

Title	大気環境中にてSUS 304ステンレス鋼に生成する不働 態皮膜におよぼす微量塩類の影響					
Author(s)	鄭, 楽薫; 土谷, 博昭; 藤本, 愼司					
Citation	材料と環境. 2013, 62(4), p. 148-152					
Version Type	VoR					
URL	https://hdl.handle.net/11094/82365					
rights						
Note						

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

大気環境中にて SUS 304 ステンレス鋼に生成する 不働態皮膜におよぼす微量塩類の影響

鄭 楽 薫*, 土 谷 博 昭*, 藤 本 慎 司** 大阪大学 大学院工学研究科 マテリアル生産科学専攻

Effect of Trace Amounts of Salts on Properties of Passive Films Formed on SUS 304 Stainless Steel under Atmospheric Environment

Rock-Hoon Jung*, Hiroaki Tsuchiya* and Shinji Fujimoto*

* Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University

Passive films formed on SUS304 stainless steel that were covered with thin water layer containing various kinds of salt and exposed to atmospheric corrosion environment of 90% relative humidity and 60°C were characterized using X-ray photoelectron spectroscopy (XPS). Thickness and Cr content of passive films were affected by a minute amount of salts provided on the surface as a thin water layer. Thickness of the thin water layer on the surface of the steel seemed to be controlled by the equilibrium relative humidity of saturated solution of chlorides supplied on the specimen. Namely, the thickness of the thin water layer containing chloride with low equilibrium relative humidity was larger compared to that containing the chloride with higher equilibrium relative humidity. As a result, the selective dissolution of Fe is stimulated under the thicker water layer to be the more Cr containing passive films. Chlorides enhanced the formation of more Cr enriched passive films, but more concentrated chloride caused localized corrosion. In particular, passive films formed with the thin water layer containing suitable amount of sodium chloride occasionally exhibited high localized corrosion resistance. Sulfates also accelerated the selective dissolution of Fe and increased Cr content in passive films, resulting in stable growth of passive film without localized corrosion.

Key words : passive films, relative humidity, thin water layer, chloride, X-ray photoelectron spectroscopy, selective dissolution, chromium enrichment, pitting corrosion

1. 緒 言

ステンレス鋼はプラント材料, 機械部品, 車輛, 家庭 用品などとともに建築外装材としても用いられている. 古くは、ニューヨークのクライスラービル(1930年竣 工),大阪の朝日新聞社ビル(1930年竣工)などに使用例 が見られ、大気環境にて長期にわたって優れた耐食性を 保持するので、ステンレス鋼は建築材料など大気環境で も広く用いられている.ステンレス鋼の優れた耐食性は 不働態皮膜が担っており、その構造・機能は詳細に研究 され、不働態皮膜中の Cr は下地鋼の組成と比べて大き いことがよく知られている1)-3).しかし、これらの研究 の大部分は水溶液中で生成した不働態皮膜を対象として おり、大気環境での不働態皮膜の構造はほとんど検討さ れたことがない.水溶液中環境では、Feの選択溶解によ り不働態皮膜中に Cr が濃縮する.一方,大気環境では, 水蒸気が表面に吸着して薄い水膜を形成するので、腐食 反応は水溶液中と同様に電気化学過程で進行すると考え られる.しかしながら、水膜中に溶出した金属イオンは そのまま表面に留まり、バルクの水溶液中でのように拡 散しないので、金属・合金/不働態皮膜/水膜の系外に排 出されることはない.従って、湿潤大気環境中でステン レス鋼に生成する不働態皮膜中への Cr 濃縮は生じ難い と予想される,著者ら4)は,相対湿度(R.H.) 30~90%の 恒温恒湿環境に保持したオーステナイト系ステンレス鋼 に生成する不働態皮膜の組成・厚さを X 線光電子分光 (XPS) にて解析したところ, R.H. が70%以下では不働 態皮膜中の Cr のカチオン分率は下地鋼中とほぼ同様で あるが, R.H. が90%のときには下地鋼中 Cr 濃度が約 18%であるのに対し,不働態皮膜中では40%近くまで濃 縮し,さらに水膜中に塩化物イオンが含まれるときには, Cr 濃縮が促進されることを明らかにした.このとき,水 膜中に Fe イオンが水酸化物ないしは塩化物として移行 し,不働態皮膜中の Cr 濃度が増大したと考察している.

