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Abstract 

   

  Facility location decisions are one of the important elements in the strategic 

planning of supply chains and they have applications in both private and public 

sectors. The importance of having optimal facility locations has two main folds. The 

first reason is that facility location decisions are strategic and they cannot be easily 

changed. The second reason is that the location of facilities can have a direct impact 

on other supply chain decisions as well. This thesis addresses the importance of 

locating emergency facilities by developing the novel game theoretical model for 

covering facility location problem. First, by defining different structural units of the 

facilities as the modules, a modular maximal covering location problem having 

back-up service coverage for demand nodes in a multi-period framework is 

proposed. Considering back-up services for the demand of points from the modules 

can increase the service quality that is a vital optimization objective for applications 

such as emergency services. A heuristic method and a genetic algorithm are 

developed to solve the computational test problems. 

  Second, a hybrid covering location problem that integrates the set covering and 

maximal covering location problem is developed for the first time to benefit from 

the advantages of these two models in one model. The hybrid model distinguishes 

between facilities and the structural units of facilities as the modules and locates the 

facilities according to the coverage concept of set covering location problem to 

provide service for all demand points. The hybrid model assigns the limited number 
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of modules using the coverage concept of maximal covering location problem to 

maximize the total covered demands. 

 Third, using the developed models in the previous parts, this thesis studies the 

covering facility location problems from non-cooperative game theoretical approach 

to investigate the related non-cooperative theoretical and mathematical model of 

covering model and the solving complexity. The non-cooperative approach is 

studied using the Stackelberg game perspective for maximal hub covering location 

problem, which is resulted into a bi-level mathematical formulation of the problem. 

In the bi-level maximal hub location problem, the freight companies who seek to 

find the optimal location of the hubs to have the maximal amount of covered 

demand are the leaders, while the customers looking for the minimum price among 

different available companies are the followers. Furthermore, the difficulty to deal 

with the bi-level mathematical model is addressed in order to solve the problem. 

Two reformulation techniques as dual-based and Karush-Kuhn-Tucker-based 

reformulation are developed to reformulate the bi-level problem to a single level 

problem. As the obtained single-level problems are difficult to solve, a Benders-

decomposition-based method is proposed and used to solve the test problems and 

investigate the efficiency of the reformulation techniques and the solution 

procedure.  

  The obtained results from numerical experiments and analysis indicate that the 

integrated mathematical model developed for hybrid covering location problem is 

capable of improving the coverage percentage compared to the conventional models 

and other possible integrated models. The case study that is conducted to validate 

the capability of the hybrid model also approves the applicability of this model in 

modeling emergency humanitarian logistic systems. Furthermore, the developed 
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maximal hub location problem can reflect the non-cooperation framework for 

freight companies while they compete to attract more customers by rational 

behaviors who want to use the player with less price. On the other hand, the 

developed reformulation and decomposition procedures to solve the problem 

approves the efficiency of the procedures to solve large scale problems.  

  The future work for this thesis can be suggested as studying the developed models 

in the presence of uncertainty from both stochastic and robust optimization point of 

views. The other direction for future studies is to develop an efficient solving 

procedure for the developed hybrid covering location model.    
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Chapter 1 

 

 1. Introduction 

 

1.1 Facility location problems and supply chain management 

  Supply chain management (SCM) encompasses the broad range of activities to 

plan, control and execute the products' flow from materials to production to 

distribution in an economical and optimized way. Supply chain management 

contains the comprehensive processes that answers the questions such as: where to 

locate plants and distribution centers, where to produce, how to produce, and how 

much to produce at each site, what quantity of products to hold in inventory at each 

stage of the production, and how to share information among parties with the 

objectives of cost minimization and customer satisfaction. Figure 1.1 shows the 

elements of supply chain management and the position of facility location problem 

among the elements developed by Stevenson [1]. According to this figure, Stevenson 

[1] introduces nine elements of supply chain decisions as location, forecasting, 

customers, design, processing, inventory, purchasing, suppliers and logistics. The 

element of the location deals with finding the optimal location for the facilities. In 

this regard, Sunil and Peter [2] describe the facilities are a key driver of supply chain 

performance in terms of responsiveness and efficiency. They indicate that if the 

companies manufacture and store their products in the same place, it provides 

efficiency and if the companies locate the facilities close to the customers (there is a 

need to more facilities in this case), they can achieve higher responsiveness.  
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Figure 1.1: The elements of supply chain management and position of facility 

location problems [1]. 

   

There are three planning levels in SCM that are usually distinguished depending on 

the time horizon as: strategic, tactical and operational. The strategic level entails 

long-term planning decisions, midterm decisions are related to tactical level and 

short-term decisions are made at the operational level. One of the most critical 

strategic level decisions in each supply chain is the decision of the facility locations. 

The importance of facility location decision becomes apparent by considering the 

point that the locations of the facilities cannot be changed once they are constructed 

and the influences, they can have on other decisions of SCM such as transportation, 

inventory and production quantity.  
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  In general, in a facility location problem, there is a set of customers with some 

demands to be served by a set of facilities. In this regard, there are some criteria that 

have to be taken into account to model and optimize the problem. Demands, 

distance, time and costs between customers and facilities are of such criterion. The 

most general solutions of a facility location problem are the locations to open a 

facility and the allocation of customers or demand points to the opened facilities 

with the objective of minimizing the total cost (or maximizing the income or profit).  

In addition to this generic setting, a number of constraints arise from the specific 

application domain of each facility location category.  

  The literature of facility location problems can be investigated from different 

perspectives. Boonmee et al. [3] categorize the deterministic facility location problem 

in four major groups as: minisum facility location problem, covering problem, 

minimax facility location problem, and obnoxious facility location problem. The 

minisum problem seeks to locate a defined number of facilities at most in order to 

minimize the total transport distance between the demand points and selected 

facilities. In the same way, the minimax facility location problem locates the 

predefined number of facilities but minimized the maximum distance between 

demand points and the located facilities. In contrast to the minisum and minimax 

problems, the obnoxious facility location problem seeks to have demand points far 

from facilities and have applications in locating chemical plants, nuclear reactors, 

garbage dumps, or waste-water treatment plants. The covering location problem 

seeks to find a location of facilities like fire stations or shelter sites to cover the 

demand points within distance or time limits. It consists of two main problems as 

set covering location problem (SCLP) and maximal covering location problem 
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(MCLP). The SCLP was developed by Toregas et al. [4] and aims to provide coverage 

for all points by finding the minimum number of facilities to be located. Covering 

all points is an ideal objective that might not be compatible with all systems, because 

in most of the management systems the resources or budgetary limitations have to 

be taken into account. MCLP can be the appropriate model for these conditions 

when the demand points covered by the predefined number of facilities are 

maximized that was developed by Church and ReVelle [5]. The basic facility location 

problems were mostly developed having common characteristics that made them 

insufficient to cope with many realistic facility location settings such as capacity 

limitations of the facilities and extending the location decisions through planning 

time horizons. Therefore, many extensions to the basic problems have been 

considered and extensively studied. The next sections introduce some of these 

extensions on covering facility location problems as the main focus of this research 

belongs to this category of facility location problems.                                                        

 

1.2 Multi-period and capacitated covering location problems 

  In the basic formulation of covering location problems, i.e., set covering and 

maximal covering location problem, there is no limitation for the capacity of the 

located facilities and they are formulated for a single time period. Uncapacitated 

facility means that service by each facility can be provided limitless as long as 

demand points are within the coverage standard. However, in most of the real-

world applications of covering problems, considering capacity limitations for 

facilities is a more realistic assumption. Most facilities have limits on service 
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capabilities due to physical, political, structural, regional, and other reasons [6]. 

Current and Storbeck [7] considered facility capacity restrictions for the covering 

location problems and introduced the capacitated versions of SCLP and MCLP 

formulations.  

  Another restrictive assumption of basic covering location problems is considering 

the planning through the time horizon called multi-period or dynamic models. So-

called dynamic location models consider a multi-period operating context where the 

demand varies between different time periods [8]. Dynamic models are classified 

into two categories: explicitly dynamic models and implicitly dynamic models. In 

explicitly dynamic models, facilities may close and open in time periods in a 

response to the parameter variation over time. In implicitly dynamic models, a part 

of the facilities opens in the beginning of the time horizon and the rest of them open 

throughout the time horizon to take account the increase in demands [9]. Extending 

the covering location models to a multi-period or a dynamic structure is more 

common for MCLP [10]- [11] rather than SCLP. The reason is that SCLP provides 

full allocation of demand points from fixed located facilities and there is no need to 

alter these locations in different time periods unless the problem is studied in the 

presence of demand fluctuation [12] and expansion possibilities for capacitated 

facilities. In multi-period MCLP, decision makers are interested in finding the 

optimal way of locating a definite number of facilities in different periods. The 

application of multi-period MCLP can be found in locating emergency service 

centers in populated regions that on-road accidents may happen and the number of 

facilities to be located may fluctuate between different periods of time because of 

daily traffic, weather situation and etc. Moreover, each opened facility at the 



1. Introduction 

6 

 

beginning of a time period can be closed at the end of that time period in a multi-

period MCLP [13]. In this regard, Marín et al. [14] addressed a general discrete 

covering location model in which they considered a finite planning horizon that is 

partitioned into several time-periods. Because the time periods are not necessarily 

of the same length and in each period, it is allowed that multiple facilities/equipment 

can be opened or closed in each location at some costs. Furthermore, Marín et al. [14] 

assumed that each demand point should be covered by at least a specific number of 

facilities and the coverage less than the minimum threshold undergoes a time 

dependent penalty cost. These features of the studied problem result to a different 

way of demand point allocations to the facilities in each time period.  

  Bagherinejad and Shoeib [15] studied the multi-period maximal covering location 

problem in which the total number of facilities that have to be opened, is located 

gradually over time periods. From this perspective, their model is an implicitly 

dynamic model. Another characteristic of their developed model is the dynamic 

capacity for each of the located facilities. As the application of their model is locating 

ambulances in emergency bases, locating a different number of ambulances in each 

time period makes it possible to set different levels of capacities in each time period. 

Vatsa and Jayaswal [16] developed the multi-period capacitated maximal covering 

problem considering uncertainties in server availability. Their problem addressed 

allocating doctors to non-operational primary health centers and as the population 

that needs to be served by the facilities was changing over time, they studied their 

problem in different time periods.  
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1.3 Hierarchical and modular location problem 

  Hierarchical facility location problems use “hierarchy” to describe the problem as 

the coordination of location decisions for different type facilities in multi-level 

systems [17]. For example, healthcare systems are one of the most studied systems 

in the literature. The hierarchy refers to the number of levels in healthcare facility 

systems such that in a three-level example, there may exist demand points, local 

clinics, hospitals, and regional hospitals as different levels of facilities. Note that the 

definition of hierarchy in the hierarchical facility location problem context and 

hierarchical decision making and optimization context is totally different. In 

hierarchical facility location problems, the hierarchy refers to different levels of 

available facilities and have applications in health care systems, solid waste 

management systems and education systems [17] and each of the applications is 

composed of different kinds of facility and demand points are allocated to the lower-

level facilities and then lower-level facilities are allocated to the higher level 

facilities. However, in hierarchical decision making, the decisions of strategic, 

tactical and operational levels are decided in each level of decision making in a 

hierarchical format and the higher level decisions are used in lower-level decisions 

[18]. Figure 1.2 depicts an illustration of clinics and hospitals as different levels of 

hierarchical facility location problem. 

  Hierarchical facility location problems are classified in two groups based on their 

objective functions. In the first group, the costs are to be minimized while in the 

second group the focus is on the configuration of the facilities in order to maximize 

the demand point coverage. The traditional hierarchical maximal covering location 



1. Introduction 

8 

 

 

  Figure 1.2: Schematic illustration of hierarchical facility location problem. 

 

problem was formulated by Daskin [19] for the first time and Farahani et al. [20] 

extended the model of hierarchical maximal covering location problem by 

considering the risk of disruptions. An example of a hierarchical facility in their 

study is having clinics and hospitals are going to be located within a city at the 

different level facilities. The objective function is to maximize the expected covered 

demands while considering the risk of disruptions (disasters such as congestion, 

earthquakes, floods and adverse weather conditions) for different levels of facilities 

in the mentioned hierarchy of different facilities.  

  Modularity is almost a newer concept that is utilized by researchers to attain multi-

level systems. In the field of location problems, the modularity concept is used to 

represent different types of facilities [21] or applied in arcs when there are different 
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kinds of vehicles for transportation [22]. It can generate hierarchical facilities as well. 

The main difference between modular and hierarchical facility location problems is 

that modular facility location problems can have more levels of facilities because 

various types of modules, the number of them and different sizes of modules may 

create a diversity of multi-level facilities. Modularity is a strategy recognized by 

academia and industry and plays an important role in the development of 

sustainable systems. The modular location problem is one of the important research 

streams of this thesis, which is applied to facility location problems recently. For 

instance, Addis et al. [23] studied a two-level capacitated facility location problem, 

where two sets of facilities have to be located in which different devices can be 

installed at each site that can provide various capacities with different costs. Four 

kinds of decisions are made in their model, whether or not to open a higher-level 

facility, whether or not to open an intermediate level facility with a device kind, 

assigning this intermediate level facility to the higher level one or not and finally 

allocation of demand points to the intermediate level facilities. Moreover, Correia 

and Melo [21] presented a multi-period facility location problem with modular 

capacity that is adjustable according to the flexible demand fulfillment. In their 

model, customers were divided according to different sensitivity to delivery lead 

times. They also proposed two mixed integer linear programming formulations and 

did an extensive numerical study on randomly generated data with different 

demand patterns. The objective of their model is to find the minimal cost schedule 

for facility opening and closure, the capacity expansion decisions in each time period, 

and the allocation of demands to operating facilities in each time period. Yin and 

Mu [24] proposed two variants of the capacitated MCLP for fixed and unfixed 

https://www.sciencedirect.com/topics/engineering/mixed-integer-linear-programming
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number of facilities to be located assuming the ambulances as the modules and 

facilities of the emergency service problem. In the first developed model that the 

number of the facilities to be located in each candidate location is unfixed, the 

number of facilities (ambulances) to be located can be any integer number in such a 

way that the sum of all located facilities cannot exceed the available facilities. 

However, in the second model they developed the number of facilities that can be 

located in each candidate location is restricted. The difference of two models is that 

in the first model all the available modules can be located in one location but the 

second model defines a limitation for the number of located modules in each 

candidate location. They formulated a static capacitated MCLP and utilized the 

geographical information system to solve it.  

 

1.4 Hub location problem 

  In network systems that some physical or non-physical flow needs to be 

transferred from one node (as origin) to another node (as destination), it is not 

practical to connect all the nodes with each other. The solution to overcome the 

problem of connection is to select some of the central nodes as the hubs and conduct 

the connections through these hubs, as illustrated in Figure 1.3. Figure 1.3 (a) shows 

the connection between nodes when there is no hubs and Figure 1.3 (b) shows the 

same nodes connected by using hubs. The problem of finding the optimum location 

and the number of hubs is called a hub location problem which seeks to locate 

facilities in potential hub nodes in networks and allocate other non-hub nodes to 

these hubs. This problem has applications in the design of air transportation 
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Figure 1.3: (a) non-hub sytem. (b) hub system. 

  

networks, distribution systems for perishable products, postal delivery networks, 

and tourism routing. Researchers have developed many kinds of hub location 

problems that can be distinguished based on different criteria such as: solution 

domain, objective function criterion, allocation type, etc. The literature on hub 

location problems can be categorized into two main groups concerning the objective 

function type. The first category belongs to the problems that aim to minimize the 

costs of locating and operating the hubs, while the second category of problems 

prioritizes the service levels to the cost issues, mostly known as p-hub center 

problem and the hub covering problem. The p-hub center problem minimizes the 

maximum distance, time or cost between hubs and their allocated nodes. The p-hub 

covering location problem attempts to locate hub facilities in such a way that the 

origin/ destination pair of two non-hub nodes is covered by a pair of hub nodes 

under a predefined coverage distance, time or cost. Similar to the covering location 



1. Introduction 

12 

 

models, the p-hub covering location problem has two main variants as hub set 

covering location problem and the p-hub maximal covering location problem. Hub 

set covering problems is defined to provide services for all origin/ destination pairs 

with the objective of minimizing the total number of hubs or hub location costs while 

p-hub maximal covering location problem maximizes the covered flows in origin/ 

destination pairs locating a pre-defined number of hubs.  

  In most of the hub location problems, the demands can just happen from origin/ 

destination pairs but Karimi and Bashiri [25] studied the case that the demand can 

raise from all nodes of the network. An example of this kind of problem in real life 

can be when passengers in an airline network don’t want to take a flight more than 

a specific time. For these kinds of demands, Karimi and Bashiri [25] presented four 

kinds of covering problems as single allocation and multiple allocations for both hub 

set covering and p-hub maximal covering location problems. In single allocation 

problems, each node is restricted to be allocated to only one hub, while in multiple 

allocation problems the nodes can get service from more than one hub.  

  Although the coverage distance is a given parameter to develop the covering 

models, there are some studies that consider the coverage radius as a decision 

variable. Ebrahimizedeh et al. [26] studied the multi-period hub set covering 

location problem with such variable coverage radius. The variable coverage is 

applicable in the telecommunication systems when the area covered by the radio 

waves depends on the strength of the transmitted waves, and by reinforcing the 

radiation, larger areas may be covered by the hub node. As a result of such variable 

coverage having a larger covering radius, it has an impact on the number of located 

hubs and may reduce the number of needed hubs. Their developed model 
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minimizes the transportation, hub location and coverage costs and each opened hub 

can have a coverage distance in each time period that is determined as one of the 

solutions of the problem. In addition, they allow a single allocation of nodes to the 

hubs, not considering capacity constraints for hubs but allow the opened hubs to be 

closed and vice versa over time.  

   

1.5 Double coverage and back-up covering location problem 

  In a system without back-up service, when a call for service occurs, the nearest 

ambulance or firefighting truck would dispatch. The problem is when all the 

ambulances or trucks are fully utilized and a call arises asking for service before the 

others have returned to the base. The solution in this situation can be the back-up 

service provided from another facility and its resources must be brought to bear. 

This back-up facility is unlikely to be as close to the incident as the primary 

ambulance. The need for back-up service seems mandatory designing the service 

providing systems in regions with high demand. The first attempts to include the 

back-up coverage for demand nodes was fulfilled by Hogan and ReVelle [27] in their 

proposed a hierarchical objective set covering model, which was a bi-objective 

model minimizing the number of located facilities to cover all demand points in the 

first objective. However, the second objective counted number of the times each 

demand point was covered more than the first-time coverage and maximizing these 

numbers. Their developed model had a set of constraints similar to the original set 

covering location problem but it set the demand points to be covered more than one 

time. The maximal covering location problem with back-up services was addressed 
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by Pirkul and Schilling [28] for the first time. In their model, they had two kinds of 

demands and coverage distances for primary and back-up cases. On the other hand, 

the decision variables of demand node allocations to the facilities were two kinds 

corresponding to the primary and back-up allocation of demand nodes to the 

facilities. For the same concept from a different modeling perspective, Başar et al. 

[29] developed a new model that can provide back-up coverage for demand points 

by having fewer decision variables. The difference between their model and Pirkul 

and Schilling [28] model is that in Başar et al.'s model the demand points are not 

supposed to be covered unless they are allocated to two opened facilities. Another 

innovative problem modeling the back-up coverage for maximal covering location 

problem for locating police patrols is presented by Curtin et al. [30] who let the 

binary conventional variable for facility location take any integer number less than 

the pre-determined one. Accordingly, the number of police patrols that can be 

located in areas can be 0, 1, 2 or more but the sum of all located patrols cannot exceed 

the available resources. The model was tested using a case study in Dallas, TX that 

the results approved using the optimization problem can improve the number of the 

incidents covered and the total distance traveled by the located police patrols.  

  Another study is conducted by Erdemir et al. [31] who considered both air and 

ground ambulances to provide services for emergency request modeling with both 

SCLP and MCLP. Three coverage options were possible: only air ambulance, only 

ground ambulance or teamwork in such a way that the ground ambulance carries 

the patient to a place that can be reached by air ambulance. Their model took into 

account the uncertainty in demands and used a greedy heuristic to solve the problem 

of a case study in New Mexico State.  

https://scholar.google.com/citations?user=WkpUbcUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=WkpUbcUAAAAJ&hl=en&oi=sra
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1.6 Game theory and covering location problem 

  In the literature of game theory, games are classified into cooperative and non-

cooperative games. In non-cooperative games, decision makers act solely and do not 

admit any promises trying to take advantage of competing with other rivals. 

Cardinal & Hoefer [32] studied the SCLP from a non-cooperative game theory point 

of view, in which the players want to satisfy a subset of constraints. They also 

investigated the existence of exact and approximate Nash equilibria and its 

computational cost. Konak et al. [33] developed a competitive facility location 

problem in which multiple competitors aim to maximize their market shares. Their 

problem is called the Competitive Maximal Covering Location Problem (CMCLP) 

that is modeled as a Stackelberg game in which the first player and then the other 

one locate a fixed number of facilities. Furthermore, their work considers multiple 

competitors, and the objective is on discovering a set of the competitors’ decision 

tuples that are not dominated by any other decision tuples in the solution space.  

 Different from the non-cooperative games that try to model the competition among 

the players, the cooperative games try to optimize the objectives by encouraging the 

players to collaborate. In most of the facility location games, players are assumed to 

be customers or demand points acting deterministically. In this group of games, 

given the facilities chosen by the players who are attracted to utilize their nearest 

facility, customers cooperate to allocate the costs of the facilities to share the cost 

among themselves. From this perspective, Bergantiños et al. [34] and Bagherinejad 

et al. [35] studied the cooperation among the customers for the set covering and 

maximal covering location problems, respectively. Bagherinejad et al. [35] modified 
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the cooperative coverage of demand points in the maximal covering location 

problem. In this type of cooperative location game that is also called joint coverage 

games, it is assumed that each facility dissipates a signal whose strength decreases 

according to a distance decay function. They showed that the case, which the 

facilities cooperate to cover the points could prepare more coverage for demand 

points in the applications like non-physical signals.  

 

1.7 Solution methods to solve covering location problems 

  Since both SCLP and MCLP are NP-hard [36] and commercial software packages 

are unable to solve such problems in a rational time. This fact makes it essential to 

develop efficient solving procedures. There are three methods namely exhaustive 

enumeration, mathematical programming, and heuristic approaches to solve the 

location problems. Heuristic approaches can solve large size problems, but do not 

guarantee to obtain an optimal solution [37]. There is only one exact algorithm for 

the MCLP that is developed by Downs and Camm [38]. They dualized the covering 

constraints and the problem was convertible to a binary knapsack problem and used 

subgradient optimization to solve the Lagrangian dual. Finally, as the Lagrangian 

subproblem had the integrality property, the best bound obtained was equal to the 

LP relaxation lower bound. Galinier and Hertz [39] proposed three exact algorithms 

for solving SCLP with potential locations from very large (possibly infinite) sets. 

Two of the algorithms used a removal and insertion scheme that could determine 

minimal covers and the third one was utilizing the hitting set to produce the 
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minimum covers. They also developed heuristic versions of these algorithms and 

analyzed them. 

  The Lagrangian relaxation-based heuristics have also been applied to many 

combinatorial optimization problems. The quality of the solution is controlled by the 

upper and lower bounds provided by the Lagrangian relaxation procedure. Galvão 

and ReVelle [40] describe a Lagrangian heuristic by relaxing the covering constraints 

and used subgradient optimization to solve the Lagrangian dual. The greedy 

heuristic is the most conventional heuristic to solve the MCLP and was developed 

by Church and ReVelle [5]. The greedy heuristic method adds at each iteration a 

facility that has the most increase in the objective function value. This method is 

embedded in a branch-and-bound tree to obtain an optimal integer solution.  

  Metaheuristics have also been applied to solve covering location problems. A 

genetic algorithm was utilized by Zarandi et al. [41] to solve large-scale instances of 

the MCLP with up to 2,500 nodes. Máximo et al. [42] developed a guided adaptive 

search algorithm and solved instances up to 7,730 nodes. Furthermore, Bilal et al. 

[43] describe an iterated tabu search heuristic to solve a variant of the set covering 

location problem.  

  Decomposition techniques are also applied to solve covering location problems. 

To solve very large-scale problems of partial SCLP and MCLP up to millions of 

demand points and obtaining an optimal solution for this huge size of problems, 

Cordeau et al. [44] presented a Benders decomposition method. The good 

performance of their method is due to the utilization of a Branch-and-Benders-cut 

algorithm.  
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  In addition to the studies mentioned above that used different methods to solve 

MCLP and SCLP, Table 1.1 provides the solution procedures of the other 

investigated papers in previous sections. 

 

Table 1.1: Solution methods for MCLP and SCLP variants. 

Paper Solution method 

Toregas et al. [4] linear relaxation technique using cuts to generate 

integer solutions 

Church and ReVelle [5] Greedy hueristic 

Marín et al. [14] Lagrangian heuristic based method 

Bagherinejad and Shoeib [15] Genetic algorithm and bee algorithm 

Vatsa and Jayaswal [16] Benders decomposition-based solution method 

along with several refinements. 

