Loss/∂W i
za further includes the term Y i−1

z . Basically, the gradient terms
would decay during the weight and bias update, and thus these are also called gradient
decent method. η is the learning rate, and δi

a is conditionally formulated as follows. If
the i-th layer is the output layer, then δi

a is:

δi
a = Act′(Oa)(Oa − Ta), (1.4)

where Oa represents the state computed through forward propagation, Ta means its tar-
get state, and Act′ means the derivative of activation function. If the i-th layer is not the
output layer, then referring to Fig. 1.5(c), δi

a is expressed as:

δi
a = Act′(Y i

a)

 b∑
n=1

W i+1
an δ

i+1
n

 , (1.5)

where W i+1
an denotes the synaptic weight to the n-th neuron in the (i + 1)-th layer. δi+1

n
can be recursively computed through Eqs. (1.4) and (1.5). Note that, with Eqs. (1.4)
and (1.5), the output loss is propagating backward from the output layer, and thus this
procedure is named as back propagation [21]. In addition, Eq. (1.5) indicates that the
δi

a in the non-output layer needs to compute all the weighted sum of δi+1
n , meaning that

MAC computation is also primary in back propagation. Therefore, the training phase
executes huge amount of MAC computations during the iteration loops of forward and
back propagation.

In addition, the gradient terms have a large dynamic range [22]. A simple example
can help understand this property. Fig. 1.6 plots the distribution density of the gradient
values found when training a NN for MNIST dataset [23]. The gradient values spread
from 2−47 to 26. As shown in Fig. 1.7, if adopting fixed-point expression, more than 50
bits (6+47 = 53) are required to cover this range, while floating-point expression spends
only a few bits for exponents (e.g. 7 bits if considering bias for negative value) and some
extra bits α for fraction parts (only corresponded to precision rather than coverage)
to cover this wide range. Thus, adopting floating-point units (FPUs) is beneficial for
training engines to accommodate such gradient computation.
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Figure 1.5: Feed-forward neural network. (a) is a schematic of a feed-forward neural
network with 1 hidden layer. (b) and (c) are the schematics for illustrating forward- and
back-propagation at the a-th neuron in i-th layer.
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1.3 Energy-efficient DNN Training
The works related to efficient training spread over various area because of different mo-
tivations [10, 24, 25, 26, 27, 28, 29, 30, 31]. To train a NN with large size of data through
high-end GPU systems, some works assume the computing resource is sufficient, e.g.,
computing in the cloud, and hence introduce “distributed training” to launch huge par-
allel computing with 256 or even more GPU cards to minimize the training processing
time [24, 25, 26]. In other words, these works focus on “run-time” instead of “energy”
efficiency.

Energy-efficient training roughly contain two categories (1) efficient DNN struc-
tures and (2) power/energy reduction, as listed in Fig. 1.8. The first group is about
the efficient DNN structures. These works introduce compact DNN structures to effec-
tively compress the model size and the number of parameters, which can enhance the
efficiency both in training and inference with sustaining the accuracy. Representative
works are like SqueezeNet [29], ShuffleNet [30], EfficientNet [31], etc. These works
can also benefit distributed training by requiring less GPUs. Therefore, although the
efficient DNN structures may benefit energy saving in use due to the lightweight mod-
els, still, the main intention for developing the efficient DNN structures is to improve the
“run-time” efficiency when tackling large size of dataset through high-end GPU designs.

On the other hand, most of the motivations of the works in the second group are
to accommodate the training into server- and device- level designs instead of high-end
GPU design system. Since training in server- or device- level design is limited with
size and memory storage, these works pursue higher energy-efficiency in training al-
lowing acceptable quality sacrifice. Researchers in the this group focus on providing
the solutions to achieve power/energy reduction through several levels of design meth-
ods such as algorithm, data representation, and low-power design methodology. Note
that these methods are general means and can be applied to any DNN structures. Al-
gorithm level such as weight/net pruning and sharing [32] or data sampling [24] are
proved to be effective for improving efficiency. As for the data representation, training
in shorter floating-point (less than 32-bit) [33, 34, 35], fixed-point [27, 28] or in log-
domain [36, 37] are the choices for efficiency enhancement. And then for low-power
design approach, voltage scaling or voltage over-scaling are the representative mech-
anisms [38]. Since many techniques applied in the second group require to trade the
quality (accuracy) with the power efficiency, this area frequently leverages the knowl-
edge from approximate computing (AC). Besides AC, voltage scaling (VS) is also an
effective method in low-power design area, and VS can be considered as an orthogonal
way to AC, i.e, AC and VS are combinable.
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Figure 1.8: Categories of the area in energy-efficient training.

1.4 Approximate Computing to NN

Approximate computing (AC) is recognized as one promising technique to enhance
the efficiency of computer systems since many modern applications require large-scale
computation and memory storage demands which may burden current available re-
sources [39, 40, 41]. In addition, many growing applications such as recognition,
data mining, synthesis, and media processing (audios, images, or videos, graphics)
[39, 41], have a common characteristic that it is usually nearly impossible or requires
prohibitively high cost for those applications to find an optimal solution but allows to
pursue less-than-optimal results or said approximation. Therefore, AC is introduced to
be applied to computing systems for trading the efficiency (speed, power/energy, area)
with the quality (approximation output results). The AC techniques rely on the statisti-
cal properties of computing systems which allows non-zero quality loss for improving
efficiency. Although the manufacturing and environmental stochastic variations of the
hardware due to process, voltage, temperature, or aging could also induce inaccurate
computation results, they are not considered in the definition of AC. AC area assumes
that the designd hardware has no stochastic variations [41].

Fig. 1.9 illustrates the overall framework of the AC flow [39]. The AC flow briefly
can be categorized into two levels; design level and operation level. The former is



12 CHAPTER 1. INTRODUCTION

Representative 
Workloads

Characterize 
and Identify 

Approximable 
Parts

Apply AC 
Techniques

Apply AC 
Techniques

Monitor Quality
Tuning the 

Approximation 
Level

Design Level:

Operation Level:

Figure 1.9: Framework of AC.

amenable for the applications (workloads) that are already explicitly specified. There-
fore the users can characterize and identify the blocks by observing their impact on
the final quality if applying with AC techniques. Finally, the determined approximable
blocks can be more aggressively approximated while the other parts adopt light-weight
AC techniques or accurate operations. On the other hand, the latter directly applies AC
techniques on the system first but with a quality management system to detect the un-
acceptable error. Once the error is detected, it tunes the approximation level or applies
error recovery schemes to improve accuracy. The computing systems have many layers
(software, architecture, hardware), and hence the various AC techniques are also dis-
tributed in different layers. Note that the AC techniques are not independent in different
layers, and occasionally multiple AC techniques and layers are necessary to be invoked
simultaneously.
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1.4.1 Software-level AC Techniques
AC techniques in software mainly relate to the algorithm where the invocations are re-
lated to stochastic computations such as average, accumulation, count, and percentile.
For these stochastic computations, sampling is recognized as an efficient way to save
computing and can achieve acceptable accuracy [42]. Therefore, some iterations of
loops can be skipped or reduced (named as loop perforation) for the aforementioned
computations in addition to randomized or Monte-Carlo algorithms [43, 44]. Another
type of AC technique at the software level corresponds to the programming language
that it is capable to annotate or detect which part of the blocks or segments in the codes
are approximated, and then system follows the instruction and computes them in approx-
imate storage (architecture-level) or circuits (hardware-level). These kinds of techniques
usually need to enhance the present language or develop a new language. It, of course,
necessitates AC techniques in compilers and non-software levels as well [45, 46].

1.4.2 Architecture-level AC Techniques
AC techniques for architecture-level mainly involve the enhancement of the interface
between software and hardware such as instruction set architecture (ISA) to accommo-
date AC features [47]. Other kinds of AC techniques belong to this group are storage
or say memory approximation [47, 48, 49]. The data can be stored in an approximate
manner with lower-bit truncation. In SRAM, a lower voltage can be applied as long as
the data can be stored with approximated value [48]. The refresh rate in DRAM can be
separately assigned with regular values for critical data while the much lower value for
non-critical or approximable one [49].

1.4.3 Hardware-level AC Techniques
This dissertation mainly applies AC techniques to hardware to improve NN training
efficiency. AC techniques at the hardware level are intensively studied since this layer
primarily affects efficiency. In addition, regardless of the inference or training phase,
NN (DNN) algorithms involve high computation, where the AC techniques in hardware
can directly benefit it. Below, existing hardware-oriented AC techniques are described.

Approximate Adder

Many applications, such as image processing, need to perform addition [41], and the
primary MAC computation in NN algorithm also utilizes addition and accumulation.
Therefore, approximate adder circuits are studied [50, 51, 52, 53]. Reference [50] in-
troduced to partition an adder to many segments and the carry operations between the
separated segments are truncated to simplify the circuit architecture. Reference [51] di-
rectly applies aggressive logic reduction at transistor-level. Conventionally, aggressive
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approximation frequently targets least-significant-bit (LSB) to prevent severe accuracy
loss. Since the carry operation could be even more complicated along with the increased
bits, the partial carry skip manipulation can alleviate the design cost and achieve higher
efficiency.

Approximate Multiplier

Multiplier is one of the most power-hungry and area-expensive operators, especially in
FPUs [54]. Therefore, many researchers try hard to develop its approximate version to
save computing resources. The approximate multiplier is especially adopted in NN for
alleviating heavy MAC computation. A simple way to approximate multiplication can
be implemented by directly rounding the input values to fewer bits before multiplication
[55]. Also, since the multiplier circuits utilize many half or full adders to handle partial
products, the techniques forming approximate adder mentioned in above can also be
leveraged to form approximate multipliers. Besides, logarithm based multiplier is also
proposed [36, 37, 56, 57, 58, 59] since logarithm converts multiplication to addition.

Bit-width Scaling

Bit-width scaling (BWS) is a classical AC technique that uses fewer bits in computation.
Its precision degrades at a smooth pace, which results in a more moderate approxima-
tion than other AC techniques such as an approximate multiplier. Many researches
prefer to adopt BWS in NN since fewer bits achieve shorter latency and save incredible
computation and even memory consumption [60, 61]. BWS is popular not only for NN
inference engine but also for training due to its tractability, even for a very deep DNN
model [33, 34, 35]. Although mainstream computing systems such as CPU and GPU
conventionally apply FP32 (floating-point expression with 32 bits in total) for training
modern DNN model, it is now considered that FP32 is more than necessary. Then, the
training with a shorter format is explored for improving the training efficiency, such as
FP16 [33, 34] or even partially FP8 [35]. Recently, tensor process unit (TPU) is devel-
oped based on an 8/16-bit format rather than 32-bit in order to achieve a light platform
and DNN acceleration [15].

Voltage Over Scaling (VOS)

At the operation level, reducing the voltage while fixing the operation clock period is the
most direct way to achieve power/energy reduction [48, 62, 63]. However, regarding a
fact that the circuit may experience timing error due to slower delay (latency) under low
voltage, many computation errors or system catastrophic issues may happen. On the
other hand, as long as those parts have the capability to tolerate the issues from timing
error, the voltage can be aggressively scaled down to pursue significant power/energy
efficiency. Conventionally, the scaled voltage in conventional VS would convey the
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minimum voltage that induces zero timing error. On the other hand, VOS allows a
certain timing error, and then it would reach even lower voltage than conventional VS.

Hardware AC in NN Inference and Training Phase

Several researchers study how to apply AC techniques to NN [32, 38, 55, 60, 62, 64,
65, 66, 67]. A notable thing is that researches related to AC on inference engine are in
majority rather than training engine. That is because of the different primary concerns.
Given a well pre-trained NN model, the inference engine can be deeply compressed
with [32, 64, 65, 66, 67] or without [58, 68, 69, 70] a little additional training. Even
distillation is notably studied to shrink the NN model size [71]. Since NN is a kind of
highly approximable paradigm, a light-weight inference engine with sustaining accept-
able accuracy is realizable, and thus they can be accommodated in mobile systems, such
as IoT [72].

On the other hand, quality (accuracy) is the most competitive factor in training NN.
A more sophisticated NN (DNN) model accompanied by a large scale of the training
dataset is thought to be highly sensitive to the approximation [55, 68], and aggres-
sive approximation may result in low-confidence quality in training. In addition, since
training systems need to record more temporal parameters (gradients, updated weights)
compared with inference systems, AC techniques applied to training schemes rely on
more smooth or moderate approximation in addition to memory-friendly strategy, such
as BWS [33, 34, 35]. Training in totally fixed-point [27, 28] or log-domain [37] could
be alternative ways since fixed-point and logarithm domain can highly compress the
necessary bits of data representation from floating-point values and can significantly
save the memory resource.

1.5 Low-power Design Methodology: Voltage Scaling
Low-power operations are eagerly demanded in various computing systems, such as
IoTs [72, 73], wearable equipment [74], and the sensor networks [75], in addition to
mobile terminals. According to long standby time, tiny volume, and limited energy
sources, those applications have strong demands for consuming ultra-low power. Also,
power consumption becomes the most competitive factor in modern mobile SOC [76],
or even high-performance chips [77]. Designers are dedicated to pursuing the maxi-
mization of power or energy efficiency.

Voltage scaling (VS) is one of the most common and powerful techniques for power
reduction. An AC technique, VOS, can be viewed as its subset and is already investi-
gated to improve DNN efficiency [62]. Voltage reduction remarkably contributes to the
quadratic gain of power-saving with the fundamental equation:

P =
1
2

CV2 (1.6)
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where P is the power, V is the voltage and C is the capacitance which should be invariant
for a fabricated circuit. However, voltage decrease involves an increase in the circuit de-
lay and raises the possibility of timing error. Therefore, the techniques to prevent timing
errors are studied, and they can be categorized into two levels; operation level and de-
sign level. The former implements in situ monitoring devices in the circuits to adapt the
supply voltage to maximize the power efficiency while sustaining circuit functionalities.
These techniques are categorized as adaptive voltage scaling (AVS) techniques. The key
idea is to insert the monitoring sensors behind the main circuits to detect or predict the
logic error. If the main circuit keeps functional, then the voltage controlling unit keeps
lowering down the supply voltage. On the other hand, once the sensors detect or predict
the logic error, they would inform the controlling units to increase the voltage to main-
tain the functionality of the main circuit, as shown in Fig. 1.10. This area includes Razor
[78], critical-path replicas [79], or canary flip-flops [80]. On the other hand, the latter
intends to re-design the circuit such that the timing margin is manipulated to enhance
voltage scaling efficiency. A state-of-the-art technique in this field is an activation-
aware slack assignment (ASA), which associates the timing criticality of a path with its
topological path delay and activity. A very recent research [81, 82] proposed an ASA
method that allocates the timing margin with a stochastic mean-time-to-failure (MTTF)
analysis. The timing errors are characterized by statistical static timing analysis and
path activation analysis. This method accepts very few yet certain timing errors, and
hence voltage can be aggressively scaled down.

Figs. 1.11(a) and 1.11(b) illustrates the concept of ASA, which originates from an
earlier technique so-called critical path isolation (CPI) [82, 83, 84, 85]. ASA manipu-
lates a synthesized circuit for the active paths by buffer insertion and cell swapping to
allocate timing margin during an engineering change order (ECO) phase. After ASA,
the active paths have more timing margin so that VS is applicable without timing error
occurrence. Although the manipulation might increase the area due to inserted buffers
and larger-size gates, the extra timing margin enables us to apply voltage scaling.

AVS and ASA are highly feasible to achieve low power/energy regardless of the type
of design, and the general processor level design (CPU/GPU) or dedicated ASIC all can
adopt these methods. Besides, the two techniques can even integrate together to perform
a synergy effect. Reference [86] claims that thanks to ASA, the number of timing critical
paths becomes less, and hence the paths need to be inserted with monitoring sensors
can be effectively reduced, which can achieve significant area overhead reduction while
sustaining the circuit functionality.
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Main Circuit

Voltage Increase

Voltage Control Unit
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Figure 1.10: Schematic of the AVS techniques.
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Figure 1.11: Concept schematic for applying ASA (a) VS before ASA and (b) VS after
ASA.
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1.6 Challenge for Realizing Efficient Training Engine

This section discusses the challenges for achieving power/energy efficiency for the train-
ing engine and the remaining issues based on AC and VS to study in this work.

1.6.1 AC to Achieve Computation Reduction

Efficient training is even more challenging than inference since accuracy is always the
baseline that cannot be compromised. Training engines need to perform more arith-
metic computation with a wider dynamic range since gradients, which is numerically
computed, and used to guide the weight update, spreads in a broadband dynamic range.
As mentioned in Section 1.4, though many AC techniques are widely adopted by NN or
even DNN, they are mainly for inference engine [2, 7, 58, 62, 64, 65, 66, 67, 87, 88].

