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Introduction

A classification of (normal) affine surfaces admittingCa-action was given e.g.,
in [5, 6, 21, 22, 1, 25] and [12]-[14]. Here we obtain a simpleraative description
of normal affine surface¥  with @*-action in terms of their graded coordinate rings
as well as by defining equations. Our approach is based on erajzation of the
Dolgachev-Pinkham-Demazure construction [11, 22, 10caRdsee [12]-[14]) that a
C*-action on a normal affine surfadé is calletliptic if it has a unique fixed point
which belongs to the closure of every 1-dimensional orpérabolic if the set of its
fixed points is 1-dimensional, andyperbolicif V has only a finite number of fixed
points, and these fixed points are of hyperbolic type, thataish one of them belongs
to the closure of exactly two 1-dimensional orbits.

In the elliptic case, the complememt* of the unique fixed point inv is fibered
by the 1-dimensional orbits over a projective curge . In thbeo two casesV is
fibered over an affine curv€ , and this fibration is invariandemthe C*-action.

Vice versa, given a smooth curvé  andQ@divisor D on C, the Dolgachev-
Pinkham-Demazure construction provides a normal affindaserV = Vo p with a
C*-action such thatC is just the algebraic quotientVsf or of V, respectively. This
surfaceV is of elliptic type ifC is projective and of parabotipe if C is affine.

We remind this construction in Sections 1 and 2 below. In i8ecB8 we use it
to present any normal affine surfa¢e  with a parab@licaction as a normalization
of the surfacex? — P(z)y = 0 in A% for a certaind € N and a certain polynomial
P € C[f] (see Theorem 3.11).

In Section 4 we deal with the hyperbolic case. We generaliee Dolgachev-
Pinkham-Demazure construction in order to make it work fary ahyperbolic
C*-surface. Instead of on@-divisor D on a smooth affine curv€ as before, it in-
volves now twoQ-divisors D, and D_ on C. By our resultisomorphism classes of
normal affine hyperbolidC*-surfaces are inl-1-correspondence to equivalence classes
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982 H. RENNER AND M. ZAIDENBERG

of triples (C, D+, D_), where C is a smooth affine curve amd., D_ is a pair of
Q-divisors onC withD, + D_ < 0; two such triples(C, D+, D_) and (C’, D, D")
are considered to be equivalent if and onlydf> ¢’ and D1 = D/, &+ Do with a prin-
cipal divisor Dg; cf. Theorem 4.3. We also determine the structure of theusamigies,
the orbits, the divisor class group and the canonical divioterms of the divisors
D, see Theorems 4.15, 4.18, 4.22 and Corollary 4.24.

Using our description it is possible to represent any noriyglerbolic C*-surface
fibered overC =Al as the normalization of a surface if. given by

x* — p(r)y=0, x%z—0Q@)=0 and yz¢—R()=0,

for certain polynomialsP Q R € C[7] satisfying the relationP*R =0 , where d
are coprime. These polynomials can be easily computed mstef the data ., D_)
(see Proposition 4.8). For instance, if the divisor is integral then this system re-
duces to one equatior’z — Q(¢) = 0 in A2, and vice versa. Wheh =1 then it again
reduces to one equatiorfz? — R(r) = 0 in A3.

In Proposition 4.12 we show how the paib{, D_) is transformed when pass-
ing to an equivariant cyclic cover of . We deduce, in paricub characterization of
normal hyperbolicC*-surfaces ovelC Al with the fractional part ofD_ supported
at one point, as normalized cyclic quotients of the surfaces— Q(r) = 0 in A3.

In the forthcoming paper [15], which is actually Part Il ofetlpresent one, we
will apply these results to give a simple description of adrmal affine C*-surfaces
equipped in addition by &*-action. In fact, this class consists of all normal affine
surfaces which admit an algebraic group action with an opdit.o

We note that the results of this paper hatdm.for graded 2-dimensional normal
algebras of finite type over a Dedekind domain.

1. Generalities on graded rings

A Z-graded ringA =P, ., A; containsA>o = ;.o A; and A<o = P, A; as
subrings. The following lemma is “well known”; in lack of afezence we provide a
short argument.

Lemma 1.1. If A=¢p, ., A; is a finitely generatedip-algebra then so areA>o
and A<g. Moreover A is normal if and only if so are bott>o and A<o.

Proof. Reversing the grading interchanges the subriigs and A<q. Thus it is
sufficient to prove the first part foA>o. If a;; € A; with —n <i <n, j=1,... n,,
is a system of homogeneous generatorsiof , theg is generated (as a module over
Ap) by the multiplicatively closed system of monomials

k .— kij
a*=[]ay .
ij
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wherek :=§; )€ Z" satisfies the inequalities

(1) kij>0, —-n<i<n, j=1...,n; Zik:‘jZO-

i,Jj

By Gordan’s Lemma (see [20]) the rational polyhedral latttone X C Z" defined
by (1) is a finitely generated semigroup. Hence the algebya is generated by a fi-
nite system of monomialg* € A>o.

Next we show that the subalgebrs.q (and then alsd <o) is normal if so isA .
Indeed, the integral closureA¢o)nom € A = Anom IS graded. Take a homogeneous
elementx € (A>o)norm Of degreed :=deg , and let

(2) x" +Zb,-x"*" =0, where b; € Asg,
i=1

be an equation of integral dependence. We may assume,that alsardhomogeneous,
of degree deg; =i > 0. Since de@; > 0 we haved > 0, and sox € A>o.
Conversely, suppose that bo#q and A<g are normal. The ringd ®4, Frac(o)
is normal and so is equal to Frag)[«, « '] for a homogeneous element  of mini-
mal degree> 0 in A®g,, Frac(dp). Hence Anom is contained in this subring of Frac
If f € A®a, Frac(dp) belongs to the normalizatiod,o,m of A then so does its top
homogeneous component. Thus it is enough to deal with honemgyes elements. Let
a be such an element satisfying an equation of integral depered(2) overA . We
may suppose as above that € A;; (i = 1,...,n). Sincedi has the same sign as
d = dega , we haver € (A>g)norm = Ao if d > 0 anda € (A<o)norm = A<o if d <0,
respectively. Anyhowg € A, whenceA is normal, as stated. ]

Notarion 1.2. LetV = Sped be a normal affine surface oewith an effec-
tive C*-action. The coordinate ring  &,., A; is then naturally graded so tha is
the set of elements oA on whiche C* acts viar.f =t f . ThusAg = AC is the
subalgebra of invariants, and; i ¢ 0) consists of the quasi-invariants of weight
Up to reversing the grading we may assume that= P, ,A; 7 0. The subsetsi.
andA_ =@, _,A; of A are ideals inA>o and A<o, respectively.

The following lemma is well known (see e.g., [10], [12, Lemh&]).

Lemma 1.3. (a) If Ag # C then the setM = {i € Z|A; # 0} coincides ei-
ther with N or with Z, and A; is a locally freeAp-module of rankl for all i € M.
Moreover if u € Frac(Ao) - A1 is a non-zero element then

A C Frac(o)[u, u™ Y], and even A C Frac(Ao)[u] if M =N.

(b) In particular, if Ag = C[f] then A; is a freeAg-module of rankl for all i € M.
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Proof. (a) TheKp := Frac(o)-algebraA ®,, Ko is a 1-dimensional normal
graded domain over the fiel&y. Hence it is isomorphic to the free polynomial ring
Ko[u] or the ring of Laurent polynomialsXo[u, u 1], whereu € KoA; andd > O.
As the C*-action is effectived =1, and (a) follows.