Farahani et al. [20] Hybrid artificial bee colony 

Addis et al. [23] Dantzig–Wolfe reformulation techniques to develop 

exact optimization algorithm 

Karimi and Bashiri [25] Two heuristics 

Ebrahimizedeh et al. [26] Genetic algorithm with dynamic stopping criteria 

and immigration operator, original Genetic 

algorithm and imperialist competitive algorithm  

Pirkul and Schilling [28] Lagrangian relaxation 

Başar et al. [29] Tabu search 

Erdemir et al. [31] Greedy heuristic, CPLEX and premature CPLEX 

https://scholar.google.com/citations?user=WkpUbcUAAAAJ&hl=en&oi=sra
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1.8 Motivation and research goals 

  From the investigated topics in previous sections, it can be concluded that 

covering facility location problems have been studied in the extensive literature 

considering different concepts. However, it seems that these studies are not 

sufficient to introduce a model for real-life applications and there is still so much 

that can be done to improve this category of facility location problems. This 

importance has been addressed in this thesis and the main research goals are as 

follows: 

 

Research goal 1: develop covering location models to model the real-life conditions 

and take the advantages of two separate covering modes in an integrated model. 

   Sub-goal 1: develop a practical covering facility location problem for 

applications in real-life conditions such as emergency humanitarian logistics 

problem. 

Sub-goal 2: As the two categories of covering facility location problem (set 

covering and maximal covering location problem) have different coverage 

concepts, integrate these two models in one model to improve the service 

quality for demand points. 

Research goal 2: Apply the game theory to the covering facility location problems. 

Sub-goal 1: study the covering facility location problems from a non-

cooperative perspective and address the specifications of such appropriate 

model. 
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  In order to fulfill the research goals, firstly an improved formulation for the 

covering location problem with application in emergency humanitarian logistics is 

developed. In the same way, the covering facility location problems are combined 

in a compact mathematical model to benefit from the coverage concept of covering 

problems. Second, the covering facility location problems are investigated from non-

cooperative perspectives. The non-cooperative covering facility location problem 

resulted in bi-level formulation structures that require computational effort to deal 

with.  

  

1.9 Contribution of this thesis 

  The supply chain decisions can be categorized into three kinds of decisions, i.e., 

strategic, tactical and operational decisions. In this regard, the facility location 

decisions belong to the strategic and long-term decisions. On the other hand, the 

decisions can be static and dynamic. The static decisions determine the solutions for 

only one period of time while the decisions in dynamic models are decided in 

different time-periods of the planning horizon. The problems in this thesis are 

mostly addressing the strategic and dynamic decisions as they are determining the 

location of facilities, module assignment and demand point allocations in different 

time periods. However, the decisions of facility locations, module assignment and 

demand point allocations have extended to be studied in both strategic and tactical 

levels as one of the contributions of this thesis in hybrid covering location model in 

Chapter 4.  
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  The overall contribution of this thesis can be described from two main viewpoints: 

1) problem modeling and 2) theoretical and solutions.  

 

1.9.1 Contribution from problem modeling viewpoint 

  Figure 1.4 shows the main streams about problem modeling utilized in this thesis. 

The dynamic and capacitated models, modular facilities, back-up services, set 

covering location problem, bi-level or Stackelberg models and hub location problem 

are discussed and introduced in previous chapters. These modeling streams are used 

to model the problems developed in this thesis. The contribution of this thesis from 

the problem modeling perspective is as follows: 

1.  The facilities in maximal covering location problem are developed as 

modular and capacitated facilities and can provide back-up services for 

demand points in applications like emergency services. These modules can 

transfer from one facility to another in different time periods in response to 

demand requests variation and therefore the allocations of demand points 

would also change. The objective of this problem is to maximize the total 

demands covered by primary and back-up modules in all time periods 

(Chapter 3).  

2. Capacitated and dynamic set covering location problem are integrated with 

dynamic capacitated and modular maximal covering location problem in the 

hybrid covering location model. The decisions of facilities are determined 

using set covering location problem as a strategic decision and in tactical 
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periods the decisions of modules assignment and demand allocations are 

determined. The problem of integrating set covering and maximal covering 

location problems is studied for the first time in this thesis (Chapter 4). 

3. Maximal hub covering location problem is studied from a non-cooperative 

perspective that resulted in a bi-level model. In this bi-level model, the freight 

company who determines the locations of the hubs is the leader of the game 

and the customers who desire to have the minimum cost for their requested 

service are the followers. This problem is also a dynamic and capacitated 

problem and the number of hubs can be expanded in upcoming periods to 

cover more demands (Chapter 5). 

 

  

Figure 1.4: Problem modeling contribution of this thesis. 
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1.9.2 Contribution from theoretical and solution procedure viewpoint 

  As shown in Figure 1.5, the theories and solution procedures that are utilized in 

this thesis and to solve the developed models are location theory, non-cooperative 

game theory, genetic algorithm, Benders decomposition algorithm and heuristic 

method. The contribution of this thesis from theoretical and solution methods points 

of view are as follows: 

1. The proposed solution procedure composed of a genetic algorithm and a 

novel heuristic method is used to solve dynamic capacitated maximal 

covering location problem with modular facilities and back-up services. The 

novelty of the proposed genetic algorithm is that the constraints of the 

problem are used to improve the infeasible solutions and convert them into 

Figure 1.5: Theoretical and solution contribution of this thesis. 
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feasible solutions. Moreover, the uniform crossover and mutation operators 

are developed that enables to have more exploitation and exploration of the 

search space (Chapter 3). 

2. The location theory is used to introduce the coverage definitions in hybrid 

covering location problem that provides full coverage for demand nodes 

from facilities and a maximal coverage from a limited number of modules 

(Chapter 4). 

3. Using the non-cooperative game theory, the bi-level model for maximal hub 

covering location problem is developed. To solve this problem, it is firstly 

reformulated to a single level model using duality theory and Karush-Kuhn- 

Tucker conditions. Then the single level problems are solved using a Benders 

decomposition-based method (Chapter 5). 

 

1.10 Structure of this thesis 

  Before applying the game theoretical approaches to the covering location problem, 

the problem has been presented using some variants covering location problem. 

Figure 1.6 shows the relationship between the chapters of this thesis.  

  In Chapter 1, the background of the thesis is stated. The importance of facility 

location problems in supply chain management has been addressed. The covering 

location problems that are the focus of this thesis is introduced as one of the main 

categories of facility location problems for locating facilities in both public and 

private sectors. In addition, several extensions developed for covering location 

problems that are related to the topic of this thesis have been addressed. 
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  In Chapter 2, the basic theories that are utilized in this thesis are presented. These 

theories are mainly originated from two directions. At first, the theories of the 

covering location problems are introduced that have the main roles in the developed 

models in all chapters. After that the related theories to the non-cooperative game 

theory is presented that are used in Chapter 5 of this thesis.  

  Chapter 3 presents a dynamic model and a solution procedure for maximal 

covering location problem with back-up services for locating emergency facilities 

location. In this chapter, two main concepts are used to model a real-life condition 

and to improve the service level for demand nodes. These concepts are the modular 

arrangement of different fire trucks and ambulances, as an example for modules, 

and considering back-up services for demand nodes. The mathematical model is a 

pure 0-1 programming problem. To solve the problem, an efficient genetic algorithm 

is used because this algorithm has appeared as a strong method to solve integer 

problems. In addition, a heuristic algorithm is developed that is able to solve 

problems in efficient computational time. Some test problems are generated and 

solved by CPLEX, GA and a developed heuristic to be able to compare the results 

and obtain managerial insights. 

  In Chapter 4, an extension of covering location problem as a hybrid covering 

model is presented that utilizes the set covering and maximal covering location 

problems. The developed model is a multi-period model that considers strategic and 

tactical planning decisions. The proposed hybrid covering location model 

  



1. Introduction 

26 

 

determines the location of the capacitated facilities by using a dynamic set covering 

location problem as strategic decisions and assigns the constructive units of facilities 

and allocates the demand points by using dynamic modular capacitated maximal 

covering location problem as tactical decisions. One of the applications of the 

proposed model is locating first aid centers in humanitarian logistic services that 

have been addressed by studying a threat case study in Japan. In addition to 

Chapter 6: Concluding remarks  

 

Chapter 5: Non-cooperative covering location 

problem 

Chapter 3: Modular covering 

location problem with back-up 

coverage 

Chapter 1: Introduction 

I 
Chapter 2: Preliminaries 

Chapter 4: Hybridization of 

covering location problems 

Game theoretical model 

Covering location models 

Figure 1.6: The structure of the thesis. 
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validating the developed model, it is compared to other possible combined problems 

and several randomly generated examples are solved.  

  Chapter 5 addresses a non-cooperative game as a Stackelberg game for a dynamic 

maximal hub location covering problem applicable in the freight transportation 

system. The model has the possibility of having expansion scenarios for the future 

according to the forecasts of increasing demands. Two expansion scenarios are to 

add up the number of hubs in the network and to add up more carriers. As the 

markets are involved in the pricing procedure, the model is a bi-level problem which 

needs more effort to deal with, for which in this work two reformulations based on 

Karush-Kuhn-Tucker conditions and duality theory are utilized to reformulate the 

bi-level problem to a single-level one. To solve the model efficiently, a Benders 

decomposition-based method is applied and numerical examples are solved to 

verify the accuracy of the proposed model. 

  Finally, the concluding remarks are described in Chapter 6.  
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Chapter 2 

2. Preliminaries  

  In this thesis, game theoretical approaches for covering location problems along 

with their solution procedures are addressed. This chapter introduces some 

fundamentals about the mathematical models for covering location problems, game 

theoretical approaches as non-cooperative games and solution procedures to solve 

these problems.  

 

2.1 Covering facility location problem 

  According to the classifications of facility location problems by Arabani and 

Farahani [45], facility location problems can be classified as continues, discrete and 

network location problems. Covering location problems belong to the network 

location problems and contains two main covering location problems as set covering 

and maximal covering location problems. These two problems are introduced in 

details in the next section.  

 

2.1.1 Set covering location problem and maximal covering location 

problem 

  Set covering location problem (SCLP) and maximal covering location problem 

(MCLP) were introduced in 1971 and 1974 by Toregas et al. [4] and Church and 

ReVelle [5], respectively. In the original set covering location problem, a facility can 



2. Preliminaries 

29 

 

serve all demand points that are within a given coverage distance from the facility. 

The problem is finding the minimum number of facilities to ensure that all demand 

points can be served. In this model, there are no capacity constraints for the facilities. 

The demand points are represented by the set of  𝑗 ∈  𝐽, the candidate locations of 

the facilities are given by the set of 𝑖 ∈  𝐼. 𝑑𝑖𝑠𝑖𝑗 is the distance between potential 

facility 𝑖 and demand point 𝑗. Having the coverage distance 𝜌, one can generate 

the possible facilities that can cover demand points in a binary parameter 𝜎𝑖𝑗 that 

gets the value 1 if 𝑑𝑖𝑠𝑖𝑗 ≤ 𝜌 and 0, otherwise. The decision variable 𝜒𝑖 is a binary 

variable that is 1 if a facility is located in 𝑖 and 0, otherwise. The mathematical 

model for the original SCLP is:  

min ∑ 𝜒𝑖

𝑖∈ 𝐼

  (2.1) 

∑ 𝜎𝑖𝑗𝜒𝑖

𝑖∈ 𝐼

≥ 1 ∀ 𝑗 ∈  𝐽 (2.2) 

𝜒𝑖 ∈ 0,1 ∀𝑖 ∈  𝐼 (2.3) 

 

  The objective function (2.1) minimizes the number of located facilities and the 

constraints (2.2) implies that every demand point 𝑗 needs to be served by at least 

one facility.  

  If there is a budget or recourse limitation and one desires to locate 𝜑 predefined 

facilities with the objective of maximizing the covered demand points, the problem 

is called the maximal covering location problem for which in addition to the 

introduced variable for SCLP, another decision variable is needed. 𝛾𝑗 is a binary 

variable that is 1 if demand point 𝑗 is covered and 0, otherwise. The mathematical 

model of MCLP is: 
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max ∑ 𝛾𝑗

𝑗∈ 𝐽

  (2.4) 

𝛾𝑗 ≤ ∑ 𝜎𝑖𝑗𝜒𝑖

𝑖∈ 𝐼

 ∀ 𝑗 ∈  𝐽 (2.5) 

∑ 𝜒𝑖

𝑖∈ 𝐼

= 𝜑  (2.6) 

𝜒𝑖 , 𝛾𝑗 ∈ 0,1 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽 (2.7) 

 

  The objective function (2.4) maximizes the number of covered demands. 

Constraints (2.5) allow each demand point to be covered only if there is a facility or 

more in the coverage distance from it. Constraint (2.6) fixes the number of located 

facilities to be equal to 𝜑. Figure 2.1 shows the difference of the coverage SCLP and 

MCLP provide. Figure 2.1 (a) is the illustration of SCLP in which all demand points 

(orange nodes) are covered and for this full coverage, there is a need to have three 

located facilities. Figure 2.1 (b) is the illustration of MCLP with having only two 

facilities to be located. As seen in Figure 2.1 (b) all points might not be covered by 

MCLP.   

  

(a) (b) 

Figure 2.1: Illustration of coverage and located facilities by SCLP and MCLP. 
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2.2 Non-cooperative game theory 

  Game theory is a tool to analyze situations like conflicts or cooperation among 

different players. Non-cooperative games depict the conflict while the cooperative 

stream contains the cooperation of the players. Stackelberg game is one of the main 

strategies to analyze the non-cooperative situation among players. The decision-

making process is sequential in a way that at first one of the players chooses his 

strategy who is called the leader of the game. The other player who is called the 

follower chooses his optimal response according to the leaders announced strategy 

[46]. If the Stackelberg game is modeled using mathematical models, the problem 

would have a bi-level structure in which the follower’s mathematical model would 

be included in the constraints of the leader’s problem as:  

 

min
𝑥𝑢∈𝑋𝑈,𝑥𝑙∈𝑋𝐿

𝐹 (𝑥𝑢, 𝑥𝑙)                                                  (2.8) 

Subject to 

𝑥𝑙 ∈ argmin
𝑥𝑙∈𝑋𝐿

{𝑓(𝑥𝑢, 𝑥𝑙): 𝑔𝑗(𝑥𝑢, 𝑥𝑙) ≤ 0, 𝑗 = 1,2, … , 𝐽}                      (2.9) 

𝐺𝑘(𝑥𝑢, 𝑥𝑙) ≤ 0, 𝑘 = 1,2, … , 𝐾                                          (2.10) 

 

where 𝐺𝑘: 𝑋𝑈× 𝑋𝐿 → 𝑅,  𝑘 = 1,2, … , 𝐾 denote the upper-level constraints, and 

𝑔𝑗: 𝑋𝑈× 𝑋𝐿 → 𝑅, 𝑗 = 1,2, … , 𝐽 represent the lower-level constraints. 𝑥𝑢 ∈ 𝑋𝑈 (, 𝑥𝑙 ∈

𝑋𝐿) is the leader’s (follower’s) decision variable and 𝑋𝑈 (𝑋𝐿) is the leader’s 
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(follower’s) decision space. 𝐹 and 𝑓 are the objective functions of the leaders and 

follower, respectively. 

 

2.3 Genetic algorithm 

  Metaheuristics like tabu search (TS), simulated annealing (SA) and genetic 

algorithm (GA) are methods applicable to solve a wide range of optimization 

problems. The metaheuristics general rule to approach the new solutions is to stick 

to what is known as good up to now. In this case, GA has a big difference with other 

methods in this way that in GA “good” does not come from the whole solution (as 

in TS and SA) but comes from the parts of the solution. In other word, it pays 

attention to the parts of the solution that have made it to be a good solution. GA then 

uses these parts in its recombination mechanism to produce new solutions [47].  

  In a typical genetic algorithm, the main mechanisms are: 𝑁 population size, 𝑝𝑐 

crossover ratio and 𝑝𝑚 mutation ratio. The main structure of the genetic algorithm 

is: 

0. Encoding scheme: representation is one of the important steps in developing a 

GA, as it has direct influence on runtime and also crossover and mutation. To 

have a bigger search space continuous interval between 0 and 1 can be used for 

each bit and then convert to a binary one whenever it is needed.  

1. Creating initial population 𝑁. 

2. Repair the solutions and create feasible solutions from possibly infeasible 

solutions. Calculating fitness function for each chromosome in the population.  
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3. Produce new population. Repeat the following steps for 𝑁 times to produce 

new population. 

3.1. Selecting parents from the current population using Roulette wheel 

selection approach.  

3.2. Applying crossover operator on the selected parents with a ratio of 𝑝𝑐 and 

create offspring. 

3.3. Applying mutation operator on offspring with a ratio of 𝑝𝑚. 

3.4. Adding new offspring to the population. 

4. Select new population based on selection operator.  

5. Check the termination criteria, if it is not satisfied go to step 2. 

 

2.3.1 Solution representation 

  One of the important parts of metaheuristic algorithms is defining a solution 

representation. This solution representation in GA is called Chromosome. In a 0-1 

integer problem the genes of each chromosome consists of 0 or 1 bits as shown in 

Figure 2.2.   

  

0 1 …  1 1 … 0 0 … 1 1 … 1 

 

 

Figure 2.2: Chromosome representation. 

gene 
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2.3.2 Crossover 

  In genetic algorithm and evolutionary algorithms, crossover operator is for 

combining the genetic information of two parents to generate new offspring from 

the population. 

  First two new chromosomes (same as the initial population was produced) should 

be produced. We call them R1 and R2. We also call the two chosen parents x1 and 

x2. The new offsprings are called y1 and y2 which are produced in this way: y1= 

(R1.*x1) + (R2.*x2) and y2= (R2.*x1) + (R1.*x2), respectively. Figure 2.3 illustrates a 

small example of a uniform crossover operator. By doing this procedure we have 

obtained two offspring that contain the continuous values between 0 and 1 and they 

will be converted to binary values when they will be used in the fitness function to 

calculate the objective function. 

Figure 2.3: A simple illustration of the uniform crossover operator. 
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2.3.3 Mutation 

  While crossover tries to converge to a specific point in the landscape, the mutation 

does its best to explore more areas. One of the main benefits of this operator is to 

avoid trapping in a local optimum.  

  To establish the uniform mutation mechanism, we take the following steps: 

1. Calculate the number of elements in the chromosome (𝑛). 

2. Choose 𝐼 = 𝑅. 𝑛 random sample genes of 𝑛 genes in the chromosome. (R is the 

percent of genes that would be selected to perform mutation operator out of n 

genes, so I defines the number of genes that we select for mutation. For example, 

if the number of bits or genes (n) in the chromosome is 300 and 0.01 of them have 

to be selected, it gives that I=3 genes have to be selected to conduct the mutation). 

3. Produce 𝐼 random values between (-0.1, 0.1). 

4. Add or subtract the random values obtained in step 3 to/from the samples chosen 

in step 2.  

5. Stop.  

 

2.4 Benders decomposition 

  Benders decomposition is a solution method for solving certain large-scale 

optimization problems. Instead of considering all decision variables and constraints 

of a large-scale problem simultaneously, Benders decomposition partitions the 

problem into multiple smaller problems [48]. Since the computational difficulty of 
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optimization problems increases significantly with the number of variables and 

constraints, solving these smaller problems iteratively can be more efficient than 

solving a single large problem. Consider the following problem: 

 

min 𝑐𝑇𝑥 + 𝑓𝑇𝑦 (2.11) 

subject to: 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏 (2.12) 

𝑥 ≥ 0, 𝑦 ∈ 𝑌 ⊆ ℝ𝑞 (2.13) 

 

where 𝑥 and 𝑦 are vectors of continuous variables having dimensions 𝑝 and 𝑞, 

respectively, 𝑌 is a polyhedron, 𝐴, 𝐵 are matrices, and 𝑏, 𝑐, 𝑓 are vectors having 

appropriate dimensions. Suppose that 𝑦 variables are “complicating variables” in 

the sense that the problem becomes significantly easier to solve if 𝑦 variables are 

fixed. The complete minimization problem can therefore be written as:  

 

min 
𝑦∈𝑌

{𝑓𝑇𝑦 + min
𝑥≥0

{𝑐𝑇𝑥 | 𝐴𝑥 ≥ 𝑏 − 𝐵𝑦}} (2.14)  

The dual form of the inner problem would be: 

max
𝑢

 𝑢𝑇(𝑏 − 𝐵𝑦) (2.15) 

subject to: 𝐴𝑇𝑢 ≤ 𝑐 

𝑢 ≥ 0 

(2.16) 



2. Preliminaries 

37 

 

  In the Benders’ decomposition framework two different problems are solved. A 

restricted master problem which has the form: 

 

 

𝑘 and 𝑙 refer to different iterations in which different cuts are added to the master 

ptoblem and subproblems of the form:  

  

 Then the Benders decomposition procedure is the iterative procedure of solving 

dual subproblem and master problem using the cuts generated from dual 

subproblem. Figure 2.4 shows an illustration of the Benders decomposition method. 

 min
𝑦

𝑧 (2.17) 

𝑧 ≥ 𝑓𝑇𝑦 + (𝑏 − 𝐵𝑦)𝑇�̅�𝑘                    𝑘 = 1, … , 𝐾 (2.18) 

(𝑏 − 𝐵𝑦)𝑇�̅�𝑙 ≤ 0                       𝑙 = 1, … , 𝐿 (2.19) 

𝑦 ∈ 𝑌   (2.20) 

min
𝑢

  𝑓𝑇�̅� + (𝑏 − 𝐵�̅�)𝑇𝑢 (2.21) 

𝐴𝑇𝑢 ≤ 𝑐 (2.22) 

𝑢 ≥ 0    (2.23) 



2. Preliminaries 

38 

 

 

  The Benders’ Decomposition algorithm can be stated as:  

{initialization} 

𝑦 ≔initial feasible integer solution  

𝐿𝐵 ≔ −∞  

𝑈𝐵 ≔ +∞  

while 𝑈𝐵 −  𝐿𝐵 < 휀  do  

 {solve subproblem} 

 min
𝑢

  {𝑓𝑇�̅� + (𝑏 − 𝐵�̅�)𝑇𝑢| 𝐴𝑇𝑢 ≤ 𝑐, 𝑢 ≥ 0} 

 if Unbounded then  

  Get unbounded ray �̅�  

  Add cut  (𝑏 − 𝐵𝑦)𝑇�̅� ≤ 0 to master problem 

Master problem 

(Containing 

complicating variables 

like binary variables 𝑦) 

Subproblem 

(Containing continues 

variables) 

Dual of subproblem 

Fixed values of 𝑦  

Benders cut 

Figure 2.4: Illustration of Benders decomposition method. 
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 else  

  Get extreme point �̅�  

Add cut  𝑧 ≥ 𝑓𝑇𝑦 + (𝑏 − 𝐵𝑦)𝑇�̅� to master problem 

   𝑈𝐵 ≔ min {𝑈𝐵, 𝑓𝑇𝑦 + (𝑏 − 𝐵𝑦)𝑇�̅�}  

 end if  

{solve master problem}  

min 
𝑦

{𝑧|𝑐𝑢𝑡𝑠, 𝑦 ∈  𝑌 } 

𝐿𝐵 ≔ 𝑧  

end while 
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Chapter 3 

3. Multi-period modular emergency facilities with back-up 

services 

3.1 Introduction  

  Emergency facility location problem seeks to find the optimal locations for 

facilities like fire stations, police stations, emergency departments and roadside 

emergency services. For a review on location problems for emergency facilities, 

interested readers may refer to [49]. Emergency facilities mostly consist of 

constructional units, like different kinds of firefighting trucks in fire stations, 

ambulances in emergency stations or police cars in police stations. These separable 

units that specify the size and capacity of facilities are called modules of the facility, 

which seems inevitable not to consider trying to locate them [21]. Correia and 

Captivo [50] called the location problems with such capacity constraints, modular 

capacitated location problems. In their study, they sought to find the location of 

capacitated facilities with the objective function to give service to the customers at a 

minimum cost.  

  Having back-up service, when an emergency call for service occurs, the nearest 

module serves the demand and would be no more available. If back-up service had 

been prepared and other call arises for that module before the previous one returns 

the base, the back-up module can go for the duty. This back-up service might have 

been provided from the other existing modules in the base or from the other facilities 

that cover the demand node for back-up service.  
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  The main components of the model in this chapter are multi-period, capacitated 

facilities and back-up service for demand nodes. In this model, the facilities (for 

example fire stations’ building and location) and the equipment (modules like fire 

trucks and ambulances) are supposed to have different decision variables, in this 

way that the demand nodes would be assigned to the modules, and the modules 

would be assigned to the facilities.  

  The model development will be outlined in section 3.2 followed by the solution 

method in section 3.3. The computational experiments are organized in section 3.4. 

Conclusions are stated in section 3.5. 

 

3.2 Model formulation 

  In this mathematical model, once the facilities are located, their location cannot be 

changed, because changing the location would impose a cost. But they can have 

different arrangements for the module assignments in each time period and in other 

word, the modules may transfer between facilities according to the demand changes. 

