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Introduction

A classification of (normal) affine surfaces admitting aC∗-action was given e.g.,
in [5, 6, 21, 22, 1, 25] and [12]–[14]. Here we obtain a simple alternative description
of normal affine surfaces with aC∗-action in terms of their graded coordinate rings
as well as by defining equations. Our approach is based on a generalization of the
Dolgachev-Pinkham-Demazure construction [11, 22, 10]. Recall (see [12]–[14]) that a
C∗-action on a normal affine surface is calledelliptic if it has a unique fixed point
which belongs to the closure of every 1-dimensional orbit,parabolic if the set of its
fixed points is 1-dimensional, andhyperbolic if has only a finite number of fixed
points, and these fixed points are of hyperbolic type, that iseach one of them belongs
to the closure of exactly two 1-dimensional orbits.

In the elliptic case, the complement∗ of the unique fixed point in is fibered
by the 1-dimensional orbits over a projective curve . In the other two cases is
fibered over an affine curve , and this fibration is invariant under theC∗-action.

Vice versa, given a smooth curve and aQ-divisor on , the Dolgachev-
Pinkham-Demazure construction provides a normal affine surface = with a
C∗-action such that is just the algebraic quotient of∗ or of , respectively. This
surface is of elliptic type if is projective and of parabolictype if is affine.

We remind this construction in Sections 1 and 2 below. In Section 3 we use it
to present any normal affine surface with a parabolicC∗-action as a normalization
of the surface − ( ) = 0 in A3

C for a certain ∈ N and a certain polynomial
∈ C[ ] (see Theorem 3.11).

In Section 4 we deal with the hyperbolic case. We generalize the Dolgachev-
Pinkham-Demazure construction in order to make it work for any hyperbolic
C∗-surface. Instead of oneQ-divisor on a smooth affine curve as before, it in-
volves now twoQ-divisors + and − on . By our resultisomorphism classes of
normal affine hyperbolicC∗-surfaces are in1-1-correspondence to equivalence classes
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982 H. FLENNER AND M. ZAIDENBERG

of triples ( + −), where is a smooth affine curve and+, − is a pair of
Q-divisors on with + + − ≤ 0; two such triples( + −) and ( ′ ′

+
′
−)

are considered to be equivalent if and only if∼= ′ and ± = ′
±± 0 with a prin-

cipal divisor 0; cf. Theorem 4.3. We also determine the structure of the singularities,
the orbits, the divisor class group and the canonical divisor in terms of the divisors

±, see Theorems 4.15, 4.18, 4.22 and Corollary 4.24.
Using our description it is possible to represent any normalhyperbolicC∗-surface

fibered over =A1
C as the normalization of a surface inA4 given by

− ( ) = 0 − ( ) = 0 and − ( ) = 0

for certain polynomials , , ∈ C[ ] satisfying the relation = , where ,
are coprime. These polynomials can be easily computed in terms of the data ( + −)
(see Proposition 4.8). For instance, if the divisor− is integral then this system re-
duces to one equation − ( ) = 0 in A3

C, and vice versa. When = 1 then it again
reduces to one equation − ( ) = 0 in A3

C.
In Proposition 4.12 we show how the pair (+ −) is transformed when pass-

ing to an equivariant cyclic cover of . We deduce, in particular, a characterization of
normal hyperbolicC∗-surfaces over =A1

C with the fractional part of − supported
at one point, as normalized cyclic quotients of the surfaces− ( ) = 0 in A3

C.
In the forthcoming paper [15], which is actually Part II of the present one, we

will apply these results to give a simple description of all normal affineC∗-surfaces
equipped in addition by aC+-action. In fact, this class consists of all normal affine
surfaces which admit an algebraic group action with an open orbit.

We note that the results of this paper holdm.m. for graded 2-dimensional normal
algebras of finite type over a Dedekind domain.

1. Generalities on graded rings

A Z-graded ring =
⊕

∈Z contains ≥0 =
⊕

≥0 and ≤0 =
⊕

≤0 as
subrings. The following lemma is “well known”; in lack of a reference we provide a
short argument.

Lemma 1.1. If =
⊕

∈ is a finitely generated 0-algebra, then so are ≥0

and ≤0. Moreover, is normal if and only if so are both ≥0 and ≤0.

Proof. Reversing the grading interchanges the subrings≥0 and ≤0. Thus it is
sufficient to prove the first part for ≥0. If ∈ with − ≤ ≤ , = 1 . . . ,
is a system of homogeneous generators of , then≥0 is generated (as a module over

0) by the multiplicatively closed system of monomials

:=
∏
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where := ( )∈ Z satisfies the inequalities

(1) ≥ 0 − ≤ ≤ = 1 . . .
∑

≥ 0

By Gordan’s Lemma (see [20]) the rational polyhedral lattice cone ⊆ Z defined
by (1) is a finitely generated semigroup. Hence the algebra≥0 is generated by a fi-
nite system of monomials ∈ ≥0.

Next we show that the subalgebra≥0 (and then also ≤0) is normal if so is .
Indeed, the integral closure (≥0)norm ⊆ = norm is graded. Take a homogeneous
element ∈ ( ≥0)norm of degree := deg , and let

(2) +
∑

=1

− = 0 where ∈ ≥0

be an equation of integral dependence. We may assume that arealso homogeneous,
of degree deg = ≥ 0. Since deg ≥ 0 we have ≥ 0, and so ∈ ≥0.

Conversely, suppose that both≥0 and ≤0 are normal. The ring ⊗ 0 Frac( 0)
is normal and so is equal to Frac(0)[ −1] for a homogeneous element of mini-
mal degree> 0 in ⊗ 0 Frac( 0). Hence norm is contained in this subring of Frac .
If ∈ ⊗ 0 Frac( 0) belongs to the normalization norm of then so does its top
homogeneous component. Thus it is enough to deal with homogeneous elements. Let

be such an element satisfying an equation of integral dependence (2) over . We
may suppose as above that ∈ ( = 1 . . . ). Since has the same sign as

:= deg , we have ∈ ( ≥0)norm = ≥0 if ≥ 0 and ∈ ( ≤0)norm = ≤0 if ≤ 0,
respectively. Anyhow, ∈ , whence is normal, as stated.

NOTATION 1.2. Let = Spec be a normal affine surface overC with an effec-
tive C∗-action. The coordinate ring =

⊕
∈Z is then naturally graded so that is

the set of elements of on which∈ C∗ acts via = . Thus, 0 = C∗

is the
subalgebra of invariants, and (6= 0) consists of the quasi-invariants of weight .
Up to reversing the grading we may assume that+ :=

⊕
>0 6= 0. The subsets +

and − :=
⊕

<0 of are ideals in ≥0 and ≤0, respectively.

The following lemma is well known (see e.g., [10], [12, Lemma1.5]).

Lemma 1.3. (a) If 0 6= C then the set := { ∈ Z | 6= 0} coincides ei-
ther with N or with Z, and is a locally free 0-module of rank1 for all ∈ .
Moreover, if ∈ Frac( 0) · 1 is a non-zero element then

⊆ Frac( 0)[ −1] and even ⊆ Frac( 0)[ ] if = N

(b) In particular, if 0
∼= C[ ] then is a free 0-module of rank1 for all ∈ .
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Proof. (a) The 0 := Frac( 0)-algebra ⊗ 0 0 is a 1-dimensional normal
graded domain over the field 0. Hence it is isomorphic to the free polynomial ring

0[ ] or the ring of Laurent polynomials 0[ −1], where ∈ 0 and > 0.
As the C∗-action is effective = 1, and (a) follows.
(b) follows from [7, Ch. VII, §4, Corollary 2].