ところで, 金属材料の大気腐食は, 結露あるいは表面 に付着した物質が吸湿することによって形成される薄い 水膜下で起こり, Tomashov は水膜下での腐食速度は水 膜への酸素溶解・拡散によって変化すると報告してい る5). したがって、大気環境では、金属材料表面に生成す る水膜と酸素濃度及び大気中の汚染物が不働態皮膜の構 造と組成に影響を与えると考えられる. すなわち, ステ ンレス鋼の大気環境での不働態皮膜は微量の塩類の影響 によって変化し、さらには局部腐食を生じることも考え られる.また、カソード反応を担う酸素ポテンシャルが ステンレス鋼の大気腐食挙動に影響を及ぼすことも考え られる.そこで、本研究では、大気環境にて SUS304 ス テンレス鋼に生成する不働態皮膜の特性に及ぼす各種塩 類と気相中酸素濃度の影響を、X線光電子分光法 (X-ray Photoelectron Spectroscopy, XPS) を用いて評価した. さ らに、生成した不働態皮膜の耐食性についても検討した.

2. 実験方法

本研究では溶体化 SUS 304 ステンレス鋼を供試材とし

^{* 〒565-0871} 欧田市山田丘 2-1 (2-1 Yamada-oka, Suita, Osaka, 565-0871 Japan)

た. 化学組成を Table 1 に示す. これより, $10 \times 10 \times 3$ mm³の試料を切り出し, SiC 紙で 2000 番まで乾式研磨 した. 後述の恒温恒湿環境にて保持する直前に, 蒸留水 ないしは 0.1 M の NaCl, MgCl₂, CaCl₂, Na₂SO₄ 水溶液 50 $\mu l \epsilon 約$ 10 秒間かけて滴下した. このとき, 試料をス ピンコーターを用いて 2000 r.p.m. で回転させた. これよ り,滴下した水溶液は試料表面を濡らせた後,直ちに飛 散し,見かけ上試料表面には水滴は存在せず,純水ない しは各種水溶液の液薄膜を形成している. 以上のように 準備した試料を R.H. 90%, 60℃に制御した密閉容器(容 量約 800 cm³)内に保持した. さらに,酸素ポテンシャル を制御するため,恒温恒湿中保持の開始と同時に,酸素 ガスあるいはアルゴンガスを密閉容器内に通気した. こ のとき,ガス流量は 1~3 ml/min, 圧力は 1 kgf/cm² と した. なお,酸素ガスを供給したときの雰囲気は酸素分

圧がほぼ100%となるが、アルゴンガス 通気の際には外気を完全に遮断して供給 したわけではないので,値は不明である が、一定の低酸素ポテンシャルを維持し たと考えられる.以上のような恒温恒湿 環境にて所定期間保持した後に試料を取 り出し、直ちに純水にて洗浄・乾燥後、 X線光電子分光法により分析した.

一部の試料について,脱気した 25℃の 3.5 mass% NaCl 水溶液中で孔食電位を 測定した.試料を自然電位で 10 分間放 置の後,自然電位から電位掃引速度 20 mV/min でアノード方向に動電位分極 し,孔食発生電位を測定した.測定に際 して,参照電極には AgCl を飽和させた 3.33 M KCl を内部液とする Ag/AgCl 電 極を,対極には約 5×5 mm² の白金板を 用いた.本論文中での電極電位はこの参 照電極を基準とした値を記した.なお, 同様の試料につき孔食電位を4回ずつ測 定した.

XPS 測定には Rigaku XPS-7000 を用い た.入射 X 線は 250 W の Al-Kα 線とし, 測定に際してスパッタリングを行わない 非破壊分析とした.得られたスペクトル を分離し,著者らがこれまでに報告した のと同様の手順で,皮膜厚さと組成を算 出した^{4),6),7)}.