(b) follows from [7, Ch. VII, §4, Corollary 2]. [l

Lemma 1.3(a) does not hold in general without the assumghahAy # C as is
seen by the Pham-Brieskorn surfadés,, {#£+y?+z" =0} C C>.

1.4. Usually (cf. [12]) one distinguishes between the followitihgee cases.
(i) The elliptic caseA_ =0, Ag =C.
(i) The parabolic caseA_ =0, Ay # C.
(iif) The hyperbolic caseA_ # 0.
Below we provide more information in each of these cases.

2. The elliptic case

In the elliptic case theC*-action onV is good. In particular, its fixed point set
F = V© (which is the zero set of the augmentation ideal of A) consists of a
unique point calledhe vertexof V, and the surfacd/ is smooth outside the vertex.
One considers the smooth projective cu@e = Rrgf V*/C*, whereV* =V \ F,
together with the orbit morphismr: V* — C (the fibers ofr are the orbits of the
C*-action onV*).

A useful class of examples of normal affine surfaces with adg8bt-action is pro-
vided by the affine cones over projective curves. For an ampisor D on a smooth
projective curveC the ring

Ac.p = €D HYC, Oc(kD)) - u* C FracC )],
k>0

whereu is an indeterminate, is the coordinate ring of a noraffihe surfaceV =
SpecAc, . with a goodC*-action. Alternatively this surfac& is obtained by blowing
down the zero section of the line bundle associatedt¢— D). We will refer to such
surfaces as affine cones over (althougihp is not generatedebyeats of degree
one, in general).

Let furthermore a finite grous act o freely off the vertexdassume that
this action commutes with the given godif-action onV . Then the quotierit /G is
again a normal affine surface with a go@ti-action. Conversely, the following result
is true.

Theorem 2.1 ([11, 22, 10, 24]). Every normal affine surface with a good
C*-action appears as the quotient of an affine cone over a smpuaijective curve
by a finite group acting freely off the vertex of the cone.
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Generalizing the construction above, for a smooth projectturve C and a
Q-divisor D onC one considers the graded ring

Ac.p =P HO(C, O(|kD))) - u*,

k>0
where | E| denotes the integral part of @-divisor E. We have the following result.

Theorem 2.2 ([22], [10, Theorem 3.5]). Given a normal affine surfac& =
SpecA with a good C*-action there exists &)-divisor D on the curveC = ProjA
such thatA = Ac p.

The affine toric surfaces provide an interesting family dipgt C*-surfaces.

ExavpLe 2.3 ([20, 9]). We remind that a normal affine toric surfate V5
is associated to a strictly convex rational polyhedral ceneC R2. If dimo = 0
or = 1thenV, = C* x C* or V, = Al x C*, respectively, and sot* # C*.

Consequently, these two cannot be ellipfi¢-surfaces. Otherwise, if dimm = 2 then
choosing an appropriate basg e, of the lattice one may suppose thatis the cone
C(e2, de1 — eez), whered > 1, 0< e < d and gcdé,d ) = 1. We denot®,, ¥,

thenV,, = SpecA;. , where

Age = @ C-x%y? C C[x, y]
b>0, ad—be>0

is the semigroup algebra of the dual cané = C (eq, eeq + de>).

The 2-torusT = (C*)? acts onV,, with an open orbiv;, := Vd,e\{ﬁ}. Thus one
can introduce orV,, a number of elliptic, parabolic as well apeniolic C*-actions
by choosing appropriate 1-parameter algebraic subgrofifisectorusT.

In [23, 2, 3, 9] one can find a description of minimal sets of eyators of the
algebrasA,, as above, as well as defining equations for the aféinetiesV,, =

Specd, . — CV. An explicit presentation of these algebras as in Theorelri2given
in [10, 5.1].

We would like to emphasize the well known relation betwedimaftoric surfaces
and cyclic quotient singularities (see [10, 5.2] or [20, ptsition 1.24]).

Lemma 2.4. If B is the normalization ofA := A, . in the field L ;= Frac@ )]
with  := /x, then B is the polynomial ringB = C[u, v] with v := u°y. The Galois

group (¢) = Z, of L : Frac(A ) acts onB via the representatipsay G, .

Cu="Cu, Cv=C_,
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and A = B%. Consequentlythere is an isomorphism
V(I,e = A&((Zj/c;dm = A&((Zj/Zd .

Proof. For the convenience of the reader we give a short axgurBy definition,
A is generated ove€ by the monomials

xy?  with  5>0, ad —be > 0.

As xy? = yed=beyl  this shows thatd embeds naturally inffu, v] and that even
A =C[x, y] NC[u, v]. In particular A is a normal domain. Becausef x= A and
v! =x°y? € A the ring B is integral overd , whence it is the normalizationof
The second part follows from the first one, sinée is a cycliteesion of
Frac(d ) with Galois grou, acting vial.u = (u and .z =z for all z € A. [l

RemarRk 2.5. Assuming that > 0 and letting¢ := (¢ one obtains

(Cu, Cv) = (€ u, €0),

where 0< ¢’ < d andee’ =1 modd (note that fod =1 this mears$ = 0). Hence,
with 7(u, v) := (v, u) the conjugateZ,-action G, ,, = 771Gy O AZ

E(u,v) = (€ u, €v)
has the same orbits as,. thus providing an isomorphism of adfimaces
Vd,t’ = Aé/Gd,e = A%/G&.e’ = A%/Gd,ﬂ = Vi
Moreover,V,, = Vu . if and only if d =d’ and eithere =’ or e¢’ =1 modd .

3. The parabolic case

In the parabolic case one considers a normal affine surface th avC*-action
such that the coordinate ringt =P,.,Ai is positively graded anddg is a
1-dimensional domain. Thudy corresponds to a smooth affine cur@e = Spgc
which can be identified with the algebraic quotieiif/C* (indeed, Aq = A" is the
ring of invariants of theC*-action on A ). The embeddindo — A corresponds to
the quotient morphisnr: V. — C, and the projectionrA — Ay gives an embedding
t: C — V which provides a retraction of and whose image is the fixed point set.
Every fiber of7: V — C is the closure of a non-trivial orbit; it contains a unique
fixed point (asourceof this orbit) [12, Lemma 1.7].

A simple example of a paraboli€*-surface is the cylinde€ x AL over a smooth
affine curveC , whereC* acts on the second factor. More examples can be produced
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by applying equivariant affine modifications @ x Al (see [16, Theorem 1.1]). Actu-
ally, one obtains in this way all normal affine surfaces witpaabolicC*-action.

3.1. The Dolgachev-Pinkham-Demazure construction (see The@@) is avail-
able also in the parabolic case. L&t = Specbe an affine curve ove€ with func-
tion field Ko := FracAo), and letD be aQ-Cartier divisor onC . Similarly as in the
elliptic case we can introduce the algebra

Ao[D] = Ac.p = @HO(C, Oc([nD])) - u" C Kolu] .
n>0

More explicitly, if f € Ko then
(3) fu" € A= Ap[D] & divf+nD > 0.

By [10, 2.2] the algebrad is finitely generated owés and normal (see also Corol-
lary 3.8(b) below). Notice also that € A; if and only if D > 0.

The following theorem is well known (cf. [10, Theorem 3.549r the convenience
of the reader we include a short proof.

Theorem 3.2. Let C = Specdp be a normal affine algebraic curve with function
field Ko := Fraclo). If A = @,.,A; is a normal finitely generatedio-algebra of
dimension2 with A1 # 0 then the following hold.