As for training, since deeper or more sophisticated NN model is highly sensitive
to approximation [55, 68], the AC techniques for training attempt to be more smooth
and moderate, such as BWS [33, 34, 35, 60]. Besides, BWS can also contribute to
memory-saving with fewer bits of storage, which encourages researchers to explore it.
Also, training in many tasks is basically a one-time effort, and then the applicability
of AC has not been seriously investigated. Meanwhile, considering that floating-point
representation can cover wide dynamic range and are widely adopted in mainstream
systems like GPU, the appropriate technique targeting on floating-point is reasonable.
As mentioned in Section 1.2, NN algorithm consumes heavy MAC computations, and
even more during the training phase, and therefore, the mitigation of MAC computation
should be quite effective for efficiency improvement. MAC computation involves multi-
plication (multiplier) and accumulation (adder) operations, where it is known that multi-
plier is a very power-hungry and area-expensive unit compared with adder. Fig. 1.12(a)
and Fig. 1.12(b) exemplify the power and area benchmarking between a FP32 multi-
plier and an adder synthesized for the same clock frequency. The figures show that
the floating-point multiplier consumes 3.0X power and 1.8X area. The MAC computa-
tion roughly consists of the same number of operations for multiplication and addition,
indicating that the power consumed by the multipliers is the majority when perform-
ing MAC computation. As massive MAC computations are conducted in NN, it is
reasonable to tackle the power for floating-point multipliers primarily to realize MAC
computation mitigation.

1.6.2 DNN Training with FP16

Besides the accuracy, the conventional back-propagation algorithm in training temporar-
ily generates many parameters for gradient and updated weights computation, which
cost the resource for memory storage seriously. For effectively achieving computa-
tion and memory resource reduction while with smooth quality degradation, BWS is
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Figure 1.12: Hardware benchmarking for 32-bit floating-point multiplier and adder syn-
thesized with Nangate 45nm cell library for the same clock frequency. Both (a) power
and (b) area values are normalized by those of the adder, respectively.

widely used in modern DNN training. Recently FP16 shows its potential to accomplish
training acceleration since it improves computation, throughput, mitigates necessary
memory bandwidth and reduces power consumption [33, 34, 35]. However, there is a
concern that the FP16 format may not have enough representation capability necessary
for modern DNN training, especially in the case of large-scale datasets or complicated
applications. Take two examples for examining FP16 training quality. Fig. 1.13(a)
shows the training curves for the image classification of ImageNet and Fig. 1.13(b) is
for the object detection of Pascal VOC. The implementation detail will be explained
later in Chapter 4. In the figures, FB is an abbreviation of fraction bit-width used in
floating-point format, where FB = 23 in FP32 format and 10 in FP16. Here, this eval-
uation aligns the bit-width of the exponent to 8 to sustain the dynamic range, and thus,
the training quality entirely depends on FB. This example shows that 10-bit FB has a
significant gap compared with FP32, and 14-bit FB and 12-bit FB are necessary for Im-
ageNet and Pascal VOC, respectively, to reach the same quality (accuracy or mAP) with
the FP32 case.

For certain public datasets, state-of-the-art researches are dedicated to achieving
training with FP16 while sustaining the quality as FP32. Such sophisticated strategies
or techniques like mixed-precision training [33, 34], chunk-based accumulation [35], or
stochastic rounding [35] enable those datasets to be trained with FP16. However, it is
not sure whether FP16 can always guarantee the training quality to be comparable with
FP32 one when tackling a new real-world dataset.

1.6.3 ASA to Increase Timing Margin

Beyond the AC techniques for NN, current state-of-the-art ASA techniques also remain
space for further discussion. Masuda et al.[81, 82, 86] first extract a set of active FFs for
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Figure 1.13: FP16 precision (FB: 10) cannot guarantee its training quality to be compa-
rable with FP32 one for (a) ImageNet (image classification) and (b) Pascal VOC (object
detection).

the given pre-determined workloads. Then, the FF-based ASA is performed. First, they
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insert dummy delay cells to the extracted active FFs, and then move out the dummy cells
after ECO under the same clock period. As a result, the paths ending at the manipulated
FFs increase their slack by the amount of dummy cell delays. For determining the neces-
sary timing margin, timing failure probability is introduced and defined as a stochastic
joint probability (PERR) by a flop activation (PACT ) and its structural timing violation
probabilities (PVIO). Then, aggressive voltage scaling, which reaches 25% voltage re-
duction in their experiments, is applied as long as the PERR defined at the scaled voltage
for each selected flop is within a given target value, as shown in Fig. 1.14. Here, non-
zero positive value, and hence the circuit causes timing error at a certain probability
while it is very small.

ASA steps forward to an industry-friendly style by Nagayama et al. [76]. This work
aims to lower the supply voltage for a power-hungry operation mode (workload) to re-
duce the peak power. It expands the timing margins of all the active paths in the mode of
interest and achieves visible VS of 50 mV in the mode in their design experiment with
an industrial design [76], where this mode-dependent VS is called mode-wise voltage
scaling (MWVS). Here, the term “mode” could be also thought as different workloads.
For multi-function circuit designs. e.g,. GPUs, CPU, or many kinds of ASICs, different
modes might activate different circuit paths in a time. There is a fact that the temporary
usage duration could vary with individual modes, and also the activated circuit paths
have different achievable timing margin. The existing temporal bias of the mode usage
and achievable timing margin could be exploited to contribute to energy saving after
ASA. When applying image processing or NN algorithm, most of the arithmetic oper-
ation relies on FPU. On the other hand, the encryption or decryption process does not
need FPU but require fixed-point unit (or integer-point unit) only. There is a fact that
FPUs conventionally demand longer latency then integer unit, and thus the potential of
VS after ASA are smaller than fixed-point unit as well. Therefore, instead of applying a
single-mode ASA for all the modes (involving image processing and encryption) to only
allow the identical supplied voltage, if ASA is applied individually mode by mode, each
mode can be operated at its own minimum voltage. According to their implementation,
a timing error is supposed not to occur as long as all the active paths in the circuit fulfill
the timing closure. However, this doctoral work reproduced their work and found that
the timing error occurred at the scaled voltage of interest because of unexpected glitch
events occurring in non-active paths. Thus, their ASA implementation is still risky for
timing error issues.

The stochastic treatment of timing error limits application domains to those that tol-
erate timing error, such as image processing and machine learning [39, 89]. Though
NN may accommodate to computation error, the MTTF-based ASA is very hard to be
quantified for its impact on training or inference since there is no effective way to val-
idate its functional correctness in a reasonable time especially when things come to an
aging issue. Besides, not restricted to NN, the industrial designs may not tolerate any
timing error even in those domains since it induces inconsistency with the current pro-
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Figure 1.14: Timing margin for each FF is determined such that PERR is constraint while
individual PACT values are different.

duction test policy. On the other hand, without MTTF treatment, pure ASA may attain
a very limited margin for voltage scaling since the paths whose delays are squeezable
by gates or structural manipulation through ECO may not be many. Therefore, how to
enlarge the power/energy gain through ASA with guaranteeing no timing error becomes
an interesting and attractive problem.

1.7 Objective of this Dissertation
The final goal of this dissertation is to provide a design methodology to achieve energy-
efficient training that can facilitate both high-end GPU designs and server- or device-
level designs. To achieve this goal, this dissertation chooses two countermeasures from
the power/energy reduction approaches mentioned in Section 1.3, which are (1) approx-
imate computing (AC) and (2) voltage scaling (VS) techniques. The former aims at
mitigating the computation, especially the primary MAC computation to improve pow-
er/energy efficiency, while the latter intends to re-allocate the timing margin for critical
paths, resulting in more voltage decrements and resultant power/energy reduction. This
dissertation addresses the unexplored combinations and the disadvantage of the exist-
ing works mentioned in Section 1.6, such as insufficient exploration for AC in DNN
training, controversial results of training with FP16, and timing error risk from state-of-
the-art ASA works, and provide effective solutions to resolve or improve those issues.
Besides, this dissertation provides a methodology to combine the two main strategies to
come out with more benefits for DNN training efficiency.

Fig. 1.15(a) illustrates the organization of this dissertation. There are three parts,
and each part performs different evaluations for (1) approximate computing, (2) voltage
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scaling, and (3) approximate computing + voltage scaling. Note that either (1) or (2) can
already perform significant power/energy consumption reduction, but the synergy of two
countermeasures (3) can provide further more power/energy efficiency enhancement.

For (1), Chapter 2 applies the logarithm-approximate multiplier (LAM) to NN train-
ing. LAM is an approximate multiplier specific for floating-point data expression [90].
By approximating a floating-point multiplication as a fixed-point addition, LAM can
contribute to smaller delay, fewer gates, and lower power consumption than an accurate
multiplier. The dedicated NN training hardware can enjoy the benefit by LAM with
little accuracy loss. LAM also has high compatibility with conventional BWS. A NN
training engine with BWS can further extend its acceleration and power/area reduction
thanks to LAM. LAM shows its advantage not only in a dedicated training engine, but
also in GPU level design. In this chapter, an experimental GPU design embedded with
LAM executing an NN-training workload, which is implemented in an FPGA, presents
significant power improvement, and the improvement gains further with applying LAM
+ BWS. The applicability of LAM and LAM + BWS in deeper NNs are also presented
and qualified.

As for (2), Chapter 3 aims at addressing the concern of the current ASA approach
utilized in [76, 81, 82, 86], and provide a design optimization methodology that achieves
a design applying to mode-wise voltage scaling (MWVS) guaranteeing no timing error
in each mode operation. This work formulates the MWVS design as an optimization
problem that minimizes the overall power consumption considering each mode dura-
tion, achievable voltage lowering, and accompanied circuit overhead explicitly, and
explores the solution space with the downhill simplex algorithm (DSA) that does not
require numerical derivation and frequent objective function evaluations. For obtaining
a solution, i.e., a design, in the optimization process, this work exploits the multi-corner
multi-mode (MCMM) design flow in a commercial tool for performing mode-wise ASA
with sets of false paths dedicated to individual modes. The test design applying the pro-
posed design methodology proves higher energy efficiency thanks to MWVS compared
with conventional voltage scaling and even the single-mode based approach utilized by
preliminary works [76, 81, 82, 86]. MWVS is believed to be a promising way that maxi-
mizes the benefit of ASA, regardless of the type of included design constraint, e.g. even
MTTF-aware constraint. This work also introduces a cycle-by-cycle fine-grained false
path identification (CF-FPI) method to remarkably reduce the leakage power compared
with the conventional way to determine FPI. Both the FPI and the proposed CF-FPI
guarantee their timing correctness during voltage scaling.

Combining (1) and (2) to (3), Chapter 4 proposes an adaptive bit-width and voltage
scaling (ABVS) scheme for DNN training assuming hardware with configurable frac-
tion bit-width (FB) is available. The key idea is that starting from smaller FB, this work
increases FB according to current training quality (e.g., accuracy or mAP). Considering
that less FB can achieve shorter hardware latency, this training scheme can concurrently
adapt bit-width and voltage scaling and intensify energy reduction. Experimental re-
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sults through the hardware evaluation show that training various popular datasets with
the proposed ABVS flow can reach the same quality level as FP32, while significant
energy reduction can be attained. Besides, a guideline for utilizing ABVS for a new
dataset is also provided. This work further investigates different rounding methods and
proves that the round-to-the-nearest-even (RTNE) method provides higher energy effi-
ciency than round-to-zero (RT0) for attaining the same training quality. The proposed
scheme is applicable to future GPU designs and dedicated training engines. Note that in
Fig. 1.15(a), there is part of the big parentheses corresponded to Chapter 4 in the dashed
line instead of a solid one. That means, theoretically, the proposed ABVS scheme can
adopt LAM as well, but the validation platform exploits the existing GPU infrastructure
due to the necessity of its high computing throughput for validation, where the GPU
acceleration might be obstructed by LAM algorithm, and hence the implementation of
LAM is omitted. As for a dedicated ASIC design, ABVS can simply work with LAM
technique.

Fig.1.15(b) explains the connections between the chapters with the key ideas. The
scaling of FB (bit-width scaling, BWS) is one of the key techniques discussed in Chapter
2, while the mode-wise VS scheme is the key contribution in Chapter 3. The key idea
in Chapter 4 is to adapt the FB during the training. The implementation of this idea
requires an efficient FB-configurable FPU design. Since the different FBs share the
same concept of different modes, a configurable hardware satisfies the precondition
of a circuit applying to mode-wise concept and therefore, we can enjoy the benefit
from mode-wise VS as well. Training with ABVS is expected to serve as a promising
solution for efficient training according to the fact that aggressive BWS and the resultant
aggressive VS attain the superposition effect for the efficiency improvement.

The rest of this dissertation is organized as follows. Chapter 2 presents LAM’s
benefit in NN training efficiency and demonstrates the synergy effect with BWS on both
dedicated ASIC design and GPU level processor. Chapter 3 provides the MWVS design
methodology to maximize ASA advantage under MCMM co-design flow with achieving
no timing error. Chapter 4 describes the ABVS scheme that can concurrently adjust the
FB and VS together to achieve energy minimization for DNN training. Finally, Chapter
5 gives the overall concluding remarks of this dissertation.
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Chapter 2

Logarithm-Approximate-Multiplier-
based (LAM-based) NN
Training

This chapter proposes to adopt Logarithm-approximate Multiplier (LAM) in NN train-
ing to facilitate speed/power/area efficiency. With LAM, the primary MAC computation
can be mitigated during the training, which contributes to significant performance ef-
ficiency improvement. In this work, a basic multilayer perceptron (MLP) architecture
with 5 datasets is used as the testcases for experimental validation. The advantage of
LAM to training engine are experimentally demonstrated through two platforms, where
one is the dedicated training hardware while the other one is the GPU-level design.

2.1 Introduction
As mentioned in Chapter 1, DNN algorithm demands intensive computation, espe-
cially in training. Training involves forward and back propagation process. Through
Eq. (1.1) used in forward propagation and Eqs. (1.2), (1.3), (1.4), (1.5) used in back-
propagation, the primary computation used in training is MAC computation. In addition,
the back propagation involves gradient computation (Eqs. (1.2) and (1.3)), which neces-
sitates wide-dynamic range of the value. Thus, it is reasonable and quite common to ap-
ply floating-point during training, and hence GPU conventionally apply 32-bit floating
point (FP32) for training. As mentioned in Chapter 1, the efficient training is desirable
for both GPU design or dedicated ASIC design [16, 17, 18, 19] (edge terminal, mobile
SOC) for AI service provider. Since one of the reasons for low efficiency in training is
the huge computation resource, especially the primary MAC computations. To achieve
efficient training, it is essential to mitigate the amount of primary MAC computation.
MAC computations roughly demand equal usage of multiplication and addition. Re-
ferred to Fig. 1.12, it is known that floating-point multipliers demand 3X more power
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than floating point adders, and therefore, a efficient scheme of floating-point multipliers
would be really helpful to MAC computation mitigation.

This chapter demonstrates that the LAM, which approximates floating-point mul-
tiplication to fixed-point addition, benefits to NN training and improves the power ef-
ficiency of massive MAC computation involved in NN training under floating-point
format. This work also shows that LAM is useful even when the BWS is already imple-
mented in training, and hence power efficiency is further enhanced. These advantages
are quantitatively evaluated through the experiments with dedicated training hardware
(ASIC). This work then evaluates whether solo or hybrid usages of exact floating-point
multiplier and LAM in training and testing phases affect the classification accuracy.
Next, this work conducts additional experiments for evaluating the applicability of LAM
and LAM + BWS to open-source GPU design, on which NN training programs are ex-
ecuted.

The contributions of this chapter are:

• For dedicated training hardware: Experimental results reveal that adopting
LAM in training induces no significant accuracy degradation, and then there is no
need to rely on accurate multipliers. Above 2.5X power reduction is achieved by
LAM and 4.9X reduction by LAM + BWS while sustaining the accuracy, where
2.2X reduction originates from LAM. Moreover, up to 4-hidden layers, results
show that the solo-LAM training achieves highly comparable results with solo-
EFM training, where EFM means the accurate multiplier (exact floating-point
multiplier). This trend sustains even when BWS is aggressively adopted as long
as the acceptable training accuracy is obtained.

• For GPU-level design: Power reductions thanks to LAM and LAM + BWS are
measured with an FPGA implementation of the GPU design, and they are 28%
and 41% compared with the original design.