Lemma 1.3(a) does not hold in general without the assumptionthat 0 6= C as is
seen by the Pham-Brieskorn surfaces :={ + + = 0} ⊆ C3.

1.4. Usually (cf. [12]) one distinguishes between the followingthree cases.
(i) The elliptic case: − = 0, 0 = C.
(ii) The parabolic case: − = 0, 0 6= C.
(iii) The hyperbolic case: − 6= 0.
Below we provide more information in each of these cases.

2. The elliptic case

In the elliptic case theC∗-action on is good. In particular, its fixed point set
:= C∗

(which is the zero set of the augmentation ideal+ of ) consists of a
unique point calledthe vertexof , and the surface is smooth outside the vertex.
One considers the smooth projective curve := Proj∼= ∗/C∗, where ∗ := \ ,
together with the orbit morphismπ : ∗ → (the fibers ofπ are the orbits of the
C∗-action on ∗).

A useful class of examples of normal affine surfaces with a good C∗-action is pro-
vided by the affine cones over projective curves. For an ampledivisor on a smooth
projective curve the ring

:=
⊕

≥0

0( O ( )) · ⊆ Frac( )[ ]

where is an indeterminate, is the coordinate ring of a normalaffine surface :=
Spec with a goodC∗-action. Alternatively this surface is obtained by blowing
down the zero section of the line bundle associated toO (− ). We will refer to such
surfaces as affine cones over (although is not generated by elements of degree
one, in general).

Let furthermore a finite group act on freely off the vertex, and assume that
this action commutes with the given goodC∗-action on . Then the quotient / is
again a normal affine surface with a goodC∗-action. Conversely, the following result
is true.

Theorem 2.1 ([11, 22, 10, 24]). Every normal affine surface with a good
C∗-action appears as the quotient of an affine cone over a smoothprojective curve
by a finite group acting freely off the vertex of the cone.
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Generalizing the construction above, for a smooth projective curve and a
Q-divisor on one considers the graded ring

:=
⊕

≥0

0
(

O(⌊ ⌋)
)
·

where⌊ ⌋ denotes the integral part of aQ-divisor . We have the following result.

Theorem 2.2 ([22], [10, Theorem 3.5]). Given a normal affine surface =
Spec with a good C∗-action there exists aQ-divisor on the curve = Proj
such that ∼= .

The affine toric surfaces provide an interesting family of elliptic C∗-surfaces.

EXAMPLE 2.3 ([20, 9]). We remind that a normal affine toric surface =σ
is associated to a strictly convex rational polyhedral coneσ ⊆ R2. If dim σ = 0
or = 1 then σ

∼= C∗ × C∗ or σ
∼= A1

C × C∗, respectively, and so × 6= C∗.
Consequently, these two cannot be ellipticC∗-surfaces. Otherwise, if dimσ = 2 then
choosing an appropriate base1, 2 of the lattice one may suppose thatσ is the cone

( 2 1 − 2), where ≥ 1, 0 ≤ < and gcd( ) = 1. We denote :=σ;
then = Spec , where

:=
⊕

≥0 − ≥0

C · ⊆ C[ ]

is the semigroup algebra of the dual coneσ∨ = ( 1 1 + 2).
The 2-torusT = (C∗)2 acts on with an open orbit ∗ := \{0̄}. Thus one

can introduce on a number of elliptic, parabolic as well as hyperbolic C∗-actions
by choosing appropriate 1-parameter algebraic subgroups of the torusT.

In [23, 2, 3, 9] one can find a description of minimal sets of generators of the
algebras as above, as well as defining equations for the affinevarieties =
Spec → C . An explicit presentation of these algebras as in Theorem 2.2 is given
in [10, 5.1].

We would like to emphasize the well known relation between affine toric surfaces
and cyclic quotient singularities (see [10, 5.2] or [20, Proposition 1.24]).

Lemma 2.4. If is the normalization of := in the field := Frac( )[ ]
with :=

√
, then is the polynomial ring = C[ ] with := . The Galois

group 〈ζ〉 ∼= Z of : Frac( ) acts on via the representation, say

ζ = ζ ζ = ζ
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and = Z . Consequently, there is an isomorphism

∼= A2
C/ = A2

C/Z

Proof. For the convenience of the reader we give a short argument. By definition,
is generated overC by the monomials

with ≥ 0 − ≥ 0

As = − , this shows that embeds naturally intoC[ ] and that even
= C[ ] ∩C[ ] In particular is a normal domain. Because of =∈ and
= ∈ the ring is integral over , whence it is the normalization of .
The second part follows from the first one, since is a cyclic extension of

Frac( ) with Galois groupZ acting viaζ = ζ and ζ = for all ∈ .

REMARK 2.5. Assuming that > 0 and lettingξ := ζ one obtains

(ζ ζ ) = (ξ
′

ξ )

where 0≤ ′ < and ′ ≡ 1 mod (note that for = 1 this means′ = 0). Hence,
with τ ( ) := ( ) the conjugateZ -action ′

′ := τ−1
′τ on A2

C

ξ ( ) = (ξ
′

ξ )

has the same orbits as thus providing an isomorphism of affinesurfaces

∼= A2
C/

∼= A2
C/

′
′
∼= A2

C/ ′
∼= ′

Moreover, ∼= ′ ′ if and only if = ′ and either = ′ or ′ ≡ 1 mod .

3. The parabolic case

In the parabolic case one considers a normal affine surface with a C∗-action
such that the coordinate ring =

⊕
≥0 is positively graded and 0 is a

1-dimensional domain. Thus 0 corresponds to a smooth affine curve = Spec0,
which can be identified with the algebraic quotient//C∗ (indeed, 0 = C∗

is the
ring of invariants of theC∗-action on ). The embedding 0 → corresponds to
the quotient morphismπ : → , and the projection → 0 gives an embedding
ι : → which provides a retraction ofπ and whose image is the fixed point set.
Every fiber of π : → is the closure of a non-trivial orbit; it contains a unique
fixed point (asourceof this orbit) [12, Lemma 1.7].

A simple example of a parabolicC∗-surface is the cylinder ×A1
C over a smooth

affine curve , whereC∗ acts on the second factor. More examples can be produced
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by applying equivariant affine modifications to×A1
C (see [16, Theorem 1.1]). Actu-

ally, one obtains in this way all normal affine surfaces with aparabolicC∗-action.

3.1. The Dolgachev-Pinkham-Demazure construction (see Theorem 2.2) is avail-
able also in the parabolic case. Let = Spec0 be an affine curve overC with func-
tion field 0 := Frac( 0), and let be aQ-Cartier divisor on . Similarly as in the
elliptic case we can introduce the algebra

0[ ] := =
⊕

≥0

0
(

O (⌊ ⌋)
)
· ⊆ 0[ ]

More explicitly, if ∈ 0 then

∈ := 0[ ] ⇔ div + ≥ 0(3)

By [10, 2.2] the algebra is finitely generated over0 and normal (see also Corol-
lary 3.8(b) below). Notice also that ∈ 1 if and only if ≥ 0.

The following theorem is well known (cf. [10, Theorem 3.5]);for the convenience
of the reader we include a short proof.