(&) A is isomorphic toAp[D] for someQ-divisor D on C . More preciselyif u €
Ko - Ay is a non-zero element and if the divisdr  is defined by the égual

7D =divu — (C),

then A andAg[D] are equal when considered as subringsifu].
(b) For two Q-divisors D andD’ on C, the rings A = Ag[D] and A’ = Ag[D'] are
isomorphic as gradedig-algebras if and only ifD andD’ are linearly equivalent.

Proof. (a) Sincex € Ko - A1 is homogeneous, the divisor div on the normal
surfaceV =Sped is invariant under the indud&tiaction onV , and so we have

divu = Zp,-F,- +(C)
i=1

with p; € Z, where F; =7n"1(x;)eq are the fibers ofr over distinct pointsy; € C,
i =1 ...,m. Letting 7*x; = ¢;F; with ¢ € N (i = 1,...,m), the Q-divisor D =
> pi/qixi on V satisfies

divu = 7*(D) + (C).
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Since V is normal, for a rational functiop € Ko on C the following equivalences
hold:

ou" € A, & divipu") > 0 r*divp+ndivu > 0 &
m*divp+nm*(D)+n(C) >0 divp+nD >0& ¢ € HO(C, Oc(LnDJ)).

HenceA, =H®(C,O¢(|nD]))-u" for all n > 0, as desired.
(b) Any isomorphism of graded-algebras

1 AolDl = P HO(C, Oc(|nD))) - u" — Ao[D'l= P HO(C, Oc(|nD'))) -u",

n>0 n>0

extends to an isomorphism of gradé&@-algebras
@Ko Kolu] — Ko[u']

and so has the form” — f"u", n > 0, for some non-zerg’ € K. Conversely, such
a morphismyg, maps Ag[ D] isomorphically ontoAo[D’] if and only if

H°(C,Oc(|nD'])) = f" - H*(C, Oc(|nD))) Vn.
As
" H°(C, Oc(|nD])) = H(C, Oc(|nD — ndiv £])),

the existence of an isomorphism as above is equivalent to the existence of an ele-
ment f € Ko with D’ = D —div f. [l

3.3. We denote{D} = D — | D] the fractional part of &)-divisor D. Since prin-
cipal divisors areZ-divisors, we have{D} = {D’} as soon a®) ~ D’'.

If C=SpecC[7] = A} then the converse is also true. Indeed, &nglivisor on A%
is principal, and so the linear equivalence class d@-@ivisor D on Al is uniquely
determined by the fractional paftD} of D. Thus we obtain the following corollary.

Corollary 3.4. For every normal parabolicC*-surface V = SpecA with A =
PD,~0Ax and Ag = C[z], there is a unique isomorphistd = Ag[D] of graded
Ao-algebras where D = 0 or D = Y1 (pi/qi)xi with O < p; < g;, gcd(i,qi) = 1
Vi=1l...,n andx,- EA%:, Xi ;éxj for i ?fj

The next lemma is also well known; in lack of a reference wevidk® a short
argument.

Lemma 3.5. Let D be aQ-divisor on a normal affine varietyy and consider
the graded ringA := @,.,A;, where A; := H(S, Os(|iD])) - u'. For d € N the
following conditions are equivalent.
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() dD is integral.

(i) Agem = AgA,, for all m > 0.

(iii) Thed -th Veronese subring@ := ®D,,>0Ama is isomorphic to the symmetric al-
gebra S,(Aq) i.e., Awg = ST Ag. N

Proof. Condition (ii) is equivalent to
Os(l(m +d)D]) = Os(ImD]) ® Os(ldD]) ~ Vm >0,
and the latter condition is equivalent to
(i) |(m +d)D| = |mD]| + |dD| Vm > 0.
Similarly, (iii) is equivalent to
(ii") |mdD| =m|dD] Vm > 0.

The equivalence of (i), (i and (iii") now follows from the elementary fact that for a
rational numberr =p/q andd € N the following conditions are equivalent:

Q) drez 2) |[m+d)y|=|mr|+|dr] Ym >0 3) |mdr| =m|dr] Vm > 0.
O

Notation 3.6. We denoted 4 ) the smallest positive integér  satisfyihg t
equivalent conditions of Lemma 3.5.

Remark 3.7. In the situation of Theorem 3.2, one can recover from the
graded ringA =Ap[D] more algebraically as follows. Consider € N with AjA; =
Ay for all i > 0 (or, equivalently,A;; =5' A, ), see Lemma 3.5) and let be a gen-
erator of A; asAg-module; this exists after a suitable localization 4. If u¢ = fv
with f € FracAg, then D = div(f)/d. In fact, the ideavA is equal té>, and so its
zero set has no irreducible components in the fiberg.ofhus divv =d - «(C) on V.
Since

(D) =divu —«(C) and d-divu =divv +div f
as divisors onV , we obtai® = diy(/J.
A parabolic C*-surfaceV = Sped[D] has at most cyclic quotient singularities,

as follows from Miyanishi's Theorem (see [17, Lemma 1.4)B(1ln the next result
(see [10, Section 5]) we describe their structure in termghefdivisor D .

Proposition 3.8. (a) If Ap = C[f] and if D is supported on the origin in
SpecAp = Al so that D = —(e/d)[0] with gcde,d) = 1,then A = Aq[—(e/d)[0]]
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is naturally isomorphic to the semigroup algebra

Ad’g = @ C- t"u”

b>0, ad—be>0

graded viadegr = 0, deg = 1df. Example 2.3) ConsequentlyV := Spec is iso-
morphic to the toric surfacé/,; . = Specd; ., = A%/Gd,e/, wheree’ = ¢ modd and
0<e <d.

(b) If C = SpecAdp is any normal affine curve ovef and D is aQ-divisor on C,
then the surface/ = SpecAg[D] is normal with at most cyclic quotient singularities.
More precisely if D(a) = —e/d with gcd,d) = 1then V has a quotient singularity
of type(d, ¢') at v(a), wheree’ is as in (a).

Proof. The first part of (a) follows immediately from (3) inl3.whereas the sec-
ond one is a consequence of Lemma 2.4.

Tensoring the isomorphism in (a) with ®cfq C[[1]] we obtain that (b) holds if
Ao ¥ C[[4]]. The general case follows from this by taking completsoat the maximal
ideals of Ag. ]

The algebraAog[ D] is finitely generated overdo, so there existfi, ..., f, € Ko
andmy, ..., m, € N such that

A= A()[f]_uml, e, fnu""’] - Ko[u] .
In the next result we show how to compuiz  from such a reprasent

Proposition 3.9. Let C = SpecAg be a smooth affine curve ankly := FracAo.
If a 2-dimensional subringB of the polynomial ringo[u] is represented as

B = Ag[ fiu™, ..., fuu™] C Ko[u], m; >0Vi

with fi, ..., fu € Ko and gcd(ny, ..., m,) =1, then its normalizationA = Bporm COIN-
cides as anAg-subalgebra ofKo[u] with Ap[ D], where

1<i<n m;

Proof. By definition of D we have diy; #,;D > 0 so by (3) fiu™ € Ag[D]
and B is a subring ofAg[ D]. As Ag[D] is normal (see Proposition 3.8(b)}4 is also
contained inAg[ D]. Let us show that these subrings coincide.