3. 実験結果

3.1 大気環境で生成する不働態皮膜の 厚さ・組成

各種塩類水溶液を滴下後, R.H. 90%, 60℃の恒温恒湿環境に7日まで保持した 試料に生成した不働態皮膜の厚さを Fig. 1 に示す.酸素通気ならびにアルゴン通 気ともに不働態皮膜厚さは時間とともに わずかに増大している.また,塩類の影 響については, NaCl 水溶液を滴下した場 合が最も厚く,以下おおむね MgCl₂, Na₂SO₄, CaCl₂の順となった.なお,酸素通気とアルゴン通気とを比較すると酸素通気のほうがやや厚い.

不働態皮膜の組成変化を Fig. 2 に示す.ここでは,恒 温恒湿中保持1日後と7日後の試料について,不働態皮 膜の水酸化物層中と酸化物層中の Cr カチオン分率を各 種滴下塩類ごとに示した.すでに報告したように,滴下 塩類がないとき,R.H. 90%,60℃の恒温恒湿環境中保持 開始後の数日では実験開始前の不働態皮膜中に Cr が濃 縮しているため Cr カチオン分率は水酸化物層で一部 40 at%以上となっているが,おおむね 20~30 at%であるの に対し,恒温恒湿環境での保持継続に伴って不働態皮膜 中 Cr カチオン分率は低下し,特に酸化物層中の Cr カチ オン分率は下地鋼中の Cr 分率と同等のおよそ 15~20 at%となった⁴.一方,本研究で行った,塩類滴下後に恒 温恒湿環境で保持した場合には,不働態皮膜中の Cr カ

Table 1 Chemical composition of SUS 304 stainless steel employed in this study.

							(mass%)
С	Si	Mn	Р	S	Ni	Cr	Fe
0.07	0.46	0.78	0.029	0.006	8.06	18.16	balance

Fig. 1 Thickness of passive films formed on SUS 304 stainless steels for up to 7 days exposed to atmosphere of relative humidity of 90% and 60°C with thin water layer containing various kinds of salts.

Fig. 2 Cr content in passive films formed on the specimens exposed to atmosphere of relative humidity of 90% and 60°C with thin water layer containing various kinds of salts for (a), (b) 1 day and (c), (d) 7 days.

チオン分率は20~50 at% となり, すなわち塩類は Cr 濃 縮を促進することが分かる.また, Cr 濃度は酸素通気よ りアルゴン通気の方が大きい傾向にある.7日間保持後 のクロム分率に対する各種塩類の効果の差異は Fig.2に 示すように明瞭でないが,塩化物については CaCl₂ で Cr 分率が最も大きく,ついで MgCl₂, NaCl の順となってい る.これは,後に考察で述べるように湿潤大気に平衡す る水膜厚さと対応している.

3.2 大気環境に暴露したステンレス鋼の局部腐食発生 と孔食電位

恒温恒湿環境中にて保持後の一部の試料には局部腐食 の発生が見られたので走査電子顕微鏡にて表面を観察し た. Na₂SO₄ および NaCl 水溶液を滴下した試料について, 孔食発生は認められなかったが, MgCl₂ および CaCl₂ 水 溶液を滴下した試料については, Fig. 3 に示すように孔 食の発生が確認された.そこで, MgCl₂ あるいは CaCl₂ 水溶液を滴下後, R.H. 90%, 60℃の恒温恒湿環境に7日 まで保持した試料を光学顕微鏡観察し,発生している孔 食の数を計数した結果を Fig. 4 に示す.孔食の発生数は 暴露時間が長いほど大きくなるとともに, MgCl₂ 滴下試 料ではアルゴン通気のほうが孔食の発生数とサイズは大

Fig. 3 SEM images of samples exposed to atmosphere of relative humidity of 90% and 60°C for 3 days with thin water layer containing MgCl₂ and CaCl₂.

Fig. 4 The number of pits formed on SUS 304 stainless steel exposed to atmosphere of relative humidity of 90% and 60℃ with thin water layer containing MgCl₂ and CaCl₂.

きく、一方、CaCl₂では酸素通気のほうが孔食発生数と サイズが大きいことが分かった.