The rest section is organized as follows. Section 2.2 reviews the related work for
LAM. Section 2.3 introduces LAM and discusses its approximate error. Experimental
results of adopting LAM in dedicated training ASIC are presented in Section 2.4. Sec-
tion 2.5 provides the environmental setup and measurement results of LAM-based NN
training with FPGA implementation of an open-source GPU design. Section 2.6 applies
LAM-based training to deeper NNs and provides evaluation results. Finally, Section2.7
concludes this chapter.

2.2 Previous work on Logarithm-based Multipliers
Floating-point training with BWS technique is classical [22, 33, 34, 35, 60, 61], but
floating-point training with other AC techniques, such as logarithm-based multipliers,
is relatively less studied. Table 2.1 briefly summarizes the existing works related to
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Table 2.1: Existing works that adopt logarithm-based multipliers in NN.
Phase Inference Training

Fixed-point (linear-domain) [36, 37] [91]
Fixed-point (log-domain) [59] [36, 37]

Floating-point [58, 88] Proposed LAM-based training

the logarithm-based multipliers for NN. Logarithm based multiplier is a typical type
of approximate multiplier since logarithm converts multiplication to addition. State-of-
the-art logarithm multipliers, such as [56, 57]. adopt this property to approximate fixed-
point multiplication in cooperation with a dedicated and efficient error-fixing solution
to mitigate the calculation error compared with exact multiplications. Some researchers
exploit the logarithm-based multiplier in NN. Reference [91] applies iterative logarith-
mic multipliers, which is a preliminary version of [56, 57], to error-tolerant training
algorithm while [36, 37, 59] convert the multiplicand and multiplier into log domain
to do multiplication as an addition. References [36, 37] perform even addition and ac-
tivation function in log domain to execute the complete training in log domain. The
above studies are all based on fixed-point representations of the original value and its
log value. Recent works [58, 88] propose to adopt logarithm-based floating-point mul-
tipliers in NN, but [88] only adopts it in an inference engine. Although [58] uses the
logarithm-based multiplier in training, their focus is to provide a run-time configurable
solution that can switch exact and logarithm-based multipliers. Once an error that is
larger than a pre-determined criterion is detected in the logarithm-based multipliers, the
architecture automatically switches back to the exact multiplier. The same first author of
[58] has an earlier publication that introduced two-stage training, in which the approxi-
mate training is allowed in the early stage while in the late stage, the accurate training is
demanded [68]. Consequently, [58, 68] still rely on the exact multiplier in training and
solo logarithm-based training is beyond their interest. Besides, the compatibility with
BWS and the efficacy in deeper NNs are not addressed.

In summary, previous studies for floating-point NN training intensively focus on
BWS, and it has left the space for evaluating the efficacy of the logarithm-based mul-
tiplier in training. Also, BWS is still the primary choice in the training engine design,
and hence the compatibility between the logarithm-based multiplier and BWS must be
investigated. Taking into account the tremendous number of MAC operations in training
engines, exploring a useful approximate technique for pursuing higher power efficiency
and examining its compatibility with BWS could give a useful implication for training-
engine designers, which is the objective of this work. Besides, in addition to realizing
a training engine through ASIC, GPU-level applicability for LAM is also one of this
work’s interests.



30
CHAPTER 2. LOGARITHM-APPROXIMATE-MULTIPLIER-BASED

(LAM-BASED) NN TRAINING

2.3 Introduction of Logarithm-approximate Multiplier
(LAM)

Logarithm-approximate multiplier, LAM in short, is developed by [90]. With an ap-
proximation, a floating-point value in linear domain can be regarded as its value taken
by the logarithm of base 2 in fixed-point format. Thanks to the log-domain property,
floating-point multiplication can be approximated to fixed-point addition. This section
introduces LAM and analyzes its approximation error.

2.3.1 Floating-point Multiplication
The floating-point format consists of three parts to represent a value in scientific no-
tation: one bit for sign, several bits for exponent, and the remaining bits for fraction.
When a value i is represented in the floating-point format containing N bits for exponent
and M bits for fraction, then i is expressed as:

i = (−1)S i · 2(Ei−bias) · (1 + Fi/2M). (2.1)

S i is 0 or 1, where 0/1 means i is a positive/negative value. Fi is the fraction part when i
is converted to base-2 scientific notation with multiplying 2M, and hence 0 ≤ Fi/2M ≤ 1.
Ei is the exponent value that includes a bias = 2(N−1) − 1.

Fig. 2.1 explains the multiplication of two floating-point values C = A × B, where
the sign parts (S A, S B and S C), exponential parts (EA, EB and EC) and fraction parts (FA,
FB and FC) in the floating-point representation are processed individually.

S ⊕ = S A ⊕ S B, (2.2)
E+ = EA + EB, (2.3)

F×/2M = (1 + FA/2M) × (1 + FB/2M), (2.4)

where (1 + FA/2M) is obtained by appending 1 to the binary representation of FA, and
supposing the binary point exists between 1 and FA. Then, the multiplication result is
expressed by:

S C = S ⊕, (2.5)

EC =

E+ − bias F×/2M < 2,
E+ − bias + 1 otherwise,

(2.6)

FC =

F× − 2M F×/2M < 2,
F×/2 − 2M otherwise.

(2.7)

In the hardware point of view, the multiplier for F× consumes considerable power
and area, and it often limits the speed since it contains many full adders or similar logics
in both width and depth.
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formula according to F×.

2.3.2 Logarithm-approximate Multiplier
Focusing on a positive floating-point number i, Eq. (2.1) is simplified for the sake of
clarity in the following discussion.

i = 2e(1 + f ), (2.8)

where e replaces Ei − bias and f replaces Fi/2M. When converting i into log domain,
Eq. (2.8) becomes

log2i = e + log2(1 + f ) � e + f , (2.9)

where the approximated representation in the right term utilizes the approximation be-
low.

log2(1 + x) � x, for 0 ≤ x ≤ 1. (2.10)

When approximating log2(1+x) at x = 0, Eq. (2.10) becomes 1.44x. On the other hand,
when intending to approximate log2(1+ x) in the region of 0 ≤ x ≤ 1, the approximation
to 1.0x is also possible as shown in Fig. 2.2. With this approximation, Eqs. (2.8) and
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(2.9) make any manipulation unnecessary to approximate a floating-point value i to a
fixed-point value log2i.

The logarithmic domain is beneficial in multiplication, as mentioned in Section 2.2,
since it can convert multiplication to addition. Fig. 2.3 illustrates the approximate multi-
plier that is named as logarithm-approximate multiplier (LAM). To compute C = A×B,
according to LAM, the following primary computations are performed.

S ⊕ = S A ⊕ S B, (2.11)
E+ = EA + EB, (2.12)

F+/2M = FA/2M + FB/2M, (2.13)

where it can be found the calculation of fraction parts has changed from multiplication
to addition thanks to the property of log-domain while Eqs. (2.11) and (2.12) are still
identical to Eqs. (2.2) and (2.3). Making a mantissa from a fraction is also excluded, and
the fraction part is directly used for computation. Then, the final multiplication result is
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expressed by:

S C = S ⊕, (2.14)

EC =

E+ − bias F+/2M < 1,
E+ − bias + 1 otherwise,

(2.15)

FC =

F+ F+/2M < 1,
F+ − 2M otherwise.

(2.16)

Note that Eq. (2.14) to calculate sign part S C is identical to Eq. (2.5) and totally isolated
from computing EC and FC. Therefore, LAM can perform multiplication irrelevantly to
positive and negative values using the equations from Eq. (2.11) to Eq. (2.16). In this
work, BWS is achieved by varying the variable M denoted in Fig. 2.3, which can be
easily integrated in both exact multiplication and LAM.

Although EC and FC in Eqs. (2.15) and (2.16) are conditional equations, they can be
efficiently computed in hardware implementations. These terms {EA, FA} and {EB, FB}
are concatenated, respectively, then added and subtracted the bias term followed by M-
bits of 0s, as illustrated in Fig. 2.4. Then, the overflow coming from FA +FB can directly
add a carry to EA + EB. Finally, EC and FC are exactly the first N bits and the last M bits
of the computed result.

The approximation error of LAM can be analyzed by directly comparing the compu-
tations of exact multiplication and LAM. Again, for the sake of clarity, let us just focus
on two positive floating-point values A and B of A = 2eA(1 + fA) and B = 2eB(1 + fB),
where the notations of eA, eB, fA, and fB refer to Eq. (2.8). The result of exact multipli-
cation C = A × B is:

Cexact = 2eA+eB(1 + fA)(1 + fB). (2.17)

When computing A × B by LAM, the expression is:

CLAM =

2eA+eB(1 + fA + fB) fA + fB < 1,
2eA+eB+1( fA + fB) otherwise.

(2.18)

By comparing the expressions under different conditions, relative error of approxi-
mation, ErrLAM, can be derived as a conditional function of fA and fB:

ErrLAM =
Cexact −CLAM

Cexact
=

Err
(1 + fA)(1 + fB)

(2.19)

where

Err =

 fA fB fA + fB < 1,
(1 − fA)(1 − fB), otherwise.

(2.20)

Here, both fA and fB are between 0 and 1, and hence ErrLAM is always above 0. Fig. 2.5
shows a contour map of ErrLAM as a function of fA and fB. The maximum value of
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Figure 2.3: Operation of logarithm-approximate multiplier (LAM). S ⊗ and E+ are iden-
tical to those of the exact floating-point multiplier, but F+ is directly computed by adding
the fractions without making their mantissas. EC and FC are expressed by the condi-
tional formula regarding F+.

ErrLAM is about 11.1% when both fA and fB equal to 0.5. Note that ErrLAM is not
affected by the exponents of A and B since eA and eB are all canceled out when dividing
Eq. (2.18) by Eq. (2.17). Similarly, the sign values do not change the absolute value of
ErrLAM neither. Fig. 2.5 also indicates that, as long as either fA or fB is closed to 0 or 1,
the approximate error is well suppressed. The advantage of LAM in terms of the speed,
power, and area will be discussed in Section 2.4.1, and the impact of the approximation
error on the NN training will be investigated in Sections 2.4.3 and 2.4.4.
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Figure 2.4: Algorithm for implementing LAM in hardware. EA and FA are concatenated,
and EB and FB as well. Then, directly sum up them and subtract the bias term that is
followed by M-bits of 0s to compute EC and FC.
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Figure 2.5: Contour plot of ErrLAM, which represents the relative approximation error
between LAM and exact floating-point multiplier. The error depends on the fraction
values ( fA, fB) of the multiplicand A and multiplier B under base-2 scientific notation,
where 0 ≤ fA, fB < 1.
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Table 2.2: NN structures for testcases based on 1-hidden layer.
Dataset #Neurons (I,H,O) batch size

FOURCLASS (2,8,2) 100
MNIST (400,300,10) 100
HARS (561,40,6) 40

ISOLET (617,100,26) 60
CNAE-9 (856,100,9) 40

2.4 Evaluation for Dedicated Hardware Design
This section shows the advantage of LAM as an arithmetic unit and demonstrates the
impact of LAM in NN training engine on the classification accuracy and hardware re-
source.

2.4.1 LAM Performance

The experiment first evaluates the performance of LAM as a multiplier by comparing
two multipliers; one is LAM, and another is the baseline exact floating-point multi-
plier, denoted as EFM. LAM is manually implemented at RTL with Verilog while EFM
directly adopts Synopsys DesignWare IP (DW_fp_mult) for functional credibility and
sophisticated quality. The two designs are synthesized by Synopsys Design Compiler
with an open-source 45nm Nangate cell library [92]. The experiment examines their
speed, power, and area during benchmarking. The power and area evaluation are per-
formed in two scenarios, one is at their individual highest speed and the other one is at
a uniform speed at which the slowest multiplier can be synthesized.

The evaluation results are shown in Fig. 2.6. For the sake of clarity, all the results are
normalized by that of 32-bit EFM. Fig. 2.6 shows LAM achieves 2.5X speed compared
with EFM and consumes 5.9X less power and 8.3X less area at that speed while 12.5X
less power and 7.7X less area at the uniform speed in case of 32-bit floating-point ex-
pression (where sign-exponent-fraction = 1-8-23). The results of 16-bit version (1-5-10)
are also presented. An interesting observation is that 32-bit LAM operates faster and
consumes less power and area than even 16-bit EFM. Thus, LAM can improve energy
efficiency remarkably. The following sections evaluate the impact of LAM on NN train-
ing with BWS in terms of the NN classification accuracy and hardware performance.

2.4.2 Experimental Setup for NN Training

Table 2.2 lists the datasets [93, 23, 94, 95, 96] used for the experiments in this paper
and the numbers of neurons in the NNs for each dataset. For the experiments, a 3-
layer structure is prepared, which means 1 hidden layer (each layer is denoted as I,
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Figure 2.6: Speed, power, and area benchmarking for synthesized LAM and EFM.
There is one speed comparison and two scenarios for power and area under the max
speed circuit or the uniform speed circuit. All the values are normalized to EFM 32-bit
case.

H, O), and adopt ReLU (Rectified Linear Unit, y = max(x, 0)) and Sigmoid function
(y = 1/(1+exp(−x))) as the activation function of hidden and output layers, respectively.
Cross entropy is chosen as the loss function since it can combine with the Sigmoid
function to simplify Eq. (1.4) to a simple linear relation, δi

a = Oa − Ta [97]. This work
also adopts stochastic gradient decent with mini batch, which updates weights and bias
after accumulating ∂Loss/∂W and ∂Loss/∂B from a batch size of training data, and
apply learning rate decay, which gradually declines learning rate along with iterations,
as well for better convergent speed during the training.

Besides, the hardware implementation of non-linear Sigmoid function is costly, and
hence the Piecewise Linear Approximation of a Nonlinear function (PLAN) model is
selected to approximate Sigmoid which is proposed in [98]. PLAN function requires
only shifters and adders, and hence it is friendly to hardware implementation. Fig. 2.7(a)
lists the conditional equations used for Sigmoid approximation, and Fig. 2.7(b) shows
the curves of the original and PLAN Sigmoid functions. It can be observed that PLAN
is well correlated with the original Sigmoid function.

Fig. 2.8 plots the diagram of the dedicated NN training hardware engine containing
arithmetic units such as ⊗ for multipliers and ⊕ for adders. Forward- block computes
Eq. (1.1), Back- block calculates Eqs. (1.4) and (1.5), and then Updating block computes
Eqs. (1.2) and (1.3). Here a, b, and c denote the numbers of neurons in Layer I, H, O,
ReLU’ means the derivative function of ReLU and Reg is register. The subtractor and
PLAN function are annotated as adders since their functionality is similar while ReLU
is drawn by ©. In Updating block, the accumulators is used to add up the gradients δ
for the number of batch size and then update the associated weights and biases based on
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Figure 2.7: PLAN function, an approximate form of Sigmoid function. (a) Expression
of PLAN and (b) Plot of original Sigmoid and PLAN functions.

the accumulated gradients with multiplying a learning rate η.

2.4.3 Evaluation for FOURCLASS Dataset

Now, the experiment evaluates the NN training engine with FOURCLASS dataset [93],
which is a simple 2-D classification problem and its training results can be graphically
illustrated with the boundary line separating the two classified groups. Fig. 2.9 shows
the training results of 32-bit and 16-bit floating-point cases, where the samples in the
same group share the same color. Note that the training and testing phase are both
carried out with solo EFM or solo LAM. Although the boundary lines of EFM and LAM
show some discrepancy, both of them successfully distinguish the groups of samples. In
32-bit case, both EFM and LAM achieve 100% classification accuracy. In 16-bit case,
which corresponds to BWS adoption, LAM experiences 0.4% accuracy drop while it is
negligibly small. This result suggests LAM is compatible with BWS.

Fig. 2.10 shows the hardware evaluation results, to which a normalization to 32-bit
EFM engine is applied in the same way as Section 2.4.1. The training engine adopting
LAM gains 10% speed-up over the EFM engine, where this speed-up is smaller than
Fig. 2.6 since the floating-point adder is now a speed-limiting module. In addition to
the speed improvement, the maximum speed circuit achieves 2.1X (= 100% / 47%)
power and 2.2X (= 100% / 45%) area efficiency enhancements. On the other hand, in
the uniform speed circuit, 2.3X (= 100% / 43%) power and 2.3X (= 100% / 44%) area
efficiency enhancements are attained by LAM. These results confirm that the multiplier
is so power and space demanding that reducing its computational cost improves the
power and area efficiency considerably. Furthermore, considering 16-bit LAM as a
scenario that LAM and BWS are applied together, 32% speed-up, 5.9X power, and
5.3X area efficiency enhancements are attained in the maximum speed circuit, where
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Figure 2.8: Diagram of the dedicated NN training hardware implemented in this work,
including forward-, back-, and updating blocks. ⊗ and ⊕ denote multipliers and adders,
respectively. All the ⊗ and ⊕ are spatially implemented at the same time.