Theorem 3.2. Let = Spec 0 be a normal affine algebraic curve with function
field 0 := Frac( 0). If =

⊕
≥0 is a normal finitely generated 0-algebra of

dimension2 with 1 6= 0 then the following hold.
(a) is isomorphic to 0[ ] for someQ-divisor on . More precisely, if ∈

0 · 1 is a non-zero element and if the divisor is defined by the equality

π∗ = div − ι( )

then and 0[ ] are equal when considered as subrings of0[ ] .
(b) For two Q-divisors and ′ on , the rings = 0[ ] and ′ = 0[ ′] are
isomorphic as graded 0-algebras if and only if and ′ are linearly equivalent.

Proof. (a) Since ∈ 0 · 1 is homogeneous, the divisor div on the normal
surface = Spec is invariant under the inducedC∗-action on , and so we have

div =
∑

=1

+ ι( )

with ∈ Z, where =π−1( )red are the fibers ofπ over distinct points ∈ ,
= 1 . . . . Letting π∗ = with ∈ N ( = 1 . . . ), the Q-divisor :=∑

=1 / on satisfies

div = π∗( ) + ι( )
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Since is normal, for a rational functionϕ ∈ 0 on the following equivalences
hold:

ϕ ∈ ⇔ div(ϕ ) ≥ 0 ⇔ π∗ divϕ + div ≥ 0 ⇔
π∗ divϕ + π∗( ) + ι( ) ≥ 0 ⇔ divϕ + ≥ 0 ⇔ ϕ ∈ 0

(
O (⌊ ⌋)

)

Hence = 0( O (⌊ ⌋)) · for all ≥ 0, as desired.
(b) Any isomorphism of graded 0-algebras

ϕ : 0[ ] =
⊕

≥0

0( O (⌊ ⌋)
)
· −→ 0[ ′] =

⊕

≥0

0( O (⌊ ′⌋)
)
· ′

extends to an isomorphism of graded0-algebras

ϕ 0 : 0[ ] → 0[ ′]

and so has the form 7→ ′ , ≥ 0, for some non-zero ∈ 0. Conversely, such
a morphismϕ 0 maps 0[ ] isomorphically onto 0[ ′] if and only if

0
(

O (⌊ ′⌋)
)

= · 0
(

O (⌊ ⌋)
)

∀

As

· 0( O (⌊ ⌋)
)

= 0( O (⌊ − div ⌋)
)

the existence of an isomorphismϕ as above is equivalent to the existence of an ele-
ment ∈ 0 with ′ = − div .

3.3. We denote{ } = −⌊ ⌋ the fractional part of aQ-divisor . Since prin-
cipal divisors areZ-divisors, we have{ } = { ′} as soon as ∼ ′.

If = SpecC[ ] = A1
C then the converse is also true. Indeed, anyZ-divisor on A1

C

is principal, and so the linear equivalence class of aQ-divisor on A1
C is uniquely

determined by the fractional part{ } of . Thus we obtain the following corollary.

Corollary 3.4. For every normal parabolicC∗-surface = Spec with =⊕
≥0 and 0 = C[ ], there is a unique isomorphism ∼= 0[ ] of graded

0-algebras, where = 0 or =
∑

=1( / ) with 0 < < , gcd( ) = 1
∀ = 1 . . . and ∈ A1

C, 6= for 6= .

The next lemma is also well known; in lack of a reference we provide a short
argument.

Lemma 3.5. Let be a Q-divisor on a normal affine variety and consider
the graded ring :=

⊕
≥0 , where := 0( O (⌊ ⌋)) · . For ∈ N the

following conditions are equivalent.
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(i) is integral.
(ii) + = for all ≥ 0.
(iii) The -th Veronese subring ( ) :=

⊕
≥0 is isomorphic to the symmetric al-

gebra 0( ) i.e., =
0

.

Proof. Condition (ii) is equivalent to

O (⌊( + ) ⌋) ∼= O (⌊ ⌋) ⊗O (⌊ ⌋) ∀ ≥ 0

and the latter condition is equivalent to

⌊( + ) ⌋ = ⌊ ⌋ + ⌊ ⌋ ∀ ≥ 0(ii ′)

Similarly, (iii) is equivalent to

⌊ ⌋ = ⌊ ⌋ ∀ ≥ 0(iii ′)

The equivalence of (i), (ii′) and (iii′) now follows from the elementary fact that for a
rational number = / and ∈ N the following conditions are equivalent:

(1) ∈ Z (2) ⌊( + ) ⌋ = ⌊ ⌋ + ⌊ ⌋ ∀ ≥ 0 (3) ⌊ ⌋ = ⌊ ⌋ ∀ ≥ 0

NOTATION 3.6. We denote ( ) the smallest positive integer satisfying the
equivalent conditions of Lemma 3.5.

REMARK 3.7. In the situation of Theorem 3.2, one can recover from the
graded ring = 0[ ] more algebraically as follows. Consider ∈ N with =

+ for all ≥ 0 (or, equivalently, = ( ), see Lemma 3.5) and let be a gen-
erator of as 0-module; this exists after a suitable localization of0. If =
with ∈ Frac 0, then = div( )/ . In fact, the ideal is equal to ≥ and so its
zero set has no irreducible components in the fibers ofπ. Thus div = · ι( ) on .
Since

π∗( ) = div − ι( ) and · div = div + div

as divisors on , we obtain = div( )/ .

A parabolic C∗-surface = Spec 0[ ] has at most cyclic quotient singularities,
as follows from Miyanishi’s Theorem (see [17, Lemma 1.4.4(1)]). In the next result
(see [10, Section 5]) we describe their structure in terms ofthe divisor .

Proposition 3.8. (a) If 0 = C[ ] and if is supported on the origin in
Spec 0 = A1

C so that = −( / )[0] with gcd( ) = 1, then := 0[−( / )[0]]
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is naturally isomorphic to the semigroup algebra

=
⊕

≥0 − ≥0

C ·

graded viadeg = 0, deg = 1 (cf. Example 2.3). Consequently, := Spec is iso-
morphic to the toric surface ′ = Spec ′

∼= A2
C/ ′ , where ′ ≡ mod and

0 ≤ ′ < .
(b) If = Spec 0 is any normal affine curve overC and is a Q-divisor on ,
then the surface = Spec 0[ ] is normal with at most cyclic quotient singularities.
More precisely, if ( ) = − / with gcd( ) = 1 then has a quotient singularity
of type ( ′) at ι( ), where ′ is as in (a).

Proof. The first part of (a) follows immediately from (3) in 3.1, whereas the sec-
ond one is a consequence of Lemma 2.4.

Tensoring the isomorphism in (a) with− ⊗C[ ] C[[ ]] we obtain that (b) holds if

0
∼= C[[ ]]. The general case follows from this by taking completions at the maximal

ideals of 0.

The algebra 0[ ] is finitely generated over 0, so there exist 1 . . . ∈ 0

and 1 . . . ∈ N such that

= 0[ 1
1 . . . ] ⊆ 0[ ]

In the next result we show how to compute from such a representation.

Proposition 3.9. Let = Spec 0 be a smooth affine curve and0 := Frac 0.
If a 2-dimensional subring of the polynomial ring0[ ] is represented as

= 0[ 1
1 . . . ] ⊆ 0[ ] > 0 ∀

with 1 . . . ∈ 0 and gcd( 1 . . . ) = 1, then its normalization = norm coin-
cides as an 0-subalgebra of 0[ ] with 0[ ], where

:= − min
1≤ ≤

div

Proof. By definition of we have div + ≥ 0 so by (3) ∈ 0[ ]
and is a subring of 0[ ]. As 0[ ] is normal (see Proposition 3.8(b)), is also
contained in 0[ ]. Let us show that these subrings coincide.