According to Theorem 3.2, we can represent As AgD’] with =*(D’) =
divu — «(C). In particular fu™ € A = Ao[D’], so again by (3) diy; +m;D’ > 0
or, equivalently,D’ > —(1/m;)div f;. Thus D’ > D and Ag[D] C Ao[D’] = A. As
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we have already shown the converse inclusion we obtain AhatAq[®)], as desired.
O

The following examples of paraboli€*-surfaces ruled oveAl are basic (see
Theorem 3.11 below).

ExampLe 3.10. For a unitary polynomiaP € C[r] and for an integerd > 1 we
let

B} p = Clt, u, 1] /(u’ — P(t)) = C [t, u, ;‘Ti)}

graded via
degr =Q degg =1 deg 4.
The normalization
:;,P = (B:;,P)norm

is a positively graded finitely generated-algebra of dimension 2 witthg = Cl[z].
By Proposition 3.9 and Corollary 3.4 we have

div(P)

Alp = AdD] ¥ Adl{D}],  where D =D{, P)=—

For P(t) =[[}-y(t — x;)" (wherex; #x; if i # j) we obtain

n }"i _ n r,-
D—;Ex,', and {D}—;{E}x,’,
whereasD =0 ifP =1. Replacin®@ b{yD} we may suppose that
(x*) gedd,r1,....,r)=1 0<r<dVi=1...,n, fd>2 andP =1ifd =1

If two pairs @, P) and §, P) satisfy &) and if A; , = A% ; as gradedAc-algebras
then by Corollary 3.4 we have di#(/J = div(P)/d, and sod =d and P =P.

Thus we obtain the following classification result.
Theorem 3.11. For every normal affine surface = SpecA ,where A =, A;
with Ag = C[¢], there is a unique paifd, P) satisfying condition(x) and an equivari-

ant isomorphism ofdg-schemes

@: V— V;p = SpecA; p.
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Remark 3.12. 1. In the situation of Theorem 3.11 above, the Verorsegeing
AY is equal toAg[v] = CJr,v]. The cyclic groupZ, acts onA via theC*-action
and A@ coincides with the ring of invariantda?, whereasA is the normalization of
A@ in the fraction field Frac{ ). Thus the morphisi — A% = SpecC[t, v] induced
by the inclusionC[z, v] C A represents/ as a cyclic covering of the plane branched
along the curver =0, andt  is the normalization of a surfaee— P(t)v = 0} in C3.

2. More generally, leC = Spety be any smooth affine curve and lat @,  A;
be a normal 2-dimensional,-algebra of finite type. 1fA1 = u - Ag and A; =v - Ao,

d :=d(A), for suitable elements € A; andv € A; then A is the normalization of an
algebraAo[u, v] /(u? — P,v) graded via deg =1, dag & |, for a certainc N and
a certain elemenP; € Ao.

4. The hyperbolic case

Let A = P, Ai be the coordinate ring of a normal affine surfake = Spec
with C*-action such thatd,, A_ are both non-zero. Here again there is a quotient
morphismz: V. — C = Specdp induced by the inclusiomdg <— A. Every fiber of
7 is either a non-trivial orbit or a union of two 1-dimensionatlbits and a hyper-
bolic fixed point, which is a source for one of them and a sinktf@ other one [12,
Lemma 1.7]. Thus the fixed point sé s finite and contains 8ing

By Lemma 1.1 the proper subalgebras, and A<g of A are normal and finitely
generated, and s¥. := SpecA>o and V_ := SpecA<g are normal affine surfaces with
a parabolicC*-action birationally dominated by . The natural embeddings —
A>o— A and Ag — A<o — A yield the commutative diagram

(4) Vi<l vy v_

N

C

whereoy are equivariant birational morphisms. Henge are equivariant affine mod-
ifications [16, Theorem 1.1]. More precisely the followingsult holds.

Proposition 4.1. V can be obtained fronV. by blowing up aC*-invariant sub-
scheme and deleting the proper transform of&invariant divisor D* on V.., which
contains the fixed point curve.(C) C V..

Proof. Let us show this fo¥., the proof forV_ being similar. Choose a system
of homogeneous generatars, . . ., a, of the finitely generatedio-subalgebrad <o and
let fo € A+ be a non-zero element of degree —min; deqga; . Lettingf; :=a; fo for
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i=1,...,n we obtain

_ J1 Sl _ I _ | x k
A_A>O|:%,...,%:|—A>o|:%:| .—{f—é(‘XkEI, k>0},

where is the graded ideal of>o generated byfo, ..., f,. ThusV = Sped is ob-
tained by blowing upV, = SpecA>q with center!/ and deleting the proper transform
of the C*-invariant divisor divfp on V.. As this divisor contains.(C), the result fol-
lows. ]

For a more precise description of the affine modificationssee Remark 4.20.

4.2. The Dolgachev-Pinkham-Demazure construction is stillilakée in the hy-
perbolic case. In [10, Theorem 3.5] it is done under the &wdit assumption that
A_, ® A, — Ag is an isomorphism for alh . Here we generalize the constucti
in order to make it work for any hyperboli€*-surface.

Let D., D_ be Q-divisors on the smooth affine curvé := Spaec Forn >0
we consider thedg-submodules

A_, =H°(C,Oc(InD_])) -u™" and A, :=H°(C,Oc(|nDx])) - u"

of Frac(Ao)[u, u~1], whereu is an indeterminate of degree 1.0f + D_ < 0 then for
n>m >0 we have

(D + | mD_| < |(n —m)D.],

whenceA, -A_,, C A,_,,. Similarly, for 0<n <m we haveA,-A_,, C A,_,. Thus

A= AD:. D_]:=PA,
ne’z

is a finitely generateddo-subalgebra of Frad()[u,u~!] with Asq = Ag[D.] and
A<o ¥ Ao[D_]. The grading onA defines a natural hyperbdli¢-action on the sur-
face V .= Sped . The latter surface is normal as so are the algetyf D.] and
Ao[D_] (see Lemma 1.1 and Corollary 3.8(b)). Conversely, we haeeftllowing the-
orem.

Theorem 4.3. If C = SpecA, is a smooth affine curve and = P, ., A; is a
normal graded finitely generated domain of dimensmith AL # 0, then the fol-
lowing hold.

(&) A is isomorphic toAo[D+, D_], where D,, D_ are Q-divisors onC satisfying
D. + D_ < 0. More preciselyif u € Frac(Ao) - A1 and if the divisorsDs, D_ on C
are defined by

() 7H(Ds) = div(u) — 1+(C) and 7 (D_) = div(uY) — t_(C).
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wheren, are as in diagram(4) above and.+: C — V. are the natural embeddings
thenD,+D_<0and A= A[D+, D_].

(b) Ag[D+, D_] = Ao[D%, D] as gradedAq-algebras if and only iffor a rational
function ¢ € Frac(Ao), one has

D.=D.+divp and D’ =D_ —divyp.
Proof. (a) By Theorem 3.2 and its proof we have equalities
A>0=Ag[D+] and A<o=Ag[D_]

as subalgebras of Frat)[u, u~], whenceA =A¢[D., D_]. It remains to show that
D.+ D_ <0. Applying in (5) the functorsry ando* respectively, we obtain

7(Dy) = div(u) — o715(C) and 7 (D_) = div(u~Y) — o™ . (C).

Taking the sum of these equalities yield$(D.++D_) = —(cii(C)+o* .* (C)), whence
D, + D_ < 0, as required. Finally (b) follows from Theorem 3.2(b) amsl proof.
O

Consequently, ifAg = C[f] then A admits a unique presentatioh Ag[D+, D_]
with D, ={D,} and D, + D_ <O0.