5% (=132% − 127%) speed-up, 2.5X (=100%/17% − 100%/30%) power reduction, and
also 2.1X (=100%/19% − 100%/32%) area savings originate from LAM. The benefits
of training with LAM are quantitatively clarified.

Fig. 2.11 further plots the benchmarking results based on accuracy vs power con-
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Figure 2.9: Boundaries trained for 2-D classification FOURCLASS.
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Figure 2.10: Speed, power, and area comparisons between synthesized LAM-based and
EFM-based training engines. The synthesis setup is identical to that of Fig. 2.6, and all
the values are normalized by those of EFM 32-bit case.

sumption for EFM-based and LAM-based training engines with different fraction bit-
widths (FBs). Here, the exponent bits are fixed with 8 bits, aligning with the 32-bit
format. From the results, as long as FB ≥ 10, the training results achieve 100% accu-
racy. In general, LAM-based training achieves at most 1.1% accuracy drop compared
with EFM-based training at FB: 8 case, which is considered sufficiently accurate. The
increasing FB strengthens the power saving for LAM-based training, and hence the case
for the minimum power saving happens on FB: 6 case, which is 18%.

2.4.4 Evaluation for Higher Dimensional Datasets
The experiment further evaluates the effectiveness of LAM with four other higher-
dimensional datasets. Also, to gain more insight into training methodology, this work
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Figure 2.11: Accuracy vs power for synthesized LAM-based and EFM-based training
engines, where the numbers marked on the points means the FBs. The synthesis setup
is identical to that of Fig. 2.6.

compares approximation strategies that individually adopt accurate (EFM) and/or ap-
proximate (LAM) multipliers in training and testing phases, respectively. Fig. 2.12
illustrates the four strategies evaluated in this experiment.

Fig. 2.13 shows the training results for the four datasets. To test the compatibility of
LAM to BWS, the experiment varied the number of fraction bits as 10, 16, and 23 while
the bit width for exponent remains 8 bits to keep the dynamic range. Considering that
different initial weights might have impact on final training results, this experiment is
conducted with five sets of initial weights. The values summarized in the figure are the
average accuracies for the five results, and then the ranges of the min-max difference
are also marked on it. The results show that either case attains a similar accuracy both
for training and testing sets. On the other hand, in different combinations of dataset and
fraction bit-width, Cases #2 to #4 with LAM provide very close or even better classifi-
cation accuracy compared with Case #1 only with EFM. Another observation is that the
differences between Case #2 to Case #4 are also small. Overall, these results reveal that
there is no reason to fully or partially use EFM in training, at least for the databases used
in the experiment. LAM can provide trained NN models whose classification accuracy
is comparable to that of those trained by EFM.

This experiment next evaluates the hardware cost. For estimating the hardware im-
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Figure 2.12: Different approximation strategies that use EFM and/or LAM in training
and testing phases.

provement thanks to LAM, a simple projection is performed based on the FOURCLASS
results. The power consumption of the training engine is estimated by the numbers of
arithmetic units and registers. The power values of each arithmetic unit and register are
obtained from the logic synthesis result. The remaining thing is to count the number of
arithmetic units and registers referring to Fig. 2.8. Table 2.3 lists the statistics for the
four datasets, indicating that the usage of three parts closed to 1:1:1.

As the number of multipliers, adders, and registers increase in higher-dimensional
datasets, the power improvement rate by LAM for training a larger NN-size structure is
roughly equal or slightly larger than that of FOURCLASS. Meanwhile, as a conserva-
tive estimate, the least improvement rate is accessed based on the FOURCLASS benefit.
Table 2.4 shows the projected values. Here, the synthesized frequency are aligned, and
in this particular estimation the power analysis is not annotated with actual switching
activity (i.e. vectorless power). Terminology “EFM” is EFM-32bit, “LAM” represents
LAM-32bit, “BWS” denotes EFM-19bit, and then “LAM + BWS” means LAM-19bit.
Here, EFM-19bit and LAM-19bit adopt 8 bits for the exponent and 10 bits for the frac-
tion, and they have the same fraction bit-width as conventional 16-bit format. From
Table 2.4, LAM attains 2.5X and LAM + BWS achieves 4.9X power efficiency, where
2.2X originates from LAM.
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Figure 2.13: Training results for MNIST, HARS, ISOLET, CNAE-9 under different
approximation strategies illustrated in Fig. 2.12 for the FB = 10, 16, and 23, with
plotting the average accuracies and the ranges of min-max difference.

In this section, the power efficiency is evaluated based on estimation. Next section
is going to demonstrate the power efficiency improvement through hardware measure-
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Table 2.3: Statistics for usage of multipliers, adders, and registers in the dedicated NN
hardware.

Usage
Dataset #Multipliers #Adders #Registers

FOURCLASS 122 128 142
MNIST 372,310 372,340 371,050
HARS 68,326 68,344 69,352

ISOLET 195,626 195,704 194,664
CNAE-9 260,509 260,536 261,657

Table 2.4: Power estimation results for training larger-size of NN (projected from
FOURCLASS benchmarking result).

Power (Normalized to EFM)
EFM LAM BWS LAM + BWS
100% 40% 37% 20%

ment.

2.5 Evaluation in GPU Design
Following the performance evaluation with dedicated training engines in the previous
section, this section applies LAM and BWS to an open-source GPU design and clarifies
the advantage in NN training.

2.5.1 LAM-based GPU Implementation on FPGA

To train large NNs, training engines demand programmability since the entire datapath
cannot be implemented spatially in a chip at once and temporal sharing for, e.g., each
layer and each kernel becomes indispensable. Then, this experiment selects Nyuzi,
which is an open-source processor for GPGPU applications [99], as the baseline design
and incorporate LAM and BWS with Nyuzi. Nyuzi is distributed as a synthesizable
RTL Verilog with an instruction set emulator, and a C/C++ compiler.

Fig. 2.14 shows the power evaluation setup. To proceed with the experiment, the
RTL code is modified to integrate LAM and BWS functionality. For performing power
measurement on hardware, the original and modified RTL codes are synthesized by
Intel Quartus with 50MHz clock frequency targeting Terasic DE2-115 evaluation board.
Table 2.5 lists the logic element counts for each case after Quartus synthesis. Here,
the bit-widths of the cases “EFM,” “LAM,” “BWS,” and “LAM+BWS” are aligned
with those adopted in Table 2.4. From the table, the hardware design embedded with
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Figure 2.14: Flow for measuring power of LAM (and LAM+BWS) based Nyuzi on
FPGA.

Table 2.5: Number of logic elements used to implement Nyuzi on FPGA.
# of used logic elements

EFM LAM BWS LAM+BWS
Overall 82,989 71,023 71,909 68,681

FPU 33,056 21,224 21,545 18,342

LAM and LAM+BWS saves about 12K and 14.3K logic elements compared with EFM,
respectively, which are mainly contributed from FPU blocks.

A C-program code was prepared for NN training. The implemented code is com-
piled and the binary code is loaded in Nyuzi on FPGA. Then, this experiment launches
the NN training program on Nyuzi and measures the power consumption of FPGA. Fig.
2.15 shows the hardware setup for measuring power dissipation. Agilent N6705A DC
power analyzer is used to provide 12V power supply of DE2-115 board, and it also
serves as a power meter. In this setup, the measured power includes not only the power
of Nyuzi on FPGA but also that of other peripheral circuitry on the board.
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Figure 2.15: Photo for power measurement setup of Nyuzi processor. The FPGA board
is placed on the DC power analyzer. The power analyzer is used for voltage supply and
power measurement.

2.5.2 Measurement Results
Fig. 2.16 shows the measured transient power consumption during Nyuzi operation. The
waveform is divided into three stages according to the Nyuzi operation status, and the
red line in Fig. 2.16 represents the average value in each stage. Referring to the assembly
code, the period (3) executes only the “NOP” operation. Thus, this work supposes that
the difference in average power between period (2) and period (3) represents the power
necessary for NN training.

Fig. 2.17 firstly shows the measured power of NN training for FOURCLASS
dataset. Again, the definition of EFM, LAM, BWS, LAM+BWS are all consistent with
Table 2.4. Here, the figure includes the results for different programming styles; single-
thread and multi-thread. The power values for each style are normalized by that of EFM
case with the same style. The results show that LAM and BWS are effective in power
saving irrelevant to the programing styles.

Fig. 2.18 shows the measurement results for four higher-dimensional datasets.
Again, a similar amount of power reduction is obtained for all the datasets. LAM-
based floating-point training computation achieves 24%-28% power improvement, and
the improvement increases to 35%-41% in the LAM+BWS case.
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Figure 2.16: Transient power response measured during Nyuzi operation. Phase (2) is
the phase for executing NN training program. In Phase (3), the training process already
finished.
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Figure 2.17: Power measurement results for single-thread and multi-thread (FOUR-
CLASS dataset). All the values are normalized to EFM case.
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Figure 2.18: Power measurement results for MNIST, HARS, ISOLET, CNAE-9
datasets. All the values are normalized to EFM case.
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2.6 Evaluations for Deeper NN Models
The advantage of applying LAM and BWS to deeper NN training is presented in this
section. This work shows the training results of NNs with 2, 3, and 4 hidden layers,
respectively, for MNIST dataset. In every NN structure, each hidden layer consists
of 50 neurons. The NN training results for adopting solo-EFM and solo-LAM with
different configurations of BWS are shown in Fig. 2.19.

Fig. 2.19 shows that, up to 4-hidden-layer NN, LAM-based training yields the ac-
curacy comparable to that of EFM-based training as long as the result of EFM-based
training with BWS is reasonably accurate. When 97% accuracy is considered accept-
able (above 10 fraction bits), the accuracy drop contributed by LAM is less than 0.3%.
This result indicates that the training accuracy is primarily determined by BWS instead
of LAM, and LAM is applicable even when aggressive BWS is implemented. Note that
the absolute accuracy could be improved with more sophisticated NNs, such as CNN
[13, 14, 35]. Figs. 2.20(a), 2.20(b), and 2.20(c) show the results for other datasets of
HARS, ISOLET, and CNAE-9 which present similar trend as MNIST. Overall, the av-
erage and maximum accuracy drops by LAM for the cases other than MNIST are mere
0.1% and 2.2% when 94% accuracy is considered acceptable, and LAM outperforms at
31% points in all the cases used in this work.

Fig. 2.21 shows the training curve for MNIST dataset. The scenario for the NN
involves EFM, LAM, BWS, LAM + BWS, where the terms aligned with Section 2.4.1.
As shown in the figure, at each epoch from 1 to 40, there is no significant difference
in classification accuracy between LAM-based and EFM-based training. This result in-
dicates that adopting LAM in NN training does not require additional processing time
to reach the same accuracy, and thus, at least within 4-hidden-layer NNs, training com-
pletely relying on LAM is qualified and EFM is not necessary.
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Figure 2.19: MNIST training results for NNs having 2, 3, and 4 hidden layers and
various fraction bits. The attained accuracies are almost identical.
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Figure 2.20: Deeper NNs training results varying with fraction bits. The attained accu-
racies are almost identical (a) HARS (b) ISOLET (c) CNAE-9.
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2.7 Conclusion
This chapter evaluated whether approximate floating-point multiplier, which can cover
a broad dynamic range, could be adopted in NN training achieving higher energy ef-
ficiency. Specifically, this work focused on logarithm-approximate multiplier (LAM)
incorporating bit-width scaling (BWS) to reduce primary MAC computation complex-
ity. The experimental results with dedicated hardware design show that training NNs
with LAM can achieve 10% speed-up and 2.3X power reduction in addition to 2.3X area
saving as well at the same speed when training a 2-D classification dataset. Even when
training with LAM + BWS, there is no more than 1.0% accuracy discrepancy compared
with the exact multiplier, where LAM + BWS outperforms, rather than degrades, the
accuracy more frequently. As for the hardware performance, 4.9X energy efficiency is
attained, where 2.2X originates from LAM. This work further quantified LAM effec-
tiveness with an open-source GPU design. The power reduction was evaluated with the
FPGA hardware measurement. About 28% power efficiency improvement in the LAM-
based GPU design is confirmed compared with the EFM-based GPU design. Finally,
LAM and LAM + BWS are experimentally qualified to be applicable to training up to
4 hidden layers, even with aggressive BWS.



Chapter 3

Mode-wise Voltage Scaling

Unlike AC techniques discussed in Chapter 2, this chapter seeks a design methodol-
ogy to achieve power/energy efficiency for any types of designs. ASA introduced in
[81, 82, 86] performs effective enhancement for voltage-scaling efficiency with stochas-
tic treatment for less-but-not-zero timing error. On the contrary, this chapter lever-
ages the “mode-wise” concept early proposed in [76] and further enhances it to involve
multi-corner multi-mode (MCMM) feature in EDA tool that is highly compatible with
mode-wise ASA implementation. With the aid of downhill simplex algorithm (DSA),
the different operation modes in a design can activate different circuit blocks that are op-
timized for their minimum acceptable voltage (MAV). As mentioned in Section 1.6.3,
Since the supplied voltage is scaled with mode-wise manner, the overall energy effi-
ciency is improved compared with single-mode-based VS. Besides, this chapter also
introduces a safe way to identify false paths during ASA implementation. Therefore,
the design after mode-wise ASA manipulation guarantees there is no timing error at the
scaled voltage of interest (MAV for each mode) after ASA circuit optimization.

3.1 Introduction
Voltage scaling (VS) is a classical yet powerful technique widely adopted by industry
to achieve quadratic power reduction. Industrial designers conventionally would pre-
serve extra timing margin for the devices to prevent circuit logic error or malfunction
due to environmental variation in terms of the process, voltage, temperature, or aging.
Therefore, VS plays a good role as a tuning knob for compensation. With judicious
supply voltage control, the power/energy of the design in operation could be reduced.
On the other hand, of course, there is a fact that reduced voltage would increase the gate
delays and raise the probability of timing error. In case the induced timing error could
result in logic error or even catastrophic malfunction, the promising solutions for circuit
designer can be briefly categorized into two groups, where the one is adaptive voltage
scaling (AVS) and the other one is activation-aware slack assignment (ASA), which are
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already introduced in Section 1.5. In addition, as mentioned in Section 1.6.3, existing
state-of-the-art MTTF-aware ASA implementation relies on allowing less-but-non-zero
timing error [81, 82, 86], which limits the generality of applications and currently the
scheme of functionality validation for aging-aware analysis remains controversial. On
the other hand, in order to enhance VS efficiency without tolerating timing errors, it is
necessary to explore for other sources of margin that can be exploited. As mentioned
in Section 1.6.3, mode-wise idea is introduced by [76] to downscale the voltage on the
most power-hungry mode for improving overall power consumption. However, imma-
ture ASA implementations by [76] may induce glitch events, which raises other risks
regarding the timing error. Therefore, under the premise of no timing error, it is de-
sirable to deliver a solution that can enhance ASA potential for better VS efficiency.
Therefore, for circuit designers who want to achieve low-power design, a promising
solution to enhance VS efficiency without any timing error concern should be quite
attractive.

This chapter proposes a methodology to achieve a design applying to mode-wise VS
(MWVS) under the scheme of ASA, with guaranteeing no timing error. First, a mode-
wise voltage and corresponding design freedom is defined as the design variables, and
then a problem for MWVS is formulated in consideration of the duration of each mode.
Then, this work presents a fine-grained way to identify the false paths for each mode.
The proposed methodology exploits multi-corner multi-mode (MCMM) design flow in
a commercial tool that considers sets of false paths in individual modes for performing
mode-wise ASA. The solution space is explored through DSA, which is a direct search
method for solving nonlinear optimization problems without derivative computation.
Note that the proposed method for MWVS is a general solution for application requiring
low-power operation.

The contributions of this chapter are:

• Formulate an optimization problem and provide its solving procedure to achieve
mode-wise voltage-scalable design. Experiment results based on RISC-V design
show that 13% to 20% overall power saving when treating design with conven-
tional VS as the baseline. In addition, 8% to 13% additional power gain originates
from the mode-wise idea.

• Introduce a cycle-by-cycle fine-grained method to identify false paths which are
used during ASA implementations. Compared with the conventional way of false-
path identification, the introduced method can save 31% to 42% leakage power.