According to Theorem 3.2, we can represent as =0[ ′] with π∗( ′) =
div − ι( ). In particular ∈ = 0[ ′], so again by (3) div + ′ ≥ 0
or, equivalently, ′ ≥ −(1/ ) div Thus ′ ≥ and 0[ ] ⊆ 0[ ′] = . As
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we have already shown the converse inclusion we obtain that =0[ ], as desired.

The following examples of parabolicC∗-surfaces ruled overA1
C are basic (see

Theorem 3.11 below).

EXAMPLE 3.10. For a unitary polynomial ∈ C[ ] and for an integer ≥ 1 we
let

+ := C[ ]/( − ( ) ) ∼= C

[

( )

]

graded via

deg = 0 deg = 1 deg =

The normalization

+ := ( + )norm

is a positively graded finitely generatedC-algebra of dimension 2 with 0 = C[ ].
By Proposition 3.9 and Corollary 3.4 we have

+ ∼= 0[ ] ∼= 0[{ }] where = ( ) :=
div( )

For ( ) =
∏

=1( − ) (where 6= if 6= ) we obtain

=
∑

=1

and { } =
∑

=1

{ }

whereas = 0 if = 1. Replacing by{ } we may suppose that

gcd( 1 . . . ) = 1 0< < ∀ = 1 . . . if ≥ 2 and = 1 if = 1(∗)

If two pairs ( ) and (̃ ˜ ) satisfy (∗) and if + ∼= +
˜ ˜ as graded 0-algebras

then by Corollary 3.4 we have div( )/ = div( ˜ )/ ˜ , and so =˜ and = ˜ .

Thus we obtain the following classification result.

Theorem 3.11. For every normal affine surface = Spec ,where =
⊕

≥0

with 0 = C[ ], there is a unique pair( ) satisfying condition(∗) and an equivari-
ant isomorphism of 0-schemes

ϕ : −→ + := Spec +
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REMARK 3.12. 1. In the situation of Theorem 3.11 above, the Veronesesubring
( ) is equal to 0[ ] = C[ ]. The cyclic groupZ acts on via theC∗-action

and ( ) coincides with the ring of invariants Z , whereas is the normalization of
( ) in the fraction field Frac( ). Thus the morphism→ A2

C = SpecC[ ] induced
by the inclusionC[ ] ⊆ represents as a cyclic covering of the plane branched
along the curve = 0, and is the normalization of a surface{ − ( ) = 0} in C3.
2. More generally, let = Spec0 be any smooth affine curve and let =

⊕
≥0

be a normal 2-dimensional 0-algebra of finite type. If 1 = · 0 and = · 0,
:= ( ), for suitable elements ∈ 1 and ∈ then is the normalization of an

algebra 0[ ]/( − + ) graded via deg = 1, deg = , for a certain∈ N and
a certain element + ∈ 0.

4. The hyperbolic case

Let =
⊕

∈Z be the coordinate ring of a normal affine surface = Spec
with C∗-action such that +, − are both non-zero. Here again there is a quotient
morphismπ : → = Spec 0 induced by the inclusion 0 → . Every fiber of
π is either a non-trivial orbit or a union of two 1-dimensionalorbits and a hyper-
bolic fixed point, which is a source for one of them and a sink for the other one [12,
Lemma 1.7]. Thus the fixed point set is finite and contains Sing.

By Lemma 1.1 the proper subalgebras≥0 and ≤0 of are normal and finitely
generated, and so+ := Spec ≥0 and − := Spec ≤0 are normal affine surfaces with
a parabolicC∗-action birationally dominated by . The natural embeddings0 →

≥0 → and 0 → ≤0 → yield the commutative diagram

(4) +

π+
  @

@@
@@

@@
@

σ−
//

π

��

σ+oo −

π−

~~}}
}}

}}
}}

whereσ± are equivariant birational morphisms. Henceσ± are equivariant affine mod-
ifications [16, Theorem 1.1]. More precisely the following result holds.

Proposition 4.1. can be obtained from ± by blowing up aC∗-invariant sub-
scheme and deleting the proper transform of aC∗-invariant divisor ± on ±, which
contains the fixed point curveι±( ) ⊆ ±.

Proof. Let us show this for +, the proof for − being similar. Choose a system
of homogeneous generators1 . . . of the finitely generated 0-subalgebra ≤0 and
let 0 ∈ + be a non-zero element of degree =−min deg . Letting := 0 for
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= 1 . . . we obtain

= ≥0

[
1

0
. . .

0

]
= ≥0

[

0

]
:=

{

0

∣∣∣ ∈ ≥ 0

}

where is the graded ideal of≥0 generated by 0 . . . . Thus = Spec is ob-
tained by blowing up + = Spec ≥0 with center and deleting the proper transform
of the C∗-invariant divisor div 0 on +. As this divisor containsι+( ), the result fol-
lows.

For a more precise description of the affine modificationsσ± see Remark 4.20.

4.2. The Dolgachev-Pinkham-Demazure construction is still available in the hy-
perbolic case. In [10, Theorem 3.5] it is done under the additional assumption that

− ⊗ → 0 is an isomorphism for all . Here we generalize the construction
in order to make it work for any hyperbolicC∗-surface.

Let +, − be Q-divisors on the smooth affine curve := Spec0. For ≥ 0
we consider the 0-submodules

− := 0
(

O (⌊ −⌋)
)
· − and := 0

(
O (⌊ +⌋)

)
·

of Frac( 0)[ −1], where is an indeterminate of degree 1. If+ + − ≤ 0 then for
≥ ≥ 0 we have

⌊ +⌋ + ⌊ −⌋ ≤ ⌊( − ) +⌋

whence · − ⊆ − Similarly, for 0≤ ≤ we have · − ⊆ − . Thus

:= 0[ + −] :=
⊕

∈Z

is a finitely generated 0-subalgebra of Frac(0)[ −1] with ≥0 = 0[ +] and

≤0
∼= 0[ −]. The grading on defines a natural hyperbolicC∗-action on the sur-

face := Spec . The latter surface is normal as so are the algebras 0[ +] and

0[ −] (see Lemma 1.1 and Corollary 3.8(b)). Conversely, we have the following the-
orem.

Theorem 4.3. If = Spec 0 is a smooth affine curve and =
⊕

∈Z is a
normal graded finitely generated domain of dimension2 with ± 6= 0, then the fol-
lowing hold.
(a) is isomorphic to 0[ + −], where +, − are Q-divisors on satisfying

+ + − ≤ 0. More precisely, if ∈ Frac( 0) · 1 and if the divisors +, − on
are defined by

π∗
+( +) = div( )− ι+( ) and π∗

−( −) = div( −1) − ι−( )(5)
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whereπ± are as in diagram(4) above andι± : → ± are the natural embeddings,
then + + − ≤ 0 and ∼= [ + −].
(b) 0[ + −] ∼= 0[ ′

+
′
−] as graded 0-algebras if and only if, for a rational

functionϕ ∈ Frac( 0), one has

′
+ = + + divϕ and ′

− = − − divϕ

Proof. (a) By Theorem 3.2 and its proof we have equalities

≥0 = 0[ +] and ≤0 = 0[ −]

as subalgebras of Frac(0)[ −1], whence = 0[ + −]. It remains to show that

+ + − ≤ 0. Applying in (5) the functorsσ∗
+ andσ∗

− respectively, we obtain

π∗( +) = div( )− σ∗
+ι

∗
+( ) and π∗( −) = div( −1) − σ∗

−ι
∗
−( )

Taking the sum of these equalities yieldsπ∗( ++ −) = −(σ∗
+ι

∗
+( )+σ∗

−ι
∗
−( )), whence

+ + − ≤ 0, as required. Finally (b) follows from Theorem 3.2(b) and its proof.