It follows from Theorem 4.3 that outsidgD.| U |D_|, the mapn: V — C is a
locally trivial principal C*-bundle. More generally, the Dolgachev-Pinkham-Demazure
construction shows the following result (cf. [1], [12, Posion 1.11]).

Corollary 4.4. In all three casesoutside of a finite subset of the cur¢e  the
projection 7: V* — C and 7: V — C, respectively defines a locally trivial fiber
bundle. This is a principalC*-bundle in the elliptic and hyperbolic casesnd a line
bundle in the parabolic case.

Note that ifu € A; U A_; is a non-zero element then its restriction to a general
fiber of 7 gives a fiber coordinate and so a trivialization over a Zarighen subset
of C.

Remark 4.5. The algebraA = Ap[ D4, D_] contains an invertible element of de-
greed > 0 if and only if D_ = —D, and dD. is a principal divisor onC = SpecAg.
In fact, if v € A is an invertible element of degree> 0 then we can write

v=ful € Ay and vi=f e Ay,
where f € Frac(Ao) satisfies

div(f)+dD+ >0 and —div(f)+dD_ > 0.
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Thus 0> D, + D_ > 0, whenceD_ = —D,. SinceA; =vAg it also follows thatd D.
is principal. Conversely, D, = —D_ and if dD. is principal, thenvAg = A, is free
over Ag andv =fu? with divf «dD. =0 by Remark 3.7. Hence also div'+dD_ =
0,s0ftu=?¢c Aandv =fu? is a unit inA .

The following analogue of Proposition 3.9 holds with a saniproof.

Lemma 4.6. Let C = SpecA be a smooth affine curve with function fietth =
Frac(do). If a graded2-dimensional domaimB C Ko[u, u~1] is represented as

B = Ao[hlu_nl, e hpu T, flu’"l, e, f;ll/tm”] (Where nip, mj > 0 Vi, j)

with A1, ..., he, f1,..., fu € Ko and Bg = Ag, then its normalizationA = Bnom COiN-
cides(as a gradedAp-subalgebra ofKq[u, u~1]) with Ag[D+, D_], where

. div h; .
D_=— min and D:=— min
1<i<k n; 1<j<n mj

We notice that the assumptiofly = Bp amounts to the inequalities

ivh; divf;
div LAV >0 Vij.
n; m;

which in turn are equivalent t®. + D_ < 0.
The following lemma provides additional information in tease that| Dy | and
d+(A)D+ are principal divisors

Lemma 4.7. Let A =, ., Ai = Ao[D+, D_] C Frac@o)[u,u~"], and letd, =
d+(A) be the minimal positive integer such that the divigarD.. is integral. If Ay; =
Uyt - Ao, Arg, = v+ - Ag and

d
usu_ =Q, uls = Pyuy

for some element®), P. € Ag, then

div P. div P_
= “+Dy and D_=

(6) D. ds d_

—Do—diVQ,

where Dy is the integral divisorDg = div(u/u+) on C = SpecAg. Consequently

divP. divP_
+

() d. d_

<divQ.

lor, equivalently, thatd,, and Aiq, are freeAg-modules of rank 1.
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Furthermore P, and P_ are uniquely determined b¥. and D_ through

div Ps div P_
= d D_}= .
d+ an {D-} d_

C) {D+}

Proof. We haveu® = P: - (u/u+)*vs andu=% = P_-(u/us)~4- Q@ 4-v_ and so
by Remark 3.7

div(P: - (u/ur)*) _ div P,

+ = + s
D @ @ Doy, and
. _ d d .
= div(P_ (u/:{u) 0~ %) _ d|\;P, Dy_divo.

Now (7) follows from the inequalityD. + D_ < 0. To show (8), after localizingAg
we can assume thaty = Sii T4+, whereSy, T+ € Ag are elements with

+

div Sy = {d'VPiJ
+

and  divTy = {d'v Pi} ,

respectively. The reIatiorQui /Si)di = Tyvy then shows that /S is integral over
A and so by the normality oA is contained ;. As uy is a generator ofd;
this forces thatS+ € Ag are units, proving (8). O

In many cases the surfacés = SpefD., D_] can be represented by explicit
equations as follows.

Proposition 4.8. With the assumptions as inremma 4.7the following hold.
(&) A =Ao[D+, D_] is the normalization of theip-algebra

© B Adunvev] [ —o P it Pt — 0,

graded viadegu_ = —1, degvy = +dy, wherek := gcd@s, d_), d'. :=dy /k and

kdyd! ds
(10) P = Qd’idz € Ao, Q4= 0 € Ap.
P+— P_+ P+

(b) V =Spec i,s a cyclic branched covering of degrée of the normalizatidrthe
hypersurface{vﬁf* o _p= 0} in C x AZ.
(c) f k=1i.e,if d: andd_ are coprime and ifv, is not invertible then V = SpecA
can be represented as the normalization of a hypersurface Alir SpedCls, vs, v_]
with equation

q(s, v v#) =0,
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whereqg € C[s, 1] is a suitable irreducible polynomial.

Proof. (a) First we note thatt s integral over the subriigfv+]. Indeed, if
w € A; with & # 0 thenw® = avk if £k > 0 andw? = avk if k < 0, wherea € Ag
(see Lemma 3.5). Sinca and its subriAg[u_, v+] have the same field of fractions,
it follows that A is the normalization ofio[u_, v+].

To find the relations between the generators Afu_, v+], note thatvy =

u‘f /P+ and so

!
PRV e i Qkdld
Ve v = d g = d g =Pe AO’
P, P~ P.” P

Similarly

dy  dy d.

4, usul 0%
v+l _ — -

P P

=0+ € Ap.

The general fibers of the natural map Spee» C = SpecAg are irreducible, and every
fiber is 1-dimensional and in the closure of the generic fibdus the surface Speée

is irreducible, and (a) follows.

(b) Sincek =gcdd.,d_), the ring Ap[v+] contains nonzero elements of degiee and
is contained in the Veronese subrind? of A. Hence the fraction fields of both rings
coincide. AsA and then alsa® is integral overAg[v+] the normalization ofAg[v]

is just A®. The cyclic groupZ, acts onA via theC*-action with invariant ringA®.
Thus V — Specd® is a cyclic branched covering of degrée , and (b) follows.

(c) In casek =1 the algebra A% is itself the normalization of the hypersurface
Aofvs, v_]/(vi" v¥* — P). Notice thatP is non-constant as is a domain and, by our
assumption, the elements. are not invertible. For a general element Af the map

¢ = (s, 1) is a finite morphism ofC = Spety onto a plane curv& C AZ with an
irreducible equatiory s(t ) =0, where 2 Wt e Ap. This implies (c). ]

Remarks 4.9. 1. It is worthwhile mentioning how to get, under the assump-
tions as in (c), a representatioh ~ Ao[D+, D_] in terms of P in (10). Choose ,

q € Z with |(‘,’: g| = 1 so thatu’ := v{v” has degree 1. By an easy calculation

u'™ =y, PP andu’~%- =v_/P7, whence by Remark 3.2 = A¢[D., D_] with

P q div P
D,=-—divP, D_=—-——divP, and D.+D_=— .
YT ds d_ * ded_

2. In analogy with (c), any paraboli€*-surfaceV = Sped wittA Ap[D], where
|D] andd (A)D are principal divisors o@ = Spgg, can be obtained as the nor-
malization of a surface:’ — tv = 0 = g(s,t) in AL = SpecC[s, ¢, u, v] graded via
degs =deg =0,deg =1, deg & , whegee C[s,?] is a suitable irreducible
polynomial (see also Remark 3.12(2)).
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The special casé, = 1 leads to the following example.