The size of modules, in this formulation, refers to the number of modules that would 

be assigned to each facility. In addition, the capacity of each module is related to the 

amount of service that it can provide, which is an inherent specification for the 

modules. The notation for our model is as follows: 

Indices and sets: 

𝑖 ∈ 1,2, … , 𝐼 Index of potential facility sites; 

𝑗 ∈ 1,2, … , 𝐽 Index of customers; 
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𝑙 ∈ 1,2, … , 𝐿 Index of modules; 

𝑘 ∈ 1,2, … , 𝐾 Index of size; 

𝑡 ∈ 1,2, … , 𝑇 Time periods; 

Parameters: 

𝑑𝑗𝑙𝑡
𝑚  Expected demand of node 𝑗 for primary service of module 𝑙 at period 𝑡. 

𝑑𝑗𝑙𝑡
𝑏  

Expected demand of node 𝑗 for back-up service of module 𝑙 at period 𝑡. 

𝑝 Number of facilities to be sited. 

𝑞𝑙 Total number of available module 𝑙. 

𝑑𝑖𝑠𝑖𝑗 Distance between facility 𝑖 and demand node 𝑗. 

𝑆𝑚 Maximum service distance for primary services. 

𝑆𝑏 Maximum service distance for back-up services. 

𝑐𝑖𝑗
𝑚 

Binary parameter which is 1 if 𝑑𝑖𝑠𝑖𝑗 ≤ 𝑆𝑚,  0 otherwise. 

𝑐𝑖𝑗
𝑏  Binary parameter which is 1 if 𝑑𝑖𝑠𝑖𝑗 ≤ 𝑆𝑏, 0 otherwise. 

𝑐𝑙 Capacity of each module 𝑙. 

𝑒𝑙𝑘 Size of size index 𝑘 of module 𝑙. 

Decision variables (binary variables): 

𝑥𝑖𝑗𝑙𝑡
𝑚         1 if demand node 𝑗  gets primary service from module 𝑙  assigned to 

facility 𝑖 at period 𝑡, 0 otherwise. 

𝑧𝑖           1 if a facility is located at node 𝑖, 0 otherwise. 

𝑦𝑖𝑙𝑘𝑡       1 if module 𝑙  with size 𝑘  is assigned to facility 𝑖  at period 𝑡 , 0 

otherwise. 
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𝑥𝑖𝑗𝑙𝑡
𝑏  

1 if demand node 𝑗  gets back-up service from module 𝑙  assigned to 

facility 𝑖 at period 𝑡, 0 otherwise. 

Thus, the mathematical model can be formally stated as: 

 

max ∑ ∑ ∑ ∑(𝑐𝑖𝑗
𝑚𝑑𝑗𝑙𝑡

𝑚 𝑥𝑖𝑗𝑙𝑡
𝑚 + 𝑐𝑖𝑗

𝑏 𝑑𝑗𝑙𝑡
𝑏 𝑥𝑖𝑗𝑙𝑡

𝑏

𝑡∈𝑇𝑙∈𝐿𝑗∈𝐽𝑖∈𝐼

) 
(3.1) 

∑ ∑ ∑ 𝑦𝑖𝑙𝑘𝑡

𝑡∈𝑇𝑘∈𝐾𝑙∈𝐿

≤ 𝑧𝑖 ∀𝑖 ∈ 𝐼 (3.2) 

𝑥𝑖𝑗𝑙𝑡
𝑚 + 𝑥𝑖𝑗𝑙𝑡

𝑏 ≤ ∑ 𝑦𝑖𝑙𝑘𝑡

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.3) 

∑(𝑑𝑗𝑙𝑡
𝑚 𝑥𝑖𝑗𝑙𝑡

𝑚 + 𝑑𝑗𝑙𝑡
𝑏 𝑥𝑖𝑗𝑙𝑡

𝑏 )

𝑗∈𝐽

≤ ∑ 𝑒𝑙𝑘𝑐𝑙𝑦𝑖𝑙𝑘𝑡

𝑘∈𝐾

 
∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.4) 

∑ 𝑦𝑖𝑙𝑘𝑡 ≤ 1

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.5) 

∑ 𝑧𝑖

𝑖∈𝐼

≤ 𝑝  (3.6) 

∑ ∑ 𝑒𝑙𝑘𝑦𝑖𝑙𝑘𝑡

𝑘∈𝐾

≤ 𝑞𝑙

𝑖∈𝐼

 ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.7) 

𝑧𝑖, 𝑦𝑖𝑙𝑘𝑡, 𝑥𝑖𝑗𝑙𝑡
𝑚 , 𝑥𝑖𝑗𝑙𝑡

𝑏 ∈ {0,1}       
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.8) 

 

  The objective function (3.1) maximizes the covered demand of each service level. 

The first term calculates the covered demand nodes for primary service while the 

second term, calculates the demand nodes that are served by back-up service. 

Constraints (3.2) state that no module is allowed to be assigned to any facility node 

unless there is a facility located in that node. Constraints (3.3) ensures that each 
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module can just provide one level of service for each demand node. In other words, 

in each time period, each module can just be dispatched for primary service or back-

up service only. Constraints (3.4) are for capacity limits of modules. The right-hand 

side calculates the total number of allocated demands of primary and back-up 

services and the left-hand side is the multiplication of the number of assigned 

modules and the capacity of each module, which is the total capacity that each 

module can provide. For example, if two ambulances are assigned to a facility and 

each of them has the capacity of two beds then the total service capacity of the 

ambulance module for that facility would be four for which the total number of the 

assigned demands cannot exceed the capacity of each module in each time period. 

Constraints (3.5) imply that in each facility, at most one size of each module can be 

located. Constraint (3.6) is for the total number of located facilities. Constraints (3.7) 

also restrict the number of available modules. Suppose there are just 𝑞𝑙 numbers of 

module 𝑙 available, the left-hand side of the constraints calculates the total number 

of this module 𝑙 that are sited in facilities and this number should not exceed the 

value 𝑞𝑙. Constraints (3.8) are for the nature of decision variables. 

 

3.3 Solution methodology 

3.3.1 Solution methodology based on genetic algorithm 

  To solve the developed problem, a genetic algorithm is applied in this research, as 

the evolutionary algorithms have been proven to be one of the best methods to solve 

facility location models and it is a better approach to solve MCLP, compared to local 

search procedures such as SA and the TS [11].   
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  GA as an evolutionary algorithm has got many extensions and also being used to 

solve various kinds of problems like unconstrained and constrained problems. 

Solving constrained problems needs more effort to design and code the algorithm. 

There are many techniques to handle constraints and the most well-known one is 

the penalty function method, in which the violation amount of constraints from the 

solution is accommodated in the objective function, so that the problem is converted 

to an unconstrainted one [51]. Some disadvantages have been pointed to this 

technique and the major one is the difficulty to select the penalty factors. The other 

method to face the constrained optimization problem which is used in the algorithm 

design of this thesis is to repair the infeasible solutions by modifying them according 

to the model constraints and create feasible solutions. In this way that in the fitness 

function calculation procedure, we start from constraint (3.6) to assure about the 

number of facilities. The constraints checking order would be (3.6), (3.2), (3.5), (3.7), 

(3.3), and (3.4). For each constraint, the right-hand side and left-hand side is obtained 

and if the constraint is found feasible, the next constraint will be checked, otherwise, 

the bits of the solution are modified to satisfy the constraint. After obtaining feasible 

solutions, the fitness function would be calculated as (3.1). 

  It is also noteworthy that the GA used is in the category of continuous genetic 

algorithm, and the reason to use continuous space to generate initial solutions and 

operate uniform crossover and mutation is because this kind of GA makes the search 

space bigger and one can have more exploration options. Also, uniform crossover 

and mutation seem to have better functionality in the continuous GA. 

  The genetic algorithm presented in section 2.3 is used to solve the test problems. 

The parameters for 𝑝𝑐 and 𝑝𝑚 have been chosen as 0.9 and 0.1 after running the 
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algorithm for different values and these values where selected because they were 

producing better results for test problems used in this thesis. The termination criteria 

for this problem set to 70 iterations. 

 

3.3.2 A heuristic method  

  This section introduces a heuristic algorithm as an auxiliary tool to enable us to 

evaluate the quality of produced results for computational experiments especially 

for the cases that CPLEX is unable to reach the optimal objective values. The 

heuristic starts with using the possibly covered demands to locate the 𝑝 facilities 

that can cover the maximum number of demands for primary and back-up service. 

In the next step the demand nodes, for both kinds of services and each module in 

each period that can be covered by most facilities are allocated to the 𝑝 located 

facilities to obtain the number of necessary modules. The total number of allocated 

demands for each module and in each period is compared with the existing 

resources to refrain infeasibility in Step 4. Step 1 of the method, satisfies constraint 

(3.6), constraints (3.2) and (3.3) are satisfied in Step 2 and constraints (3.4), (3.5) and 

(3.7) are satisfied in Steps 3 and 4. At the final Step 5, the objective function for the 

heuristic method (𝑂𝐹𝑉𝐻) is obtained by obtaining the total number of modules.    

The heuristic algorithm is as follows: 
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Heuristic Algorithm 

Step 1. 𝜇𝑖𝑗𝑙𝑡 = ∑ (𝑐𝑖𝑗
𝑚 𝑑𝑗𝑙𝑡

𝑚 + 𝑐𝑖𝑗
𝑏  𝑑𝑗𝑙𝑡

𝑏
𝑗𝑙𝑡 ). Sort  𝜇𝑖 and select 𝑝 maximum values. 𝑖𝑝𝑚𝑎𝑥 is the set 

of 𝑖 that provides 𝑝 maximum values for 𝜇𝑖and put the related 𝑧𝑖∈𝑖𝑃𝑚𝑎𝑥
= 1, otherwise 𝑧𝑖 = 0. 

Step 2. Calculate 𝜙𝑗𝑙𝑡
𝑚 = ∑ 𝑐𝑖𝑗

𝑚 𝑑𝑗𝑙𝑡
𝑚

𝑖∈𝑖𝑃𝑚𝑎𝑥
 for each 𝑗, 𝑙, 𝑡.  Sort 𝜙𝑗𝑙𝑡

𝑚  with respect to 𝑗 for each 𝑙 

and 𝑡, and allocate the 𝑝 first largest values into 𝑖 = 1, … , 𝑝 opened facilities and set 

𝑥𝑖𝑗𝑙𝑡
𝑚 = 1 such that ∑ 𝑥𝑖𝑗𝑙𝑡

𝑚
𝑖𝑗 = 𝑝. The selected 𝑗 is added to the set of 𝑗𝑝𝑚𝑎𝑥

𝑚 . Calculate 

𝜙𝑗𝑙𝑡
𝑏 = ∑ 𝑐𝑖𝑗

𝑏 𝑑𝑗𝑙𝑡
𝑏  𝑖∈𝑖𝑃𝑚𝑎𝑥

 without the allocated 𝑗  where 𝑥𝑖𝑗𝑙𝑡
𝑚 = 1 for each 𝑖, 𝑙, 𝑡.  Sort 𝜙𝑗𝑙𝑡

𝑏  with 

respect to 𝑗 for each 𝑙 and 𝑡, and allocate the 𝑝 first largest values into 𝑖 = 1, … , 𝑝 

opened facilities and set 𝑥𝑖𝑗𝑙𝑡
𝑏 = 1 such that ∑ 𝑥𝑖𝑗𝑙𝑡

𝑏
𝑖𝑗 = 𝑝. The selected 𝑗 is added to the set 

of 𝑗𝑝𝑚𝑎𝑥
𝑏 .   

Step 3. Set 𝜎𝑙𝑡 = 0, 𝜃𝑖𝑙𝑡 = 0, 𝑦𝑖𝑙𝑘𝑡 = 0.  𝛿𝑖𝑗𝑙𝑡 = 𝑐𝑖𝑗
𝑚 𝑑𝑗𝑙𝑡

𝑚  𝑥𝑖𝑗𝑙𝑡
𝑚 + 𝑐𝑖𝑗

𝑏  𝑑𝑗𝑙𝑡
𝑏  𝑥𝑖𝑗𝑙𝑡

𝑏 , 𝑗𝑚𝑎𝑥 = 𝑗𝑝𝑚𝑎𝑥
𝑚 ∪ 𝑗𝑝𝑚𝑎𝑥

𝑏 .    

Step 4. For each 𝑙, 𝑡, iterate 𝜃𝑖𝑙𝑡 ← 𝜃𝑖𝑙𝑡 + 𝛿𝑖𝑗𝑙𝑡 until 𝜃𝑖𝑙𝑡 ≤ (max𝑘𝑒𝑙𝑘)𝑐𝑙 for 𝑖 ∈ 𝑖𝑝𝑚𝑎𝑥 and 𝑗 ∈

𝑗𝑝𝑚𝑎𝑥.  

For each 𝑙, 𝑡, iterate 𝑒 ⌈
𝜃𝑖𝑙𝑡

𝑐𝑙
⌉, if 𝑘 = 𝑒, 𝑦𝑖𝑙𝑘𝑡 = 1 for 𝑖 ∈ 𝑖𝑝𝑚𝑎𝑥 and for 𝑘 = 1, … , 𝐾. For each 

𝑙, 𝑡, iterate 𝜎𝑙𝑡 ← 𝜎𝑙𝑡 + ∑ 𝑒𝑙𝑘𝑦𝑖𝑙𝑘𝑡𝑘  until 𝜎𝑙𝑡 ≤ 𝑞𝑙 for 𝑖 ∈ 𝑖𝑝𝑚𝑎𝑥. 

Step 5. Obtain 𝑂𝐹𝑉𝐻 = ∑ 𝜎𝑙𝑡𝑙,𝑡  

 

 

3.4 Computational experiments  

  To have a better insight of the model and its application in real life, there is a 

simple illustration of a problem studied in two time periods in Figure 3.1. In this 

figure black filled nodes are demand nodes for primary service and white filled 

nodes have been used to refer to back-up service request, also black hexagonals are 
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the facilities located according to variable 𝑧𝑖. The circles around the facilities show 

the covered area (black is for covered area for primary service and gray one depicts 

the covered area with back-up service). The numbers around the hexagonals are 

showing the number of each module assigned to each facility. 

  In this example, it is supposed that there are three kind of modules, which the 

total number of each module should be the same in each time period. There may be 

some nodes colored in black, which are in the primary coverage area of one facility 

but in the secondary coverage of another facility. It shows that the primary service 

has been provided from main facility but back-up service has been provided from 

other one due to insufficient resources.  

  To generate test problems, the parameters of the problem are generated randomly. 

The distance between nodes is generated using the Euclidean distance of two-

dimensional coordinates having uniform distribution between 1 and 100. The 

Figure 3.1: Simple illustration of the model. (a) results for period 1, (b) results for 

period 2. 
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expected demand for primary service 𝑑𝑗𝑙𝑡
𝑚  and back-up service 𝑑𝑗𝑙𝑡

𝑏  for each 

demand node 𝑗 and module 𝑙 in each time period 𝑡 are generated using uniform 

integer distribution between 0 and 2. The covering radius for primary service 𝑆𝑚 

and back-up service 𝑆𝑏are set to be 30 and 35, respectively. The number of available 

modules for each kind of module is generated using a uniform integer distribution 

for each interval indicated in Table 3.1 and Table 3.2. 

It is worth mentioning that all instances are solved using GAMS (CPLEX 

solver)/MATLAB software on a PC with a 3.4-GHz Core i7-6700 CPU and 8 GB of 

RAM running Windows 10 (64 bit). Computational results of the problem are 

summarized in Table 3.1 and Table 3.2. 

  In Table 3.1 and Table 3.2 the first column contains the information for number of 

demand nodes and potential locations for facilities. Column 𝑝 is for the number of 

facilities to be located, 𝑇 contains the number of time periods and 𝑙 refers to the 

number of available modules. Furthermore, the largest possible size of each module 

was set to be at most 3 (𝑒𝑙𝑘 = 𝐾 = 3). Two columns under "CPLEX", "GA" and 

"Heuristic" contain the objective function value as "OFV" and computational time as 

"time" in seconds.  

  As GA algorithm is a stochastic method that may produce different solution in 

each time the problem is solved, each test problem is solved 10 times and the results 

in the Table 3.1 and 3.2 contain the averaged values of these 10 times running for 

both “OFV” and “time”. The third column under "GA" calculates the gap between 

the results of CPLEX and GA in percent. Comparing the computational time for the 

CPLEX and GA, GA does not show any specific superiority. The heuristic also has 
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an acceptable performance as its main application is to investigate the results trend. 

Figure 3.2 illustrates the OFV values of three solving procedures. The illustrated 

diagrams give a better insight than the results in Table 3.1. These diagrams show 

that the CPLEX has the maximum values among the three methods and the heuristic 

has the lowest values. It also should be added that although the heuristic has the 

lower values, but its trend is the same as CPLEX, which it was developed for. The 

GA also is placed between two other diagrams but closer to the CPLEX that 

approves the ability of this proposed method to obtain satisfactory values. The test 

problems generated in Table 3.1 may just have some limited practical application 

and are mostly used to be able to evaluate the solving procedures, which necessitates 

to develop larger test problems as in Table 3.2 that can have real life applications like 

a town or city.  

  These large-scale problems are solved by all methods and the results are 

summarized in Table 3.2. It should be noted that because of the inherent feature of 

variables which are all binary variables, the complexity of problems increases 

exponentially as the problems size increase. For which the CPLEX was able to solve 

the problems up to 600 nodes (only for some of the test problems of this size), but 

GA is still able to solve larger problems having satisfying values, where the 

maximum gap is 0.035. Also, GA is able to solve the problems in a shorter time than 

CPLEX. The results in Table 3.2 show that for problems up to 600 noes, GA has 

satisfying values, where the maximum gap is 0.035. Also, GA is able to solve the 

problems in a shorter time that CPLEX.  

  The most important observation of the results is related to problems with 800 and 

1000 nodes. For these problems, CPLEX is unable to solve them and runs out of  
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Table 3.1: Computational results for CPLEX and GA for small size problems. 

     CPLEX GA Heuristic 

𝑖, 𝑗 𝑝 𝑇 l 𝑞𝑙 OFV time OFV time %gap OFV time 

200 10 

3 

3 
[15,25] 179 8 175 28 0.02 168 0.2 

[20,30] 226 8 211 29 0.06 180 0.2 

4 
[15,25] 234 13 227 28 0.02 222 0.2 

[20,30] 293 33 274 29 0.06 240 0.2 

5 

3 
[15,25] 302 21 292 33 0.03 280 0.2 

[20,30] 379 24 357 36 0.05 300 0.2 

4 
[15,25] 394 58 383 45 0.02 370 0.3 

[20,30] 479 36 469 47 0.02 400 0.3 

300 20 

3 

3 
[30,50] 363 25 349 35 0.03 339 0.5 

[40,60] 450 26 426 36 0.05 360 0.5 

4 
[30,50] 463 32 448 43 0.03 447 0.6 

[40,60] 591 43 567 47 0.04 480 0.6 

5 

3 
[30,50] 604 45 589 56 0.02 565 0.7 

[40,60] 751 70 735 57 0.02 600 0.7 

4 
[30,50] 785 111 764 61 0.02 745 0.7 

[40,60] 974 68 935 64 0.04 800 0.7 

 

 

Table 3.2: Computational results for CPLEX and GA for large size problems. 

     CPLEX GA Heuristic 

𝑖 = 𝑗 𝑝 𝑇 𝑙      𝑞𝑙 OFV time OFV time %gap OFV time 

500 30 

5 

3 
[50,70] 905 536 882 164 0.025 865 3.7 

[65,85] 1112 407 1103 178 0.008 900 4.2 

4 
[50,70] 1185 514 1172 179 0.010 1145 4.7 

[65,85] 1485 399 1480 188 0.003 1200 4.6 

7 

3 
[50,70] 1267 400 1233 184 0.026 1211 4.2 

[65,85] 1285 422 1259 202 0.020 1260 4.5 

4 
[50,70] 1659 1130 1634 199 0.015 1603 6.5 

[65,85] 2050 889 2039 210 0.005 1680 6.4 
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600 40 

5 

3 
[70,90] 1205 310 1190 182 0.012 1165 6.4 

[80,100] 1355 331 1330 180 0.018 1200 6.1 

4 
[70,90] 1585 562 1566 203 0.011 1545 8.1 

[80,100] 1785 708 1722 233 0.035 1600 8.2 

7 

3 
[70,90] 1687 947 1680 218 0.004 1631 8 

[80,100] 1897 1091 1850 216 0.024 1680 7.8 

4 
[70,90] - - 2477 286 - 2163 11.1 

[80,100] - - 2622 292 - 2240 13.2 

800 50 

5 

3 
[95,110] - - 1550 360  - 1485 19.1 

[100,120] - - 1610 377  - 1500 18.6 

4 
[95,110] - - 2123 410  - 1980 22.5 

[100,120] - - 2223 421  - 2000 22.9 

7 

3 
[95,110] - - 2210 380  - 2079 28.1 

[100,120] - - 2266 398  - 2100 25.1 

4 
[95,110] - - 2800 466  - 2772 32.4 

[100,120] - - 2930 485  - 2800 32.6 

1000 60 

5 

3 
[110,130] - - 1699 620  - 1655 27.2 

[115,140] - - 1852 613 - 1795 27.3 

4 
[110,130] - - 2280 701 -  2185 36.3 

[115,140] - - 2400 712 -  2395 38.3 

7 

3 
[110,130] - - 2411 845 -  2317 37.9 

[115,140] - - 2633 845 -  2513 37.6 

4 
[110,130] - - 3170 968 - 3059 49.8 

[115,140] - - 3393 980 -  3353 50.4 
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memory, but GA has still satisfactory performance at a reasonable computational 

time. The main purpose for proposing the heuristic method was to provide a 

comparing tool to evaluate the performance of GA for the cases that CPLEX in 

unable to solve. According to the values in Table 3.2 and the Figure 3.3, that depicts 

these results in a schematic format, it is apparent that the heuristic has kept its correct 

trend and is producing well enough values as a base to evaluate the GA. This fact 

Figure 3.2: OFV for CPLEX, GA and Heuristic for small size problems. 

 

Figure 3.3: OFV for CPLEX, GA and Heuristic for large size problems. 
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approves that one can rely on the proposed GA to solve larger problems and obtain 

satisfactory results.  

3.5 Summary 

  In this chapter, an extension of maximal covering location problem (MCLP) has 

been developed for locating emergency facilities, composed of discrete structural 

components. A genetic algorithm was utilized to solve the problem because of this 

metaheuristic’s strength to solve binary optimization problems and other extension 

of MCLP. In addition, a heuristic method has been proposed to assess the results 

obtained from GA. The computational experiments are generated and solved by 

CPLEX, GA and Heuristic to be able to compare the results and obtain managerial 

insights. The computational results illustrate a very small gap in the objective 

function values for the test problems that could be solved with exact method. For 

larger size problems that CPLEX was unable to solve them, GA produced solutions 

in short computational time and was able to solve the problems of 800 and 1000 

nodes.  
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Chapter 4  

4. Hybrid set covering and dynamic modular covering location problem… 

 Hybrid set covering and dynamic modular covering location 

problem: Application to an emergency humanitarian 

logistics problem 

4.1 Introduction 

  To benefit from the advantages of SCLP and MCLP, in this study, the idea of 

hybridization of these two models in an integrated model is addressed. The hybrid 

model is a multi-period model consist of strategic and tactical planning decisions. 

Strategic planning decisions include the location of the capacitated facilities, and 

tactical planning decisions include module assignment and demand points 

allocation. Figure 4.1 shows a schematic illustration of strategic and tactical decisions 

that are taken in each time period. Strategic decisions reflect the long-term goals that 

are taken to retain the system more viable. Tactical decisions are made to meet mid 

time goals that contribute to strategic decisions. Tactical decisions can be taken to 

respond with a faster action compared to strategic decisions [52] and [53]. It is 

supposed that the facilities are only the piece of land with basic infrastructures that 

would be located using SCLP that cover all demand points in each strategic period 

in response to fluctuating demand having capacitated facilities. After determining 

the located sites as the facilities, in each tactical period, the limited number of each 
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module kind would be assigned to the facilities using modular MCLP to maximize 

the covered demands. As mentioned in Chapter 1, one of the main features of the 

hierarchical or modular concept is that the decisions of assignment can be made only 

for one time period and the decisions can change for the later periods. This feature 

allows having a different arrangement of modules in each facility and in each tactical 

period in terms of module type, number and size. Using this integrated framework, 

trying to cover all demand points in the upcoming strategic periods, more facilities 

can also be located as extension decisions as a response to rising demand. As an 

integrated model, the objective of the proposed model is to maximize the profit 

gained from the income of covering demand points and the cost of minimizing the 

fixed costs of facilities. 

  Similar to covering location problems, one of the main applications of the hybrid 

covering model is locating aid centers or evacuation sites in the humanitarian relief 

situation. The definition of the facility in this study is similar to the one that is used 

in real management system, i.e., a public facility mainly with large yards, such as 

parks, schools or parking lots [54] that can be utilized as an aid center in most of the 

disasters because of their low vulnerability. These kinds of facilities are usually 

equipped with essential needs such as water, electricity, etc., and are announced as 

Figure 4.1: Strategic and tactical decision differentiation in the proposed model. 
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shelter locations beforehand to the residents. Different kinds of modules can be 

considered such as ambulances, trucks, helicopters, first aid units, food providing 

units, sleeping tents, shower rooms and etc. The importance of modularization of 

resources and services becomes apparent when in most of the disasters the whole 

area is exposed to be damaged and if the facilities were located having the full 

equipment, they might have been out of order due to the disaster itself. 