The rest of this chapter is organized as follows. Section 3.2 reviews the related work
about ASA and MWVS, and also MCMM is briefly mentioned. Section 3.3 formulates
the MWVS design optimization problem. Section 3.4 describes the proposed method-
ology for solving MWVS with DSA, which uses MCMM + ASA, and also presents
fine-grained false-path identification. Section 3.5 applies the proposed methodology to
RISC-V and shows experimental results. Section 3.6 concludes this chapter.
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3.2 Previous Work

3.2.1 Mode-wise ASA

ASA is the technique to manipulate the timing margin of the active paths by engineer-
ing change order (ECO) phase. The activated paths after ASA have more timing margin
with the cost of the area from additional buffer insertion or fast-but-large gates swap-
ping, while the extra timing margin offers further down-scaling of voltage and benefits
the power/energy reduction. The benefit from ASA has been promoted in the state-of-
the-art works [76, 81, 82, 86].

However, even though researchers [76] have introduced the term “mode-wise ASA,”
their implementation approach of ASA, which is the same as the previous work of
MTTF-aware ASA [81, 82, 86], considers only one specific operation mode and fo-
cuses on enhancing the VS efficiency only for that single mode. Therefore, if there are
three distinct operation modes from 1 to 3, for example, those modes are united to form
a single mode such as Mode 1 ∪ 2 ∪ 3, as shown in Fig. 3.1(a). In this case, further VS
opportunities existing in Mode 1 and Mode 2 are spoiled, as shown in Fig. 3.1(b). Con-
versely, if multiple modes, are individually considered in ASA-aware voltage-scalable
circuit design, more benefits of overall energy saving can be expected because each
mode consumes less power.

MWVS is a promising approach that can exploit the bias of active paths in differ-
ent operation modes for voltage scaling. On the other hand, it is necessary to establish
a design methodology that can ensure no timing error occurrence, cope with multiple
operation modes, and efficiently explore the design space. Here, note that the scaled
voltage is applied for each mode (workload) even under MWVS scheme, and the sup-
plied voltage is spatially identical in the design of interest. Therefore, the concept of
MWVS is practical and reasonable for industrial designs. On the other hand, it is noted
that ASA for pursuing lower voltage operation involves circuit overhead due to timing
margin expansion. Hence, this circuit overhead and achievable VS must be carefully
taken into account in the design methodology.

3.2.2 MCMM

Multi-corner multi-mode (MCMM) design flow has been recently developed as one of
the built-in features in many EDA vendors such as Synopsys and Cadence [100, 101].
The MCMM flow allows the timing analysis and the optimization of a hardware design
according to multiple modes, where each mode can be associated with different clock
periods, PVT corners (process, voltage, temperature), and design constraints for mode-
based timing. The MCMM design flow works to generate a circuit design that satisfies
all the required specifications in individual modes simultaneously. The MCMM flow
can significantly save the design turn-around times for MCMM designs [101].
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Figure 3.1: Expected voltage scaling operations for (a) single-mode VS design and (b)
multi-mode (mode-wise) VS design.

With the MCMM flow, the ASA technique can be explicitly extended to MWVS
design methodology. The mode-wise ASA aims to obtain a design where all the FFs at
nominal voltage and the active FFs at scaled voltage meet the clock frequency constraint.
Thus, it is expected that the MCMM flow is a promising choice to enhance the capability
of MWVS design flow.

3.3 Problem Formulation for MWVS
This section formulates the problem for optimizing a design under MWVS as follows.

• Input:

1. a gate-level pre-ASA circuit design

2. Mode Mi and associated duration DRi, where i = 1, 2, ...,N

3. nominal voltage VNOM

4. cycle time T
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• Output:

1. a gate-level circuit after MWVS-aware ASA.

2. voltage Vi for mode Mi, where i = 1, 2, ...,N

• Ob ject f unction

1. Minimize:
∑N

i=1 Power(Mi,Vi) × DRi

• Constraints

1. Delay(Vi, Act_Pathsi) ≤ T , where i = 1, 2, ...,N

2. Delay(VNOM, All_Paths) ≤ T

3. Area ≤ Areamax

• Variables

1. voltage Vi

2. size and Vt type of individual cells

The input and output are the gate-level circuits before and after MWVS-aware ASA.
Mi is the i-th mode in N modes, and DRi is the portion of the i-th mode duration, and
hence each DRi ≤ 1 and

∑N
i=1 DRi = 1. The predetermined nominal voltage and clock

cycle are VNOM and T , respectively. The objective of this problem is to minimize the
summation of the power multiplied by the duration from mode M1 to MN . The first two
constraints are given for the timing closure. That is, for each mode Mi, all the delays of
active paths in mode Mi, which are denoted as Act_Pathsi, should meet the setup time
constraint for the given clock period of T at the operating voltage of Vi. In addition, at
the nominal voltage VNOM, the delays of all the paths, All_Paths, in the design should
keep setup timing clean within the same criterion of T . Also, the area is constrained with
Areamax since faster logic cells tend to be large. Hold timing constraints are considered,
but they are omitted in the above since they are not the primary concern in this work.

Here, it should be mentioned that the power in each mode Mi is determined by its
operation voltage Vi in two ways. The first way comes from the fact that the power is
expressed as the product of voltage and current, i.e., Power=V × I. The second way
is that the cell sizing and Vt assignment (swapping the same type of cells to different
threshold voltage) result, which affects power dissipation, depends on Vi since the cell
swapping is performed such that the path delay constraints are satisfied at Vi. Therefore,
solving this problem needs to consider these two dependencies of power dissipation on
the selection of Vi.

Fig. 3.2 shows an illustration regarding the timing constraints. There are four groups
of paths in the figure; the paths activated in Mode 1 only (blue), Mode 2 only (red),
both Mode 1 and 2 (purple), and non-activated paths (yellow). Three voltages having
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Figure 3.2: Mode-wise timing constraints (two-mode case).

VNOM > V1 > V2 relation are assumed. At VNOM, all the path delays should pass the
setup-time criterion with a given clock period of T . V1 is the scaled voltage for Mode 1,
and thus all the paths activated in Mode 1 (blue and purple) should meet the criterion of
T under V1. V2 for Mode 2 (purple and red) follows accordingly. Note that the paths in
blue are excluded from the criterion for Mode 2, and their delays can violate the setup-
time constraint. The paths in purple activated in both Mode 1 and Mode 2 are required
to meet the criterion for both the modes, while the paths in yellow not activated in Mode
1 or Mode 2 can violate the criterion in both the modes.

In summary, this optimization problem aims at the minimization of the total sum of
Power × Duration. Since the duration represents the time period and Energy = Power ×
Time, the objective is equivalent to energy minimization.
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3.4 Proposed Design Methodology for MWVS

This section introduces the proposed MWVS design methodology that solves the opti-
mization problem formulated in Section 3.3. Ultimately, the solution want to determine
Vi, cell sizes, and cell types simultaneously. However, for each Vi value, the solution
need to perform time-consuming circuit optimization, i.e., cell sizing and swapping
for timing closure. Furthermore, this timing closure optimization needs to satisfy all
the timing constraints separately specified for each mode, This work, therefore, takes
a two-step approach that decouples Vi optimization and circuit optimization. Fig. 3.3
shows the overall flow. The iteration loop aims to obtain the set of Vi that can mini-
mize the objective function. In this work, the downhill simplex algorithm (DSA) is used
for this iterative optimization. DSA is a classical algorithm that can solve optimiza-
tion problems having multidimensional variables without derivatives, which helps save
the computation cost [102, 103], κ is the parameter to limit the number of iterations.
This loop includes the circuit optimization with MCMM flow, where the timing closure
optimization is executed for given sets of Vi. The detail of DSA in MWVS flow is de-
scribed in Section 3.4.1. This circuit optimization with MCMM flow is explained in
Section 3.4.2. Before this iterative optimization, sets of false paths should be prepared
separately for each mode, which is described in Section 3.4.3.

3.4.1 Downhill Simplex Algorithm (DSA)

Downhill simplex algorithm (DSA), which is also known as Nelder-Mead method, is a
simple numerical method for finding the optimal solution in a multidimensional space
[102, 103]. The advantage of DSA is that it does not rely on the gradients to search
the next decision, and therefore, DSA can deal with the optimization problem in which
computing the gradient of the objective function is impossible or too time-consuming.
Thanks to this property, DSA saves computing effort for the problem in which the com-
putation of the objective function is time-consuming and numerical calculation of the
gradient is prohibitively expensive. Hence, the proposed methodology adopts DSA.

To solve an M-dimension problem, DSA prepares an initial geometrical simplex
composed of M + 1 vertices in the solution space. Alternating the vertex iteratively
through the comparison of their corresponding objective function values makes the sim-
plex approach to the optimal solution. Fig. 3.4 illustrates a three-dimension simplex, or
as known as tetrahedron, as an example. Let us assume there is an objective function,
F(.), which needs to be minimized, and there are M + 1 vertices X1, X2, ..., XM, XM+1,
which are initially selected and sorted as F(X1) ≤ F(X2) ... ≤ F(XM) ≤ F(XM+1). Points
R, E,O, I represent the next candidates of the vertices of the simplex with the name as
reflection, expansion, outer contraction and inner contraction, respectively. The potions
of R, E,O, I in the solution space are calculated as the linear combination of X1, X2, ...,
XM, XM+1. DSA chooses the next set of vertices for the simplex in each iteration by



62 CHAPTER 3. MODE-WISE VOLTAGE SCALING

Input		Design

False	path	identification
for	mode-wise	ASA

Prepare	sets	of	solutions	
by	DSA

Timing	optimization	with
MCMM	flow

Iterations	>	κ?

Output		Design

DSA

No

Yes

Figure 3.3: Overall flow for solving MWVS problem.

conditionally comparing F(R), F(E), F(O), F(I) with F(X1), F(XM), and F(XM+1). For
the details, please see textbook, such as [102]. Note that the number of points newly
evaluated in each iteration is at most four independent of M, which is an advantage of
DSA.

This paragraph explains how to solve the MWVS problem with DSA. As mentioned
at the beginning of Section 3.4, the solution aims to search an optimal set of Vi using
DSA, where a set of Vi corresponds to a vertex in DSA, and the total number of vertices
are N+1. For each vertex, this flow performs circuit optimization for timing closure with
MCMM flow and evaluate the objective function. However, when the set of Vi includes
too low voltage, the given timing constraints cannot be satisfied and non-zero negative
slack is observed. In this case, the set of Vi cannot be considered as a solution candidate.
On the other hand, DSA cannot consider such constraints directly. Therefore, this flow
adds a penalty function to the objective function to guide DSA taking into consideration
timing violation. Here, there are many candidates of the penalty functions, but this
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Figure 3.4: Illustration of three-dimensional simplex in DSA.

work uses the simple penalty function below since the experiment results are empirically
found the penalty shape does not affect the final solution much.

F(.) =


∑N

i=1 Power(Mi,Vi) × DRi WNS = 0,
EXT WNS > 0,

(3.1)

where EXT is an extreme large number, and WNS stands for worst negative slack that
is reported by the EDA tools.

3.4.2 Integrating Mode-wise ASA into MCMM Flow
This work exploits MCMM flow in EDA tools [100, 101] to carry out mode-wise ASA.
The EDA tool asks users to prepare scenarios, where each scenario is associated with the
timing library under a particular PVT corner and corresponded design constraints files.
Therefore, the false-path specification commands for each mode should be included in
the design constraints files of the associated scenarios.

Fig. 3.5 illustrates the preparation of the scenarios for mode-wise ASA. Several
timing libraries characterized at different voltages are prepared beforehand. Then, for
each scenario corresponding to Mode 1 to Mode N, this flow assigns the library at
the specified voltage and associate the corresponding timing constraints files M1.sdc to
MN .sdc as well. In addition to the clock period T , the false paths identified for individual
modes are described in the design constraint. An additional scenario (for Mode NOM)
is for the library of the nominal voltage of VNOM, where no information on false paths
is given. In other words, this scenario specifies all the paths in design that need to pass
the timing at VNOM. Note that if there are design-specific false paths, they should still
be specified in MNOM.sdc as well. Hence, as long as operating in nominal voltage, the
design after MWVS flow can guarantee their functionality even for any modes that are
not considered in MWVS design flow. The optimization in the MCMM flow aims to
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Figure 3.5: MCMM setting in EDA tool for MWVS design.

meet all constraints simultaneously. Therefore, as long as the timing is clean, i.e., WNS
= 0, the design is guaranteed to operate correctly in every mode at the voltage of interest,
and, for example, the logic simulation passes.

3.4.3 False Path Identification
Previous works on ASA [76, 81, 82, 86] pay attention to active paths (or flops) obtained
from logic simulation results and allocate additional slacks to those paths. However, due
to glitch events, it cannot guarantee that there is no timing error at the scaled voltage of
interest after ASA circuit optimization. Let us explain the reason. Even when there is no
transition on a path, a glitch may arise and propagates through the path after ASA timing
optimization since glitch occurrence strongly depends on transition timings. Such new
glitches are hard to be predicted and then raise the risk for timing violation. Therefore,
instead of specifying active paths, this work decides to identify safe false paths that are
non-active during the mode operation of interest. Thus there is no need to worry about
accidental glitch transitions even after timing optimization.
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Fig. 3.6 exemplifies false paths. The illustrated circuit is composed of flops (FF-
0∼FF-7), AND2 gates (A1∼A5), and OR2 gates (O1∼O6). After performing a one-time
logic simulation for a particular workload (mode), the states (0 or 1) for each cycle can
be extracted at the output pins of all the flops and define the flops whose output states are
identical with the previous cycle as non-active flops. Then, for each end-point flop (e.g.,
FF-0), with assigning non-active flops (e.g., FF-1, FF-7) in static timing analysis, the
false paths can be extracted that include false sub-paths (e.g., from FF-1/Q to O1/A and
FF-7/Q to O6/B). Even though the input patterns vary every cycle, some flops are non-
active from the beginning to the end in a particular mode. Similar always non-active
flops in a mode might be extracted by propagating mode-dependent constant values.
The false paths are primarily extracted based on those flops and regard this method as
conventional false-path identification (FPI).

On the other hand, it is found that applying cycle-by-cycle analysis could potentially
increase the number of false paths. Let us take the circuit in Fig. 3.6 again as an example.
Topologically there are 13 paths in the circuit, which are listed on the right side with ID
numbers. Conventionally, in this schematic, these 13 paths are considered during timing
closure. On the other hand, supposing FF-1 and FF-7 are non-active and 0 in a particular
mode, four false paths (paths 1,2,12,13 in gray) are attained and the number of paths to
be considered is reduced to 9. This reduction is identical to FPI mentioned above. Next,
consider the case that FF-2, FF-3, FF-5 are not always non-active but either of FF-2 and
FF-3 transitions only when the other stays 0, and the same relation holds between FF-5
and FF-3. This case reduces the number of paths to be considered in timing closure to
3 (paths 6,9,11 in black). Cycle-by-cycle analysis can automatically extract such FF-
to-FF relations from the logic simulation results, which will be explained in the next
paragraph. After the false path identification, the false paths are assigned in EDA tools
in an ordinary way. EDA tool can simply assign the false paths through the false stages.
Taking an example from Fig. 3.6, all the paths are assigned through A1,A2,A4,A5 as
false paths. Gate A3 is also the false stage, but the paths through A3 can be specified by
A4, and then A3 is skipped.

This paragraph explains how to automatically extract false paths mentioned above
from the logic simulation results. The idea is very simple. The false paths are extracted
for each clock edge. In this part, the executed analysis is the same as FPI. The set
of false paths varies for each edge, but some false paths are included for all the clock
edges. Finally, such false paths are given to the timing closure tool. In this way, the
additional false paths discussed in Fig. 3.6 can be obtained. This way of false path
identification is called as cycle-by-cycle fine-grained false path identification (CF-FPI).
Fig. 3.7 illustrates CF-FPI from the example circuit in Fig. 3.6. The false paths are
extracted from FF-2/Q to O2/A, FF-3/Q to O2/A, and FF-3/Q to A3/B for cycle1 to
cycle2, and the false paths and obtain the final list, i.e., path from FF-2/Q to O2/A and
FF-3/Q to O2/A. This example includes only two clock edges, but the same analysis can
be applied to long simulation results.
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# of activated Paths under CF-FPI: 3

1. FF-1 , FF-7 are non-active 

2. FF-2 activates while FF-3 stays 0, and vice versa
3. FF-5 activates while FF-3 stays 0, and vice versa

Figure 3.6: Examples of false path identification including cycle-by-cycle analysis.