ExampLE 4.10 (cf. [4, Example 4.11]). For a unitary polynomi&l € C[s], we
let A=A, p = Bnorm be the normalization of th€-algebra

B=Byp :=C[t,u,v]/(u'v — P(t))

graded via deg =0 deg =1, deg —=d so that the normal affine surfadé :=
SpecA is equipped with a hyperboli@*-action. AsB = Ag[u, Pu—?] we can write
A~ A[D,,D_], where D,=0 and D_= —d"’TP
(see Lemma 4.6). We can recovBr. and Q in Lemma 4.7 as follows. By the con-
struction given thereP, =1 and by (8){D_} =div(P_)/d_. This gives
divpP _divpP . div P_

(11) divP_=d_ {—T} and d|VQ T d_

(see (6)). In particular,
Aso ¥ Aolu] = C[t, u] and A< A, p

(cf. Example 3.10) as gradedly-algebras, where for the second isomorphism we have
to reverse the grading of one of the rings.

This discussion provides the following characterizatidribe algebrasA, p .

Proposition 4.11. If A = Ao[D+, D_], where A, = C[f] and D, D_ are
Q-divisors onAl with D, + D_ < 0, then the following conditions are equivalent.
(i) D is integral i.e, {D+} =0.

(i) A>o ™ Aolu] as gradedAp-algebras wheredegu =1
(i) A~ A,y p as gradedAg-algebras where D, + D_ = —div(P)/d.

Next we study the effect of base change to the Dolgachevhi@mkDemazure rep-
resentation.

Proposition 4.12. Let C = SpecAy be an affine curve with function fiel®,
Fracdo) and let

A= Ao[ D+, D] € Ko[u,u™ ],

where D, are Q-divisors onC satisfyingD; + D_ < 0. Let L be the fieldL :=
Frac(A )[V'tu?], wheret € Ko andb > 0, d > 0. If A’ is the normalization ofA
in L then the following hold.
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1. Aj is the normalization ofdq in Ko[s] with s := v/z, wherek := gcd(, d )
2. A= A([D,, D] with

D, = S (p*(D1) £ Bdivs) ,

where p: C' := SpecAj — C is the projection and3 is defined bydb =k modd.

Proof. We letb =0k andd = d’k. The normalizationA’ admits a natural
(1/d)-grading, and the element* := Vtu? is of degreeb/d = b'/d'. If we write
k = b + éd, then the element’ := u*%u’ € Frac(d’) has minimal possible positive
degree 1d’. Thus

A’ C Frac@p)[u’, u'™1].

To compute A, we note thatu™u~" with n, m € N has degree 0 if and only if
nb'/d'" = m. In particular,n =n'd’ is an integer multiple ofZ’. Thus K| := FracAj}
is generated ovek, by u*?u=" = Yk (ie., n’ = 1). Asd’ andk are coprime, it
follows thats =+/7 also belongs tak and that this field is actually generated by
over Ky, proving (1).

After localizing Ag we may assume that there is an elemente A of degree
d+ = d(A>o) With Ay, = v+Ap (See 3.6). We claim that theA;, =viAj for all s > 0.
If not, then for somes > 0 and some non-unit € A} the element;/x belongs to
A’, so it is integral overA and there is an equation

Uim Ui(m_l)
+ay — +...4+q, =0,
xm xm—l

wherem > 0 anda; € Aj,. Thusa; =viig; for some elementg; € Ao, whence
dividing the equation above by{" we obtain that

1

— +
xm ql xm—

l+...+qm =0.

As Ay is integrally closed this is only possible if € A contradicting the choice of
Thusv =, is an element satisfying the assumptions of Remark 3.7, adom-

pute with it the divisorD;, as follows (the calculation fo’ is analogous). If we

consider the new grading of’ by assigning tou’ the degree 1, them! becomes an

element of degreeld.. Moreover, if u® = P.v. with P. € Ko then by Remark 3.7

D, = (div(Ps))/d+. Since

u/d(l+ - (u*ﬁué)dm = (tub)ﬁthu&l(h

(s de(Bb+d) — (B dik

194 pkyk
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we obtain again by Remark 3.7 that @M

by - QPP

k
—div(z) + = p*(D+),
e = a0+ (D)

and (2) follows. ]
Let us consider the following important example.

ExampLE 4.13. With Ag := C[f], suppose thatD. = —(e/d)[0] and thatD_ is
any Q-divisor on Al = SpecA, satisfying D. + D_ < 0. Applying Proposition 4.12
to s :=/t (i.e. b = 0) we get that the normalization &f 4g[D., D_] in the field
L :=Frac(A)[s] is given by

A’ = Ag[—e[0], D" ] C C(s)[u, u™"],

where Aj = C[s] and D’ = p*(D_) (as before,p : Spe€[s] — SpecC[s] denotes the
projections — s?). The divisor D} = —¢[0] being integral we have

A" Agl0, DL+ DL] C C(s)[, ™1,
whereu” :=s‘u .
More concretely, ifk :=d_(A), e :=k - D_(0) and if we choose a unitary polyno-

mial Q € C[¢] with D_ = —(div(Qt))/k then D, + D’ = —{div(Q(s¢)sk¢*¥)} /k. By
Example 4.10A" = A, p is the normalization of

(12) Bep =C[s, @i, ] /(v — P(s)), where P §):=Q ¢},

The field extension Frad( ¢ Frac(d )fs] is Galois with Galois groufZ, = (¢), where
C.s =(s. Thus

A (Acp)™

and the action of on # =s°u is given by(.i = (“u. Therefore, the groufZ, acts
on Ax p via

(13) Cs=¢s, Cu=Cu and Cv=v.
Thus we obtain the following characterization.
Proposition 4.14. For an algebraA = Ao[ D+, D_] with Ag = C[s] the following

conditions are equivalent.
() {—D+}=1(e/d)[0], where0 < e < d andgcdE,d) =1
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(i) A= (A;p)*, where A, p is the normalization aB; » i(iL2) and whereZ, = (¢)
acts via the formulas ir{13).

Like in the parabolic cas&/ may possess at most cyclic quosamularities.
The type of quotient singularities is determined from theisdirs D., D_ by the fol-
lowing result. As beforeC = Spety is a smooth affine curve with function field
Ko = FracAg and A := Ag[D., D_] with Q-divisors D, and D_ on C. Denote
m: V = SpecA — C the canonical projection.

Theorem 4.15. (a) The set of singular pointSingV is contained in the fixed
point setF which is the zero locus = V (I) of the ideall := A, A+ A_A of A.
(b) The mapn|F: F — C is injective and n(F) = {a € C | D+(a) + D_(a) < 0}.
(c) For a pointa’ € F with imagea := 7(a’) € C we write

Di@)=-2  and D ()= =
nmsy m_
with the convention that
my >0, m_ <0, gcdes, ms) = gede—,m_) =1 and

my=1 if Dy(a)=0, m_ =-=1 if D_(a)=0.
Let p, ¢ € Z with |g:;+| = 1. Thena' € F is a quotient singularity of type

(A(@),e), where A(a):=—| " ¢

_|P e~
‘ and e_‘qm‘ mod A @).

+ m_

In particular, a’ € SingV if and only if A(a) # 1.