Modularization can also have a high impact on budget management as the modules 

can easily be dispatched to the other affected areas in the upcoming future. The other 

application of hybrid covering location problem is in locating hospitals, distribution 

centers and integrated production planning and warehouse location problems [55]. 

  The main contribution of this study is summarized as follows. 

 In this chapter, it is tried to benefit from the coverage concept of SCLP to locate 

the facilities (with the aim of providing access to the facilities for all demand 

points) and MCLP to locate the service providing units (with the aim of 

maximizing the coverage of demand nodes by the modules respecting the limited 

number of modules) in an integrated model.  

 The integrated model is capable of improving the service quality and exploiting 

the limited number of modules in a better way compared to the non-integrated 

approach. 

 Studying covering location problems in different decision levels as strategic and 

tactical decisions is not conducted before in the literature.  

 In spite of the modeling advantage of modularity in providing multi-level 

facilities, it has received very limited attention in covering location problems. In 
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this model, modular capacitated MCLP is developed to assign the service 

providing units to the facilities.   

 A threat case study as an application of the developed hybrid model is studied 

and other variants of possible hybridization models are presented and compared 

through numerical examples.  

  The remainder of the chapter is categorized as follows. In section 4.2, the literature 

review is presented. A review of SCLP and MCLP is included in section 4.3. The 

mathematical formulation of the problem is presented in section 4.4. In section 4.5, 

the mathematical models of comparable models are discussed. Section 4.6 contains 

an application of the models and a case study with the results of the numerical 

examples. Finally, the chapter is concluded in section 4.7. 

 

4.1. Literature review 

  A significant part of the literature of SCLP focuses on the application of SCLP in 

real-world problems. Vianna [56] considered the application of the SCLP in the 

optimization of gas detectors in process plants as a 0–1 integer programming model 

in order to calculate the best location and the minimum number of gas detectors in 

a facility site. Another application of SCLP is to locate the traffic counting stations 

that are used to monitor the traffic flow of transportation vehicles in highways. This 

application was studied by Vieira et al. [57] with the objective of minimizing the total 

number of stations to cover all origin and destination nodes of the network for which 

they proposed a hybrid algorithm based on exact, heuristic and hybrid approaches 

that could solve an acceptable fraction of instances to find the optimal solution. 
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Furthermore, Park et al. [58] presented the flight plans for unmanned aerial vehicles 

that can be very useful for rescue operations in disaster situations using quadratic 

constraints. As the SCLP in presence of quadratic constraints is a complex problem 

to solve even small size problems, the authors have developed an approximation 

model that was solved by a branch and price algorithm. The optimal number and 

locations of pharmaceutical warehouses is another application of SCLP that was 

studied by Mokrini et al. [59]. They also conducted a sensitivity analysis to show 

how different coverage distances can affect the number of warehouses and the 

network configuration. 

  There are also many applications of MCLP in modeling real-life situations. 

Locating bicycle sharing stations in this way that users take the bikes, use them, and 

then return the bikes at the same or any other located stations were addressed by 

Muren et al. [60]. They considered lower bound for the workload of each station that 

could also lead to improved results quality. By the appearance of rechargeable 

electric vehicles and addressing the need to build charging stations for these kinds 

of vehicles, Dong et al. [61] formulated and solve the problem of locating vehicles 

charging stations using MCLP and took into account the spatial information statistic 

of charging demand as a stochastic process. Similar to the application studied by 

Park et al. [58], Chauhan et al. [62] studied the problem of assigning the drones used 

for carrying the delivery packages in commercial services. Chauhan et al. [62] used 

MCLP to formulate their problem considering package weight, battery and coverage 

constraints and developed a heuristic method to solve the problem with sensitivity 

analysis of the problem parameters. Furthermore, Nilsang et al. [63] studied the 

location of ambulance bases by utilizing MCLP and the real-time information 
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obtained from social media like tweeter. They have studied the reallocation of 

ambulances in response to demand fluctuation in a dynamic framework and 

validated the model by applying it to the emergency medical services in Bangkok.  

  One of the assumptions of the basic MCLP is the binary coverage; that supposes a 

demand point to be covered completely if it is located within a critical distance or 

travel time of the facility and the if the demand point is outside of the critical distance 

or travel time it cannot be covered by the facilities. Most of the researchers have 

found this assumption to be too restrictive, especially for the applications in 

emergency systems like the current study. Berman et al. [64] , Drezner et al. [65] and 

Karasakal and Karasakal [37] are among those who studied the MCLP by modeling 

coverage as a gradual or partial coverage which means the coverage provided to a 

demand point decreases gradually with increasing distance or travel time from a 

facility. Berman et al. [66] have extended the gradual coverage to the case that the 

coverage can be provided from multiple facilities with applications in cell phone 

tower service providers. They tested several methods to solve the developed model 

such as greedy heuristic method, tabu search, ascent heuristic and tangent line 

approximation method. Locating undesirable facilities like nuclear plants in the 

presence of gradual coverage was addressed by Khatami and Salehipour [67]. As the 

objective of undesirable facilities is contrary to the common commercial facilities, 

the model is called a minimal covering location problem that seeks to locate the 

facilities in places that covers a minimum number of residents. 

  Although some modeling ideas have been studied for both SCLP and MCLP, all 

of these studies have considered SCLP and MCLP as separate models. To the best of 

our knowledge, there is no study that has modeled SCLP and MCLP in an 



Hybrid set covering and dynamic modular covering location problem… 

61 

 

Table 4.1: Related papers in the literature (classified based on modelling ideas). 

   

integrated model. Table 4.1 reviews important models in the areas related to our 

study.  Although there is no study combining SCLP and MCLP in one model, they 

are related to this model at least one perspective. The decision level (last column of 

the table) of the models might be not specified directly in the papers but as the 

facility location problems generally belong to strategic decision levels, they have 

 

 

Paper 

Model 

S, M, H 

Period 

S, M 

Coverage 

type 

B, G, C 

Facility 

type 

S, M 

Data 

Modelling 

D, S, F, R 

capacity 

constraint 

C, N, M 

decision 

levels 

S, T, O 

Toregas et al. [4] S S B S D N S 

Rajagopalan et al. [12] S M B S D N S 

Eiselt and Marianov [68] S S G S D N S 

Berman et al [69]  S S G M D N S 

Church and ReVelle [5] M S B S D N S 

Bagherinejad et al. [34] M S G, C S D N S 

Farahani et al. [20] M S B M D N S 

Coco et al [70] M S B S R N S 

Yin and Mu [24] M S  B M D C S 

Berman et al [66] M S G, C S D N S 

Vatsa and Jayaswal [16] M M B S S C S 

Zhang et al. [71] M, S S B S F N S 

Erdemir et al. [31]  M, S S B M D N S 

HCLP H M G M D C, M S, T 

Model: S (SCLP), M (MCLP), H (Hybrid). Period: S (Single period), M (Multi-period). Coverage Type: B (Binary), G 

(Gradual), C (Cooperative). Facility type: S (Single), M (Multiple/ Modular). Data Modelling: D (Deterministic), S 

(Stochastic), F (Fuzzy), R (Robust). Capacity Constraints: C (Capacitated), N (Non-capacitated), M (Module capacity). 

Decision level: S (Strategic), T (Tactical), O (Operational). 
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classified as strategic decision models. The last row of Table 4.1 illustrates the 

contribution of this research compared to the literature.  

 

4.2 Hybrid covering location problem formulation 

  In this section, a mixed integer linear programming model for the hybrid covering 

location problem (HCLP) is presented.  

  Some of the most important decisions in the proposed model are as follows: 

 Location, number and establishment time of facilities is strategic periods during 

the planning horizon. 

 Type and number of each module assigned to the located facilities in tactical 

periods of each strategic period during the planning horizon. 

 Percentage of allocating demand of points to the assigned modules in tactical 

periods of each strategic period during the planning horizon. 

  The main assumptions to develop the model are as follows: 

 The problem is studied in a multi-period framework. The total planning horizon 

is classified into two types of periods as strategic periods and tactical periods. 

Each strategic period is composed of several tactical periods with different kinds 

of decisions to be made.  

 The facilities are supposed to be a piece of land or site, equipped with some 

initial infrastructures. The locations of these facilities are going to be decided 

only in strategic periods using the coverage concept of SCLP to determine the 

minimum number of facilities to be located with the aim of covering all demand 
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points. Once a facility is opened in a strategic period, it cannot be closed and 

should continue its operation in future periods. In addition, the facilities are 

supposed to be capacitated and the number of facilities can be expanded in 

response to the demand variation in the upcoming strategic periods. 

 We suppose that there are different kinds of service providing units, namely the 

modules of facilities that are limited in terms of numbers and capacities. These 

modules can move to the facilities and should be assigned to the facilities in 

tactical periods. The optimal decisions of module assignment to the facilities are 

supposed to obey the coverage concept provided with multi-period modular 

MCLP. The arrangement of modules in facilities can be varied in different 

tactical periods according to the points' demand fluctuation in order to 

maximize the amount of total covered demands.  

 Each module comes in different sizes. It can be chosen from different sizes to 

increase the service quality offered to demand points to overcome the service 

shortages or having idle units.  

 The modules are portable and they can be transferred among the facilities when 

there is more request in another facility. The transferability is an important 

specification of modularity design that yields to flexibility in the system and 

reduces costs. The portability of most modules helps to provide a good level of 

service to demand points without having to provide more modules. 

 It is supposed that covering the demand points by the modules obeys the 

gradual coverage concept using a partial coverage function. In gradual coverage 

function, the demand points inside the full coverage radius can be covered 

completely, but by increasing the coverage radius the amount of coverage 
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decreases and the points outside the partial coverage radius are supposed not to 

be covered. 

  The notation for the model is as follows. 

Indices: 

𝑖 index of candidate facility locations; 

𝑗 index of demand points; 

𝑙 index of modules; 

𝑘 index of sizes; 

𝑡 index of strategic time periods; 

τ index of tactical time periods; 

 

Sets: 

𝐼 Set of candidate facility locations; 

𝐽 Set of demand points; 

𝐿 Set of modules; 

𝐾 Set of sizes; 

𝑇 Set of strategic time periods; 

𝒯𝑡 Set of tactical time periods in strategic period 𝑡; 

 

Parameters: 

𝑑𝑗𝑙𝑡𝜏 Demand of point 𝑗 for service of module 𝑙 in strategic period 𝑡 and 

tactical period 𝜏. 

𝑞𝑙 Number of available modules for module  𝑙 at each period. 
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𝑑𝑖𝑠𝑖𝑗 Distance between facility 𝑖 and demand point 𝑗. 

𝛿𝑡 Maximum service distance at strategic period 𝑡. 

𝑔𝑖𝑗 Coverage level provided by facility 𝑖 to demand point 𝑗. 

𝑔𝑖𝑗 = {

1             𝑖𝑓  𝑑𝑖𝑠𝑖𝑗 ≤ 𝑆 

𝜉(𝑑𝑖𝑠𝑖𝑗)    𝑖𝑓 𝑆 ≤ 𝑑𝑖𝑠𝑖𝑗 ≤ 𝑆′

0𝑖𝑓𝑑𝑖𝑠𝑖𝑗 ≥ 𝑆′

 

𝜉(𝑑𝑖𝑠𝑖𝑗) Partial coverage function, where 0 < 𝜉(𝑑𝑖𝑠𝑖𝑗) < 1. 

𝑆 Full coverage distance. 

𝑆′ Partial coverage distance. 

𝑒𝑖𝑗𝑡 Binary parameter which is 1 if 𝑑𝑖𝑠𝑖𝑗 ≤ 𝛿𝑡,  0 otherwise. 

𝑓𝑖 Cost of locating a facility at facility location 𝑖. 

𝑐𝑙 Capacity of each module 𝑙 per each size. 

𝑜𝑙𝑘 The 𝑘th size for module 𝑙 

ℎ𝑖 Capacity of facility 𝑖. 

𝑎𝑗𝑙𝑡𝜏 Earned income from providing service of module 𝑙 to demand point 𝑗 

in strategic period 𝑡 and tactical period  𝜏. 

 

Decision variables: 

𝑧𝑖𝑡 1 if a facility is located at 𝑖 in strategic period 𝑡, 0 otherwise. 

𝑦𝑖𝑙𝑘𝑡𝜏 1 if the 𝑘th size of module 𝑙  is assigned to facility 𝑖  in strategic 

period 𝑡 and tactical period τ, 0 otherwise. 

𝑥𝑖𝑗𝑙𝑡𝜏 The percentage of demand point 𝑗  allocated to the module 𝑙  of 

facility 𝑖 in strategic period 𝑡 and tactical period 𝜏. 
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  To locate the facilities by using the coverage concept of SCLP in different strategic 

periods, it is supposed that 𝑑𝑗𝑙1𝜏 ≤ 𝑑𝑗𝑙2𝜏 ≤ ⋯ ≤ 𝑑𝑗𝑙|𝑇|𝜏 ∀ 𝑗, 𝑙, 𝜏 and 𝛿1 ≥ 𝛿2 ≥ ⋯ ≥ 𝛿|𝑇|. 

This assumption is mandatory for modeling the problem, which implies that the 

demands are assumed to be increasing during the time horizon and while the 

coverage radius is fixed or decreasing in response to the increasing demand. We 

formulate the hybrid covering location problem (HCLP) as follows: 

 

max ∑ ∑ ∑ ∑ ∑ 𝑎𝑗𝑙𝑡𝜏𝑔𝑖𝑗𝑑𝑗𝑙𝑡𝜏 𝑥𝑖𝑗𝑙𝑡𝜏

𝜏∈𝒯𝑡𝑡∈𝑇𝑙∈𝐿𝑗∈𝐽𝑖∈𝐼

− ∑ ∑ 𝑓𝑖𝑧𝑖𝑡

𝑡∈𝑇𝑖∈𝐼

 

 

(4.1) 

∑ 𝑒𝑖𝑗𝑡𝑧𝑖𝑡

𝑖∈𝐼

≥ 1 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (4.2) 

𝑧𝑖𝑡 ≤ 𝑧𝑖𝑡+1 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (4.3) 

∑ 𝑦𝑖𝑙𝑘𝑡𝜏

𝑘∈𝐾

≤ 𝑧𝑖𝑡 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.4) 

𝑥𝑖𝑗𝑙𝑡𝜏 ≤ ∑ 𝑦𝑖𝑙𝑘𝑡𝜏

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.5) 

∑ 𝑥𝑖𝑗𝑙𝑡𝜏

𝑖∈𝐼

≤ 1 ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.6) 

∑ ∑ 𝑜𝑙𝑘 𝑦𝑖𝑙𝑘𝑡𝜏

𝑘∈𝐾𝑖∈𝐼

≤ 𝑞𝑙 
∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.7) 

∑ 𝑑𝑗𝑙𝑡𝜏  𝑥𝑖𝑗𝑙𝑡𝜏 ≤ ∑ 𝑜𝑙𝑘 𝑐𝑙 𝑦𝑖𝑙𝑘𝑡𝜏

𝑘∈𝐾𝑗∈𝐽

 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.8) 

∑ ∑ 𝑑𝑗𝑙𝑡𝜏  𝑥𝑖𝑗𝑙𝑡𝜏

𝑙∈𝐿

≤  ℎ𝑖  𝑧𝑖𝑡

𝑗∈𝐽

 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.9) 

𝑧𝑖𝑡, 𝑦𝑖𝑙𝑘𝑡𝜏  ∈ {0,1}, 0 ≤ 𝑥𝑖𝑗𝑙𝑡𝜏 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.10) 
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  The objective function (4.1) maximizes the profit that is the income gained from 

covering demand points subtracting the cost of locating facilities and assigning 

modules to the facilities. Constraints (4.2) are the well-known constraint of SCLP 

that indicates all the points in each strategic period should be allocated to the 

facilities. Constraints (4.3) state that if a facility is opened in a strategic period, it 

should continue its operation for the forthcoming periods. Constraints (4.3) imply 

that modules can just be assigned to the open facilities and in each facility only one 

size of each module is allowed, while constraints (4.4) imply the same concept for 

the demand points in this way that the demand points can just be allocated to the 

assigned modules in each tactical period of strategic periods. Constraints (4.5) 

indicate that the total percentage of coverage provided for each demand point from 

all facilities should not exceed 1. Constraints (4.6) set the total number of modules 

assigned to the facilities to be less than the available number of modules, i.e., 𝑞𝑙. 

Constraints (4.7) and (4.8) are capacity constraints of the modules and facilities, 

respectively. Constraints (4.10) set the variables of location and module assignment 

to be binary variables while the variables of demand allocation are set to be 

continuous. 

 

4.3 Comparison with other models  

  There are other potential ways to combine SCLP and MCLP to shape the hybrid 

model. In the developed model of HCLP, SCLP is used to locate the facilities as 

strategic decisions and MCLP is used to find the assignment of modules and 

demand allocation as tactical decisions. In the same way, MCLP-MCLP may refer to 
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the case that both strategic and tactical decisions are determined using MCLP, SCLP-

SCLP refers to the case where both strategic and tactical decisions are determined 

using SCLP and finally MCLP-SCLP refers to the model that strategic decisions are 

taken using MCLP and tactical decisions by using SCLP. These four models are 

comparable because the solution variables are the same in all four models (except 

the number of located facilities that can be obtained from SCLP). Besides the same 

solution, the goal of covering problems, which is to cover more demand points can 

be extracted from all four models as the coverage percentage. In this section, the 

mathematical model for each of these variants is developed and in section 4.7 the 

numerical examples are conducted to evaluate these models in terms of coverage 

they provide and efficiency (elapsed time). Figure 4.2 shows these different possible 

hybridization problem structures. 

 

4.3.1 MCLP-MCLP 

  MCLP-MCLP locates the facilities utilizing MCLP and the decisions for module 

assignment and demand points allocation are determined by MCLP as well. In 

Figure 4.2: The structure of different possible hybridization models. 
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contrary to the HCLP that gives the solution to both numbers and location of the 

facilities, the number of the facilities is a parameter and the problem only finds the 

optimal location of these predefined number of facilities in MCLP-MCLP. In 

addition, while the goal of HCLP is to cover all demand points by the facilities, this 

goal is not valid anymore in MCLP-MCLP and it only seeks to maximize the total 

covered demand points. The main difference of HCLP and MCLP-MCLP is the 

constraint (4.2) that should be substituted by constraint (4.12) that implies the total 

number of located facilities in each strategic period cannot exceed the number 

defined beforehand. The mathematical formulation of the MCLP-MCLP can be 

modified as follows: 

 

max ∑ ∑ ∑ ∑ ∑ 𝑎𝑗𝑙𝑡𝜏𝑔𝑖𝑗𝑑𝑗𝑙𝑡𝜏𝑥𝑖𝑗𝑙𝑡𝜏

𝜏∈𝒯𝑡𝑡∈𝑇𝑙∈𝐿𝑗∈𝐽𝑖∈𝐼

 (4.11) 

∑ 𝑧𝑖𝑡

𝑖∈𝐼

≤ 𝑝𝑡 ∀𝑡 ∈ 𝑇 (4.12) 

(4.3) – (4.10).   

 

where 𝑝𝑡  is the number of predefined facilities for each strategic period that is 

defined by the decision-makers as a parameter. Note that having the number of 

located facilities depending on the time periods is to keep the expansion capabilities 

of the model. Otherwise, it can be a fixed number for all periods. 
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4.3.2 MCLP-SCLP 

  This model's structure exploits the coverage concept of covering problems in a 

contrary format to HCLP model. In MCLP-SCLP, it is supposed that facilities obey 

the coverage concept of MCLP having specified numbers as strategic decisions, 

while the minimum number of modules has to be determined by SCLP in order to 

provide full coverage for each point from each module type as tactical decisions. 

The mathematical model of MCLP-SCLP has a similar formulation to MCLP-MCLP 

for facility location part but the difference is in constraint (4.7) that should be 

replaced with constraint (4.14) that indicated each module type should be assigned 

to the opened facilities in a way that can provide full coverage for each demand 

point in each tactical period of strategic period. As a result, the objective of the 

MCLP-SCLP maximizes the profit obtained from the income of covering demand 

points and the cost of assigning the modules. The mathematical formulation of 

MCLP-SCLP is as follows: 

 

 max ∑ ∑ ∑ ∑ ∑ 𝑎𝑗𝑙𝑡𝜏𝑔𝑖𝑗𝑑𝑗𝑙𝑡𝜏𝑥𝑖𝑗𝑙𝑡𝜏

𝜏∈𝒯𝑡𝑡∈𝑇𝑙∈𝐿𝑗∈𝐽𝑖∈𝐼

− ∑ ∑ ∑ ∑ ∑ 𝑏𝑖𝑙𝑘𝑡𝜏𝑦𝑖𝑙𝑘𝑡𝜏

𝜏∈𝒯𝑡𝑡∈𝑇𝑘∈𝐾𝑙∈𝐿𝑖∈𝐼

    (4.13) 

∑ ∑ 𝑒′
𝑖𝑗𝑦𝑖𝑙𝑘𝑡𝜏

𝑘∈𝐾𝑖∈𝐼

≥ 1 ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜏 ∈ 𝒯𝑡 (4.14) 

(4.12), (4.3) – (4.6), (4.8) – (4.10).   
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where 𝑏𝑖𝑙𝑘𝑡𝜏  is the cost of assigning the size 𝑘  of module 𝑙  to the facility 𝑖  at 

tactical period 𝜏 of strategic period 𝑡 and 𝑒′
𝑖𝑗  is the binary parameter which is 1 if 

𝑑𝑖𝑠𝑖𝑗 ≤ 𝑆,  0 otherwise.  

 

4.3.3 SCLP-SCLP  

  In SCLP-SCLP both facility location and modules assignment decisions are 

determined using the coverage concept of SCLP, in a way that it is desired to provide 

full coverage of points from facilities in strategic periods and from each module type 

in tactical periods of strategic periods. In contrary to the objective function of other 

defined models, the objective of SCLP-SCLP minimizes the cost of facility location 

and module assignment. To follow SCLP's theoretical perspectives, the objective 

function of maximizing the coverage of the demands. The mathematical formulation 

of the SCLP-SCLP model is as follows: 

 

 min ∑ ∑ 𝑓𝑖𝑧𝑖𝑡

𝑡∈𝑇𝑖∈𝐼

+ ∑ ∑ ∑ ∑ ∑ 𝑏𝑖𝑙𝑘𝑡𝜏𝑦𝑖𝑙𝑘𝑡𝜏

𝜏∈𝒯𝑡𝑡∈𝑇𝑘∈𝐾𝑙∈𝐿𝑖∈𝐼

 (4.15) 

 (4.2) – (4.6), (4.8) – (4.10), (4.14).  
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4.4 Experimental tests 

4.4.1 Case study; application of HCLP in humanitarian logistic 

services 

  According to the latest report of the Centre for Research on the Epidemiology of 

Disasters (CRED) [72], "in 2019, at least 396 natural disasters were reported, killed 

11,755 people, affected 95 million others and costing nearly 130 billion US dollars. 

Floods, storms and droughts accounted for almost 99% of the total number of 

affected people." More importantly, the report indicates that "the number of events 

in 2019 was slightly over the average of the last 10 years." The highest priority in 

these kinds of situations is to help the survivors. Despite the unknown occurrence 

time and the place of the natural disasters, emergency preparedness and response 

activities should be conducted as pre-disaster and post-disaster actions. One of the 

applications of the proposed HCLP model is locating aid centers and module 

assignment that can improve the impact of strategic and tactical relief operations in 

humanitarian situations caused by disasters such as earthquakes, floods, storms, 

wars, medical epidemic emergencies and droughts. According to the Disaster 

Operations Management (DOM) framework [73], disaster operations are usually 

categorized into four main phases as mitigation, preparedness, response, and 

recovery as shown in Figure 4.3. The application of HCLP in the humanitarian 

facility location problem, in which the location of the capacitated aid centers is 

determined as strategic decisions belongs to the preparedness activity phase. In the 

response phase, the assignment of the service providing units to the located aid 

centers with the objective of maximizing the covered demand of affected people is 
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determined. From Figure 4.3, the decisions during mitigation and preparedness 

activities can be regarded as strategic decisions, the decisions during the response 

activity can be regarded as tactical decisions and in the same way, the decisions 

during recovery phase are assumed as operational decisions. The gray filled part 

illustrates the domain of HCLP in humanitarian services, which includes the 

strategic and tactical decisions of preparedness and response phases. 

  When a disaster happens in any region, the government or any responsible 

organization can dispatch the limited modules (trucks, helicopters, medical services, 

mobile kitchens, shelter tents and etc.) to the located facilities to start service 

operations there. When the modules fulfill their operations, they can be dispatched 

to be assigned to the other facilities of other affected regions according to the 

demand requests. In this case study, it is supposed that in each strategic period one 

of the areas in south-central (R1), north-central (R2), and center (R3) of Japan are 

affected by a disaster requesting for services provided by the modules in tactical 

Figure 4.3: Different disaster operational phases and supply chain decision 

categories. 
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periods. Each tactical period is equivalent to one month and each strategic period is 

composed of three tactical periods. The north-central part (R2) can correspond to the 

Japan 2011 earthquake. The number of 160 points matching the cities with more than 

150,000 inhabitants according to census results and latest estimates [74] is considered 

as demand points and also as the potential locations for locating facilities. There are 

four kinds of modules with four possible sizes, three strategic periods each 

composed of three tactical periods. Parameters 𝑞𝑙 , 𝑐𝑙 ,  𝑓𝑖 , and ℎ𝑖  are generated 

randomly using uniform distribution between (30, 50), (200000, 300000), (700000, 

900000), and (4000000, 6000000), respectively. In this case study, the threat scenarios 

are designed in this way that firstly one disaster hits the south-central (R1) in the 

first strategic period, the second disaster occurs in the north-central part (R2) in the 

second strategic period and in the third strategic period, it is the central part (R3) 

that is affected by a disaster and needs the modules assignment. 