Consequently, if 0 = C[ ] then admits a unique presentation =0[ + −]
with + = { +} and + + − ≤ 0.

It follows from Theorem 4.3 that outside| +| ∪ | −|, the mapπ : → is a
locally trivial principal C∗-bundle. More generally, the Dolgachev-Pinkham-Demazure
construction shows the following result (cf. [1], [12, Proposition 1.11]).

Corollary 4.4. In all three cases, outside of a finite subset of the curve the
projection π : ∗ → and π : → , respectively, defines a locally trivial fiber
bundle. This is a principalC∗-bundle in the elliptic and hyperbolic cases, and a line
bundle in the parabolic case.

Note that if ∈ 1 ∪ −1 is a non-zero element then its restriction to a general
fiber of π gives a fiber coordinate and so a trivialization over a Zariski open subset
of .

REMARK 4.5. The algebra = 0[ + −] contains an invertible element of de-
gree > 0 if and only if − = − + and + is a principal divisor on = Spec 0.
In fact, if ∈ is an invertible element of degree> 0 then we can write

= ∈ and −1 = −1 − ∈ −

where ∈ Frac( 0) satisfies

div( ) + + ≥ 0 and − div( ) + − ≥ 0
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Thus 0≥ + + − ≥ 0, whence − = − +. Since = 0 it also follows that +

is principal. Conversely, if + = − − and if + is principal, then 0 = is free
over 0 and = with div + + = 0 by Remark 3.7. Hence also div−1+ − =
0, so −1 − ∈ and = is a unit in .

The following analogue of Proposition 3.9 holds with a similar proof.

Lemma 4.6. Let = Spec 0 be a smooth affine curve with function field0 =
Frac( 0). If a graded2-dimensional domain ⊆ 0[ −1] is represented as

= 0[ 1
− 1 . . . −

1
1 . . . ] (where > 0 ∀ )

with 1 . . . 1 . . . ∈ 0 and 0 = 0, then its normalization = norm coin-
cides (as a graded 0-subalgebra of 0[ −1]) with 0[ + −], where

− = − min
1≤ ≤

div
and + = − min

1≤ ≤

div

We notice that the assumption0 = 0 amounts to the inequalities

div
+

div ≥ 0 ∀

which in turn are equivalent to + + − ≤ 0.
The following lemma provides additional information in thecase that⌊ ±⌋ and

±( ) ± are principal divisors1.

Lemma 4.7. Let =
⊕

∈Z = 0[ + −] ⊆ Frac( 0)[ −1], and let ± =

±( ) be the minimal positive integer such that the divisor± ± is integral. If ±1 =

± · 0, ± ±
= ± · 0 and

+ − = ±

± = ± ±

for some elements , ± ∈ 0, then

(6) + =
div +

+
+ 0 and − =

div −

−
− 0 − div

where 0 is the integral divisor 0 = div( / +) on = Spec 0. Consequently,

(7)
div +

+
+

div −

−
≤ div

1or, equivalently, that ±1 and ± ±
are free 0-modules of rank 1.
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Furthermore, + and − are uniquely determined by + and − through

(8) { +} =
div +

+
and { −} =

div −

−

Proof. We have + = + · ( / +) +
+ and − − = − · ( / +)− − − − − and so

by Remark 3.7

+ =
div( + · ( / +) +)

+
=

div +

+
+ 0 and

− =
div( − · ( / +)− − − − )

−
=

div −

−
− 0 − div

Now (7) follows from the inequality + + − ≤ 0. To show (8), after localizing 0

we can assume that± = ±

± ±, where ±, ± ∈ 0 are elements with

div ± =

⌊
div ±

±

⌋
and div ± =

{
div ±

±

}

respectively. The relation
(

±/ ±
)

± = ± ± then shows that ±/ ± is integral over
and so by the normality of is contained in±1. As ± is a generator of ±1

this forces that ± ∈ ×
0 are units, proving (8).

In many cases the surfaces = Spec0[ + −] can be represented by explicit
equations as follows.

Proposition 4.8. With the assumptions as inLemma 4.7the following hold.
(a) = 0[ + −] is the normalization of the 0-algebra

(9) := 0[ − + −]
/(

−

− − − −
′
−

+

′
+

− − +
+
− − +

)

graded viadeg − = −1, deg ± = ± ±, where := gcd( + −), ′
± := ±/ and

:=
′
+

′
−

′
−

+
′
+

−

∈ 0 + :=
+

+
∈ 0(10)

(b) = Spec is a cyclic branched covering of degree of the normalizationof the

hypersurface{
′
−

+

′
+

− − = 0} in × A2
C.

(c) If = 1 i.e., if + and − are coprime and if + is not invertible, then = Spec
can be represented as the normalization of a hypersurface in3

C = SpecC[ + −]
with equation

(
−

+ · +
−
)

= 0
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where ∈ C[ ] is a suitable irreducible polynomial.

Proof. (a) First we note that is integral over the subring0[ ±]. Indeed, if
∈ with 6= 0 then + = + if > 0 and − = − if < 0, where ∈ 0

(see Lemma 3.5). Since and its subring0[ − ±] have the same field of fractions,
it follows that is the normalization of 0[ − ±].

To find the relations between the generators of0[ − ±], note that ± =
±

± / ± and so

′
−

+

′
+

− =
+

′
−

+

′
+ −

−
′
−

+
′
+

−

=
′
+

′
−

′
−

+
′
+

−

= ∈ 0

Similarly

+
+
− =

+
+

+
−

+
=

+

+
= + ∈ 0

The general fibers of the natural map Spec→ = Spec 0 are irreducible, and every
fiber is 1-dimensional and in the closure of the generic fiber.Thus the surface Spec
is irreducible, and (a) follows.
(b) Since = gcd(+ −), the ring 0[ ±] contains nonzero elements of degree and
is contained in the Veronese subring( ) of . Hence the fraction fields of both rings
coincide. As and then also ( ) is integral over 0[ ±] the normalization of 0[ ±]
is just ( ). The cyclic groupZ acts on via theC∗-action with invariant ring ( ).
Thus → Spec ( ) is a cyclic branched covering of degree , and (b) follows.
(c) In case = 1 the algebra =( ) is itself the normalization of the hypersurface

0[ + −]/( −

+
+

− − ). Notice that is non-constant as is a domain and, by our
assumption, the elements± are not invertible. For a general element of0 the map
ϕ = ( ) is a finite morphism of = Spec0 onto a plane curvẽ ⊆ A2

C with an
irreducible equation ( ) = 0, where := =−

+
+

− ∈ 0. This implies (c).

Remarks 4.9. 1. It is worthwhile mentioning how to get, under the assump-
tions as in (c), a representation ∼= 0[ + −] in terms of in (10). Choose ,

∈ Z with | +

−
| = 1 so that ′ := + − has degree 1. By an easy calculation

′ + = + and ′− − = −/ , whence by Remark 3.7 ∼= 0[ + −] with

+ =
+

div − = −
−

div and + + − = −div

+ −

2. In analogy with (c), any parabolicC∗-surface = Spec with = 0[ ], where
⌊ ⌋ and ( ) are principal divisors on = Spec0, can be obtained as the nor-
malization of a surface − = 0 = ( ) in A4

C = SpecC[ ] graded via
deg = deg = 0, deg = 1, deg = , where∈ C[ ] is a suitable irreducible
polynomial (see also Remark 3.12(2)).
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The special case+ = 1 leads to the following example.