以上のように、大気環境で生成するステンレス鋼の不 働態皮膜は滴下塩類の種類、保持時間さらに酸素分圧の 違いで様々に変化する.そこで,生成した不働態皮膜の 耐食性を塩化物溶液中での孔食電位によって評価した. ここでは、(a) 蒸留水を滴下後、(b) NaCl を滴下後に、 いずれも酸素分圧を制御しない R.H. 90%, 60℃の恒温恒 湿環境に7日間保持した試料,(c)25℃の脱気 3.5 mass% NaCl 水溶液中にて-100 mV_{Ag/AgCl} にて3時間定 電位分極した試料, さらに (d) 2000 番の SiC 紙での湿式 研磨ままの試料を各5個用意した. これらの試料につい て、3.5 mass% NaCl 水溶液中にて動電位分極法により測 定した孔食発生電位を正規分布の累積確率として Fig. 5 に示す. 孔食電位はおおむね正規分布に従って分散して おり、その中央値(累積確率が0.5のときの孔食電位)は (a), (d), (b), (c) の順となっているが, NaCl を滴下後, 恒温恒湿環境に暴露した試料(b)については孔食電位の 分散が大きく,他と比べて著しく高い孔食電位を示すこ とがあった.一方, (a)~(d) より, それぞれ1個の試料 を用いて不働態皮膜酸化物層中の Cr カチオン分率を測 定したところ, (a) 20 at%, (b) 40 at%, (c) 40 at%, (d) 28 at%であった. 従って,不働態皮膜酸化物層中の Cr 分率は孔食電位の分布の中央値と対応しており, すなわ ち Cr 量が多いほうが貴な孔食電位を示している.

4.考察

4.1 水薄膜中での不働態皮膜生成に及ぼす塩化物の作 用

すでに述べたように、湿潤大気中での不働態皮膜の厚 さは表面に生成する水薄膜と酸素分圧に依存する.不働 態皮膜厚さに及ぼす塩類の影響は、不働態皮膜が厚い側 より、NaCl, MgCl₂, Na₂SO₄, CaCl₂ の順となっている. ここで、塩化物に注目すると、各塩の飽和水溶液平衡相 対湿度はTable 2 に示すように、NaCl, MgCl₂, CaCl₂ に

Fig. 5 Accumulated normal probability plots of pitting potential of SUS 304 stainless steels with various surface finish; (a) exposed atmosphere with thin pure water layer, (b) exposed atmosphere with thin water layer containing 0.1 M NaCl, (c) electrochemically passivated in 3.5 mass% NaCl solution and (d) as polished.

Table 2 Equilibrium relative humidity (R.H.) and solubility of saturated solutions of various salts at $60^{\circ}C^{8)-11}$.

Salt	DU (0/.)	Solubility			
Salt	KII (70)	mass%	$[Cl^-] mol / kg^{11)}$		
NaCl	75	26.4	3.75		
MgCl ₂	30	35.5	4.31		
CaCl ₂	15	45.3	4.79		
Na_2SO_4	88	21.9	-		

ついて, それぞれ 75%, 30%, 15%である⁸⁾⁻¹¹⁾. 武藤 ら12) は塩化物水溶液の乾燥・吸湿過程を検討し、各塩飽 和水溶液の平衡相対湿度と大気腐食環境にて水膜中の塩 が飽和する湿度との対応を確認している. すなわち, CaCl₂では R.H. が 15%以上で潮解, すなわち水膜を生成 する. さらに R.H. が増大すると水膜が厚くなると考えら れる.一方,平衡相対湿度が大きい塩ほど,より大きな R.H. にて潮解する. 従って, 塩化物については, 水膜厚 さは CaCl₂>MgCl₂>NaCl の順になっていると考えられ る. Fig.1 に示した不働態皮膜厚さと比較すると、塩化 物が存在する場合、水膜が薄いほど不働態皮膜の成長速 度は大きくなっている.一方,酸素分圧が高いときのほ うが不働態皮膜は厚い.酸素の拡散速度および飽和酸素 濃度は塩類によって変化する.しかし,吸着水程度の水 膜厚さでは溶存酸素は常に飽和していると考えられ、一 方,水膜が薄いほど塩濃度は高くなって酸素溶解度は低 下する.従って,酸素の供給速度と不働態皮膜の成長速 度との対応は考えにくい.ところで、Fig.1とFig.2よ り、不働態皮膜中の Cr 濃度と不働態皮膜厚さとを比較 すると、不働態皮膜中 Cr 濃度が大きいほど不働態皮膜 が薄い傾向が認められる.従って,塩化物イオンが存在 するとき、水膜が厚いほど Fe の選択溶解がはやく進行 し、バリア性がより高い Cr 濃度の大きな不働態皮膜を 生成し、結果として不働態皮膜の成長が抑制されたと考 えられる.このことは、特に酸素分圧が低いアルゴン通 気環境で顕著であり、通常の水溶液環境で不働態電位域 では電位が低いほど不働態皮膜が薄いこととも対応して いる.