  Figure 4.4 shows the demand points in green color and the located facilities in blue 

in the last strategic period. The arrows show the flow of the modules from 

previously affected areas to the newly affected one to provide service. The blue 

circles have been used to demonstrate the affected areas. The solution of the problem 

for these threats the first area (R1) affected by the disaster could be covered 86.8%, 

the coverage for the second area (R2) was 99.6% and in the last affected area (R3) the 

coverage of demand points was 43.3% by the limited number of available modules. 

Table 4.2 includes the results of this case study in the second row. The coverage 

percent is calculated as: 

∑ 𝑔𝑖𝑗𝑑𝑗𝑙𝑡𝜏𝑥𝑖𝑗𝑙𝑡𝜏𝑖,𝑗,𝑙,𝑡,𝜏

∑ 𝑑𝑗𝑙𝑡𝜏𝑗,𝑙,𝑡,𝜏
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  The second column of Table 4.2 shows the operating facilities in each strategic 

period for R1, R2, and R3. The column "MZ" and "MY" contain the average number 

of located facilities and modules respectively. Columns "Obj" and "Time" include the 

objective value and elapsed time to solve the problem. Other rows of Table 4.2 

contain the results for some sensitivity analysis of capacity and cost parameters. In 

the second solved problem, the capacities of the modules have been decreased, 

which has resulted in significant coverage percentage for all regions and objective 

value. The number of located facilities does not change so much, but the problem 

tries to provide more coverage by assigning more modules. In the third problem, the 

effect of increasing the facility location cost has been the main purpose. The results  

Figure 4.4: The demand points and facilities located at the last strategic period. 
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Table 4.2: Computational results of case study and sensitivity analysis. 

show that the increase in facility location cost does not have that much effect on the 

coverage percentage and assigned modules, but the number of located facilities and 

Problem data Operating facilities in R1, R2 and R3 
Coverage 

% 
MZ MY Obj Time 

𝑞𝑙: U(30,50) 

𝑐𝑝𝑙: U(200k,300k) 

𝑓𝑖: U(70k,90k) 

ℎ𝑖: U(4M, 6M) 

 

R1: Amagasaki, Izumi, Kakogawa, 

Kawanishi,Kishiwada, Nara, Sakai, Suita, Takatsuki, 

Wakayama, Yao. 

R2: Aomori, Iwaki, Morioka, Sendai.  

R3: Atsugi, Funabashi, Hino, Hitachinaka, 

Kawaguchi, Maebashi, Nagareyama, Noda, 

Odawara, Oyama, Saitama. 

R1: 86.8% 

 

 

R2: 99.6% 

R3: 43.3% 

51.6 33.9 256M 165 

𝑞𝑙: U(30,50) 

𝑐𝑝𝑙: U(20k,30k) 

𝑓𝑖: U(70k,90k) 

ℎ𝑖: U(4M, 6M) 

 

R1: Amagasaki, Kakogawa, Kishiwada, Nara, Sakai, 

Suita, Takatsuki.  

R2: Aomori, Fukushima, Hachinohe, Iwaki, 

Koriyama, Morioka, Sendai.  

R3: Atsugi, Funabashi, Hino, Hitachinaka, 

Kawaguchi, Maebashi, Odawara, Oyama, Saitama.   

R1: 8.6% 

R2: 37.5% 

R3: 4.3% 

50.6 39.9 22M 71 

𝑞𝑙: U(30,50) 

𝑐𝑝𝑙: U(20k,30k) 

𝑓𝑖: U(100k,150k) 

ℎ𝑖: U(4M, 6M) 

 

R1: Amagasaki, Izumi, Kakogawa, Kishiwada, Nara, 

Sakai, Suita, Takatsuki, Wakayama, Yao. 

R2: Aomori, Iwaki, Morioka, Sendai. 

R3: Atsugi, Funabashi, Hino, Hitachinaka, 

Kawaguchi, Maebashi, Nagareyama, Odawara, 

Oyama, Saitama.   

R1: 86.7% 

R2: 99.6% 

R3: 43.3% 

51.3 33.9 250M 330 

𝑞𝑙: U(30,50) 

𝑐𝑝𝑙: U(20k,30k) 

𝑓𝑖: U(100k,150k) 

ℎ𝑖: U(4M, 6M) 

 

R1: Akashi, Amagasaki, Higashiosaka, Himeji, 

Hirakata, Ibaraki, Itami, Izumi, Kakogawa, 

Kawanishi, Kishiwada, Kobe, Kyoto, Nara, 

Neyagawa, Nishinomiya, Okayama, Osaka, Otsu, 

Sakai, Suita, Takarazuka, Takatsuki, Toyonaka, Uji, 

Wakayama, Yao.      

R2: Aomori, Fukushima, Hachinohe, Iwaki, 

Koriyama, Morioka, Sendai.     

R3: Ageo, Atsugi, Chiba, Chigasaki, Chofu, Fucho, 

Fujisawa, Funabashi, Hachioji, Hino, Hiratsuka, 

Hitachinaka, Ichihara, Ichikawa, Isesaki, Kamakura, 

Kashiwa, Kasukabe, Kawagoe, Kawaguchi, 

Kawasaki, Kodaira, Koshigaya, Kuki, Kumagaya, 

Machida, Maebashi, Matsudo, Mitaka, Mito, 

Nagareyama, Narashino, Niiza, Nishitokyo, Noda, 

Odawara, Ota, Oyama, Sagamihara, Saitama, 

Sakura, Sayama, Soka, Tachikawa, Takasaki,Tochigi, 

Tokyo,Tsukuba, Urayasu, Utsunomiya,Yachiyo.    

R1: 39.5% 

R2: 47.6% 

R3: 33.9% 

93 35.1 140M 1046 
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as a result, the objective value decrease. In addition, the last solved problem 

investigates the effect of the decrease in facilities capacity. 

  According to the results when the capacity of facilities decreases more facilities 

have been located, but even this increase in the number of facilities cannot 

compensate for the reduction in the coverage percentage. On the other hand, 

locating more facilities imposes costs, which is reflected in the objective value 

reduction. 

 

4.4.2 Numerical results 

  In this section, some test problems have been generated randomly with different 

sizes to examine the performance of the developed model. For this purpose, the test 

problems have been designed in two main directions. In the first experiment, it is  

Figure 4.5: A schematic illustration of three region and four region test problem. 
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Table 4.3: Computational results of test problems for three regions experiment. 

𝒊

= 𝒋 

Demand 

scenario 
𝒕 𝝉 𝒍 𝒌 𝒒𝒍 𝒄𝒑𝒍 𝒉𝒊 𝒇𝒊 Obj 

Covera 

ge % 
Time 

50 
Low 3 2 2 2 U(4,7) U(150,250) U(500,1000) U(400,800) 3,042.1 86% 4 

High 3 2 2 2 U(4,7) U(150,250) U(500,1000) U(400,800) 4,359.5 65% 3 

100 
Low 3 3 2 3 U(7,10) U(200,250) U(1000,1500) U(400,800) 17,251.2 84% 213 

High 3 3 2 3 U(7,10) U(200,250) U(1000,1500) U(400,800) 21,936.2 62% 249 

150 
Low 3 3 3 3 U(10,15) U(200,250) U(1500,2000) U(400,800) 41,056.5 86% 1013 

High 3 3 3 3 U(10,15) U(200,250) U(1500,2000) U(400,800) 50,697.4 62% 1073 

200 
Low 3 3 4 3 U(15,20) U(300,350) U(1000,1500) U(400,800) 25,134.5 30% 1029 

High 3 3 4 3 U(15,20) U(300,350) U(1000,1500) U(400,800) 26,740 22% 1072 

250 

Low 3 4 4 3 U(20,30) U(300,350) U(1000,1500) U(400,800) 24,545.6 21.9% 2169 

High 3 4 4 3 U(20,30) U(300,350) U(1000,1500) U(400,800) 27,159.4 14.1% 1479 

Low 3 4 4 3 U(20,30) U(300,350) U(1500,2000) U(400,800) 28,235 24% 1203 

High 3 4 4 3 U(20,30) U(300,350) U(1500,2000) U(400,800) 31,482.5 16% 1355 

Low 3 4 4 3 U(20,30) U(300,350) U(2000,3000) U(400,800) 28,235 24% 1169 

High 3 4 4 3 U(20,30) U(300,350) U(2000,3000) U(400,800) 31,482.5 16% 1399 

Low 3 4 4 3 U(20,30) U(350,450) U(1000,1500) U(400,800) 25,744.6 22.6% 1343 

High 3 4 4 3 U(20,30) U(350,450) U(1000,1500) U(400,800) 28,396 14.6% 1111 

supposed that there are three regions affected by disasters with two kinds of high 

and low demand scenarios in three strategic periods. In the second experiment, there 

are four regions affected by the disasters with high and low demand scenarios in 

four strategic periods. A schematic illustration of three regions and four regions test 

problems together with the located facilities and module movement flow is depicted 

in Figure 4.5 for the case with 250 demand points. In each kind of experiments, the 

dimensions of the test problems are augmented gradually. Tables 4.3 and 4.4 contain 

the results of test problems. The problems are solved using GAMS (CPLEX solver) 

software (24.1.2) on a PC with a 3.4-GHz Core i7-6700 CPU and 8 GB of RAM 

running Windows 10 (64 bit). 
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Table 4.4: Computational results of test problems for four regions experiment. 

   

  It must be noted that all parameters of the test problems are designed in a way 

that there would be no redundant constraints. The results for all test problems 

approve that problems of low scenarios result in less objective values, but a higher 

percentage of demands can be covered in the low scenario problems compared to 

the high demand scenario problems. By increasing the size of the problems, the 

elapsed time also increases for both kinds of problems in Tables 4.3 and 4.4. For the 

problem of the size 250 points of three regions, we have conducted some sensitivity 

analysis. As mentioned, the first two problems of low and high demands are the 

problems that all the constraints are active. By increasing the capacity of facilities, in 

second and third problems the constraints of facilities capacity become redundant, 

so that changing these parameters has no more effect on the solutions. In the last 

problem, the capacities of the facilities are set to be active and the capacities of the 

modules have been increased that these changes have yielded to increase in objective 

𝒊 = 𝒋 
Demand 

scenario 
𝒕 𝝉 𝒍 𝒌 𝒒𝒍 𝒄𝒑𝒍 𝒉𝒊 𝒇𝒊 Obj 

Cover

age % 
Time 

50 
Low 4 2 2 2 U(4,7) U(150,250) U(400,800) U(400,800) 715.1 82% 6 

High 4 2 2 2 U(4,7) U(150,250) U(400,800) U(400,800) 2,660.9 76% 5 

100 
Low 4 3 2 3 U(7,10) U(200,250) U(1000,1500) U(400,800) 13,751.9 68% 82 

High 4 3 2 3 U(7,10) U(200,250) U(1000,1500) U(400,800) 18,627.9 62% 126 

150 
Low 4 3 3 3 U(10,15) U(200,250) U(1500,2000) U(400,800) 49,496.5 83% 499 

High 4 3 3 3 U(10,15) U(200,250) U(1500,2000) U(400,800) 60,916.8 76% 672 

200 
Low 4 3 4 3 U(15,20) U(200,250) U(1500,2000) U(400,800) 66,291.6 55% 1083 

High 4 3 4 3 U(15,20) U(200,250) U(1500,2000) U(400,800) 77,956.4 46% 1076 

250 
Low 4 4 4 3 U(20,30) U(300,450) U(1500,2000) U(400,800) 63,323.5 52% 1115 

High 4 4 4 3 U(20,30) U(300,450) U(1500,2000) U(400,800) 76,925 43% 1757 
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value and coverage percentage, though the difference is not much significant. 

Comparing the results of coverage percentage for two tables, it becomes clear that 

for large-scale problems the problems of four regions could provide significantly 

better coverage. The reason for the difference in parameter values in two kinds of 

problems (Tables 4.3 and 4.4) is to avoid having redundant constraints. GAMS was 

able to solve the problems of 250 demand points. However, this size of the problem 

is not regarded as small size because considering the modules and sizes and two 

kinds of time periods, the real size of problems are in the category of large-size 

problems. 

 

4.4.3 Model validation and comparison results 

  To validate the developed model, two approaches are deployed. In the first 

approach, the solutions of hybrid covering location problem will be compared with 

the results of the conventional separate models separately for some of the test 

problems from Table 4.3. In order to do this, we compare the results of HCLP with 

the problem in which the location of the facilities would be selected by SCLP 

separately, using the second term of the objective function (4.1) (minimizing the cost 

of facility location) subject to constraints (4.2), (4.3), (4.6) and (4.9). The solutions of 

the located facilities are used and fixed in the second problem to assign the modules 

and allocated the demand points using the first term of the objective function (4.1) 

(maximizing the total covered demands) subject to constraints (4.4) – (4.10).  

  The computational results are illustrated in Table 4.5 in which the columns under 

"Hybrid" and "Con." include the results of the hybrid covering location problem and 
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the described conventional procedure, respectively. Rows of "Obj" show the 

objective value of income minus fixed cost of facility locations for both methods. 

Furthermore, the last row of Table 4.5 shows the results for the total number of the 

assigned modules in all time periods out of the predefined amounts of available 

modules. For example, the value 58/66 means that the problem has used 58 modules 

out of 66 available modules. The higher is this proportion; the problem has used the 

available resources in a better way. The results of this conducted comparison show 

that using the integrated location decisions of SCLP and MCLP in a united model 

can improve the objective value and this fact can be interpreted as the quality of 

provided services. It is important to note that the less value of facility cost in the 

conventional approach cannot be an advantage, as far as the total objective value is 

not better than hybrid approach and these values are calculated and included in the 

table to have the evaluation of cost differences in both approaches. The results of 

Table 4.5 make it apparent that the hybrid approach has significant superiority to 

the conventional approach regarding objective value, coverage percentage and 

exploiting the available modules. 

  The same problems of the previous section in Tables 4.3 and 4.4 are solved for 

problems MCLP-MCLP, MCLP-SCLP, and SCLP-SCLP. It is important to note that 

first HCLP was solved and obtained the total number of facilities that is determined 

to be opened and then used these numbers and run the experiments for the problems 

that need to have the number of facilities to be located, i.e., MCLP-MCLP and MCLP-

SCLP. 

  To be able to compare the models, two criteria have been investigated. The first 

one that is in alignment with the optimization criteria as equity or fairness [76] that  
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Table 4.5: Computational results for comparing performance of hybrid and 

conventional approaches. 

 50 high 100 high 150 high 200 high 

 Hybrid Con. Hybrid Con. Hybrid Con. Hybrid Con. 

Obj 4,359 1,276 21,936 10,956 50,697 10,126 26,740 9,689 

Facility cost 5,258 2,470 5,025 2,559 11,230 2,470 11,712 2,409 

Coverage % 65.7% 25.6% 61.9% 31% 62% 12.8% 22% 0.7% 

Total modules 58/66 28/66 120/126 72/126 304/306 108/306 216/621 144/621 

 

Table 4.6: Computational results to compare different variants for three regions. 

𝒊
= 𝒋 

Demand 

scenario 
𝒑|𝑻| 

𝑯𝑪𝑳𝑷 𝑴𝑪𝑳𝑷 − 𝑴𝑪𝑳𝑷 𝑴𝑪𝑳𝑷 − 𝑺𝑪𝑳𝑷 𝑺𝑪𝑳𝑷 − 𝑺𝑪𝑳𝑷 

% Z Y T % Z Y T % Z Y T % Z Y T 

50 

Low 3 86 3.3 4.3 6 79 3 3.8 2 82 3 5.5 4 0 3 4.6 0.8 

 4 - - - - 89 3.3 4.2 7 91 4 6 11 - - - - 

High 
3 65 3.6 4.3 2 53 3 3.8 2 59 3 5.6 2 0 3 4.2 0.7 

4 - - - - 61 3.3 4.3 4 74 4 7 11 - - - - 

100 

Low 
3 84 3.6 6.5 213 75 3 5.3 219 Inf 41 100 197 1006 

4 - - - - 82 4 6 904 Inf - - - - 

High 
3 62 3.6 6.6 255 50 3 5.3 268 Inf 42 100 197 1006 

4 - - - - 59 4 6.3 180 Inf - - - - 

150 
Low 8 86 8 10.7 10013 RE NS 39 150 301 1015 

high 7 62 7.6 11.2 10473 RE NS 40 150 301 1019 

200 
Low 7 30 7 6 1064 RE NS 44 200 399 1051 

High 7 22 7 6 1050 RE NS 44 200 399 1052 

250 
Low 22 22 22 5.3 1583 RE NS 40 250 499 1094 

High 22 14 22 5.3 1505 RE NS 40 250 499 1103 

Inf: Infeasible  

RE: Resource exceeded 

NS: No Solution 

we interpreted it here as the percentage of coverage provided for demand points 

calculate as the total amount of covered demand divided by the total amount of 
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demands as explained earlier. The next investigated optimization criterion is the 

efficiency of models as the elapsed time to obtain the results. The columns under 

“Z” and “Y” contain the average number of facilities in all strategic periods and the 

average number of the assigned modules in all tactical periods, respectively. Tables 

4.6 and 4.7 contain the results of these evaluations. To complete the tables and solve 

the problems of MCLP-MCLP, and MCLP-SCLP, there was needed to have the 

number of facilities to be located. For this purpose, firstly the problem HCLP was 

solved and its solutions of the located facilities in the last strategic period (|𝑇|) were 

used in MCLP-MCLP and MCLP-SCLP with two different values; one with the 

higher number (to provide even more facilities) and the other one with the optimal 

solution of HCLP. Solving problems for the values of 𝑝|𝑇| smaller than the values 

in Tables 4.6 and 4.7 would not result in better solutions. According to the results of 

coverage percentage for HCLP, MCLP-MCLP, and MCLP-SCLP, HCLP could 

provide the highest coverage percentage almost for all test problems with an 

optimum number of facilities. Only in three cases with the number of facilities more 

than the optimal number, the coverage percentage was better (one case of MCLP-

MCLP and two cases of MCLP-SCLP).  

  Notice that we have excluded SCLP-SCLP from these comparisons because we 

believe that the solution, which sets all the demand points to be a facility is not a 

practical solution. Among the three variants of MCLP-MCLP, MCLP-SCLP and 

SCLP-SCLP, it was expected that SCLP-SCLP can provide the best coverage as it 

does not have any budgetary limitations. However, the results show that this 

problem has a good performance neither for coverage nor the number of located 

facilities and modules. The problem MCLP-SCLP has good performance for the only 
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one size problem that it could solve and for the rest of the problems it was either 

infeasible or no solution was found by the solver. Among all three variants, MCLP-

MCLP is the only problem that was successful in obtaining solutions. Although the 

coverage percentage is not better than HCLP, it has overall acceptable performance. 

However, this problem was not able to solve larger problems and the general-

purpose solver required higher computational effort. Concerning the optimization 

criteria mentioned above, the results obtained from test problems show that in terms 

of both equity (coverage percentage) and efficiency (elapsed time), the problem 

HCLP outperforms other variants and can provide better coverage in a reasonable 

time for different size of test problems. 

Table 4.7: Computational results to compare different variants for four regions. 

𝒊
= 𝒋 

Demand 

scenario 
𝒑|𝑻| 

𝑯𝑪𝑳𝑷 𝑴𝑪𝑳𝑷 − 𝑴𝑪𝑳𝑷 𝑴𝑪𝑳𝑷 − 𝑺𝑪𝑳𝑷 𝑺𝑪𝑳𝑷 − 𝑺𝑪𝑳𝑷 

% Z Y T % Z Y T % Z Y T % Z Y T 

50 

Low 
4 82 4.5 5.2 6 82 3.5 4.7 10 NS 0 5 7.5 1 

5 - - - - 89 4.5 5 8 76 5 8.1 3 - - - - 

High 
4 76 4.5 5.5 3 76 3.5 5.4 10 NS 0 5 7.25 2 

5 - - - - 82 4.5 5 11 70 5 8.5 3 - - - - 

100 

Low 
5 68 5.5 6.3 84 63 3.7 5.2 98 25 5 11.4 397 21 6 12.9 292 

6 - - - - 68 4.5 6.3 100 27 6 11 584 - - - - 

High 
5 62 5.7 6.5 53 61 4.2 6.6 45 NS 30 7 15.8 485 

6 - - - - 60 4.2 6.1 32 NS - - - - 

150 

Low 
7 83 7.5 10 499 76 5.7 8.5 1020 NS 28 21.7 26.4 1023 

8 - - - - 72 4.7 8.1 1015 NS - - - - 

High 
7 76 8 10.1 672 62 4.7 8.5 1025 NS 28 150 301 1029 

8 - - - - 48 3.7 6.3 1022 22 8 24 1020 - - - - 

200 
Low 14 55 14 11.6 1083 RE NS 30 200 399 1062 

High 14 46 14 11.7 1076 RE NS 31 200 399 1094 

250 
Low 21 52 21.7 15.1 1115 RE NS 27 250 500 1131 

High 21 43 21.7 15.1 1757 RE NS RE 

RE: Resource exceeded 

NS: No Solution 
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  The number of variables is the same in all variant problems, but the number of 

constraints is different that has an influence on the efficiency of the results. As the 

constraints of (4.3) – (4.6), (4.8) – (4.10) and (4.14) are the same in all problems we 

name this set of constraints ∆ and our comparison takes into account the rest of the 

constraints in each problem. The number of constraints and an example of the 

problem with 50 demand points studied as the first problem in Table 4.3 is included 

in Table 4.8. In our test problems, the number of modules, strategic and tactical 

periods do not take large values, but it is the number of demand points that has a 

considerable impact by augmenting the size of problems. Therefore, it can be 

concluded that SCLP-SCLP has the largest number of constraints and the order after 

SCLP-SCLP is MCLP-SCLP, HCLP, and MCLP-MCLP. However, the computational 

times of problems and the fact that MCLP-MCLP/ MCLP-SCLP have exceeded 

resources/no solution results for most of the test problems, the difference in the 

number of constraints does not have a significant impact on the quality of results or 

computational time. 

 

Table 4.8: Comparing total number of constraints in HCLP, MCLP-MCLP, MCLP-

SCLP and SCLP-SCLP. 

Problem Number of constraints Example 

HCLP ∆ + |𝐽||𝑇| + |𝐿||𝑇||𝒯𝑡| ∆ + 50 × 3 + 2 × 3 × 2 = ∆ + 162 

MCLP-MCLP ∆ + |𝑇| + |𝐿||𝑇||𝒯𝑡| ∆ + 3 + 2 × 3 × 2 = ∆ + 15 

MCLP-SCLP ∆ + |𝑇| + |𝐽||𝐿||𝑇||𝒯𝑡| ∆ + 3 + 50 × 2 × 3 × 2 = ∆ + 603 

SCLP-SCLP ∆ + |𝐽||𝑇| + |𝐽||𝐿||𝑇||𝒯𝑡| ∆ + 50 × 3 + 50 × 2 × 3 × 2 = ∆ + 750 
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4.5 Summary 

  To address the facility location problem in a disaster relief situation a novel model 

combining the advantages of two major covering location problems was developed. 

The coverage concept of two major covering location problems, set covering location 

problem and maximal covering location problem, was utilized to develop the model 

of the hybrid covering location problem. In the developed HCLP, the location of 

facilities is determined by using SCLP and the limited number of modules providing 

different services can be assigned to the facilities to provide services in tactical 

periods. To investigate the capability of the developed hybrid covering location 

problem, an application for it was introduced as locating aid centers in humanitarian 

relief services. A case study using real data for demand points in Japan was used 

together with some more randomly generated test problems. The results of the 

studied problems show that the developed mathematical model can obtain accurate 

solutions compatible with the real situations and the assumptions of the model. 

Furthermore, the other possible combinations of covering location problems were 

developed as the variants of the main hybrid covering location problem. To evaluate 

four developed models, some test problems were generated and solved for all 

variants. The computational results approve that the main developed hybrid model 

can outperform the other three variants in terms of coverage percentage, solution 

quality and feasibility of the solutions.  

  One important fact about the developed hybrid covering location problem is that 

it can be solved with commercial solver (GAMS) for problems of an acceptable size 

of real-life situations, which is an important specification for problems arising in 
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disaster situations that need quick responses. However, in most of the problems 

studied with other researches, the difficulty to solve the problems to obtain the 

solutions is a barrier to be applicable in disaster situations. The main purpose of this 

chapter was to introduce the basic and original framework of hybrid covering 

location problem. While the problem developed in this chapter can be used to be 

coupled with other decisions of the supply chain such as inventory management and 

vehicle routing. In addition, it can be studied as a two-stage or a multi-stage 

stochastic programming model that can be a future direction for research. 
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Chapter 5 

5. Non-cooperative game for multi-period p+q maximal hub location problem for… 

 Non-cooperative game for multi-period p+q maximal hub 

location problem for freight transportation planning with 

rational market 

 

5.1 Introduction 

  Significant progress has been made in the hub location decisions due to recent 

globalization of freight transportation. Buying goods from other countries is a usual 

transaction in recent globalization. Transportation companies are enlarging their 

business in quantity and size to deliver domestic and international orders to 

customers. To deal with increasing demands and gain more market share, these 

companies should exploit some strategies in building hub locations for the future. 