EXAMPLE 4.10 (cf. [4, Example 4.11]). For a unitary polynomial ∈ C[ ], we
let = = norm be the normalization of theC-algebra

= := C[ ]/
(

− ( )
)

graded via deg = 0 deg = 1, deg =− so that the normal affine surface :=
Spec is equipped with a hyperbolicC∗-action. As ∼= 0[ − ] we can write

∼= 0[ + −] where + = 0 and − = −div

(see Lemma 4.6). We can recover± and in Lemma 4.7 as follows. By the con-
struction given there + = 1 and by (8){ −} = div( −)/ −. This gives

(11) div − = −

{
−div

}
and div =

div
+

div −

−

(see (6)). In particular,

≥0
∼= 0[ ] ∼= C[ ] and ≤0

∼= +
− −

(cf. Example 3.10) as graded0-algebras, where for the second isomorphism we have
to reverse the grading of one of the rings.

This discussion provides the following characterization of the algebras .

Proposition 4.11. If = 0[ + −], where 0
∼= C[ ] and +, − are

Q-divisors onA1
C with + + − ≤ 0, then the following conditions are equivalent.

(i) + is integral i.e., { +} = 0.
(ii) ≥0

∼= 0[ ] as graded 0-algebras, wheredeg = 1.
(iii) ∼= as graded 0-algebras, where + + − = −div( )/ .

Next we study the effect of base change to the Dolgachev-Pinkham-Demazure rep-
resentation.

Proposition 4.12. Let = Spec 0 be an affine curve with function field 0 =
Frac( 0) and let

:= 0[ + −] ⊆ 0[ −1]

where ± are Q-divisors on satisfying + + − ≤ 0. Let be the field :=
Frac( )[

√
], where ∈ 0 and ≥ 0, > 0. If ′ is the normalization of

in then the following hold.
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1. ′
0 is the normalization of 0 in 0[ ] with :=

√
, where := gcd( ).

2. ′ ∼= ′
0[ ′

+
′
−] with

′
± :=

( ∗( ±) ± β div
)

where : ′ := Spec ′
0 → is the projection andβ is defined byβ ≡ mod .

Proof. We let = ′ and = ′ . The normalization ′ admits a natural
(1/ )-grading, and the element∗ :=

√
is of degree / = ′/ ′. If we write

= β + δ , then the element ′ := ∗β δ ∈ Frac( ′) has minimal possible positive
degree 1/ ′. Thus

′ ⊆ Frac( ′
0)[ ′ ′−1]

To compute ′
0, we note that ∗ − with , ∈ N has degree 0 if and only if

′/ ′ = . In particular, = ′ ′ is an integer multiple of ′. Thus ′
0 := Frac ′

0

is generated over 0 by ∗ ′ − ′

= 1/ (i.e., ′ = 1). As ′ and are coprime, it
follows that =

√
also belongs to ′

0 and that this field is actually generated by
over 0, proving (1).

After localizing 0 we may assume that there is an element+ ∈ of degree

+ = ( ≥0) with + = + 0 (see 3.6). We claim that then′
+

= +
′
0 for all ≥ 0.

If not, then for some > 0 and some non-unit ∈ ′
0 the element +/ belongs to

′, so it is integral over and there is an equation

+ + 1

( −1)
+

−1
+ · · · + = 0

where ≥ 0 and ∈ + . Thus = + for some elements ∈ 0, whence
dividing the equation above by+ we obtain that

1
+ 1

1
−1

+ · · · + = 0

As ′
0 is integrally closed this is only possible if∈ ′

0 contradicting the choice of .
Thus = + is an element satisfying the assumptions of Remark 3.7, and we com-

pute with it the divisor ′
+ as follows (the calculation for ′

− is analogous). If we
consider the new grading of ′ by assigning to ′ the degree 1, then+ becomes an
element of degree +. Moreover, if + = + + with + ∈ 0 then by Remark 3.7

+ = (div( +))/ +. Since

′ + = ( ∗β δ) + = ( )β + δ +

= β + +(β +δ ) = β + +

= β +
+ +
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we obtain again by Remark 3.7 that on′

′
+ =

div( β +
+ )

+
=
β

div( ) + ∗( +)

and (2) follows.

Let us consider the following important example.

EXAMPLE 4.13. With 0 := C[ ], suppose that + = −( / )[0] and that − is
any Q-divisor on A1

C = Spec 0 satisfying + + − ≤ 0. Applying Proposition 4.12
to :=

√
(i.e. = 0) we get that the normalization of :=0[ + −] in the field

:= Frac( )[ ] is given by

′ = ′
0[− [0] ′

−] ⊆ C( )[ −1]

where ′
0 = C[ ] and ′

− = ∗( −) (as before, : SpecC[ ] → SpecC[ ] denotes the
projection 7→ ). The divisor ′

+ = − [0] being integral we have

′ ∼= ′
0[0 ′

+ + ′
−] ⊆ C( )[ ˜ ˜ −1]

where ˜ := .
More concretely, if := −( ), := · −(0) and if we choose a unitary polyno-

mial ∈ C[ ] with − = −(div( ))/ then ′
+ + ′

− = −{div( ( ) + )}/ . By
Example 4.10 ′ ∼= is the normalization of

(12) =C[ ˜ ]/
(

˜ − ( )
)

where ( ) := ( ) +

The field extension Frac( )⊆ Frac( )[ ] is Galois with Galois groupZ = 〈ζ〉, where
ζ = ζ . Thus

∼=
( )Z

and the action ofζ on ˜ = is given byζ ˜ = ζ ˜ Therefore, the groupZ acts
on via

(13) ζ = ζ ζ ˜ = ζ ˜ and ζ =

Thus we obtain the following characterization.

Proposition 4.14. For an algebra = 0[ + −] with 0 = C[ ] the following
conditions are equivalent.
(i) {− +} = ( / )[0], where0 ≤ < and gcd( ) = 1.
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(ii) ∼= ( )Z , where is the normalization of in(12) and whereZ = 〈ζ〉
acts via the formulas in(13).

Like in the parabolic case may possess at most cyclic quotient singularities.
The type of quotient singularities is determined from the divisors +, − by the fol-
lowing result. As before, = Spec0 is a smooth affine curve with function field

0 = Frac 0 and := 0[ + −] with Q-divisors + and − on . Denote
π : = Spec → the canonical projection.

Theorem 4.15. (a) The set of singular pointsSing is contained in the fixed
point set which is the zero locus = ( ) of the ideal := + + − of .
(b) The mapπ| : → is injective, and π( ) = { ∈ | +( ) + −( ) < 0}.
(c) For a point ′ ∈ with image := π( ′) ∈ we write

+( ) = − +

+
and −( ) = −

−

with the convention that

+ > 0 − < 0 gcd( + +) = gcd( − −) = 1 and

+ = 1 if +( ) = 0 − = −1 if −( ) = 0

Let , ∈ Z with | +

+
| = 1. Then ′ ∈ is a quotient singularity of type

( ( ) ) where ( ) := −
∣∣∣∣

+ −
+ −

∣∣∣∣ and ≡
∣∣∣∣

−
−

∣∣∣∣ mod ( )

In particular, ′ ∈ Sing if and only if ( ) 6= 1.