Proof. As in the proof of Proposition 3.8(b) we can reduce sti@ement to
the case thatdg = C[r7] and |D:| U |D_| is contained in the origin, so thab, =
Fex/m[0].

(a) The set Singy is finite and invariant under t@é-action. Hence it is contained
in the fixed point setF .
(b) The mapAo — A/I is obviously surjective. Thus

A
w|F: F= Spec(T) —C

is a closed embedding. Moreovar, (=f and only if 1€ [ if and only if 1 =a.a_
for some homogeneous elements Af  of opposite degrees, anthtter happens if
and only if D, + D_ =0 by Remark 4.5.

(c) Notice first that the elements

ve = tu™, ve = u™ € Kolu, ufl]
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belong toA . Indeed, by definition, the idehl tA  af (this is just tmaximal ideal
of the pointa’ € F) is generated by the monomial&u™  with, fn €)Z x Z, where
(e, m) # (0, 0) and

etmD,(0)>0 if m>0, e—mD_(0)>0 if m<O0.

In other words, €, m ) is an element of the cofe  := &(m+), (e, m_)) gener-
ated by the vectorse(,my) in the plane. HencedA is a toric algebra generated by
the semigroud” N Z2, and so is a quotient;, for som& e > 0 (see Lemma 2.4).
To determined , , we must find a basis @f such that ¢, m.) is one of the basis
vectors. This is done as follows.

If we choosep g € Z with |;’:;+| =1, then the vectorg;™:= (e+, m+) and é; :=
(p, q) form a basis ofZ?, and

p e_
qm_

(e_,m_)=Ae;+Aé,, where A’ := ‘ and A :=A(0).

As ¢; and g_,m_) form a basis of the con€& , it follows from Lemma 2.4 that
has a quotient singularity of typeA(e ), where<Oe < A ande = |? ¢~ ‘ mod A .

q m_
Note thatA andA’ are coprime since so awe. andm_.
The determinantA  has always positive sign as

A

miym _

(14) D+(0) + D_(0) = <0 and m,>0, m_<O0,

and so (c) follows. [l

Corollary 4.16. If A, p is the normalization of the algebra
Byp =Clt,u,v]/(u'v — P(1)),
where P(t) = Hle(t — ;)" with a; 7 a; for i # j (seeExample 4.10)then the
singular points of the surfac&, p = SpecA, p are the pointsa) € V;p (1 <i < k),

wherer =a;, u =v =0andr; 1 d.

Proof. It was shown in Example 4.10 th&t. = 0 and D_(«;) = —r;/d. There-
fore, A ;) =e+ > 1 if and only if r; 1 d, which implies our assertion. ]

In the sequel we use the following notation.

DeriniTion 4.17. Let 0 =C*z be the orbit through a point € V\F. Follow-
ing [12] we say thatO is of typed(q ) iti is the order of the stalsliz

Stah =kerC* — Aut 0) C C*, so that Stab () ¥ Z,,
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andg (0< g < d) is determined from the tangent representation of Stab en th
tangent planel,V via pseudo-reflections

StaQaCM(ég).

The orbit O is calledprincipal if 4 = 1 and exceptionalotherwise (see [12]-[14] for
a detailed description of the structure Bf  near the exceatiorbits).

In the next result we will characterize the orbit types of thefaceV = Sped
with A := Ao[D+, D_], where D, and D_ are Q-divisors on the smooth affine curve
C = Specidyp. Let 7: V — C denote the projection. To examine the orbits over a point
a € C, we write

D+(a):—ni—+ and D_(a) = ;;

with the conventions as in Theorem 4.15(c). lgetbe defined by X ¢+ < m+ and
g+e+ = —1 modm., and similarlyg_ by 0< ¢g_ < —m_ andg_e_ =1 modm_.
With this notation the following result holds.

Theorem 4.18. The exceptional orbits of/ are located ovEb.| U |D_|. The
orbits over a given point: € |D+|U|D_| are as follows.
(@) If Di(a)+ D_(a) = 0 then7*(a) = m+O consists of one orbi0 of typén., q+)
with multiplicity m.. Moreover O appears with coefficient-e, in divu.
(b) If Di(a) + D_(a) < O then 7~%(a) contains two orbitsO*™ and O~ of types
(m+, q+) and (—m_, q_), respectively. Their closure® intersect in the unique fixed
point of the fiber and 7*(a) = m+O* —m_O~. Moreover O* appears with multiplic-
ity Fex in divu.

Proof. With the same reasoning as in the proof of Proposifid@{b) it is suffi-

cient to treat the case whewy = C[¢] and D are supported om = @ A}, i.e.
Dy = ?ei/mi[O]. Note that in this case:. = d(AZO) andm_ = —d(Ago).
(@ If D, +D_ =0, so thate, = —e_ = ¢ andm, = —m_ = m then A is the

semigroup algebr&C[I" N Z?], whereT" is the cone generated ovRrby the vectors
+(e,m) and (1 0). ObvioushyI" is the half space of all, ) <)R? satisfyingmx —

ey > 0. If we choosep g € Z with |;’,f1| =1 then the vectorsp,q ) and,(m ) form

a basis 0fZ?, and (p, ¢ ) lies in the half spacE . Thus
rNZ?=7-(e,m)+N-(p,q),
and soA is the algebra of Laurent polynomials

— -1 —ge m ey P
(15) A =C[x,x ", y], where x =t‘u™ € A, and y =t'u? cA,.
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Clearly then
(16) t =x"9y" and u =xPy~°.

The action of C* is given by A.x = X"x and A.y = Xy, whence there is only one
orbit O overt =0, and it is given by the equation = 0. By (16) weéav

7*(0)=divi =m -0 and divu =—e- O.

The stabilizer of any point oD is the group,, € C* of m-th roots of unity, and the
type of the orbit is £z, g ) =+, ¢+), as required in (a).

(b) Let now D+ D_ < 0. Consider a generatar. = t**u™+ of A,, as Ag-module
(cf. the proof of Theorem 4.15(c)). The localizatign, = A[r~“u~—"*] is the subring
Ao[D+, —D' ] of Frac(Ao)[u,u1] with D" := min(D_, —D,) (see Lemma 4.6). As
D.+D_ <0 we haveD’ = —D,, so by (a) the open subset Spgc of V contains
an orbit O* of type (n+, g+), and it has multiplicitiesn. and —e. in 7*(0) and div ,
respectively. Similarly, Spe4,_ contains an orbitO~ of type (~m_, g_), which has
multiplicities —m_ ande_ in 7*(0) and diw , respectively. We have divp_) = A -
(0*+07), where by our assumption  m.m_(D.+(0)+D_(0)) > 0 (see (14)). Thus
the fiber ofr overt =0 can be given by.-v_ =0, where the functions., v_ vanish
on O~ and O*, respectively. The intersectio@* N O~ is given byv, =v_ =0, and
so is the unique fixed point of the fiber. ]

ExampLE 4.19. In the example of the algebra Az p treated in Corollan 4.1
we haveD, = 0 and D_ = —div(P)/d = ), —(ri/d)[a;] (see Example 4.10). The
exceptional orbits are located over the poiatse AL, and 7=(a;) = O] U {a/} U
O;, whered] is the unique fixed point of the fiber (located over the pointo(@;) of
SpecB, p C C3). Applying Theorem 4.18, the orbiD;" is principal, and if we write
ri/d = e;/m; with gcd;, m; ) = 1 thenO; is of type (u;, ¢; ), where

gie; = -1 modm; with 0<gq, <m;.