Finally, this work further squeezes false paths. Till now, the false paths are extracted
primarily by using the information on non-active flops. On the other hand, additional
paths from active flops can be identified as “false". This possibility arises in multi-
input combinational gates, e.g., AND2 in Fig. 3.8. Suppose that U1/A has only one rise
toggle, and U1/B has only one fall toggle in the same cycle. In this case, due to the
AND2 boolean logic, the output transition U1/Y is dominated by the falling input i.e.,
U1/B. The other pin U1/A has a non-critical transition (NCT), and thus the path through
U1/A can be used as a false path. The important property of NCT is that this dominance
relation is independent of timing, and it holds even after any timing optimization. There-
fore, this false path can be exploited safely in cell-swapping optimization. It should be
noted that this false path identification based on the NCT is possible with the cycle-by-
cycle analysis. Besides, the multi-input gates possessing similar characteristics include
(N)AND , (N)OR, AOI, OAI series of gates. MUXs have NCT possibilities since in
the case of S=0 or S=1, either A or B pin becomes don’t care term, meaning that the
transition at that pin becomes NCT. X(N)OR series, HA, and FA do not have this char-
acteristic since every input transition affects the output state.

In order to give a more concrete picture for explaining how to extract FPI and CF-
FPI, Algorithms 1 and 2 show the pseudo codes for the processes utilized in this flow
for extracting the false-path list in a certain mode. The inputs are all based on one-
time simulation results based on that mode, and the output is the final false-path list
(denoted as FP_list) that can be loaded by EDA tool accompanied with MCMM feature
for implementing mode-wise ASA. In Algorithm 1, the false paths are extracted from
the non-active flops, where these flops have 0 toggle rate through the whole clock cycles
in the m-th mode and the total number of these flops is denoted as F. Paths-starting-
from-FF(m)

( j) means that the set of paths which start from the j-th non-acitve FF in the m-
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States (cycle1 to cycle2):
FF-2: 0 to 0 (Non-active-flop)
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Figure 3.7: Cycle-based false path analysis.

th mode. With the help of EDA tool such as Synopsys PrimeTime or Design Compiler,
it is available to trace the paths starting from the FF(m)

( j) . CF-FPI shown in Algorithm 2
has a major difference compared with FPI in Algorithm 1 that it needs to extract the
false paths cycle-by-cycle, and then performs an aggregation to find the intersect for all
the cycle-based false-path lists. Fk in Algorithm 2 means the total number of the flops
with 0 toggle-rate in the k-th cycle, and Mk means the total number of the nets with non-
critical transition in the k-th cycle. Paths-from-FF(m,k)

( j) means the set of paths starting
from the flop FF(m,k)

( j) , and Paths-through-N(m,k)
(x) means the set of paths through the net

N(m,k)
(x) , where the set of paths can be extracted through the EDA tools.

Algorithm 1: FPI for m-th mode
1: Run logic simulation results with m-th mode.
2: Based on the results, collect the flops with 0 toggle-rate through whole clock

cycles FF(m)
( j) , where j = 1, 2, ..., F.

3: FP_list = [ ]
4: for ( j = 1; j ≤ F; j + +)
5: FP_list← FP_list ∪ Paths-from-FF(m)

( j)
6: Output: Design constraint file includes FP_list.
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Figure 3.8: Cycle-based non-critical transition and false path analysis in AND2 gate.
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Algorithm 2: CF-FPI for m-th mode
1: Run logic simulation results with m-th mode.
2: Based on the results, for k-th cycle (k = 1, 2, ...,C), collect
3: (1) the flops with 0 toggle-rate FF(m,k)

( j) , where j = 1, 2, ..., Fk, and
4: (2) the nets with non-critical transition N(m,k)

(x) , where x = 1, 2, ...,Mk.
5: FP_list = [ ]
6: for (k = 1; k ≤ C; k + +)
7: FP_list(k) = [ ]
8: for ( j = 1; j ≤ Fk; j + +)
9: FP_list(k) ← FP_list(k) ∪ Paths-from-FF(m,k)

( j)

10: for (x = 1; x ≤ Mk; x + +)
11: FP_list(k) ← FP_list(k) ∪ Paths-through-N(m,k)

(x)
12: if k == 1
13: FP_list← FP_list(k)

14: else
15: FP_list← FP_list ∩ FP_list(k)

16: Output: Design constraint file includes FP_list.
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3.5 Experimental Results and Analysis

3.5.1 Setup
This section performs an experimental evaluation of the proposed methodology with
RISC-V processor, a popular open-source CPU. The processor is synthesized with Nan-
gate 45nm library [92] for VTG (low-Vt) and VTH (high-Vt) cells at 0.5 GHz by Syn-
opsys Design Compiler (DC) which enables MCMM and set VNOM to 1.0V. The power
for each mode is estimated by DC. After obtaining the value for mode-wise power, the
operation duration is considered to calculate the overall power. Since 0.5 GHz is not the
highest frequency for synthesizing RISC-V, many logic cells in the circuit are swapped
to higher-Vt cells to save leakage power in the initial synthesis.

Three workloads are selected in the experiments; (1) dijkstra and (2) sha, which are
included in MiBenchmark [104], and (3) mt-matmul-fp, which is a floating-point (FP)
matrix-multiplication. The workloads of dijkstra and sha use similar parts of proces-
sor components since they use integer arithmetic and logic operations. On the other
hand, mt-matmul-fp utilizes the FP units, especially for multiply-accumulate compu-
tation. Therefore, the modes dedicated for dijkstra and sha are quite different from
mt-matmul-fp, which meets this work’s assumption that the operating voltage and the
power consumption might have a discrepancy between different modes.

For comparison, this experiment prepares three methods for evaluation; (A) conven-
tional VS, (B) single-mode ASA + VS, (C) mode-wise ASA + VS (proposed). Method
(A) directly re-synthesizes the design at a lower voltage without any specification of
false paths, which is a standard design flow and then the baseline in this work. Method
(B) applies ASA that is based on the false paths that are not activated in Mode 1 to
Mode 3, namely Mode 1 to Mode 3 are merged into a single mode. This method has the
similarity as the previous work [76, 81, 82, 86] in terms of the number of modes while
the stochastic treatment of timing error used in previous work [81, 82, 86] is disabled.
Method (C) is the proposed approach described in Section 3.4. In (C), the duration for
each mode can be explicitly considered to minimize the overall power dissipation, while
the duration information cannot be considered in (A) and (B).

3.5.2 Results
Table 3.1 lists the experimental setup and results. The first column represents the three
methods (A), (B), (C). The second column lists how many modes are used and shows
the combination of the used modes. Method (A) and (B) only apply one mode, but (B)
considers the merged mode. The third column is the assumed duration that only (C) can
explicitly consider when computing overall power. The fourth column for (A) and (B)
is the minimum voltage at which the WNS sustains 0, while for (C) it is the optimiza-
tion results after 30 DSA iterations. The final column for (A) and (B) represents the
power dissipation, and for (C) it means the overall power considering the duration. The
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Table 3.1: Optimization results for (A) conventional VS (baseline), (B) single-mode
ASA + VS, and (C) mode-wise ASA + VS (proposed).

Method #Modes Duration Voltage (V) Power (W)
(used modes) (reduction)

A 0.82 0.358 (baseline)
B 1 (1∪3) 0.80 0.340 (-5.0%)
B 1 (1∪2∪3) 0.80 0.340 (-5.0%)
C 2 (1, 3) 50:50 (0.73, 0.80) 0.312 (-12.8%)
C 2 (1, 3) 70:30 (0.73, 0.80) 0.301 (-15.9%)
C 2 (1, 3) 95:5 (0.73, 0.80) 0.286 (-20.1%)
C 3 (1, 2, 3) 33:33:33 (0.76, 0.73, 0.80) 0.307 (-14.3%)

experiment applies FPI here for (B) and (C). FPI and CF-FPI for (C) will be compared
later.

From Method (A) to (B), the power is reduced by 5.0%. (B) unites different modes
to one, and hence the VS efficiency of (B) is limited by the mode having the highest
voltage. In this case, Method (B) is determined by Mode 3 (mt-matmul-fp) due to its
smaller room for VS than the other two modes. However, the proposed methodology
of Method (C) optimizes the design considering all the modes separately, and thus it
enhances the VS efficiency. Even in the case of two modes (1, 3) having 50:50 duration,
an additional 8% gain is obtained from Method (B) to (C). Additionally, the proposed
methodology allows different sets of duration. When the duration ratio of Mode 1 to
Mode 3 is changed from 50:50 to 70:30 and even 95:5, the proposed method can gain
the power reductions of 16% and 20%, respectively. In this work, the area increase is
limited to be smaller than 0.5%, and then the area increase was at most 0.4%. On the
other hand, the number of low-Vt (VTG) cells increased. For one circuit optimization
for MCMM timing closure takes 8∼13 minutes for Method (A), (B) and (C) under FPI.
Therefore, the entire MWVS design flow of (C) takes about six hours.

This work next investigates the impact of false path identification methods on the
optimization results. Unfortunately, the MCMM flow with the false-path set of CF-FPI
is slow and circuit optimization with CF-FPI could take 6∼7 hours for one run. There-
fore, only the final iteration is executed with CF-FPI. Meanwhile, this work considers
that the run time varies with different designs and workloads, and CF-FPI flow is not
always so slow. Table 3.2 compares the number of commands for false path specifi-
cation for the cases with and without applying CF-FPI. Roughly speaking, the number
of commands is similar. Fig.3.9(a) compares the usage of low-Vt (VTG) cells. FPI
specifies fewer false paths, and then the timing closure is more strict, which results in
77 to 78% larger number of low-Vt cells. On the other hand, CF-FPI identified more
false paths than FPI so that fewer lower-Vt cells are used, and the increase of VTG
cells is suppressed to only 8% to 21%. Although there is minor improvement can be
attained for the total power (0.03%) due to the small portion of leakage power to the
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Table 3.2: # of false-path specifications in design constraint file for each mode
Mode

1 2 3
FPI 161K 162K 214K

CF-FPI 186K 192K 185K
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Figure 3.9: Comparison between FPI and CF-FPI for (a) # of low-Vt (VTG) cells (b)
leakage powers.

overall power, Fig. 3.9(b) reveals that applying CF-FPI reduces leakage power by 42%
in the two-mode case and 31% in the three-mode case. This result indicates that CF-FPI
facilitates the timing optimization and reduces the number of lower-Vt cells.

3.5.3 Proposed Methodology Investigation
Fig. 3.10(a) and Fig. 3.10(b) show how the solution is becoming convergent, where
Fig. 3.10(a) supposes two-mode (1, 3) case of 50:50 duration and Fig. 3.10(b) supposes
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three-mode (1, 2, 3) case of 33:33:33 duration. In each figure, two curves are plotted
starting from different initial values. Initialization 1 applies the voltage set of (1.0,
1.0), (0.9, 1.0), and (1.0, 0.9) as the start points in the two-mode optimization, while
initialization 2 applies (1.0, 1.0), (0.85, 1.0), and (1.0, 0.85). Similarly, the start points
are set in the three-mode case. Fig. 3.10(a) shows that both initialization sets of the
two-mode case can converge to the same power value after 17 iterations. However, in
the three-mode case, the different initial sets would reach different power dissipation
values. The reason is that, although DSA is not a completely greedy algorithm, it does
not have an explicit hill-climbing capability, and then it can fall into local optimal points.
Meanwhile, the objective function is supposed to be somewhat a smooth function since
it is a linear sum of the product of the power and duration for each mode, and the power
is roughly proportional to the voltage squared. However, the MCMM flow of EDA tool
might generate non-continuous space for this objective function once the number of
modes increases.

Fig. 3.11(a) and Fig. 3.11(b) show the scatter plots of the voltages in two different
modes evaluated in the optimization process, where the red points mean that the timing
closure fails in the MCMM flow and the blue points mean that the timing closure suc-
ceeds. Fig. 3.11(a) is for two-mode case, and Fig. 3.11(b) is for three-mode case, where
one dimension of voltage, i.e., voltage for Mode 3, V3, is fixed at 0.81 V. Focusing on the
two-mode case, a clear bound could be found; the timing closure passed in the MCMM
flow when V1 ≥ 0.73 V and V3 ≥ 0.80 V. Although there are a few outlier points that
fail, they are relatively rare, and the DSA works well. However, in the three-mode case,
even when fixing one dimension of voltage V3 at 0.81 V, the plot shows that the bound-
ary is unclear and the red and blue dots are mixed, especially around the point of (V1,
V2) = (0.73, 0.73). This behavior indicates that if the solution approaches this area, the
algorithm might be disturbed by the outlier points and converge at a local minimum
point. Actually, since the MCMM flow itself is another complex optimization problem
and its complexity also increases according to the number of modes, the stability of the
overall solution may become sensitive to the set of initial points. On the other hand,
comparing to Method (A) and (B), the proposed methodology provides higher power
efficiency. Note that DSA is not the sole solver for this problem, and other methods can
be used as long as their performance is better.
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Figure 3.10: Convergence plots of the optimization for (a) two-mode case (1, 3), and
(b) three-mode case (1, 2, 3) starting from two different initial points.
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3.6 Conclusion
This chapter proposed a design methodology based on ASA to achieve a design apply-
ing to mode-wise voltage-scaling (MWVS) with guaranteeing no timing errors. This
work formulated the MWVS design as an optimization problem toward the minimized
energy operation by defining operation voltages for individual modes and cell sizes and
Vt types as the variables. The proposed method integrated ASA with the MCMM flow
in EDA tools, and then applied DSA to solve the problem numerically. This work also
introduced a fine-grained identification method of false paths that can be excluded in
timing optimization without any risk of timing error. The evaluation based on RISC-
V design achieved 20% gain of power efficiency compared with the conventional VS
method, where 15% gain comes from the mode-wise idea. It is also mentioned that the
fine-grained false path identification facilitated the timing closure and reduced leakage
power by more than 30%. Though this study deploys CPU as the platform, GPU-like
design should enjoy the benefit from MWVS. The mode-wise concept applies to GPU
since GPU applications range, for example, from GPU-based advanced encryption stan-
dard (AES) [105] to the popular DNN training. Applying the proposed MWVS scheme
to GPU-level applications could be the future work.



Chapter 4

DNN Training with Adaptive-Bit-
width-and-Voltage-Scaling
(ABVS)

This chapter proposes a DNN training scheme which integrates the approximate com-
puting (AC) and voltage scaling (VS) techniques to strengthen energy reduction, which
is called adaptive bit-width and voltage scaling (ABVS). ABVS starts the training from
less fraction bit-width (FB) and gradually increase FB regarding the present training
quality such as accuracy and mAP. With the fact that shorter FB can achieve shorter
latency, the length of FB in hardware is manipulated to functionally operate at each
minimum acceptable voltage (MAV) with no timing issue. Therefore, the approxima-
tion in this scheme induces the truncation error due to less FB in early training stage but
no timing error even at the scaled voltage. Experiments with couple of popular public
datasets confirms the efficacy of the proposed ABVS-based training. This chapter also
introduces the training scheme to tackle new unknown dataset with ABVS.

4.1 Introduction
Many modern applications such as large-scale image classification, object detection, or
speech recognition, conveniently, apply DNN to solve those problem. These difficult
problems tend to require large scale of dataset and sophisticated model, e.g., very deep
layers to be used in DNN, resulting in significant computation cost. Different from
inference phase, training phase needs to perform more computations due to:

• Operations for back-propagation and parameter updates

• Ever large scale of training set to strengthen generality

• Several epochs (iterations) to stabilize the model quality
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To concurrently approach the most promising solution in reasonable run time,
GPU is widely used to train modern DNN model, and 32-bit floating-point (FP32) is
the default choice. More complicated problems requiring so-called Big Data mining
such as weather prediction [106] or E-commerce [107] further need cloud comput-
ing to utilize extensive capability for computation. Since it is claimed that the train-
ing for modern DNN models are apt to be susceptible to model inaccuracy [55, 68],
the energy-beneficial AC techniques may hinder improving training quality, and de-
grade the final training quality. Therefore, most of the AC strategies focus on infer-
ence rather than training. Besides, in conventional training, the AC techniques are ap-
plied to forward propagation only, and back propagation relies on exact computation
[32, 38, 65, 66, 69, 70] or additional training stages are required [32, 65, 66]. Although
the inference and forward propagation enjoy AC benefits, the efficiency improvement
of back propagation in training has less explored despite its importance.