Proof. As in the proof of Proposition 3.8(b) we can reduce thestatement to
the case that 0 = C[ ] and | +| ∪ | −| is contained in the origin, so that ± =
∓ ±/ ±[0].
(a) The set Sing is finite and invariant under theC∗-action. Hence it is contained
in the fixed point set .
(b) The map 0 → / is obviously surjective. Thus

π| : = Spec

( )
→

is a closed embedding. Moreover, =∅ if and only if 1 ∈ if and only if 1 = + −
for some homogeneous elements of of opposite degrees, and the latter happens if
and only if + + − = 0 by Remark 4.5.
(c) Notice first that the elements

+ := + + − := − − ∈ 0[ −1]
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belong to . Indeed, by definition, the ideal + of (this is just the maximal ideal
of the point ′ ∈ ) is generated by the monomials with ( )∈ Z × Z, where
( ) 6= (0 0) and

+ +(0) ≥ 0 if ≥ 0 − −(0) ≥ 0 if ≤ 0

In other words, ( ) is an element of the cone := C ((+ +) ( − −)) gener-
ated by the vectors (± ±) in the plane. Hence is a toric algebra generated by
the semigroup ∩ Z2, and so is a quotient for some ≥ 0 (see Lemma 2.4).
To determine , , we must find a basis ofZ2 such that (+ +) is one of the basis
vectors. This is done as follows.

If we choose , ∈ Z with | +

+
| = 1, then the vectors ˜1 := ( + +) and 2̃ :=

( ) form a basis ofZ2, and

( − −) = ′ ˜1 + ˜2 where ′ :=

∣∣∣∣
−

−

∣∣∣∣ and := (0)

As ˜1 and ( − −) form a basis of the cone , it follows from Lemma 2.4 that

has a quotient singularity of type ( ), where 0≤ < and ≡
∣∣∣ −

−

∣∣∣ mod .

Note that and ′ are coprime since so are− and −.
The determinant has always positive sign as

(14) +(0) + −(0) =
+ −

≤ 0 and + > 0 − < 0

and so (c) follows.

Corollary 4.16. If is the normalization of the algebra

= C[ ]/
(

− ( )
)

where ( ) =
∏

=1( − ) with 6= for 6= (see Example 4.10),then the
singular points of the surface = Spec are the points ′ ∈ (1 ≤ ≤ ),
where = , = = 0 and ∤ .

Proof. It was shown in Example 4.10 that+ = 0 and −( ) = − / . There-
fore, ( ) = + > 1 if and only if ∤ , which implies our assertion.

In the sequel we use the following notation.

DEFINITION 4.17. Let = C∗ be the orbit through a point ∈ \ . Follow-
ing [12] we say that is of type ( ) if is the order of the stabilizer

Stab = ker(C∗ → Aut ) ⊆ C∗ so that Stab =〈ζ〉 ∼= Z
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and (0 ≤ < ) is determined from the tangent representation of Stab on the
tangent plane via pseudo-reflections

Stab ∋ ζ 7−→
(

1 0
0 ζ

)

The orbit is calledprincipal if = 1 and exceptionalotherwise (see [12]–[14] for
a detailed description of the structure of near the exceptional orbits).

In the next result we will characterize the orbit types of thesurface = Spec
with := 0[ + −], where + and − are Q-divisors on the smooth affine curve

= Spec 0. Let π : → denote the projection. To examine the orbits over a point
∈ , we write

+( ) = − +

+
and −( ) = −

−

with the conventions as in Theorem 4.15(c). Let+ be defined by 0≤ + < + and

+ + ≡ −1 mod +, and similarly − by 0 ≤ − < − − and − − ≡ 1 mod −.
With this notation the following result holds.

Theorem 4.18. The exceptional orbits of are located over| +| ∪ | −|. The
orbits over a given point ∈ | +| ∪ | −| are as follows.
(a) If +( ) + −( ) = 0 then π∗( ) = + consists of one orbit of type( + +)
with multiplicity +. Moreover, appears with coefficient− + in div .
(b) If +( ) + −( ) < 0 then π−1( ) contains two orbits + and − of types
( + +) and (− − −), respectively. Their closures̄ ± intersect in the unique fixed
point of the fiber, and π∗( ) = + ¯+− − ¯−. Moreover, ¯± appears with multiplic-
ity ∓ ± in div .

Proof. With the same reasoning as in the proof of Proposition3.8(b) it is suffi-
cient to treat the case where0 = C[ ] and ± are supported on = 0∈ A1

C, i.e.

± = ∓ ±/ ±[0]. Note that in this case + = ( ≥0) and − = − ( ≤0).
(a) If + + − = 0, so that + = − − =: and + = − − =: then is the
semigroup algebraC[ ∩ Z2], where is the cone generated overR by the vectors
±( ) and (1 0). Obviously is the half space of all ( )∈ R2 satisfying −

≥ 0. If we choose , ∈ Z with | | = 1 then the vectors ( ) and ( ) form

a basis ofZ2, and ( ) lies in the half space . Thus

∩ Z2 = Z · ( ) + N · ( )

and so is the algebra of Laurent polynomials

(15) = C[ −1 ] where := ∈ and := ∈
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Clearly then

(16) = − and = −

The action ofC∗ is given by λ = λ and λ = λ , whence there is only one
orbit over = 0, and it is given by the equation = 0. By (16) we have

π∗(0) = div = · and div =− ·

The stabilizer of any point of is the group ⊆ C∗ of -th roots of unity, and the
type of the orbit is ( ) = ( + +), as required in (a).
(b) Let now + + − < 0. Consider a generator± = ± ± of

±
as 0-module

(cf. the proof of Theorem 4.15(c)). The localization+ = [ − + − + ] is the subring

0[ + − ′
−] of Frac( 0)[ −1] with ′

− := min( − − +) (see Lemma 4.6). As

+ + − ≤ 0 we have ′
− = − +, so by (a) the open subset Spec+ of contains

an orbit + of type ( + +), and it has multiplicities + and− + in π∗(0) and div ,
respectively. Similarly, Spec

−
contains an orbit − of type (− − −), which has

multiplicities − − and − in π∗(0) and div , respectively. We have div(+ −) = ·(
¯+ + ¯−), where by our assumption =+ −( +(0)+ −(0))> 0 (see (14)). Thus

the fiber ofπ over = 0 can be given by+· − = 0, where the functions+, − vanish
on ¯− and ¯+, respectively. The intersection̄ + ∩ ¯− is given by + = − = 0, and
so is the unique fixed point of the fiber.

EXAMPLE 4.19. In the example of the algebra = treated in Corollary 4.16
we have + = 0 and − = −div( )/ =

∑ −( / )[ ] (see Example 4.10). The
exceptional orbits are located over the points∈ A1

C, and π−1( ) = + ∪ { ′} ∪
−, where ′ is the unique fixed point of the fiber (located over the point (00 ) of

Spec ⊆ C3). Applying Theorem 4.18, the orbit + is principal, and if we write
/ = / with gcd( ) = 1 then − is of type ( ), where

≡ −1 mod with 0≤ <

REMARK 4.20. We can now precise the character of the affine modifications
σ± : → ± as in Proposition 4.1. Doing this locally we assume first that0 = C[ ]
and ± is supported on = 0∈ A1

C. If + + − = 0 then = ≥0[ −1
+ ] = ( ≥0) + ,

whenceσ+ : → + is an open embedding and+\ is the divisor div + = +ι+( ).
In case + + − < 0, letting in the proof of Proposition 4.10 := − −

+ , we ob-
tain that σ+ : → + consists in blowing up a graded ideal⊆ ( +) of the al-
gebra ≥0 supported at a fixed point and deleting the proper transform of the divisor
div + = +ι+( ). The exceptional curve in is the orbit closurē− = { + = 0}.