Transportation companies can choose two main expansion strategies to be able to 

survive in the future competitive business environment. One of the expansion 

strategies would be to add up the number of hubs, which they are using to carry the 

demands through. By adding more hubs to the network, companies can connect 

more nodes and give better services to their customers. Other expansion plan is to 

buy or lease more carriers to be able to carry more orders. These two expansion plans 

are included in the mathematical model for the time periods of the planning horizon. 
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No one can deny the importance of customers in delivery services. If customers are 

not pleased with the services, they will get service from the rivals and you will lose 

the profit, reputation and the market share. As customers' participation in today’s 

competitive environment is inevitable, they should participate in the pricing 

process. This participation of customers is included in the model’s constraints by 

minimizing the cost paid by customers, which creates a bi-level problem. 

  The model studied in this chapter focuses on the increasing demand in the future. 

Expansion plans according to the demand increase are included in the model, in 

which by participating the customers in the decision-making process the model has 

become a bi-level model, maximizing the freight company’s profit in the upper-level 

and minimizing the cost paid by customers in the lower-level. A Benders 

decomposition-based method and two reformulations have been conducted to solve 

the problem and obtain solutions for numerical examples.  

  Our main contribution is summarized as follows. A dynamic p+q hub location 

model for freight transportation planning with rational market is developed. The 

problem is formulated as a mixed-integer bi-level optimization problem. Two 

approaches are conducted to reformulate it into a single-level problem. An efficient 

Benders decomposition-based algorithm is developed and these approaches are 

compared from computational experiments. 

  This reminder of the chapter is organized as follows. A literature review is 

presented in section 5.2. The bi-level problem with rational markets is developed in 

section 5.3. In section 5.4 the bi-level problem is transformed into a single-level 

problem with a dual based reformulation and KKT conditions. An efficient method 
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based on Benders decomposition method is proposed to solve the problem in section 

5.6. Computational experiments and sensitivity analyses are presented in section 5.7. 

Finally, in the last section of this chapter is concluding with an overview of the 

findings discussed. 

 

5.2 Literature review 

  Since its introduction in 1970s, bi-level optimization has got tremendous research 

consideration and it has been broadly used in problems with hierarchical decision 

making. These hierarchical decision-making problems arise so often in 

transportation planning and network capacity expansion [76], government policy 

making [77] and revenue management [78]. The study by Garcia-Herreros et al. [79] 

formulated the capacity expansion planning as a bi-level optimization to model 

decision-making structure, which exists between producers and consumers in the 

industry. They have formulated their problem as a mixed-integer bi-level linear 

program in which the upper-level maximizes the profit of a producer and the lower-

level minimizes the cost paid by markets. The lower-level problem is a linear 

problem assigning demands of the customers to the cheapest offer of the companies 

while in the upper-level problem, the problem gives solution to expansion planning 

variables that are mixed integer variables. They also reformulated their bi-level 

optimization problem as a single-level problem to be able to solve the problem to 

obtain solutions for their test problems. 

  Hemmati and Smith [80] considered the competitive set covering problem as a 

two-player Stackelberg game that both of the players try to maximize their profit. In 
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this problem in both levels of the problem, there are binary variables. This kind of 

problem occurs in situations like facility location games. To solve their problem, they 

developed a cutting-plane algorithm and showed that their solving procedure has 

superiority to other available procedures.  

  Most recently, Zhang et al. [81] have examined hub location and plane assignment 

problems for the air-cargo delivery service. They presented two mixed integer 

programming models. The difference between these two models is related to how 

they manage the number of visiting hubs for giving service to each origin-

destination pair. Since the problem was NP-hard, they developed a two-stage hybrid 

algorithm to solve large-scale test problems. In this algorithm, the first stage finds 

the solution for main variables by heuristics and in the second stage the algorithm 

finds the solution to the remained variables by a commercial solver. They used real-

life data to solve numerical examples to test the efficiency of the models and solving 

approach. 

  The above-mentioned works are very noteworthy attempts, especially because of 

their application to deal with an important real-life fact transportation. To the 

authors’ best knowledge, there are rare studies on multi-period hub location 

problem by Gelareh et al. [82], which is one of the first models developed for the 

uncapacitated multi-period multiple allocation hub location problem. They have 

tried to include many features of real-life situations in their work, especially features 

related to land transportation facts. In a precious attempt they presented a 

metaheuristic algorithm, which can give high-quality solutions in a reasonable time. 

They also developed an extension of Benders decomposition technique to solve the 

test problems and compare the results for both procedures.  
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5.3 Problem definition 

  The p+q dynamic maximal hub location problem for freight transportation 

planning is described as follows: 

  Suppose there is a freight company who determines the hub location planning and 

the required number of transportation vehicles, even operating in air freight 

transportation or road or other kind of carriers. The carriers that are used by the 

company to transfer the demand between nodes are called transportation vehicles 

or carriers. This company uses the hub and spoke system to traverse the flow among 

nodes and has predefined decisions on the number of established hubs when 

demand of transportation is given. 

  The company has some rivals that are operating in the same business environment 

and even may use the same hubs that our company is using. All rivals are in the 

same level from our company’s point of view. This means that in total the whole 

market share is in two parts: our company’s market share and the rest that goes to 

the rivals as one amount.  

  In addition, the company has information about the increasing demand in the 

future and is eager to gain benefit through establishing some extension plans. This 

expectation on the future increasing demand and the necessity to gain advantage of 

this situation has led to study the problem as a dynamic model. 

  The company has some dominant customers that have great power and can 

control the prices by sourcing the demand to the rivals. This ability of the customers 

is included in the constraints of the model that has made the model to be a bi-level 

one. The freight company sells the service of flow by sales price depending on origin 
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and destination and customers will buy the service with the sales price. The freight 

company makes its decisions in the upper-level problem as the leader and the 

follower in the lower-level, represents the response of markets that select freight 

companies as providers, with the unique interest of satisfying their demands at the 

lowest cost. The leader in the first step defines its price and in the next step, the 

follower reacts according to the prices of the available companies to choose the 

cheapest one.  

  The nodes of the network are shown by 𝑁 = 𝑅 ∪ 𝑈 = {1, … , 𝑛} , 𝑈 refers to the set 

of nodes that are controlled by the company while 𝑅  refers to the set of nodes 

controlled by the rivals. 𝑖, 𝑗, 𝑘, 𝑚 are used to refer to the nodes of this graph in which 

𝑖, 𝑗  refer to spokes and 𝑘, 𝑚  refer to hubs. The markets place an order to be 

traversed from origin node 𝑖 to destination node 𝑗. The company has freedom in 

choosing the hubs to carry this order and also the order can be divided and carried 

using different hubs and seeks to maximize the flow carried by carriers to maximize 

the income. If the company does not have enough capacity or possibility to transport 

the order and the order has been already booked, then the company can outsource 

it to a sister company. It has been achieved by using the parameter 𝑜𝑘𝑚  that 

indicates 1 if there are outsourcing services between nodes 𝑖 and 𝑗 and 0 otherwise. 

  Up to here our problem is a 𝑝 + 𝑞 dynamic multi-allocation maximal hub location 

problem ( 𝑝 is the number of hubs to be utilized in the first period of time and the 𝑞 

is the number of hubs that the company is going to add to its current hubs as 

expansion plan) in which markets are rational and have the possibility to select their 

providers according to their own interest, i.e., price. 
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  Given the information of travel time (distance) between 𝑛 nodes, the price paid 

by customers, demand of transportation and capacity of the carriers, fixed costs of 

locating a hub, market share for the competitors, rival’s hub location, the number of 

carrier type 𝑙 in the link 𝑘 – 𝑚 for rivals, binary parameter 𝑔𝑖𝑘𝑚𝑗 ∈ {0,1} whether 

or not the demand of origin-destination 𝑖 − 𝑗 can be serviced according to the time 

(distance) needed to travers from hubs 𝑘 and 𝑚 depending on the discount factor 

𝛼, the number of hubs at the first period, the number of hubs as expansion hubs, 

deadline traveling time (or distance), that is used as covering criteria in which if the 

time (distance) needed to travel from an origin to its destination through assigned 

hubs is more than this deadline, the related demand will remain unserved, the 

decisions to be made in this model are: In the upper-level problem; which hubs are 

going to be opened at the start of planning horizon, and which hubs will be located 

in the future periods? Which hubs are operating in each period? Other decisions are 

related to the number and type of carriers in each period. In addition, in the lower-

level problem; the amount of flow that is going to be carried through the hubs would 

be decided. 

  Note 1. The company’s expansion plan is about opening new hubs or 

buying/leasing new carriers in future periods. Furthermore, when the company 

opens a hub either at the start of planning horizon or in expansion allowed periods, 

it cannot close them through the planning horizon. 

  Note 2. The company and the rivals may share hubs or not. For example, two or 

more companies may benefit hub 𝑘 but it can be either the rival company or our 

company who is using the hub 𝑚. 
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  Important note 3. The markets are involved in the pricing decision of the carried 

flow by having the power to choose the cheapest company. This rational behavior 

of the markets, i.e., minimizing their costs by selecting the cheapest service, is 

included in the constraints of the problem, which creates a bi-level optimization 

problem. In this model, the leader (the freight company) maximizes its profit, while 

the follower (the market) in the lower-level problem minimizes the price paid by 

them, with regard to demand, capacity of hubs and carriers and market share 

constraints. 

 

5.1.1. Illustrative example 

  Figure 5.1(a) and (b) depict two feasible solutions of an instance where the number 

of nodes 𝑁 = 10, the number of transportation vehicle types 𝑙 = 4, the number of 

initial hubs 𝑝 = 2, the number of expansion hub 𝑞 = 2. This example is studied in 

the total planning horizon 𝑇 = 4, but here just the solutions for 𝑡 = 1 and 𝑡 = 3 are 

depicted. The circles are market nodes and the green hexagonal are used to refer to 

the companies established hubs, the yellow one is for rival’s hubs and the dark green 

is for the hubs that are used by both our company and rival. One can track the flow 

by the colors of the edges, different colors are used for each demand of customers to 

be carried from an origin node to its destination node. Also, the shapes trapezoid, 

rectangle, and triangle refer to different kinds of carriers. These carriers differ in 

capacity and other efficiency factors. In Figure 5.1(a), the rival’s hub is located on 

node 5 and the demand of node 4 is just covered by this rival. Hub 10 is utilized by 

both companies, and hub 6 is managed by our company. For nodes that carry large 
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flow, more than one vehicle is assigned. In Figure 5.1(b), because of predicted 

increasing demand, the company decides to have an expansion plan and increase 

the number of hubs to 4 and also buy/lease more carriers. In this model, because the 

company does not have any information about the rival’s plan, no change has 

happened in his hubs. In this period, the company has also entered in the market 

number 4 and the flow of this market is carried by hub 3. The hubs are 

interconnected and a huge amount of flow is traversing through them. It should be 

noted that in this illustration the distance between nodes is not considered and this 

is just a schematic try to have a view of the model application. 

 

5.4 Mathematical formulation 

The definition of the model parameters and decision variables are listed in the 

following: 

Indices 

𝑖, 𝑘, 𝑚, 𝑗 Index of nodes. 

Figure 5.1: Two feasible solutions of an instance where 𝑁 = 10, 𝑙 = 4, 𝑝 = 2, 𝑞 = 2. 

 

(a) t=1 (b) t=3 
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𝑙 Index of transportation vehicle type. Index 𝑙0 is exclusively used to 

represent the outsourcing carrier no matter what specific type it is. 

𝑡 Index of planning horizon, 𝑡=0 refers to the start of planning horizon 

that initial hubs are allowed. 𝑡 = 1, . . , 𝑇 is used to refer to periods 

that expansion is allowed in them. 

Parameters 

𝑐𝑖𝑗 Travel time (distance) of each pair of 𝑛 nodes connected by an arc(𝑖, 𝑗). 

𝑟𝑒𝑣𝑖𝑗𝑡 Price paid by the market for carrying one Kg weight from node 𝑖 to 

node 𝑗 in period 𝑡. 

𝑑𝑖𝑗𝑡 Markets demand to be carried from origin 𝑖 to destination 𝑗 at period 𝑡. 

𝑐𝑎𝑝𝑙 The capacity of transportation vehicle type 𝑙. 

𝑐𝑎𝑝𝑐𝑘 The capacity of node 𝑘 as chosen to be hub. 

𝐸𝑘 Fixed cost of locating a hub at node 𝑘 at the first period of the planning 

horizon. 

𝐹𝑘𝑡 Fixed cost of locating a hub at node 𝑘 at period 𝑡 . 

𝐴𝑘𝑚𝑙𝑡 Hourly transportation cost of using transportation vehicle type 𝑙, from 

node 𝑘 to node 𝑚 at period 𝑡. 

𝐹′
𝑘𝑡 Operational cost of hub located at node 𝑘 at period 𝑡. 

𝑀𝑆ℎ𝑟 Market share for the rival company 𝑟. 

𝑥𝑟𝑘𝑚𝑙 The number of carrier type 𝑙 in the link 𝑘 – 𝑚 for rival. 

𝛼 Discount factor to pass by hubs on the route of 𝑖 − 𝑗, where 0 ≤ 𝛼 ≤ 1. 

𝑝 The number of hubs at the start of planning horizon. 

𝑞 The number of hubs decided as expansion. 

𝛽 The deadline traveling time (distance) from node 𝑖  to node 𝑗 , set to 

assess the coverage. 
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𝑜𝑘𝑚 1 if there are outsourcing services between nodes 𝑖 and 𝑗, 0 otherwise. 

𝑏𝑢𝑑𝑔𝑡 Available budget at period 𝑡. 

𝑔𝑖𝑘𝑚𝑗 Binary parameter, which indicates whether the origin–destination pair 

(𝑖 − 𝑗) distance using the hubs 𝑘 − 𝑚 can be covered by 𝛽 as: 

𝑔𝑖𝑘𝑚𝑗 = {
1     𝑖𝑓 𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑚 + 𝑐𝑗𝑚 ≤ 𝛽 

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Decision variables 

Upper-level decision variables 

𝐻𝑘 Binary variable, 1 if node 𝑘 is selected as an initial hub at the start of planning 

horizon. 

𝑣𝑘𝑡 Binary variable, 1 if node 𝑘 is selected as an expansion hub at period 𝑡. 

ℎ𝑘𝑡 Binary variable, 1 if node 𝑘 is operating as a hub at period 𝑡. 

𝑥𝑘𝑚𝑙𝑡 
The number of carrier type 𝑙 in the link 𝑘 − 𝑚 at period 𝑡.  𝑥𝑘𝑚𝑙0𝑡 can be 

interpreted as outsourcing amount on link 𝑘 − 𝑚. 

 

Lower-level decision variables 

𝑦𝑖𝑘𝑚𝑗𝑡 The amount of flow carried from node 𝑖 to node 𝑗 through hubs 𝑘 − 𝑚  at 

period 𝑡. 

  The problem is formulated as a bi-level optimization problem in (5.1) – (5.22). It 

should be highlighted that the upper objective takes into account the prices of the 

main studying company while the lower objective contains the prices offered from 

all companies performing in the business. The first term in the objective function in 

(5.1) maximizes the income gained from carrying flow through the hubs that are 

controlled by the leader, while the second and third terms are for the fixed cost of 
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establishing initial hubs and expansion hubs, the fourth term is related to 

operational cost of hubs and the fifth term is for the transportation cost of the self-

owned carriers and outsourcing. Constraint (5.2) determines the primary number of 

established initial hubs to be 𝑝. Constraints (5.3) determines the expansion number 

of established hubs to be 𝑞. Constraints (5.4) imply that each expansion hub can be 

opened only once throughout the planning horizon.  Constraints (5.5) and (5.6) 

together enforce that once a hub is selected as an initial or expansion hub, it should 

be used for whole time periods. Constraints (5.7) state that no carrier can be assigned 

to link 𝑘 − 𝑚 unless one of these nodes are operating as hub (𝑀 is a large positive 

number). Constraints (5.8) mean that unless there is not outsourcing service for the 

link 𝑘 − 𝑚, no outsourcing is allowed for that link. Constraints (5.9) are related to 

this assumption that usually the number of the carriers operating in backward 

direction is the same as that in the forward direction. Constraints (5.10) are for the 

budget limitation of buying or leasing the carriers. Constraints (5.11) and (5.12) 

define the variables in the upper-level problem as binary and positive integer 

variables. 

  The objective function (5.13) as the lower-level objective, minimizes the cost paid 

by the markets. Constraints (5.14) and (5.15) imply that no flow can be carried 

through nodes unless they use hub/hubs. 𝑀  used in these constraints is a large 

positive number. Constraints (5.16) imply that the total flow from node 𝑖 to node 𝑗 

at each period 𝑡  should be equal to the demand of that origin and destination. 

Constraints (5.17) make sure that the total capacity of employed carriers should not 

be violated. In this constraint the left-hand side is the total flow occurring on link 

𝑘 − 𝑚 utilizing by our company, including the amount ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡𝑗𝑖  that transfers 
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from other 𝑖 − 𝑗  pairs, and the amount ∑ ∑ (𝑦𝑘𝑚𝑜𝑑𝑡 + 𝑦𝑜𝑑𝑘𝑚𝑡)𝑑∈𝑁𝑜∈𝑁  that is 

transferred to or from other node pairs, these pairs are shown by 𝑜 and 𝑑. The 

right-hand side is the total capacity of the carriers employed to link 𝑘 − 𝑚 utilizing 

by our company. Constraints (5.18) state that the total flow for the rivals’ hubs could 

at most be equal to the situation it had since past. In addition, constraints (5.19) state 

that the amount of flow carried through the rivals’ hub should be less that its market 

share of the demand. Constraints (5.20) and (5.21) make sure that the total capacity 

of established hubs should not be violated. It worths noting that all variables in 

upper-level problem take discrete values while the variables in lower-level problem 

has continuous variables. Constraints (5.22) enforce the decision variables to be non-

negative. The nature of the model variables plays an important role in reformulation 

techniques of bi-level problems. In the bi-level reformulation literature, there are 

many papers studying models having different kind of variables in upper-level and 

lower-level problem theoretically and practically. 

 

max ∑ ∑ ∑ ∑ ∑ 𝑟𝑒𝑣𝑖𝑗𝑡𝑔𝑖𝑘𝑚𝑗𝑦𝑖𝑘𝑚𝑗𝑡

𝑡𝑚∈𝑈𝑘∈𝑈𝑗𝑖

− ∑ 𝐸𝑘𝐻𝑘

𝑘∈𝑈

− ∑ ∑ 𝐹𝑘𝑡𝑣𝑘𝑡

𝑡𝑘∈𝑈

− ∑ ∑ 𝐹′
𝑘𝑡ℎ𝑘𝑡

𝑡𝑘∈𝑈

− ∑ ∑ ∑ ∑ 𝐴𝑘𝑚𝑙𝑡 𝑐𝑘𝑚𝑥𝑘𝑚𝑙𝑡

𝑡𝑙𝑚∈𝑈𝑘∈𝑈

 

(5.1) 

∑ 𝐻𝑘 =

𝑘∈𝑈

𝑝  (5.2) 

∑ ∑ 𝑣𝑘𝑡

𝑡

= 𝑞

𝑘∈𝑈

  (5.3) 

∑ 𝑣𝑘𝑡

𝑡

≤ 1 ∀𝑘 ∈ 𝑈 (5.4) 
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ℎ𝑘𝑡 ≥ 𝐻𝑘 + 𝑣𝑘𝑡 ∀𝑘 ∈ 𝑈, 𝑡 (5.5) 

ℎ𝑘𝑡 ≥ ℎ𝑘𝑡−1 ∀𝑘 ∈ 𝑈, 𝑡 (5.6) 

𝑥𝑘𝑚𝑙𝑡 ≤ 𝑀(ℎ𝑘𝑡 + ℎ𝑚𝑡) ∀𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑡 (5.7) 

𝑥𝑘𝑚𝑙0𝑡 = 0 ∀𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑙0, 𝑤ℎ𝑒𝑟𝑒 𝑜𝑘𝑚=0 (5.8) 

𝑥𝑘𝑚𝑙𝑡 = 𝑥𝑚𝑘𝑙𝑡 ∀ 𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑙 ≠ 𝑙0, 𝑡 (5.9) 

∑ ∑ ∑ 𝑐𝑜𝑠𝑡𝑙𝑥𝑘𝑚𝑙𝑡 ≤ 𝑏𝑢𝑑𝑔𝑡

𝑙𝑚∈𝑈𝑘∈𝑈

 ∀𝑡 (5.10) 

𝐻𝑘, 𝑣𝑘𝑡 , ℎ𝑘𝑡 ∈ {0,1}  (5.11) 

𝑥𝑘𝑚𝑙𝑡 ∈ ℤ+ (5.12) 

 
min ∑ ∑ ∑ ∑ ∑ 𝑟𝑒𝑣𝑖𝑗𝑡𝑦𝑖𝑘𝑚𝑗𝑡

𝑡𝑗𝑚∈𝑈∪𝑅𝑘∈𝑈∪𝑅𝑖

𝑔𝑖𝑘𝑚𝑗 
(5.13) 

 𝑦𝑖𝑘𝑚𝑗𝑡 ≤ 𝑀 ℎ𝑘𝑡 ∀𝑖, 𝑗, 𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑡 (5.14) 

 𝑦𝑖𝑘𝑚𝑗𝑡 ≤ 𝑀 ℎ𝑚𝑡 ∀𝑖, 𝑗, 𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑡 (5.15) 

 ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡

𝑚∈𝑈∪𝑅𝑘∈𝑈∪𝑅

= 𝑑𝑖𝑗𝑡 ∀𝑖, 𝑗 ∈ 𝑈 ∪ 𝑅, 𝑡 (5.16) 

 

 

∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 + ∑ ∑(𝑦𝑘𝑚𝑜𝑑𝑡 + 𝑦𝑜𝑑𝑘𝑚𝑡)

𝑑∈𝑁𝑜∈𝑁𝑗𝑖

≤ ∑ 𝑐𝑎𝑝𝑙𝑥𝑘𝑚𝑙𝑡

𝑙

 

 ∀𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑡 (5.17) 

 

 

∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 + ∑ ∑(𝑦𝑘𝑚𝑜𝑑𝑡 + 𝑦𝑜𝑑𝑘𝑚𝑡)

𝑑∈𝑁𝑜∈𝑁𝑗𝑖

≤ 𝑀𝑆ℎ𝑟 ∑ 𝑐𝑎𝑝𝑙𝑥𝑟𝑘𝑚𝑙

𝑙

 

 ∀𝑘 ∈ 𝑅, 𝑚 ∈ 𝑅, 𝑡 (5.18) 
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 ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡

𝑚∈𝑅𝑘∈𝑅

≤ 𝑀𝑆ℎ𝑟𝑑𝑖𝑗𝑡 ∀𝑖, 𝑗 ∈ 𝑈 ∪ 𝑅, 𝑡 (5.19) 

 
∑ ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 ≤ 𝑐𝑎𝑝𝑐𝑘ℎ𝑘𝑡

𝑗𝑚∈𝑈𝑖

 
∀𝑘 ∈ 𝑈, 𝑡 (5.20) 

 
∑ ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 ≤ 𝑐𝑎𝑝𝑐𝑚ℎ𝑚𝑡

𝑗𝑘∈𝑈𝑖

 
 

∀𝑚 ∈ 𝑈, 𝑡 

(5.21) 

 𝑦𝑖𝑘𝑚𝑗𝑡 ∈ ℝ+  ∀𝑖, 𝑗, 𝑘 and 𝑚 ∈ 𝑈 ∪ 𝑅, 𝑡 (5.22) 

 

5.5 Reformulation as a single-level optimization Problem 

  A bi-level program with a convex and regular lower-level can be transformed into 

a single-level optimization problem using its optimality conditions. Two single-level 

reformulations for the modified problem are derived to be able to solve them and 

compare the results of each reformulation. First one is reformulation based on 

duality theory and the second one is obtained by Karush-Kuhn-Tucker (KKT) 

conditions. 

 

5.5.1 Dual-based reformulation 

  To conduct this reformulation the upper-level problem remains unchanged and 

the reformulation is performed on lower-level problem. For this reformulation the 

equivalent dual problem of the lower-level problem has to be obtained. The dual 

constraints will be added to the constraints of the lower problem and the objective 

functions of primal and dual problem should be equated. 
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𝑣1𝑖𝑘𝑚𝑗𝑡 , 𝑣2𝑖𝑘𝑚𝑗𝑡 , 𝑣3𝑖𝑗𝑡 , 𝑣4𝑘𝑚𝑡 , v5𝑘𝑚𝑡 , 𝑣6𝑖𝑗𝑡 , 𝑣7𝑘𝑡 ,  and 𝑣8𝑚𝑡  are the dual variables of 

the lower-level constraints presented in Eqns. (5.14) – (5.21), respectively. In this 

reformulation, the constraints of the upper-level problem (Eqs. (5.1) – (5.12)) remain 

unchanged. 