On the other hand, due to back-propagation and weight updates, there are more pa-
rameters generated temporarily in training phase, blocking the memory resource. To
address this issue as well, bit-width scaling (BWS) is considered to be a promising
recipe that can effectively save the memory while smoothly degrading, and thus BWS is
widely used in training acceleration. Assuming the conventional FP32 (8-bit for expo-
nents and 23-bit for fractions) is more than necessary, training with a shorter format is
explored for training efficiency improvement, and hence FP16 (5-bit for exponents and
10-bit for fractions) or even parts of FP8 are investigated in training [33, 34, 35].

However, as mentioned in Section 1.6.1, there is a concern that the FP16 format may
not have representation capability enough for modern DNN training. For certain public
datasets, researchers can accommodate DNN training into FP16 but many sophisticated
tricks and strategies are demanded [33, 34, 35] and partial computations in FP32 are
inevitable [33, 34]. If there is a new unknown dataset that need to be tackled, it is not
clear whether we can rely on FP16. Moreover, it is considered very hard to balance
the quality and the efficiency with such a limited data format, i.e., FP32 and FP16, and
therefore, configurable hardware with FB adjustability could be an alternative paradigm
for both efficient and qualifiable DNN training.

This chapter proposes an adaptive bit-width and voltage scaling (ABVS) scheme to
achieve energy minimization for DNN training. The key idea is to adopt less FB in the
early training stage while the FB is gradually increased depending on the present train-
ing quality. This ABVS scheme not only mitigates the computations during training but
also saves energy with the hardware architecture supporting configurable FB and volt-
age scaling. Since the computation with less FB reduces the complexity of the hardware
engine and shortens the latency, the extra timing margin can be used for voltage scaling
to save power consumption further. Several datasets across different applications, such
as CIFAR-10, CIFAR-100, and ImageNet, in image classification, and Pascal VOC in
object detection, are used for validating the proposed ABVS scheme.

The contributions of this chapter are:
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Table 4.1: Existing works applying AC techniques. FP/BP: forward/back propagation.
VS: voltage scaling

Ref. [32, 65, 66, 69] [38, 70] [33, 34, 35, 55, 68] ABVS
FP-AC X X X X
BP-AC X X

VS X X

• This work demonstrates that ABVS can achieve comparable training quality (0%-
0.5% accuracy loss) against FP32 in DNN training for various datasets in size.
This work also provides a guideline, to tackle with a new unknown dataset.

• The hardware evaluation in this work shows that ABVS can achieve energy reduc-
tion by 9% to 37% than fixed-bit-width training even with “least sufficient FB”
without extra iterations (epochs). If comparing to common FP32 rather than least
sufficient FB, ImageNet and Tiny YOLO + Pascal VOC enjoy 57%-62% energy
reduction.

• This work discusses why the proposed ABVS is effective in DNN training. Fur-
thermore, this work conducts a comparative study on different rounding methods:
conventional round-to-the-nearest-even (RTNE) and round-to-zero (RT0), taking
into account the hardware latency, possible voltage, scaling, and training qual-
ity. The results reveal that RTNE essentially provides a better trade-off between
training quality and energy efficiency.

The rest of this chapter is organized as follows. Section 4.2 reviews previous works
that inspire the ABVS concept. Section 4.3 describes the proposed ABVS scheme.
Section 4.4 provides experimental results based on software and hardware evaluation
through several case studies. Section 4.5 concludes this work.

4.2 Previous Work
Although several researchers apply BWS and voltage-scaling (VS) or even both to
DNN, the application strategies are different. Table 4.1 briefly categorizes the exist-
ing works. All the works in list already involve BWS or approximate arithmetic unit.
The AC techniques are applied to only forward propagation in [32, 38, 65, 66, 69, 70]
while the back propagation still relies on FP32 to compensate the approximation error
induced in the forward propagation, and [32, 65, 66] execute additional training stages
for the compensation. Besides, the general purpose of [32, 38, 65, 66, 69, 70] is to re-
alize an efficient inference engine exploiting approximations for forward computation.
Efficiency improvement of back propagation in training is beyond their interests. On
the other hand, references [33, 34, 35, 55, 68] address efficiency improvement including
back propagation. References [33, 34] adopt training with FP16 and [35] even conducts
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� Accept rough approximation

� Require accurate computing

Training Curve

Figure 4.1: Concept of gradual training approximation (GTA).

training with FP8 partially. To enable training with FP16 or even less, sophisticated
efforts are required and [35] even demands computations in FP32 partially.

Researches [55, 68] propose a gradual training approximation (GTA) scheme in
Fig. 4.1, inspiring us to develop ABVS. They claim that the early stage in training
accepts rough approximation while the late stage requires accurate computing. How-
ever, their works focus on the approximation for multipliers only and the accumulators
remain FP32 accurate type, where FP32 accumulators would spoil VS efficiency. Be-
sides, large-scale datasets and sophisticated applications are not included in their val-
idations. In general, the proposed ABVS scheme is inspired by GTA and this chapter
further integrate VS and the adaptive BWS to enhance training efficiency.

4.3 Proposed ABVS Scheme for DNN Training

The proposed ABVS scheme adopts less FB in the early training stage while the FB
is gradually increased depending on the present training quality. The proposed scheme
supposes a configurable FP hardware unit whose FB can be dynamically changed. Fur-
thermore, the configurable FP unit operates at the minimum voltage at which the FP
multiply-accumulate (MAC) result is correct for each FB configuration. In this case, the
computation with small FB saves power thanks to fewer signal transitions in the FP unit
and lower operating voltage. For minimizing training energy, this scheme should keep
the FB as small as possible throughout the training process while achieving high-quality
training.

Fig. 4.2 illustrates the procedure of the proposed ABVS scheme. The scheme start
the training with a pre-determined smallest FB denoted as FBmin, and set the initial Acheck

to 0. For every epoch, the training engine would provide a metric for estimating the
training quality, e.g., classification accuracy, and then the scheme assign it to Acur. Then,
at a certain epoch assigned for checking quality improvement, the scheme compares the
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Begin:	

Train for  epochs
Record accuracy 

YES No
ɛ

Figure 4.2: ABVS flow chart. Training finishes when i reaches T , but this process is
omitted in the figure.

latest Acur with Acheck. If the difference is smaller than ε, the scheme increases the FB by
1 for the next epoch, until reaching the max pre-determined FB, denoted as FBmax. f (i)
is a function that determines the schedule of quality checking and gives the checking
interval, where i represents the current epoch number. In a simple case, f (i) is constant.
T is the total epoch count given to training. This scheme is independent of the training
engine architecture while the amount of voltage scaling depends on the architecture and
circuit implementation.

When there is preliminary information on the training dataset, the least sufficient
FB might be known, where “least sufficient FB” is the FB that can achieve the same
quality as FP32. In this case, the least sufficient FB can be assigned to FBmax. For a new
unknown dataset, on the other hand, the least sufficient FB is unknown. A guideline
for this case is to enlarge the range between FBmin and FBmax, e.g., FBmin = 6 and
FBmax = 23. As for the checking schedule, when FBmax − FBmin is large, frequent
checking is necessary to make sure FBmax is reachable during the training. On the other
hand, when FBmax − FBmin is small, sparse checking is desirable since sparse checking
prevents unnecessary FB elevation originating from the noisy metric trend. Considering
this tendency, this scheme may suggest

f (i) = T/(α × (FBmax − FBmin)), (4.1)

where α is a tuning coefficient. The appropriate α value is experimentally discussed in
Section 4.4.2.
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Figure 4.3: Concept of BWS implementation in QPyTorch.

4.4 Experimental Results

4.4.1 Evaluation Strategy and Experimental Setup
This section evaluates the reduction of energy for training in the following two steps.
The first step is to check whether adaptive FB scaling keeps the training quality and
how much FB can be reduced in the training process. This evaluation is performed
with software emulation in Section 4.4.3, where the emulation method is explained
below. The second step, in Section 4.4.3, estimates the energy reduction supposing a
FB configurable FP unit in which the same FP format is shared by multiplication and
addition.

The experiments apply the proposed ABVS scheme to a framework called Darknet
[12]. Darknet is one of the most popular frameworks for image classification and ob-
ject detection. An advantage of Darknet is that it supports GPU acceleration, and it is
easy to apply in-depth modifications since it is fully developed by C and CUDA based
programming. Therefore, it is easy to implement the BWS rounding algorithm in it and
enjoy the GPU acceleration through Darknet environment.

In the experiments, adaptive FB scaling is emulated such that the rounding is applied
after each basic floating-point computation, where this implementation is leveraged by
QPyTorch in [108] and the schematic is shown in Fig.4.3. With this manipulation, this
evaluation can perform the computations that fully reproduce the hardware behavior
at any arbitrary FB on GPU. Thus, it is claimable that this training result is identical
to that obtained with the proposed scheme. In the following, the round-to-the-nearest-
even (RTNE) rounding method is applied. A comparison with a more straightforward
rounding method will be presented in Section 4.4.4.

Fig. 4.4 and Table 4.2 show the DNN structures and the datasets used in the exper-
iments. CIFAR-10, CIFAR-100 [109], and ImageNet [9] are for image classification,
and Pascal VOC [110] is for object detection. The DNN structure used in the experi-
ments for CIFAR-10 is the one recommended by [12], and the same structure is used
for CIFAR-100. The selected DNN structures for ImageNet and Pascal VOC are named
Darknet reference [12] and Tiny YOLO [111]. Tiny YOLO is constructed based on
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Maxp : Max-pooling with 2x2 kernels
Drop : Drop-out (probability = 0.5)
Avgp : Average-pooling

Figure 4.4: DNN structures used in the experiments.

Darknet reference, where most of the composition of the convolutional layers are iden-
tical, and only the last layers are replaced from classifier to detector. The developer of
Tiny YOLO adopts transfer learning to improve the training quality of YOLO. There-
fore, the weights are initialized in the convolutional layers using the pre-trained weights
for ImageNet.

All training cases are performed with 50 epochs in total. Learning rate decay is ap-
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Table 4.2: # of images in training and testing sets.
Dataset Training set / Testing set

CIFAR-10 & CIFAR-100 50000 / 10000
ImageNet 1281167 / 50000

Pascal VOC 16551 / 4952

plied with a poly-nominal formula, rinit × (1 − i/50)P, where rinit is the initial learning
rate and i is the current epoch. P is set to 2 for image classification and 1 for object de-
tection. The learning rate becomes 0 once it reaches i = 50. Therefore, with this setup
of the learning rate, training beyond 50 epochs is meaningless. For applying the ABVS
scheme, The “accuracy” is adopted as the metric of training quality and ε = 0.005 for
image classification, and the “mAP” and ε = 0.01 are utilized for object detection. Both
accuracy and mAP are computed for the testing datasets. In most experiments, FBmax

is set to the associated least sufficient FB. With this setup, this experiments can demon-
strate that the ABVS scheme reduces computation and energy further even compared
with the baseline training with the least sufficient FB.

For reproducing the situation that prior information is available for each dataset, this
work trained the NNs with various FBs as preliminary experiments. Fig. 4.5(a) and Fig.
4.5(b) show the training curves of CIFAR-10 and CIFAR-100, respectively, where FB
is swept. The left Y-axis shows the accuracy of the testing dataset, and the right Y-axis
indicates the learning rate. The results show that CIFAR-10 requires at least 9 bits for
fractions while CIFAR-100 may need 10 bits to reach the same quality level as FP32.
Similar experiments are performed for other datasets. The obtained FB information is
used to determine FBmin and FBmax for the experiments in the following sections.

4.4.2 FB Reduction by ABVS
Fig. 4.6 and 4.7 show the results of the proposed ABVS scheme for CIFAR-10 and
CIFAR-100, respectively, with two checking schedules described above the figures.
Here, FBmax is set to 9 for CIFAR-10 and 10 for CIFAR-100, and the FBmin is 6 in
both cases. The FB varies along the training stage, which corresponds to the right Y-
axis. The results present that the duration where FB is lower than 9 in Fig. 4.6(b) is
longer than in Fig. 4.6(a). Then, the average FB across the entire training process in
Fig. 4.6(b) is 7.66 and smaller than Fig. 4.6(b) despite the second schedule decreases
the testing accuracy by 0.3%. Similar observations are found in the results of CIFAR-
100 of Fig. 4.7. Smaller average FB involves a small penalty of the accuracy, but the
drop is not significant. Even while the training in Fig. 4.7(b) ends with 9 bits, the accu-
racy difference is only 0.4%. The energy reduction obtained from a smaller average FB
will be discussed in the next section.

Next, consider the situation that the dataset is new and unknown. The training with
ABVS is carried out using FBmin = 6 and FBmax = 23. Fig. 4.8 shows the results
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Figure 4.5: Trainings w/ fixed FB for (a) CIFAR-10 (b) CIFAR-100.

for CIFAR-10 and CIFAR-100 with different checking schedules. You can see that
checking for every two or three epochs works well since the training quality is the same
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or almost comparable as FP32 one while the FB is smaller. These results indicate that α
is between 1 and 2. This work would suggest such f (i) in Eq. (4.1) to apply ABVS for
training a new dataset.

ImageNet: Next, this work evaluates ABVS on ImageNet [9]. Fig. 4.9 shows the
results, where FBmin and FBmax are set to 11 and 14, respectively. The training curve
of ABVS traces that of FB = 14, and 0.5% accuracy loss is considered acceptable. The
result shows ABVS works even for a large-scale dataset.

Pascal VOC: Figs. 4.10(a) and 4.10(b) demonstrate the results of the first trial with
different checking schedules, where FBmin and FBmax are 10 and 12, respectively. Both
results are similar to those for other datasets, but the mAP degradation of 0.5% might
be larger compared with other cases. It is found that the maximum mAP of YOLO may
not appear at the end of iterations but in the middle. This mAP gap is found even with
other checking schedules.

Besides, adding a warmup stage, which increases the learning rate and locates at the
beginning of training, is proposed by [25] to achieve better training, and it is adopted
in YOLO training. This work empirically found that applying larger FB during the
warmup stage in YOLO training improved mAP, as shown in Fig. 4.11. The left chart
shows the given learning rate. The maximum mAP improved and is comparable with
that of training with 12 bits of FB.

Discussion: Let us discuss the reason why ABVS achieves a similar training quality
with fewer FB. K. You, et al. point out that a large learning rate in the early training
stage perturbates the training, which prevents the network from memorizing noisy data
and results in better generality [112]. On the other hand, BWS injects noise originating
from the FB truncation error, especially in the earlier stage with smaller FB. Meanwhile,
the large learning rate at the beginning may tolerate larger noise, which provides high
compatibility with ABVS.

Through the case studies above, this work has confirmed that the proposed ABVS
scheme is promising in various scales of datasets across different applications. The next
section evaluates power reduction using the results shown above.

4.4.3 Energy Reduction by ABVS

This section evaluates the power reduction thanks to ABVS. This work supposes, in
DNN training, the majority of power consumption comes from MAC computation, es-
pecially in convolution layers. Thus, this work prepares a hardware unit with config-
urable FB, which is shown in Fig. 4.12 The input of “FB mode select” determines the FB
for MAC operation. The hardware unit is implemented it with verilog and synthesized
with Nangate 45nm VTG cell library [92] at 1.0 GHz by Synopsys Design Compiler.

An important design consideration is that the FP-MAC should be able to operate at
the lowest voltage for each FB configuration. For this purpose, the FP-MAC consists
of separate circuits with different FBs that are synthesized individually at the lowest
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voltage achieving the same operating frequency. Fig. 4.13(a) shows the architecture of
each FP-MAC, where N = FB + 9 since sign and exponent bits are also included. To
include optimized floating-point multiplier and adder modules, this work used Synopsys
DesignWare IP in synthesis. The minimum acceptable voltage (MAV) for each N-bit
FP-MAC is defined as the voltage at which the circuit can be synthesized with 0 worst
negative slack (WNS). The results are shown in Fig. 4.13(b). The MAV ranges from
0.85V to 1.02V.

For energy estimation, a test input pattern is prepared representing convolution com-
putation. The power of each N-bit FP-MAC is reported by Synopsys PrimeTime using
the logic simulation result. Then, the training energy is estimated as

Energy = Tepoch × (
∑

i

(P(i) × N(i)
epoch)), (4.2)

where Tepoch is the computation duration for one epoch, P(i) is the power of i-bit FP-
MAC and the number of epochs in which i-bit FP-MAC is applied (denoted as N(i)

epoch).
Fig. 4.14(a) shows the energy reductions, which correspond to Figs. 4.6, 4.7, 4.9,

and 4.11. The values in Fig. 4.14(a) are normalized by the energy consumed by the
training with the least sufficient FB. The results show that even comparing with the
training with the least sufficient FB, the proposed ABVS can achieve 9% to 37% energy
reduction.