Globalizing we see thatσ± : → ± blows up a graded ideal with support at
the fixed points ′

1 . . . ′ ∈ ι±( ) over the points :=π±( ′) ∈ with +( ) +
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−( ) < 0, and deleting the proper transform of the fixed point curveι±( ) ⊆ ±.
Moreover the exceptional set ofσ± is ¯∓

1 ∪ · · · ∪ ¯∓.

4.21. We let as before = Spec0 be a smooth affine curve with function field

0 = Frac 0, and we let +, − be Q-divisors on . In what follows we com-
pute the Picard group and the divisor class group of :=0[ + −] (see also [18,
Thm. 5.1] and [26, Cor. 1.7] for the elliptic case). We denoteby 1 . . . the points
in for which +( ) = − −( ) 6= 0, and we let 1 . . . ∈ be the points with

+( ) + −( ) < 0. Let us write

±( ) = ∓ +( ) = −
+

+ and −( ) =
−

−

with the conventions as in Theorem 4.15. Ifπ : := Spec → denotes the canoni-
cal map then the preimageπ−1( ) consists of only one orbit , andπ−1( ) consists
of two orbit closures¯+ ∪ ¯−, so that

(17) π∗( ) = and π∗( ) = + ¯+ − − ¯−

as divisors on , see Theorem 4.18.

Theorem 4.22. The divisor class groupCl of is the group

π∗(Cl 0) ⊕
⊕

=1

Z[ ] ⊕
⊕

=1

(
Z[ ¯+] ⊕ Z[ ¯−]

)

modulo the relations

π∗( ) = [ ] = 1 . . .

π∗( ) = +[ ¯+] − −[ ¯−] = 1 . . .

0 =
∑

=1

[ ] +
∑

=1

(
+[ ¯+] − −[ ¯−]

)

Proof. Let Div ⊆ div be the subgroup of all Weil divisors on that are ho-
mogeneous, i.e. finite sums of irreducible divisors given byhomogeneous prime ideals.
The homogeneous principal divisors Prin form a subgroup of Div , which con-
sists of all divisors div , where = / ∈ Frac is a quotient of homogeneous
elements. By [8,§1, Ex. 16]

Cl ∼= Cl := Div /Prin

The group Div is freely generated by allC∗-invariant subvarieties of codimension 1
in , that is by all irreducible components of the fibers ofπ : → . If +( ) =
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−( ) = 0 then the fiber over is the prime divisorπ∗( ). If = for some then
the fiber over consists of just one orbit of type ( ), and by (17)π∗( ) =

as divisors on . If = for some then by (17)π∗( ) = + ¯+ − − ¯−.
Thus the natural mapπ∗ : div 0 → Div is injective, and

(18) Div ∼=
π∗(div 0) ⊕⊕ =1 Z[ ] ⊕⊕ =1

(
Z[ ¯+] ⊕ Z[ ¯−]

)
(
π∗( ) − [ ] π∗( ) − +[ ¯+] + −[ ¯−]

)

The group Prin is generated by all divisors div( ) = div + div , where ∈
×
0 is non-zero. Dividing outπ∗(Prin 0) = π∗ div( ×

0 ) in (18) gives the group

π∗(Cl 0) ⊕⊕ =1 Z[ ] ⊕⊕ =1

(
Z[ ¯+] ⊕ Z[ ¯−]

)
(
π∗( ) − [ ] π∗( ) − +[ ¯+] + −[ ¯−]

)(19)

By Theorem 4.18 the divisor of is given by

div = −
∑

=1

[ ] +
∑

=1

(
− +[ ¯+] + −[ ¯−]

)

Hence, taking (19) modulo this relation leads to the divisorclass group, as required.

Corollary 4.23. is factorial if and only if ⊆ A1
C (i.e. 0 is a localization of

C[ ]) and one of the following two conditions is satisfied.
(i) = 0 and gcd( ) = 1 for 1 ≤ < ≤ .

(ii) = 1, = 1 for all and | +

+

−

− | = ±1, where ± := ±
1 and ± := ±

1 .

Proof. If is a curve of genus ≥ 1 then the group Cl is not finitely gen-
erated. Thus assuming that is factorial, is isomorphic to anopen subset ofA1

C.
By Theorem 4.22 the group Cl has then + 2 generators and + + 1 independent
relations, whence necessarily≤ 1. In the case = 1 the number of generators and
the number of relations are equal, and so the order of Cl is theabsolute value of
the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ −
1 2 · · ·

+ − 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 2 · · · 0
...

...
...

...
. ..

...
0 0 0 0 · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
+ −
+ −

∣∣∣∣ · 1 · 2 · · · · ·

Thus, if Cl = 0 then all the factors of this product are equal to1, and we are
in case (ii). If = 0 then Cl is the group

⊕
=1 Z · [ ] modulo the relation
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∑
[ ] = 0. As and are coprime, this group is trivial if and only if (i) holds.

Conversely, if (i) or (ii) is satisfied then the discussion above shows that Cl is trivial,
finishing the proof.

Finally, we determine the Picard group and the canonical divisor of . The local
divisor class group at the point is generated by¯± modulo the relations

:= + ¯+ − − ¯− = 0 and := + ¯+ − − ¯− = 0

Since the Picard group Pic is the kernel of the map of Cl into the direct prod-
uct of all local divisor class groups, this group is the subgroup of Cl generated by
π∗(Cl 0), [ ], and . As =π∗( ), we obtain the following result.

Corollary 4.24. Pic is the group

π∗(Cl 0) ⊕
⊕

=1

Z[ ] ⊕
⊕

=1

Z

modulo the relations

π∗( ) = [ ] = 1 . . .

0 =
∑

=1

[ ] +
∑

=1

In particular, Pic vanishes if and only if ⊆ A1
C and case(i) in Corollary 4.23 is

satisfied or = 1 and = 1 for all 1 ≤ ≤ .

Corollary 4.25. 2 The canonical divisor of the surface = Spec is given by

= π∗( ) +
∑

=1

( − 1)[ ] +
∑

=1

(
( + − 1)[ ¯+] + (− − − 1)[ ¯−]

)

Proof. We claim that multiplication by the meromorphic differential form /

on gives an isomorphism

∧− : π∗(ω )

(∑

=1

( − 1)[ ] +
∑

=1

(
( + − 1)[ ¯+] + (− − − 1)[ ¯−]

)) ∼=−→ ω

This is a local problem, so with the same arguments as in the proof of Theorem 4.18
we can reduce to the case that0 ∼= C[ ] and + = − − = −( / )[0], where , are

2cf. [26, Thm. 2.8] and [19, Lemma 2.6].
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coprime. In this case (15) in the proof of Theorem 4.18 shows that = C[ −1 ]
with := and := , where , are integers with| | = 1. Moreover
by (16) = − and = − . By an elementary calculation (/ ) ∧ =
− −1 −1 ∧ , whence the result follows.
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Universitätsstraße 150
44780 Bochum, Germany
e-mail: Hubert.Flenner@ruhr-uni-bochum.de

Mikhail Zaidenberg
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