Remark 4.20. We can now precise the character of the affine modibicati

o+:V — Vi as in Proposition 4.1. Doing this locally we assume first that= C[¢]
and Dy is supported o = & AL. If D+ D_ =0 thenA =A>o[v;'] = (A>0)w.,
whenceo,: V — V. is an open embedding arid.\V is the divisor diw. = m+.(C).
In case D, + D_ < 0, letting in the proof of Proposition 4.%, := vy ", we ob-
tain thato.: V — V. consists in blowing up a graded ideal C (¢, v+) of the al-
gebraAs>o supported at a fixed point and deleting the proper transfdrrhe divisor
div v: = m+.+(C). The exceptional curve itv  is the orbit closuee = {vs = 0}.

Globalizing we see that.: V — V. blows up a graded ideal with support at
the fixed pointshy, ..., b € 14(C) over the pointsh; :=r.(b!) € C with D.(b;) +
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D_(b;) < 0, and deleting the proper transform of the fixed point curvéC) C V...
Moreover the exceptional set of. is Of U---U O;F.

4.21. We let as beforeC = Spety be a smooth affine curve with function field
Ko = FracAq, and we letD,, D_ be Q-divisors onC . In what follows we com-
pute the Picard group and the divisor class groupdof AgED., D_] (see also [18,
Thm. 5.1] and [26, Cor. 1.7] for the elliptic case). We denbyeay, . .., a; the points
in C for which Ds(a) = —D_(a) # 0, and we leths,...,b € C be the points with
D.(b) + D_(b) < 0. Let us write

+

__ G =5 _ ¢
Di(ai)=F—, D+(bj)=——5 and D_(b;)=——
m; mj

=

with the conventions as in Theorem 4.15.4f V := SpecA — C denotes the canoni-
cal map then the prei_magg—l(a,-) consists of only one orbi©; , and=1(b;) consists
of two orbit closuresO; U O;, so that

(17) (@) =m;0; and w*(b;)=m}0; —m;0;

as divisors onV , see Theorem 4.18.

Theorem 4.22. The divisor class groul A of A is the group
k 1 _ _
= (Cl o) & P z10] & P (2101 © 2[0; 1)
i=1 j=1

modulo the relations
(@) = mi[O;], i=1,...k,
(b)) = mi[0]] —m;[07], j=1....1,

k 1
0= Zei[Oi] + Z (e;[aj] — ej_[aj_]) .
=1

j=1

Proof. Let Diy, A C div A be the subgroup of all Weil divisors ovi  that are ho-
mogeneous, i.e. finite sums of irreducible divisors giverhbynogeneous prime ideals.
The homogeneous principal divisors Rrin form a subgroup of, B, which con-
sists of all divisors divf , wheref =%/h € FracA is a quotient of homogeneous
elements. By [881, Ex. 16]

ClA ~ Cl, A :=Div, A/ Prin, A.

The group Diy, A is freely generated by &f*-invariant subvarieties of codimension 1
in V, that is by all irreducible components of the fibersof V. — C. If Di(a) =



1006 H. EENNER AND M. ZAIDENBERG

D_(a) = 0 then the fiber over: is the prime divisai*(a). If a = a; for somei then
the fiber overa consists of just one orhiy; of type;(¢; ), and by (&7§a;) =
m;0; as divisors onV . lfa =b; for somg then by (1%)(b;) = m50F —m; O; .
Thus the natural map™: divAy — Div, A is injective, and

m(div Ao) & B2, Z[0] & B, (2[0}] & Z[0;])

18 Div, A &~
(18) VA S @) —milod, 7 (b)) — m[0T]+ m 0]

The group PripA is generated by all divisors diu¢ )= div k+ div have f ¢
K is non-zero. Dividing outr*(Prin Ag) = 7* div(K ') in (18) gives the group
7*(Cl Ao) & D=, Z[0)] & B, (Z[0}] & Z[ 0] ])

(m*(a:) = mi[ O, 7*(b;) — m[[O7]1+ m7[0]])

(19)

By Theorem 4.18 the divisor af is given by

l

k

divu=-Yalo]+Y (—e;.[é;] + e;[é;]) .

=1 =1

Hence, taking (19) modulo this relation leads to the divislarss group, as required.
]

Corollary 4.23. A is factorial if and only ifC C Al (i.e. Ag is a localization of
Cl[#7]) and one of the following two conditions is satisfied.
(i) I=0andgcdfn;,m;)=1for 1 <i < j<k.
(i) 1=1, m;=1forall i and |, ‘" | = +1, wheree* := ¢f and m* := mj.

Proof. If C is a curve of genug > 1 then the group CA is not finitely gen-
erated. Thus assuming that is factori@l, is isomorphic tcopen subset of\l.
By Theorem 4.22 the group @l has thén [+2 generatorskand + +dpémtient
relations, whence necessarily< 1. In the casd = 1 the number of generators and
the number of relations are equal, and so the order of Cl isathsolute value of
the determinant

e e e e €k

m*m= 0 O 0

0 0 mg 0 - Of |,

0 0 G 0| = o mma

0O 0 0 O - m

Thus, if CIA = 0 then all the factors of this product are equalltoand we are
in case (ii). If/ = 0 then CA is the grou@lezmi - [0;] modulo the relation
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>..e[0:]=0. As ¢; andm; are coprime, this group is trivial if and only ij folds.
Conversely, if (i) or (ii) is satisfied then the discussiorowad shows that CA is trivial,
finishing the proof. [l

Finally, we determine the Picard group and the canonicabaiivof A. The local
divisor class group at the poidt; is generated (by modulo the relations

Rj:=e;0;—e;0j_:0 and S; :=m;0;—mj_0j_=0.

Since the Picard group Pic is the kernel of the map oACI inte direct prod-
uct of all local divisor class groups, this group is the swlogr of CIA generated by
7*(Cl Ag), [0i], R; and S;. AsS; =n*(b;), we obtain the following result.

Corollary 4.24. PicA is the group

k 1
m*(ClAo)) © P Z[ 0] & P ZR,
i=1 j=1
modulo the relations
7r*(a,-):m,-[0,-], i:].,...,k,

k l
0= Ze,-[O,-]+ ZRJ .
j=1 j=1

In particular, PicA vanishes if and only i C A{ and case(i) in Corollary 4.23is
satisfied orl =1 andm; =1 for all 1 <i <k.

Corollary 4.25. 2 The canonical divisor of the surfacé = Speca is given by

k /
Ky = W*(Kc) + Z(m, - 1)[01] + Z ((mj - 1)[5;] + (_m; - 1)[5;]) :

i=1 j=1

Proof. We claim that multiplication by the meromorphic difntial formdu/u
on V gives an isomorphism

1

k
M ) (Z(m,- - D101+ Y (] - IO+ (~mj - 1)[5;])) N

j=1 j=1

This is a local problem, so with the same arguments as in thef @mf Theorem 4.18
we can reduce to the case thi§ =~ C[7] and D, = —D_ = —(e¢/d)[0], wheree ,m are

2cf. [26, Thm. 2.8] and [19, Lemma 2.6].
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coprime. In this case (15) in the proof of Theorem 4.18 shdweg A =C[x, x 1, y]
with x = r“u™ andy :=t’u?, wherep 4 are integers Wiﬂiﬁlfm = 1. Moreover
by (16) + = x79y™ andu = xPy~°. By an elementary calculatiords/u) A dt =
x~971ym=1dx A dy, whence the result follows. O
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