Let us assume another case that only either of FP16 and FP32 is choosable. In this
case, the proposed ABVS scheme provides larger values of energy saving. Fig. 4.14(b)
shows the energy reduction, where the energies of CIFAR-10 and CIFAR-100 are nor-
malized by those of FB = 10 (same precision as FP16), and the energies of ImageNet
and YOLO are normalized by those of FP32. The ABVS achieves larger energy re-
duction. Especially for ImageNet and YOLO, 57%-62% energy reduction is achieved.
On the other hand, if the voltage scaling is not applied, i.e., only BWS is applied, the
energy reduction becomes less, as shown in Fig. 4.14(a). There is a 15% difference
in CIFAR-100. Thus, simultaneous FB and voltage scaling in the proposed scheme are
effective.

Finally, this section demonstrates the energy reduction for CIFAR-10 and CIFAR-
100 with unknown dataset treatment. Fig. 4.14(c) shows that the proposed ABVS can
reduce training energy by 25% to 69% even for unknown datasets.

Although this configurable design provides significant energy saving with BWS and
VS, it is the fact that the circuits with different FBs implementing in parallel are too
naive and would result in huge penalty of area. Compared with a solo 32-bit FP-MAC
design, the area overhead of the implemented configurable unit is 10X. Note that this
area overhead could be exacerbated if considering additional margin to accommodate
manufacturing and environmental variations. On the other hand, multiple voltage reg-
ulators, multiple voltage rails or level shifters are not necessary since the entire circuit
is operating at the same voltage. The possible way to supply the voltage is with a small
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controller to control the flow in Fig. 4.12 and determines the number of FBs. Also,
each FB is associated with the operating voltage, which might be stored in a look-up
table. In this case, referring the table, the controller can control the operating voltage.
When constructing the table, the environmental variation might be considered. On the
other hand, the evaluation in the dissertation did not consider the environmental varia-
tion since it is applicable to any design, i.e., not unique to the configurable FB design,
and hence it is beyond the scope of this work. A more sophisticated and area-efficient
configurable FP-MAC design methodology is intended to be the future work, where a
possible design method is going to be introduced in Section 4.4.5.

4.4.4 Rounding Methods

Lastly, this chapter discusses the rounding method suitable for the proposed ABVS.
IEEE 754 adopts round-to-the-nearest-even (RTNE) as the rounding method. On the
other hand, rounding requires more operations and thus results in longer timing paths,
which prevents voltage scaling. Instead, round-to-zero (RT0) is the most hardware
friendly method, and it might achieve more power saving from voltage scaling. Hence,
this work evaluated the MAVs for RTNE and RT0, which are plotted in Fig. 4.15. RT0
can roughly reduce the MAV by 25 mV compared with RTNE.

Next, the impact of rounding methods on the training quality is evaluated. Fig. 4.16
shows the training curves for CIFAR-10 and CIFAR-100 with different rounding meth-
ods. The results show that RT0 requires 2 or 3 more bits to achieve comparable training
quality against RTNE. On the other hand, about 2- to 3-bit difference corresponds to
more than 30 mV in operating voltage. These results indicate that RTNE provides a
better energy-quality trade-off, and it is superior to RT0. Therefore, this chapter applied
RTNE to all the experiments except in this section.

4.4.5 Potential Solution for More Area-efficient FB-configurable
FP-MAC Design

This section introduces an implementation approach that might be available to acheive
FB-configurable FP-MAC design with less area overhead.

The main idea is to apply round-to-the-nearest (RTN) scheme instead of RTNE
scheme, where RTN relies on fewer bits during rounding process. This difference en-
ables shorter latency and facilitates FB configurable design, which will be explained
later. Fig. 4.17 shows the comparison of the algorithms between RTNE and RTN. The
first column in the truth tables shows the rounding results, where the rounding is per-
formed between the m-th and (m-1)-th values. You can see the RTNE uses the m-th to
0-th values whereas the RTN depends on only the (m−1)-th value. There is one row that
outputs different values between RTNE and RTN. The condition of the different outputs
is that the m-th value is 0, (m−1)-th is 1, and all the values from the (m−2)-th to 0-th
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are 0. The occurrence probability of this condition is rare, and hence it is conceivable
that training results adopting RTN could yield similar results as that adopting RTNE.
Fig. 4.18 shows that RTN performs almost the identical results as RTNE. Therefore,
RTN can be exploited in the new FB-configurable FPU design.

From a circuit design perspective, RTN can simplify the structure and has a higher
compatibility with the configurable design. Fig. 4.19 illustrates the scenario of new
design. The new design is basically a 32-bit FP design. No matter what the FB mode is
specified and some bits in input A and B are masked, the calculation is performed based
on this design and then the calculated result is rounded according to the specified FB. In
order to achieve larger VS, the paths starting from the FFs representing different bits of
Input A and B are manipulated to have different timing margins, where the achievable
margin could vary with the bits. In theory, the paths from the bits getting closer to
the most significant bit (MSB) are expected to have larger achievable timing margin.
Therefore, when the number of FB becomes smaller, the larger timing margin brings
larger VS without timing errors. Since RTN has less function complexity compared
with RTNE, more timing margin can be squeezed. Here, RTNE needs to consider the
0-th bit whatever the FB-mode as discussed above, where the paths starting from 0-th bit
are thought to be the most timing critical. Therefore, RTN is expected to provide larger
VS. This design basically includes one 32-bit design, and then it is expected that the
area overhead is significantly smaller than the current implementation shown in Section
4.4.3. The detailed implementation of the FB-configurable design is going to be a future
work.
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Figure 4.6: Trainings w/ ABVS for CIFAR-10 with two checking schedules.
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Figure 4.7: Trainings w/ ABVS for CIFAR-100 with two checking schedules.
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FP-MAC architecture (single mode): 

� N-bit registers, N = FB + 9
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Figure 4.13: (a) Schematic of a single FP-MAC with N-bit. (b) MAV results for each
FP-MAC with different FBs.



96
CHAPTER 4. DNN TRAINING WITH

ADAPTIVE-BIT-WIDTH-AND-VOLTAGE-SCALING (ABVS)

86% 82%

63%
70%

90% 91%93% 90%

78% 81%

94% 92%

A B A B

CIFAR-10 CIFAR-100 Tiny YOLO
+ Pascal

VOC

ImageNet

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Normalized to least sufficient FB

ABVS

BWS

(a)

73% 70%
63%

70%

38% 43%

83% 81% 78% 81%

46% 50%

A B A B

CIFAR-10 CIFAR-100 Tiny YOLO
+ Pascal

VOC

ImageNet

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Normalized to FB: 10 or FB: 23

ABVS

BWS

(b)

61%

38%

75%
58%

31%

69%

f(i) = 1 f(i) = 2 f(i) = 3 f(i) = 1 f(i) = 2 f(i) = 3

CIFAR-10 CIFAR-100

E
n

e
rg

y
 

C
o

n
s

u
m

p
ti

o
n

Normalized to FB: 10 or FB: 23 (FBmax = 23)

(c)

Figure 4.14: Energy of ABVS training (a) normalized by that of least sufficient FB (b)
normalized by that of FB: 10 or FB: 23 (c) normalized by that of FB: 10 or FB: 23 for
CIFAR-10/CIFAR-100 with unknown dataset treatment.



4.4. EXPERIMENTAL RESULTS 97

0.80

0.85

0.90

0.95

1.00

1.05

5 10 15 20 25

M
A

V
 (

v
)

Fraction Bits

RTNE (baseline) RT0

Figure 4.15: MAV comparison between FP-MACs with RTNE and RT0.

60%

80%

100%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 7

FB: 8

FB: 9

FP32

60%

80%

100%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 10

FB: 11

FB: 12

FP32

40%

60%

80%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 7

FB: 8

FB: 9

FB: 10

FP32

40%

60%

80%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 10

FB: 11

FB: 12

FP32

RTNE RT0

CIFAR-10

CIFAR-100

CIFAR-10

CIFAR-100

Figure 4.16: Comparison in training quality between RTNE and RT0.



98
CHAPTER 4. DNN TRAINING WITH

ADAPTIVE-BIT-WIDTH-AND-VOLTAGE-SCALING (ABVS)

m

m-1

m-2

��

0

Scheduled 
for rounding

RTNE m m-1 m-2 | m-3 | … | 0

0 0 0 0

0 0 0 1

0 0 1 0

1 0 1 1

0 1 0 0

0 1 0 1

1 1 1 0

1 1 1 1

RTN m m-1 m-2 | m-3 | … | 0

0 X 0 X

0 X 0 X

1 X 1 X

1 X 1 X

0 X 0 X

0 X 0 X

1 X 1 X

1 X 1 X

Truth table to determine the results of rounding (1 or 0)

Figure 4.17: Truth-table-based algorithm comparison between RTNE and RTN.

60%

80%

100%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 7

FB: 8

FB: 9

FP32

60%

80%

100%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 10

FB: 11

FB: 12

FP32

40%

60%

80%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 7

FB: 8

FB: 9

FB: 10

FP32

40%

60%

80%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

FB: 10

FB: 11

FB: 12

FP32

RTNE RTN

CIFAR-10

CIFAR-100

CIFAR-10

CIFAR-100

40%

60%

80%

0 20 40

T
e

s
ti

n
g

 A
c

c
u

ra
c
y

 (%
)

Epochs

FB: 7

FB: 8

FB: 9

FB: 10

FP32

60%

80%

100%

0 10 20 30 40 50

T
e

s
ti

n
g

A
c

c
u

ra
c

y

Epochs

FB: 7

FB: 8

FB: 9

FP32

CIFAR-10

CIFAR-100

RT0

Figure 4.18: Comparison in training quality between RTNE, RTN and RT0.



4.4. EXPERIMENTAL RESULTS 99

32-bit 

FP-MAC

�

19
20
21
22

0
1
2
3
4
5
6
7
8
9

10
11

23

31

�
Bits for 

Sign and Exponents
�

�

Longest path delay 

starting from i-th FF, 

where i is the bit ID

0 Clock Period

FF corresponded to 

Input A, B

Manipulated timing margin

Bits for Fractions

�

Figure 4.19: Proposal for a FB-configurable FP-MAC design with less area-overhead.



100
CHAPTER 4. DNN TRAINING WITH

ADAPTIVE-BIT-WIDTH-AND-VOLTAGE-SCALING (ABVS)

4.5 Conclusion
This chapter proposed the ABVS scheme for DNN training to minimize energy con-
sumption. With a hardware unit with FB configurability, the proposed scheme can con-
currently perform bit-width and voltage scaling during training, which enlarges energy
saving. The proposed ABVS is proved to apply to various datasets across different ap-
plications with negligible quality loss (at most 0.5%) while saving at most 62% energy
comparing and up to 37% energy is reduced even comparing with training in the least
sufficient FB.



Chapter 5

Conclusion

This dissertation aims at providing a promising solution to achieve an efficient yet high-
quality DNN training engine to facilitate both high-end GPU designs and server- or
device- level designs. The main countermeasures to achieve efficient training are two
fields; (1) approximate computing (AC) and (2) voltage scaling (VS). While either one
of them can contribute to incredible power/energy efficiency, the two countermeasures
applied concurrently provide a significant synergy effect for the energy efficiency im-
provement in DNN training.

For (1), AC, a LAM-based floating-point NN training is introduced in Chapter
2. LAM approximates the floating-point multiplication to fixed-point addition, which
achieves shorter delay, less gate, and power consumption to mitigate primary MAC
computation in NN training. Besides, LAM is highly compatible with conventional
BWS technique. Even when BWS is already implemented in training, LAM is still ap-
plicable and the power efficiency can be further enhanced. In Chapter 2, there are two
platforms selected to demonstrate the efficacy of LAM-based neural network training,
where one is dedicated hardware (ASIC) and another one is GPU-level processor. Ex-
perimental results show that through dedicated training hardware, LAM-based training
achieves 10% speed-up and 2.3X power reduction and the same ratio of area saving
as well when training a 2-D classification dataset, where the improvement is compared
with training with exact multipliers synthesized at the same speed. Training NNs with
LAM + BWS, about 4.9X energy efficiency, where 2.2X originates from LAM, is at-
tained while the accuracy has no more than 1.0% discrepancy, sometimes even better.
This work then quantified LAM performance through an open-source GPU design and
evaluated the power reduction based on FPGA hardware measurement. The experiment
results confirmed 28% power efficiency improvement in the LAM-embedded GPU de-
sign compared with GPU design with regular 32-bit floating-point multiplier, and 41%
for GPU design with LAM + BWS. The final experiment in Chapter 2 experimentally
qualified the applicability of LAM and LAM + BWS for NN with up to 4 hidden layers,
and confirmed that LAM can sustain the training quality even with aggressive BWS.

As for (2), VS is a classical yet powerful technique to achieve power/energy reduc-
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tion for many low-power applications, including NN engine. ASA is a state-of-the-art
technique that can enhance VS efficiency. This dissertation presents a design method-
ology based on ASA to achieve a mode-wise voltage scalable design with guaranteeing
no timing errors in Chapter 3. The MWVS design flow can be formulated as an opti-
mization problem toward the minimized energy operation for identifying the operation
voltage for individual modes as well as the cell sizes and Vt types in the design. To solve
the formulated problem, the ASA is integrated with MCMM flow in EDA tools giving
the identified false paths, and DSA is applied in this work as an effective algorithm
to search the optimal solution space. As the results, the design after mode-wise ASA
enables mode-wise voltage scaling, and the temporal bias of the mode usage could be
exploited to contribute to overall power saving. Chapter 3 also introduced a fine-grained
identification method for false paths that can be applied in MWVS without any concern
for timing error and glitch issues. The evaluation results based on RISC-V CPU design
show that the proposed MWVS methodology can reach 13%-20% overall power gain
compared with the conventional VS method, where 8%-15% gain originates from the
mode-wise idea. The introduced fine-grained false-path identification also benefited the
timing closure and successfully reduced the leakage power by 31%-42%.

This dissertation then introduced adaptive bit-width and voltage scaling (ABVS)
scheme in training in Chapter 4, which can be considered as a naturally integrated solu-
tion for (1) and (2) to intensify energy reduction for DNN training. The BWS, one of the
conventional AC technique introduced in Chapter 2 and the mode-wise voltage scaling
scheme mentioned in Chapter 3 form the mechanism of Chapter 4. The main idea is to
leverage a hardware unit with fraction bit-width (FB) configurabililty, and then starting
from less FB, and gradually increase the FB according to the present training quality.
The nature of achievable shorten latency for less FB, which is exploited in MWVS de-
sign, contributes to an efficient tuning knob of scaled voltage, and hence this scheme
can concurrently perform bit-width and voltage scaling to realize efficient training. Var-
ious public datasets were chosen for validating ABVS efficacy. The negligible quality
loss (at most 0.5%) yet at most 62% energy saving and up to 37% energy reduction even
comparing with training in the least sufficient FB were attainable. Besides, the proposed
ABVS flow can also apply to new unknown datasets even without pre-understanding its
baseline accuracy. The reason why ABVS works in modern DNN training and a bench-
marking for hardware quality-efficiency trade-off between two rounding methods are
also addressed in Chapter 4.

Overall, this dissertation aims at providing useful techniques to realize efficient
DNN training, and confirms approximate computing and mode-wise voltage scaling are
applicable and effective strategies. However, the study in this dissertation is just a part
of the area to achieve energy-efficient training, and many questions are still not well-
investigated. Many countermeasures relevant to DNN are mainly based on empirical
studies and the effects for tackling new models or new datasets always have concern.
Regarding Chapter 2, the efficacy for LAM in more sophisticated DNN structures or
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larger size of dataset is worthy to be evaluated. Also, training with other data repre-
sentations such as fixed-point or log-domain could be involved into the benchmarking
for comparing their trade-off between quality and efficiency. Besides, the performance
evaluation through more recent training hardware with the FB-configurable FPU design
introduced in Chapter 4 is also challenging yet worthy of further study. Developing a
good hardware evaluation environment for DNN training inspires many attractive stud-
ies, such as involving other AC techniques or layer-wise approximation into training.

The MWVS design methodology introduced in Chapter 3 has the potential for gener-
ality to apply on several applications demanding low-power. Therefore, the application
for MWVS on other platforms is worthy to be investigated. Also, MWVS is not neces-
sary to rely on DSA to search the solution space, and there are many combinations of
detailed implementation for achieving MWVS, which leaves many valuable directions
for the next scope.
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