  (5.1) – (5.12), (5.14) – (5.22)  

∑ ∑ ∑ ∑ ∑ 𝑟𝑒𝑣𝑖𝑗𝑡𝑦𝑖𝑘𝑚𝑗𝑡

𝑡𝑗𝑚∈𝑈∪𝑅𝑘∈𝑈∪𝑅𝑖

𝑔𝑖𝑘𝑚𝑗

= ∑ ∑ ∑ 𝑑𝑖𝑗𝑡𝑣3𝑖𝑗𝑡 − ∑ ∑ ∑ 𝑀𝑆ℎ𝑟𝑑𝑖𝑗𝑡𝑣6𝑖𝑗𝑡

𝑡𝑗𝑖𝑡𝑗𝑖

− ∑ ∑ ∑ ∑ ∑ 𝑀 𝑣1𝑖𝑘𝑚𝑗𝑡ℎ𝑘𝑡

𝑡𝑗𝑚∈𝑈𝑘∈𝑈𝑖

− ∑ ∑ ∑ ∑ ∑ 𝑀 𝑣2𝑖𝑘𝑚𝑗𝑡ℎ𝑚𝑡

𝑡𝑗𝑚∈𝑈𝑘∈𝑈𝑖

− ∑ ∑ ∑ ∑ 𝑐𝑎𝑝𝑙

𝑡

𝑣4𝑘𝑚𝑡𝑥𝑘𝑚𝑙𝑡

𝑙𝑚∈𝑈𝑘∈𝑈

− ∑ ∑ ∑ ∑ 𝑐𝑎𝑝𝑙

𝑡

v5𝑘𝑚𝑡𝑥𝑟𝑘𝑚𝑙

𝑙𝑚∈𝑅𝑘∈𝑅

− ∑ ∑ 𝑣7𝑘𝑡ℎ𝑘𝑡𝑐𝑎𝑝𝑐𝑘

𝑡𝑘∈𝑈

− ∑ ∑ 𝑣8𝑚𝑡ℎ𝑚𝑡𝑐𝑎𝑝𝑐𝑚

𝑡𝑚∈𝑈

 

(5.23) 

𝑣1𝑖𝑘𝑚𝑗𝑡 + 𝑣2𝑖𝑘𝑚𝑗𝑡 − 𝑣3𝑖𝑗𝑡 + 𝑣4𝑘𝑚𝑡 + v5𝑘𝑚𝑡 + 𝑣6𝑖𝑗𝑡 + 𝑣7𝑘𝑡 + 𝑣8𝑚𝑡 ≥ −𝑟𝑒𝑣𝑖𝑗𝑡𝑔𝑖𝑘𝑚𝑗 

∀𝑖, 𝑘 ∈ 𝑈 ∪ 𝑅, 𝑚 ∈ 𝑈 ∪ 𝑅, 𝑗, 𝑡 (5.24) 

𝑣1𝑖𝑘𝑚𝑗𝑡 , 𝑣2𝑖𝑘𝑚𝑗𝑡 , 𝑣4𝑘𝑚𝑡 , v5𝑘𝑚𝑡 , 𝑣6𝑖𝑗𝑡 , 𝑣7𝑘𝑡, 𝑣8𝑚𝑡  ∈ ℝ+ 𝑣3𝑖𝑗𝑡 ∈ ℝ. (5.25) 
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 By equating the primal and dual objective functions of the lower-level problem in 

(5.23) the strong duality is enforced. The feasibility of primal and dual problems 

should be guaranteed in the reformulation. This important fact for primal is ensured 

by keeping constraints (5.14) – (5.22) and for the dual problem is ensured by adding 

constraints (5.24).  

  By the reformulation, it is obvious that the equation (5.23) is nonlinear that yields 

a mixed-integer nonlinear program (MINLP). Fortunately, we can linearize it by 

popular techniques known as linearizing the product of binary and continues 

variables, in which before that another reformulation should be applied to convert 

the integer variables to an expression, which is summation of binary variables. Both 

conversion techniques are available in operations research related material. By 

linearizing the nonlinear expressions in the (5.23), the bi-level problem is converted 

into a single-level problem and solution procedures can be applied to solve the 

problem.  

 

5.5.2 Reformulation using KKT condition 

  An appealing way to deal with general bi-level problems is the so-called KKT 

approach, where the lower-level constraints, that its variables are a global minimizer 

of the lower-level program, are firstly relaxed to the conditions that the optimal 

variables of the lower-level problem are a local minimizer for that lower-level 

problem. The main purpose of the KKT approach is to find (local) minimizers of the 

original bi-level program by computing (local) minimizers of the relaxation obtained 

from KKT equivalent. This is the original reformulation for bi-level problems that 
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the lower-level is a LP to replace the lower-level problem with its KKT conditions. 

The resulting reformulation is presented in the following: 

 (5.1) – (5.12), (5.14) – (5.22), (5.25) 

𝑟𝑒𝑣𝑖𝑗𝑡𝑔𝑖𝑘𝑚𝑗+𝑣1𝑖𝑘𝑚𝑗𝑡 + 𝑣2𝑖𝑘𝑚𝑗𝑡 + 𝑣3𝑖𝑗𝑡 + 𝑣4𝑘𝑚𝑡 + v5𝑘𝑚𝑡 + 𝑣6𝑖𝑗𝑡 + 𝑣7𝑘𝑡 + 𝑣8𝑚𝑡

− 𝑣9𝑖𝑘𝑚𝑗𝑡 = 0 

 ∀𝑖, 𝑘 ∈ 𝑈 ∪ 𝑅, 𝑚 ∈ 𝑈 ∪ 𝑅, 𝑗, 𝑡 (5.26) 

𝑣1𝑖𝑘𝑚𝑗𝑡(𝑦𝑖𝑘𝑚𝑗𝑡 − 𝑀 ℎ𝑘𝑡)=0 ∀𝑖, 𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑗, 𝑡 (5.27) 

𝑣2𝑖𝑘𝑚𝑗𝑡  (𝑦𝑖𝑘𝑚𝑗𝑡 − 𝑀 ℎ𝑚𝑡)=0 ∀𝑖, 𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑗, 𝑡 (5.28) 

v4𝑘𝑚𝑡 (∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 + ∑ ∑(𝑦𝑘𝑚𝑜𝑑𝑡 + 𝑦𝑜𝑑𝑘𝑚𝑡)

𝑑∈𝑁𝑜∈𝑁𝑗𝑖

− ∑ 𝑐𝑎𝑝𝑙𝑥𝑘𝑚𝑙𝑡

𝑙

) = 0 

 ∀𝑘 ∈ 𝑈, 𝑚 ∈ 𝑈, 𝑡 (5.29) 

v5𝑘𝑚𝑡 (∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 + ∑ ∑(𝑦𝑘𝑚𝑜𝑑𝑡 + 𝑦𝑜𝑑𝑘𝑚𝑡)

𝑑∈𝑁𝑜∈𝑁𝑗𝑖

− 𝑀𝑆ℎ𝑟 ∑ 𝑐𝑎𝑝𝑙𝑥𝑟𝑘𝑚𝑙

𝑙

) = 0 

 

 

∀𝑘 ∈ 𝑅, 𝑚 ∈ 𝑅, 𝑡 (5.30) 

𝑣6𝑖𝑗𝑡 (∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡

𝑚∈𝑅𝑘∈𝑅

− 𝑀𝑆ℎ𝑟𝑑𝑖𝑗𝑡) = 0 
∀𝑖, 𝑗 ∈ 𝑈 ∪ 𝑅, 𝑡  

(5.31) 

𝑣7𝑘𝑡(∑ ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 − 𝑐𝑎𝑝𝑐𝑘ℎ𝑘𝑡) = 0

𝑗𝑚∈𝑈𝑖

 
∀𝑘 ∈ 𝑈, 𝑡 (5.32) 
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𝑣8𝑚𝑡(∑ ∑ ∑ 𝑦𝑖𝑘𝑚𝑗𝑡 − 𝑐𝑎𝑝𝑐𝑚ℎ𝑚𝑡) = 0

𝑗𝑘∈𝑈𝑖

 
∀𝑚 ∈ 𝑈, 𝑡 (5.33) 

𝑣9𝑖𝑘𝑚𝑗𝑡  𝑦𝑖𝑘𝑚𝑗𝑡 = 0  ∀𝑖, 𝑗, 𝑘 and 𝑚 ∈ 𝑈 ∪ 𝑅, 𝑡 (5.34) 

𝑣9𝑖𝑘𝑚𝑗𝑡 ∈ ℝ+  (5.35) 

  The upper-level problem is kept unchanged as shown in (5.1) – (5.12). In KKT 

approach, there are two main conditions as stationary conditions and 

complementary conditions. Constraints (5.25) are the stationary conditions for the 

lower-level, where the constraints (5.27) – (5.34) represent the complementary 

conditions corresponding to inequalities (5.14), (5.15), (5.17) – (5.22). Note that in 

KKT conditions, the constraints representing the domain of the continuous variables 

are treated as constraints and complementary conditions must be written for these 

constraints either.  

  To avoid the non-linear complementary constraints, we rewrite Eqns. (5.14) – 

(5.15), (15.7) – (5.21) as equality constraints by using the slack variables and then use 

the big-M method to express either constraints (5.14), (5.15), (5.17) – (5.21) are active 

or the corresponding multipliers are zero. Similarly, the same big-M reformulation 

should be done for constraints (5.34).                                                                                             

  This process has to be fulfilled for all complementary conditions and the necessary 

constraints for all of them should be included in the model. By this procedure, we 

can get rid of nonlinear complementary conditions. The result of this replacement 

for complementary constraints is a single-level mixed integer linear problem that 

can be solved by solvers. 
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5.6 Efficient solution procedure 

  To solve the single-level problem, which is obtained in the previous section the 

general-purpose MIP solvers, can solve small problems up to 10 nodes. This fact 

shows the necessity to propose or apply other available solving methods. As the 

decision variables can easily be classified into two categories; integer and continuous 

variables, a solving method based on Benders decomposition is possible to be 

applied to solve the problem. 

  There are some other decomposition techniques in literature that are proposed 

based on the Benders decomposition. One of these methods are proposed by 

Saharidis and Ierapertiton [84] for mixed integer bi-level linear problems. In this 

method after dividing the problem into sub-problem and master problem, Saharidis 

and Ierapertiton [83] convert the bi-level sub-problem into single-level using KKT 

conditions. Then similar to Benders decomposition method the master problem and 

sub-problem is solved and they are synced in each iteration. 

For the conversion process in the sub problem both duality-based method and KKT 

method are used. The algorithm is as follows: 

 

Step 1. Set 𝑈𝐵 = +∞ and 𝐿𝐵 = −∞ . 

Step 2. Generate initial solutions for decision variables of master problem. Solve the 

sub problem for the given �̅�𝑘, ℎ̅𝑘𝑡 , �̅�𝑘𝑡  , use duality theory or KKT conditions 

to convert it to a single-level problem. Solve the problem and identify the active 

constraints. 
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Step 3. Create a linear programing (LP) model using the active constraints plus the 

rest of the constraint of the original sub problem (having fixed values for the 

variables of master problem). The solution of this LP (𝑍′)  is one of the 

following: 

 The LP is unbounded, add a feasibility cut �̅�(𝑏 − 𝐴ℎ) ≤ 0 to the master problem. 

 The LP is bounded. Update = max(𝐿𝐵, 𝑍′) . If adding the �̅�(𝑏 − 𝐴ℎ̅) −  𝜑 ≤ 0 does 

not restrict master problem then algorithm continues by excluding the current 

integer solution using the following cut: 

∑ ℎ𝑖

𝑖∈𝜌

− ∑ ℎ𝑗

𝑗∈𝜌′

≤ |𝜌| − 1 

where 𝜌 is the set of indices of variables that have the value 1, 𝜌 = {𝑖|ℎ𝑖
∗ = 1}. 

Similarly 𝜌′  is the set of indices where the corresponding variables have the 

value 0, 𝜌′ = {𝑗|ℎ𝑗
∗ = 0}. By |𝜌| we denote the number of variables ℎ𝑖

∗that are 

equal to one. Also 𝑢 is the dual variables of constraints and  (𝑏 − 𝐴ℎ) refers the 

right-hand side of constraints. With ℎ we mean all binary variables.  

 The LP is bounded, update 𝐿𝐵 = max(𝐿𝐵, 𝑍′). However, if �̅�(𝑏 − 𝐴ℎ̅) −  𝜑 > 0, to 

satisfy the �̅�(𝑏 − 𝐴ℎ̅) −  𝜑 ≤ 0 add �̅�(𝑏 − 𝐴ℎ) −  𝜑 ≤ 0 as optimality cut to the 

master problem. 

Step 4. After adding the appropriate cut, solve the master problem and derive an 

optimal solution 𝑍 and update 𝑈𝐵 = max(𝑈𝐵, 𝑍). 

Step 5. If 𝑈𝐵 − 𝐿𝐵 ≤ 휀 then stop, else continue with step 2. 
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Subproblem: 

  The sub problem is derived by fixing decision 

variables 𝐻𝑘, ℎ𝑘𝑡 , 𝑣𝑘𝑡 with �̅�𝑘, ℎ̅𝑘𝑡, �̅�𝑘𝑡  in inner problem by the objective function which 

contains the expressions related to the variables 𝑦𝑖𝑘𝑚𝑗𝑡  and  𝑥𝑘𝑚𝑙𝑡 . As the sub 

problem would be a bi-level problem, to convert it to a single-level problem both the 

dual based and KKT condition reformulation will be used and the obtained results 

would be compared. Therefore, the sub problem is: 

 

max ∑ ∑ ∑ ∑ ∑ 𝑟𝑒𝑣𝑖𝑗𝑡𝑦𝑖𝑘𝑚𝑗𝑡𝑔𝑖𝑘𝑚𝑗

𝑡𝑚∈𝑈𝑘∈𝑈𝑗𝑖

− ∑ �̅�𝑘𝐸𝑘

𝑘∈𝑈

− ∑ ∑ 𝐹𝑘𝑡�̅�𝑘𝑡 

𝑡𝑘∈𝑈

− ∑ ∑ 𝐹′
𝑘𝑡ℎ̅𝑘𝑡

𝑡𝑘∈𝑈

− ∑ ∑ ∑ ∑ 𝐴𝑘𝑚𝑙𝑡 𝑐𝑘𝑚𝑥𝑘𝑚𝑙𝑡

𝑡𝑙𝑚∈𝑈𝑘∈𝑈

 

(5.36) 

 s.t:    (5.7) – (5.10), (5.12) – (5.22).  

  To be able to solve the sub problem by decomposition method, the integer 

variables 𝑥𝑘𝑚𝑙𝑡 are relaxed to be positive continues ones. 

 

Master problem: 

  The master problem is the upper-level problem, which optimizes 

variables𝐻𝑘, ℎ𝑘𝑡 , 𝑤𝑘𝑡, 𝑣𝑘𝑡. Note that in solving process the necessary cuts also should 

be added to this problem. 

Min  
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∑ 𝐻𝑘𝐸𝑘

𝑘∈𝑈

+ ∑ ∑ 𝐹𝑘𝑡𝑣𝑘𝑡

𝑡𝑘∈𝑈

− ∑ ∑ 𝐹′
𝑘𝑡ℎ𝑘𝑡

𝑡𝑘∈𝑈

− 𝜑 (5.37) 

s.t:      (5.2) – (5.6), (5.11). 

  The value 𝜑 is the value for terms related to variables �̅�𝑖𝑘𝑚𝑗𝑡 and �̅�𝑘𝑚𝑙𝑡 in the sub 

problem. 

5.7 Computational results 

  In this section, we show some numerical examples to evaluate the model and 

solving methods’ efficiency. Most of the main parameters of the problem such as 

travel time (distance), demand, hub capacities and costs, which are used as an 

example to solve, are from a real case in Turkey. Other parameters such as carrier 

capacities and hourly transportation cost of carriers are taken from [82]. Other 

parameters are included in Table 5.1. This should be marked that for parameters 

𝐴𝑘𝑚𝑙𝑡 and 𝑟𝑒𝑣𝑖𝑗𝑡 to save space, we just include the minimum and maximum values 

using [min𝑖𝑗 , max𝑖𝑗] format (there are four sets of ([min𝑖𝑗 , max𝑖𝑗] values at each 

period 𝑡 for 𝐴𝑘𝑚𝑙𝑡  , which refers to each 𝑙). We set the other parameters α=0.7, 

𝑝=2, 𝑞=2, 𝑙=4, 𝑇=4, β=1300 for 10 nodes instance. Furthermore, 𝑀𝑆ℎ𝑟=0.3 and for 

the availability of outsource service parameter 𝑜𝑘𝑚, we have set the condition that 

this service is available for demands lower than 30000. All the problems are coded 

in GAMS 24.1 CPLEX 24.1.2 solver and run on a personal computer of Core i7, 3.40 

GHz, 8 GB RAM. 

  The first problem to solve has 10 nodes in the network, the number of hubs at the 

start of planning horizon would be two, and it is allowed to have two more hubs 
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after second period. The results for this problem are included in Table 5.2. In this 

table the first and second columns contain the results for single-level reformulations 

based on duality theory and KKT conditions, respectively, also, third and fourth 

columns contain the results obtained from the decomposition methods using the 

duality theory and KKT conditions in reformulating the sub problem, respectively. 

The first row illustrates the objective value and the other rows contain the different 

Table 5.1: Parameters for 10 nodes instance. 

Parameter  Values 

𝐸𝑘 {4790, 7748, 4738, 6716, 5653, 3104, 3265, 6521, 5497 ,3618} 

𝐹𝑘𝑡 

t=1 {6418, 10383, 6349, 8999, 7575, 4160, 4375, 8738, 7366, 4848} 

t=2 {7328, 11855, 7249, 10276, 8649, 4750, 4995, 9976, 8410, 5535} 

t=3 {7951, 12862, 7865, 11149, 9384, 5153, 5419, 10824, 9125, 6006} 

t=4 {8094, 13095, 8007, 11351, 9553, 5246, 5517, 11020, 9290, 6114} 

𝐹′
𝑘𝑡 

t=1 {1284, 2077, 1270, 1800, 1515, 832, 875, 1747, 1473, 970} 

t=2 {1466, 2371, 1450, 2055, 1730, 950, 999, 1995, 1682, 1107} 

t=3 {1590, 2572, 1573, 2230, 1877, 1031, 1084, 2165, 1825, 1201} 

t=4 {1619, 2619, 1601, 2270, 1911, 1049, 1103, 2204, 1858, 1223} 

𝐴𝑘𝑚𝑙𝑡 

t=1 {[1.29, 1.47], [1.12, 1.29], [0.6, 0.77], 0.0001} 

t=2 {[1.32, 1.49], [1.14, 1.32], [0.61, 0.79], 0.0001} 

t=3 {[1.34, 1.52], [1,16, 1.34], [0.62, 0.80], 0.0001} 

t=4 {[1.38, 1.56], [1.19, 1.38], [0.64, 0.82], 0.0001} 

𝑐𝑎𝑝𝑙 {40000, 28000, 14000,1} 

𝑏𝑢𝑑𝑔𝑡 {31, 717, 470, 38, 432, 670, 35, 503, 750, 33, 011, 380} 

𝑟𝑒𝑣𝑖𝑗𝑡  t=1 [3.9, 23.5] t=2 [4.02, 23.7] t=3 [4.1, 24.1] t=4 [4.2, 24.6] 

𝑥𝑟𝑘𝑚𝑙  𝑥𝑟10,3,1 = 1, 𝑥𝑟3,5,2 = 1, 𝑥𝑟5,6,1 = 1, others=0 
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Table 5.2: Results of an example for 10 nodes. 

     N=10, p=2 Sngl.lvl Dual Sngl.lvl KKT Deco. KKT Deco. Dual 

Obj 3,074,799 2,683,615 2,788,362 2,865,265 

Income 3,170,522 2,788,483 2,877,493 2,950,721 

Hub cost 55,337 60,411 53,736 53,736 

Operational cost 11,067 12,082 10,747 10,747 

Transportation cost 29,318 32,373 24,646 20,971 

Time (s) 1,006 1,003 11 2 

 

Table 5.3: Results of some sensitivity analysis. 

terms in the objective function, to have a better insight of them. The last row 

illustrates the computational time to solve each problem in seconds.   

  According to the results in Table 5.2, it can be concluded that the dual based single-

level reformulation has a better functionality, as its solution is more than the KKT 

reformulation and the solution value is closer to the solution obtained from 

decompositions. Between the two decomposition methods, the decomposition that 

has used duality theory has produced better solution in much less time. This 

problem is solved for some changes in parameters of the maximum allowed 

N=10, p=2 Sngl.lvl Dual Sngl.lvl KKT Deco. KKT Deco. Dual 

1 Main 3,074,799 2,683,615 2,788,362 2,865,265 

2 β=1500 3,439,385 2,854,862 3,355,062 3,362,556 

3 C.cap -25%        2,402,696 1,649,895 2,135,054 2,158,608 

4 C.cap +25% 3,584,927 2,838,918 3,123,215 3,388,515 

5 H.cap -25% 3,004,058 2,639,804 2,780,162 2,858,275 

6 H.cap +25% 3,089,888 2,719,115 2,793,311 2,869,459 
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coverage distance in addition to 25% increase and decrease on hubs and carriers 

capacities. The results are illustrated in Table 5.3 and Figure 5.2. 

  The results in Table 5.3 and Figure 5.2 show the same trends in Table 5.2. 

Comparing single-level reformulations (third and fourth column) it is obvious that 

reformulation based on duality theory has apparent superiority to KKT 

reformulation method. The same conclusion can be set off from comparing 

decomposition methods using both KKT and Duality reformulation in which 

decomposition method using duality reformulation produces better objective values. 

For all test problems of sensitivity analysis, the dual reformulation approach has the 

maximum objective value and KKT reformulation has the minimum objective value 

for all instances. 

  However, the main purpose of this table is to evaluate the model performance by 

running some sensitivity analysis. All approaches have the same level of efficiency 

regarding objective function value, being able to find reasonable values for test 

Figure 5.2: Results of some sensitivity examinations. 
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problems. When the coverage distance, the capacity of hubs and carries are 

increased it is supposed that the objective value will increase and by reducing the 

capacities, the objective value is supposed to be reduced and the solutions in Table 

5.3 confirms these assumptions. 

  According to Table 5.3 and regarding the increasing the coverage parameter from 

1300 to 1500, all the results show increased values which they were assumed to, due 

the fact that by increasing the coverage parameter more nodes may be covered and 

consequently the profit will be increased. The same results are obvious for cases 

increasing capacity of carriers and hubs, and on the contrary reducing the capacity 

has resulted to less values of objective function. In addition, comparing the impact 

of differences in capacities, it can be implied that increasing the carriers’ capacity has 

more impact on solutions rather than hub capacities. The same results apply to other 

approaches which shows if the company wants to choose between increasing the 

capacity of carriers or hubs the priority is with increasing the capacity of carriers.   

  Single-level reformulations were not able to solve problems more than 10 nodes, 

so that no more comparison was possible to conduct, especially for comparing 

reformulation and decomposition both based on duality theory. That is the reason 

that the rest of the comparisons are performed on decompositions based on KKT 

and duality theory. In the similar way, some test problems are solved increasing the 

number of the nodes in the network and results are shown in the Table 5.4. The rows 

in this table refer to different problems solved. For example, the first row is related 

to the problem having 15 nodes in which 𝑝 = 3 hubs have to be located in the first 

period. In all examples, the number of new hubs to be located as expansion plan is 

fixed to 𝑞 = 2. Both reformulations were unable to solve the examples, so that just 
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the solutions of two decompositions exist in the table. The decomposition which uses 

the KKT condition in the subproblem (first and second column) has solved the 

problem much longer than the dual based decomposition did (the third and fourth 

column). Considering the computational efforts, it is apparent that duality based 

decomposition has a much better performance than KKT based decomposition. 

Also, KKT based decomposition method could not find the solution to problems 

more than 20 nodes, however the dual based decomposition could obtain the 

solution for problems up to 30 nodes at an acceptable computational time. 

Comparing the objective value for 15 and 20 nodes of both decompositions, both of 

them have relatively acceptable values, although dual based decomposition was 

able to obtain more values. This superior performance of dual based decomposition 

method, being able to find solution for larger problem in less time, is because of 

having the smaller number of binary variables and constraints added to the model 

in the reformulation procedure of bi-level sub problem to a single-level one. 

 

Table 5.4: Results for larger instances. 

 Deco.KKT Time (s) Deco.Dual Time (s) 

N=15, p=3 4,489,356 438 4,500,202 10 

N=20, p=4 5,291,338 796 5,298,723 27 

N=25, p=5 Unsolved - 5,190,791 211 

N=30, p=6 Unsolved - 7,708,827 653 
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5.8 Summary 

  In this chapter, a bi-level mixed integer formulation for a freight transportation 

planning problem which is performing in a hub covering system by maximizing the 

amount of covered demand of the market has been introduced. The model includes 

many possible conditions that exist in a related business environment such as 

dynamic demands of markets, the possibility to outsource the demand and 

considering different kind of carriers. Also, as the market power to participate in 

pricing decision has been studied in the model, it is a bi-level problem. To encounter 

the hierarchical structure, the reformulations based on two methods, KKT 

conditions and duality theory have developed for our problem. To solve the 

problem a decomposition method based on Benders decomposition has been used 

and some test problems are solved to investigate the efficiency of the solving 

procedures and model’s accuracy. The results of the numerical examples approve 

the superiority of decomposition fulfilled by duality theory.  
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Chapter 6 

6. Conclusion and Remarks 

 

  In this thesis, the covering facility location problems are investigated using two 

main approaches. In the first approach, a more improved formulation for using these 

problems in real-life applications is studied. The second approach is the non-

cooperative game theory that is applied to covering facility location problem. One 

of the important endeavors in those approaches is the proposed solution techniques 

that enables to solve real-life problems of large sizes. 

  In Chapter 3, an extension of maximal covering location problem was developed 

for locating emergency facilities having three main real-life conditions in one model. 

Three improvements were multi-period planning horizon, modular and capacitated 

facilities and considering back-up coverage for demand points. A genetic algorithm 

was developed to solve the problem due to this metaheuristic’s strength to solve 

binary optimization problems and other extension of facility location problems. In 

addition, a heuristic method was proposed to have approximation values for the 

objective function and to evaluate the results obtained from genetic algorithm. 

  In Chapter 4, a novel model combining two major covering location problems was 

developed that addresses the facility location problem in a disaster relief situation. 

The coverage concept of two major covering location problems, i.e., set covering 

location problem and maximal covering location problem, was utilized to develop 

the model of the hybrid covering location problem. In the developed hybrid model, 
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the set covering location problem determines the location of the facilities and 

provides full coverage for the demand points. The limited number of modules that 

provide different services can be assigned to the facilities to provide services in 

tactical periods. To investigate the capability of the developed hybrid covering 

location problem, a case study using real data for demand points in Japan was used 

together with several randomly generated test problems. Furthermore, the other 

possible integrations of covering location problems were developed as the variants 

of the main hybrid covering location problem. To evaluate four developed models, 

some test problems were generated and solved for all proposed integrated models. 

The computational results approve that the main developed hybrid model can 

outperform the other three models in terms of coverage percentage, solution quality 

and feasibility of the solutions. 

  Chapter 5 addressed a bi-level mixed integer formulation for maximal hub 

covering location problem that maximizes the total covered demands. The model 

included many conditions that exist in a related business environment such as 

dynamic demands of markets, the possibility to outsource the fulfillments of 

demand requests and availability of different kind of carriers. Also, as the market 

power to participate in pricing decision has been studied in the model as a bi-level 

problem. To treat the bi-level structure, two reformulations based KKT conditions 

and duality theory have developed for the bi-level problem. To solve the obtained 

single level problems, a decomposition method based on Benders decomposition 

was applied and some test problems were solved to investigate the efficiency of the 

solving procedures and the accuracy of the solution procedure. 
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  According to overall mathematical models, solution procedures, extensive 

numerical experiments and sensitivity analysis developed and conducted in 

different chapters of this thesis, the attainments of the research goals are described 

briefly as follows: 

  Research goal 1: develop covering location models to model the real-life 

conditions and take the advantage of two separate covering modes in an integrated 

model. 

The developed models in Chapters 3 and 4 could propose a closer formulation of the 

real-life conditions and improve service quality. Especially, the developed hybrid 

covering location problem has a very novel formulation that can have applications 

in humanitarian logistics problems as studied in the case study. The superiority of 

the hybrid covering location problem became more apparent when it was compared 

with other possible way of combining set covering and maximal covering location 

problems.  

  Research goal 2: Apply the game theory to the covering facility location problems.     

  The maximal covering location problem was studied from non-cooperative in 

Chapters 5. The non-cooperative maximal covering location problem was studied in 

the hub locating framework and resulted in a bi-level mathematical model 

considering the leaders in the first level and the follower as the second level 

optimization problem. The obtained bi-level formulation is necessary for developing 

reformulation techniques enabling to conduct numerical experiments.  

  For future work and research directions, the followings are planned to develop: 
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 The modeling of uncertainty can be applied to the hybrid covering location 

problem and this problem can investigate using stochastic and robust 

optimization models.  

 An efficient solution procedure can be developed for solving the hybrid 

covering location problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 

121 

 

Bibliography 

 

[1] Stevenson, Q.J. (2007). Operations Management, 9th edition. McGraw-Hill Irwin, New 

York. 

[2] Sunil, C., & Peter, M. (2013). Supply Chain Management: Strategy, Planning, And Operation, 

5/e. Pearson India. 

[3] Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for 

emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 

485–498. 

[4] Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency 

service facilities. Operations Research, 19(6), 1363–1373. 

[5] Church, R., & Velle, C. R. (1974). The maximal covering location problem. Papers in 

Regional Science, 32(1), 101–118. 

[6] Xu, J., Murray, A., Wang, Z., & Church, R. (2020). Challenges in applying capacitated 

covering models. Transactions in GIS, 24(2), 268–290. 

[7] Current, J. R., & Storbeck, J. E. (1988). Capacitated covering models. Environment and 

Planning B: Planning and Design, 15(2), 153–163. 

[8] Manzini, R., & Gebennini, E. (2008). Optimization models for the dynamic facility 

location and allocation problem. International Journal of Production Research, 46(8), 2061–

2086. https://doi.org/10.1080/00207540600847418. 

[9] Current, J., Ratick, S., & ReVelle, C. (1998). Dynamic facility location when the total 

number of facilities is uncertain: A decision analysis approach. European Journal of 

Operational Research, 110(3), 597–609. 

[10] Youshanlo, M. F., & Sahraeian, R. (2015). Dynamic multi-objective maximal covering 

location problem with gradual coverage. In Enhancing Synergies in a Collaborative 

Environment (pp. 39–47). Springer. 



Bibliography 

122 

 

[11] Zarandi, M. H. F., Davari, S., & Sisakht, S. A. H. (2013). The large-scale dynamic 

maximal covering location problem. Mathematical and Computer Modelling, 57(3–4), 710–

719. 

[12] Rajagopalan, H. K., Saydam, C., & Xiao, J. (2008). A multiperiod set covering location 

model for dynamic redeployment of ambulances. Computers & Operations Research, 

35(3), 814–826. https://doi.org/10.1016/j.cor.2006.04.003 

[13] Zarandi, M. H. F., Davari, S., & Sisakht, S. A. H. (2013). The large-scale dynamic 

maximal covering location problem. Mathematical and Computer Modelling, 57(3–4), 710–

719. 

[14] Marín, A., Martínez-Merino, L. I., Rodríguez-Chía, A. M., & Saldanha-da-Gama, F. 

(2018). Multi-period stochastic covering location problems: Modeling framework and 

solution approach. European Journal of Operational Research, 268(2), 432–449. 

[15] Bagherinejad, J., & Shoeib, M. (2018). Dynamic capacitated maximal covering location 

problem by considering dynamic capacity. International Journal of Industrial Engineering 

Computations, 9(2), 249–264. 

[16] Vatsa, A. K., & Jayaswal, S. (2020). Capacitated multi-period maximal covering location 

problem with server uncertainty. European Journal of Operational Research. 

https://doi.org/10.1016/j.ejor.2020.07.061 

[17] Şahin, G., & Süral, H. (2007). A review of hierarchical facility location models. Computers 

& Operations Research, 34(8), 2310–2331. 

[18] Krupa, T., & Ostrowska, T. (n.d.). Hierarchical decision-making problems – modeling 

and solutions. Foundations of Management, 8(1), 311–324. https://doi.org/10.1515/fman-

2016-0024 

[19] Daskin, M. S. (2011). Network and discrete location: models, algorithms, and applications. John 

Wiley & Sons. 

[20] Farahani, R. Z., Hassani, A., Mousavi, S. M., & Baygi, M. B. (2014). A hybrid artificial 

bee colony for disruption in a hierarchical maximal covering location problem. 

Computers & Industrial Engineering, 75, 129–141. 

https://doi.org/https:/doi.org/10.1016/j.cor.2006.04.003


Bibliography 

123 

 

[21] Correia, I., & Melo, T. (2017). A multi-period facility location problem with modular 

capacity adjustments and flexible demand fulfillment. Computers & Industrial 

Engineering, 110, 307–321. 

[22] Mikić, M., Todosijević, R., & Urošević, D. (2019). Less is more: general variable 

neighborhood search for the capacitated modular hub location problem. Computers & 

Operations Research, 110, 101–115. 

[23] Addis, B., Carello, G., & Ceselli, A. (2012). Exactly solving a two‐level location problem 

with modular node capacities. Networks, 59(1), 161–180. 

[24] Yin, P., & Mu, L. (2012). Modular capacitated maximal covering location problem for 

the optimal siting of emergency vehicles. Applied Geography, 34, 247–254. 

[25] Karimi, H., & Bashiri, M. (2011). Hub covering location problems with different 

coverage types. Scientia Iranica, 18(6), 1571–1578. 

https://doi.org/10.1016/j.scient.2011.09.018 

[26] Ebrahimizade, A., Hosseini-Nasab, H., Zare-mehrjerdi, Y., & Zahmatkesh, A. (2016). 

Multi-period hub set covering problems with flexible radius: A modified genetic 

solution. Applied Mathematical Modelling, 40(4), 2968–2982. 

https://doi.org/10.1016/j.apm.2015.09.064 

[27] Hogan, K., & ReVelle, C. (1986). Concepts and applications of backup coverage. 

Management Science, 32(11), 1434–1444. 

[28] Pirkul, H., & Schilling, D. (1989). The capacitated maximal covering location problem 

with backup service. Annals of Operations Research, 18(1), 141–154. 

https://doi.org/10.1007/BF02097800 

[29] Başar, A., Catay, B., & Ünlüyurt, T. (2009). A new model and tabu search approach for 

planning the emergency service stations. In Operations Research Proceedings 2008 (pp. 

41–46). Springer. 

[30] Curtin, K. M., Hayslett-McCall, K., & Qiu, F. (2010). Determining optimal police patrol 

areas with maximal covering and backup covering location models. Networks and 

Spatial Economics, 10(1), 125–145. 

https://doi.org/10.1007/BF02097800


Bibliography 

124 

 

[31] Erdemir, E. T., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2010). Joint ground 

and air emergency medical services coverage models: A greedy heuristic solution 

approach. European Journal of Operational Research, 207(2), 736–749. 

[32] Cardinal, J., & Hoefer, M. (2010). Non-cooperative facility location and covering games. 

Theoretical Computer Science, 411(16–18), 1855–1876. 

[33] Konak, A., Kulturel-Konak, S., & Snyder, L. (2017). A Multi-Objective Approach to the 

Competitive Facility Location Problem. Procedia Computer Science, 108, 1434–1442. 

https://doi.org/https://doi.org/10.1016/j.procs.2017.05.035 

[34] Bergantiños, G., Gómez-Rúa, M., Llorca, N., Pulido, M., & Sánchez-Soriano, J. (2020). 

Allocating costs in set covering problems. European Journal of Operational Research, 

284(3), 1074–1087. https://doi.org/10.1016/j.ejor.2020.01.031 

[35] Bagherinejad, J., Bashiri, M., & Nikzad, H. (2018). General form of a cooperative gradual 

maximal covering location problem. Journal of Industrial Engineering International, 14(2), 

241–253. 

[36] Drezner, Z., & Hamacher, H. W. (2001). Facility location: applications and theory. Springer 

Science & Business Media. 

[37] Karasakal, O., & Karasakal, E. K. (2004). A maximal covering location model in the 

presence of partial coverage. Computers & Operations Research, 31(9), 1515–1526. 

[38] Downs, B. T., & Camm, J. D. (1996). An exact algorithm for the maximal covering 

problem. Naval Research Logistics (NRL), 43(3), 435–461. 

[39] Galinier, P., & Hertz, A. (2007). Solution techniques for the large set covering problem. 

Discrete Applied Mathematics, 155(3), 312–326. 

[40] Galvão, R. D., & ReVelle, C. (1996). A Lagrangean heuristic for the maximal covering 

location problem. European Journal of Operational Research, 88(1), 114–123. 

[41] Fazel Zarandi, M. H., Davari, S., & Haddad Sisakht, S. A. (2011). The large scale maximal 

covering location problem. Scientia Iranica, 18(6), 1564–1570. 

https://doi.org/10.1016/j.scient.2011.11.008 



Bibliography 

125 

 

[42] Máximo, V. R., Nascimento, M. C. V, & Carvalho, A. C. (2017). Intelligent-guided 

adaptive search for the maximum covering location problem. Computers & Operations 

Research, 78, 129–137. 

[43] Bilal, N., Galinier, P., & Guibault, F. (2014). An iterated-tabu-search heuristic for a 

variant of the partial set covering problem. Journal of Heuristics, 20(2), 143–164. 

[44] Cordeau, J.-F., Furini, F., & Ljubić, I. (2019). Benders decomposition for very large scale 

partial set covering and maximal covering location problems. European Journal of 

Operational Research, 275(3), 882–896. https://doi.org/10.1016/j.ejor.2018.12.021 

[45] Boloori Arabani, A., & Farahani, R. Z. (2012). Facility location dynamics: An overview 

of classifications and applications. Computers & Industrial Engineering, 62(1), 408–420. 

https://doi.org/https://doi.org/10.1016/j.cie.2011.09.018 

[46] Sinha, A., Malo, P., & Deb, K. (2017). A review on bilevel optimization: from classical 

to evolutionary approaches and applications. IEEE Transactions on Evolutionary 

Computation, 22(2), 276–295. 

[47] Falkenauer E. (1999) Applying genetic algorithms to real-world problems. In: Davis 

L.D., De Jong K., Vose M.D., Whitley L.D. (eds) Evolutionary Algorithms. The IMA 

Volumes in Mathematics and its Applications, vol 111. Springer, New York, NY. 

https://doi.org/10.1007/978-1-4612-1542-4_4 

[48] Benders, J. F. (2005). Partitioning procedures for solving mixed-variables programming 

problems. Computational Management Science, 2(1), 3–19. 

[49] Li, X., Zhao, Z., Zhu, X., & Wyatt, T. (2011). Covering models and optimization 

techniques for emergency response facility location and planning: a review. 

Mathematical Methods of Operations Research, 74(3), 281–310. 

[50] Correia, I., & Captivo, M. E. (2006). Bounds for the single source modular capacitated 

plant location problem. Computers & Operations Research, 33(10), 2991–3003. 

[51] Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-

inventory-routing problem with perishable products. Journal of Manufacturing Systems, 

42, 93–103. 

https://doi.org/https:/doi.org/10.1016/j.ejor.2018.12.021
https://doi.org/10.1007/978-1-4612-1542-4_4


Bibliography 

126 

 

[52] Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply 

chain management – A review. European Journal of Operational Research, 196(2), 401–412. 

https://doi.org/10.1016/j.ejor.2008.05.007 

[53] Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic 

planning in production–distribution networks. Applied Mathematical Modelling, 36(4), 

1703–1717. https://doi.org/10.1016/j.apm.2011.09.018 

[54] Moreno, A., Alem, D., Ferreira, D., & Clark, A. (2018). An effective two-stage stochastic 

multi-trip location-transportation model with social concerns in relief supply chains. 

European Journal of Operational Research, 269(3), 1050–1071. 

[55] Zhang, G., Nishi, T., Turner, S. D. O., Oga, K., & Li, X. (2017). An integrated strategy for 

a production planning and warehouse layout problem: Modeling and solution 

approaches. Omega, 68, 85–94. 

[56] Vianna, S. S. V. (2019). The set covering problem applied to optimisation of gas detectors 

in chemical process plants. Computers & Chemical Engineering, 121, 388–395. 

https://doi.org/10.1016/j.compchemeng.2018.11.008 

[57] Vieira, B. S., Ferrari, T., Ribeiro, G. M., Bahiense, L., Orrico Filho, R. D., Abramides, C. 

A., & Rosa Campos Júnior, N. F. (2020). A progressive hybrid set covering based 

algorithm for the traffic counting location problem. Expert Systems with Applications, 160, 

113641. https://doi.org/10.1016/j.eswa.2020.113641 

[58] Park, Y., Nielsen, P., & Moon, I. (2020). Unmanned aerial vehicle set covering problem 

considering fixed-radius coverage constraint. Computers & Operations Research, 119, 

104936. https://doi.org/10.1016/j.cor.2020.104936 

[59] Mokrini, A., Boulaksil, Y., & Berrado, A. (2019). Modelling facility location problems in 

emerging markets: The case of the public healthcare sector in Morocco. Operations and 

Supply Chain Management: An International Journal, 12(2), 100–111. 

[60] Muren, Li, H., Mukhopadhyay, S. K., Wu, J., Zhou, L., & Du, Z. (2020). Balanced 

maximal covering location problem and its application in bike-sharing. International 

Journal of Production Economics, 223, 107513. https://doi.org/10.1016/j.ijpe.2019.09.034 



Bibliography 

127 

 

[61] Dong, G., Ma, J., Wei, R., & Haycox, J. (2019). Electric vehicle charging point placement 

optimisation by exploiting spatial statistics and maximal coverage location models. 

Transportation Research Part D: Transport and Environment, 67, 77–88. 

https://doi.org/10.1016/j.trd.2018.11.005 

[62] Chauhan, D., Unnikrishnan, A., & Figliozzi, M. (2019). Maximum coverage capacitated 

facility location problem with range constrained drones. Transportation Research Part C: 

Emerging Technologies, 99, 1–18. https://doi.org/10.1016/j.trc.2018.12.001 

[63] Nilsang, S., Yuangyai, C., Cheng, C.-Y., & Janjarassuk, U. (2019). Locating an ambulance 

base by using social media: a case study in Bangkok. Annals of Operations Research, 

283(1), 497–516. 

[64] Berman, O., Krass, D., & Drezner, Z. (2003). The gradual covering decay location 

problem on a network. European Journal of Operational Research, 151(3), 474–480. 

[65] Drezner, Z., Wesolowsky, G. O., & Drezner, T. (2004). The gradual covering problem. 

Naval Research Logistics (NRL), 51(6), 841–855. 

[66] Berman, O., Drezner, Z., & Krass, D. (2019). The multiple gradual cover locationproblem. 

Journal of the Operational Research Society, 70(6), 931–940. 

[67] Khatami, M., & Salehipour, A. (2020). The gradual minimal covering location problem. 

Available at SSRN 3522777. 

[68] Eiselt, H. A., & Marianov, V. (2009). Gradual location set covering with service quality. 

Socio-Economic Planning Sciences, 43(2), 121–130. 

[69] Berman, O., Krass, D., & Drezner, Z. (2003). The gradual covering decay location 

problem on a network. European Journal of Operational Research, 151(3), 474–480. 

[70] Coco, A. A., Santos, A. C., & Noronha, T. F. (2018). Formulation and algorithms for the 

robust maximal covering location problem. Electronic Notes in Discrete Mathematics, 64, 

145–154. https://doi.org/10.1016/j.endm.2018.01.016 

[71] Zhang, B., Peng, J., & Li, S. (2017). Covering location problem of emergency service 

facilities in an uncertain environment. Applied Mathematical Modelling, 51, 429–447. 

https://doi.org/10.1016/j.apm.2017.06.043 



Bibliography 

128 

 

[72] EM-DAT: The emergency events database Université catholique de Louvain (UCL), 

CRED, D. Guha-Sapir, www.emdat.be/publications, Brussels, Belgium, accessed 

2020.10.18. 

[73] Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations management. 

European Journal of Operational Research, 175(1), 475–493. 

[74] https://www.citypopulation.de/JapanCities.html. 

[75] Gralla, E., Goentzel, J., & Fine, C. (2014). Assessing trade‐offs among multiple objectives 

for humanitarian aid delivery using expert preferences. Production and Operations 

Management, 23(6), 978–989. 

[76] Kumar, A., Gupta, A., & Mehra, A. (2018). A bilevel programming model for operative 

decisions on special trains: An Indian Railways perspective. Journal of Rail Transport 

Planning & Management, 8(3–4), 184–206. 

[77] Hassanpour, A., Bagherinejad, J., & Bashiri, M. (2019). A robust bi-level programming 

model for designing a closed-loop supply chain considering government’s collection 

policy. Scientia Iranica, 26(6), 3747–3764. 

[78] Brotcorne, L., Côté, J.-P., Marcotte, P., & Savard, G. (2006). A bilevel approach to optimal 

pricing. IFAC Proceedings Volumes, 39(3), 443–448. 

[79] Garcia-Herreros, P., Zhang, L., Misra, P., Arslan, E., Mehta, S., & Grossmann, I. E. (2016). 

Mixed-integer bilevel optimization for capacity planning with rational markets. 

Computers & Chemical Engineering, 86, 33–47. 

[80] Hemmati, M., & Smith, J. C. (2016). A mixed-integer bilevel programming approach for 

a competitive prioritized set covering problem. Discrete Optimization, 20, 105–134. 

[81] Zhang, C., Xie, F., Huang, K., Wu, T., & Liang, Z. (2017). MIP models and a hybrid 

method for the capacitated air-cargo network planning and scheduling problems. 

Transportation Research Part E: Logistics and Transportation Review, 103, 158–173. 

[82] Gelareh, S., Monemi, R. N., & Nickel, S. (2015). Multi-period hub location problems in 

transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67–

94. 

https://www.emdat.be/publications
https://www.citypopulation.de/JapanCities.html


Bibliography 

129 

 

[83] Saharidis, G. K., & Ierapetritou, M. G. (2009). Resolution method for mixed integer bi-

level linear problems based on decomposition technique. Journal of Global Optimization, 

44(1), 29–51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Publications 

130 

 

List of Publications 

 

Papers in Reviewed Journals 

 

[1] R. Alizadeh and T. Nishi, “Dynamic p+q maximal hub location problem for 

freight transportation planning with rational markets,” Adv. Mech. Eng., vol. 11, no. 

2, 2019, doi: 10.1177/1687814018822934. 

 

[2] R. Alizadeh and T. Nishi, “A genetic algorithm for multi-period location 

problem with modular emergency facilities and backup services,” Trans. Inst. Syst. 

Control Inf. Eng., vol. 32, no. 10, pp. 370–377, 2019. 

 

[3] R. Alizadeh and T. Nishi, “Hybrid set covering and dynamic modular covering 

location problem: Application to an emergency humanitarian logistics problem,” 

Appl. Sci., vol. 10, no. 20, 2020, doi: 10.3390/app10207110. 

 

[4] R. Alizadeh and T. Nishi, Jafar Bagherinejad, Mahdi Bashiri, “Multi-period 

maximal covering location problem with capacitated facilities and modules for 

natural disaster relief services,” Appl. Sci., vol. 11, no 1, 397, 2021; 

https://doi.org/10.3390/app11010397. 

 



List of Publications 

131 

 

International Conferences 

 

[1] R. Alizadeh and T. Nishi, “A bilevel dynamic maximal hub location problem for freight 

transportation,” Abstract of 29th European Conference on Operational Research, 2018. 

[2] R. Alizadeh and T. Nishi, “Mixed-integer bi-level dynamic hub location problem for 

freight transportation,” Proceedings of the International Symposium on Flexible Automation, 

2018, pp. 171–174. 

[3] R. Alizadeh and T. Nishi, “Multi-period maximal covering location problem with 

modular facilities for locating emergency facilities with back-up services,” 2018 IEEE 

International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, 

pp. 76–79. 

[4] R. Alizadeh and T. Nishi, “Core formation and profit allocation of horizontal cooperation 

in covering location problems: a game theoretical approach,” Abstract of 30th European 

Conference on Operational Research, 2019. 

[5] R. Alizadeh and T. Nishi, “Cooperative maximal covering location problem – A core 

based profit allocation approach,” Proceedings of the International Symposium on Scheduling, 

2019, pp. 70-74. 

[6] R. Alizadeh and T. Nishi, “Hybrid covering location problem: set covering and modular 

maximal covering location problem,” 2019 IEEE International Conference on Industrial 

Engineering and Engineering Management (IEEM), 2019, pp. 865–869. 

[7] R. Alizadeh and T. Nishi, “Hybrid covering location problem: set covering and modular 

maximal covering location problem,” Proceedings of Scheduling Symposium, 2020. 

 

https://gakujutsushukai.jp/ss2020


Acknowledgment 

132 

 

  

Acknowledgment 

 

  I would like to express my profound gratitude to Prof. Masahiro Inuiguchi for all 

his support, constructive comments and friendly discussions. His kindness and 

enthusiasm for research would be always in my mind. 

  My Thanks also go to the members of my major committee, Prof. Toshimitsu 

Ushio and Prof. Youji Iiguni of Osaka University for reading this dissertation and 

providing me with their valuable comments to improve this dissertation. 

  I also wish to express my especial gratitude to Prof. Tatsushi Nishi for all his 

guidance, constructive suggestions, encouragement and more importantly his 

patience toward my carelessness.  

  I would also thank Assistant Prof. Hirosato Seki and all lab members from 

Inuiguchi laboratory for their kind supports. 

  Among my family and friends, I thank my son who was with me all these years I 

was conducting my research and his laughter was my main source of energy. I also 

like to thank my husband for all his supports. Finally, I have to thank my friend 

Hasna Aljabri with whom we shared our good and bad times during our studies. 

     

 