4.2 不働態皮膜の特性に対する SO42-の効果

前節で述べたように、水薄膜中の塩化物イオンは Fe の選択溶解を促進し、不働態皮膜中での Cr 濃縮度を高 める13)-15).一方で、塩化物イオンは濃度が高くなると不 働態皮膜を破壊し、局部腐食を生じる原因ともなる.不 働態皮膜は各種アニオンによって安定化したり、破壊さ れたりするが、アニオンの不働態皮膜に対する攻撃性は Cl⁻>Br⁻>I⁻>F⁻>SO₄²⁻>NO₂⁻であることが知られて いる¹⁶⁾. SO₄²⁻は Cl⁻同様に Fe イオンとの錯体形成によ り、Feの選択溶解を促進し、不働態皮膜中のCr 濃化を 促進するが、本研究で行った実験では局部腐食を発生す ることはなかった. Uhlig らは17) 塩化物水溶液中での孔 食電位は SO42-の添加によって貴に変化することを明ら かにしており、さらに他のアニオンの効果を検討した結 果,不働態皮膜を安定化して局部腐食を抑制するアニオ ンとして効果が強い順より OH⁻>NO₃⁻>SO₄²⁻>ClO₄⁻ であると報告している.

4.3 水薄膜に含まれる塩類および溶存酸素と不働態皮 膜の耐食性

各種塩水溶液薄膜下で生成する不働態皮膜の厚さと Cr 濃度は塩の種類および気相の酸素ポテンシャルによって 変化しており、これは通常のバルクの水溶液中での不働 態皮膜の特性と同様の変化であって、大気環境における 非常に薄い水膜下での不働態皮膜生成も電気化学過程に 強く支配されていることが分かる.

本研究では、恒温恒湿環境での保持中の孔食発生は、 MgCl₂ と CaCl₂ を滴下したときのみ見られた.しかし、 塩の種類および酸素ポテンシャルと孔食発生頻度との間 には特に明確な相関は見られなかった(Fig. 4).NaCl滴 下の場合,孔食を発生しないが、Table 2 に示すように、 NaCl の飽和濃度が CaCl₂,MgCl₂ と比べて低いことが影 響していると考えられる.ところで、恒温恒湿環境に保 持した試料などの孔食電位を測定したが、孔食電位と皮 膜中 Cr 濃度とは対応している(Fig. 5).しかし、塩化物 を含む水溶液を滴下した場合に、正規分布から外れて高 い孔食電位を示す場合があり、塩化物イオンと Fe イオ ンとの錯体形成が Cr 濃縮を促進し、より強固な不働態 皮膜を生成することを示唆しており興味深い.

本研究ならびに前報^{4),6)}を通じて,大気環境にてオー ステナイト系ステンレス鋼に生成する不働態皮膜の特性 を検討した.バルクの水溶液中の場合と比べて,不働態 皮膜の厚さ,Cr濃度の変化は非常にわずかであったが, 汚染物に対応する塩類が付着した際には,Feの錯体形成 に伴うCr濃縮の促進が見られ,不働態皮膜は大気環境 中でも耐食性を保持するように環境に応じて変化してい ることが明らかとなった.

5. ま と め

大気環境中にてステンレス鋼表面に生成する不働態皮 膜の成長挙動と耐食性を調査した結果,以下のことが分 かった.

(1) SUS304 ステンレス鋼表面に生成する水薄膜は塩 化物塩の臨界湿度に対応して厚さが次第に増加する.そ の結果,水薄膜の厚さが大きい方が Fe の選択溶解が促 進され,不働態皮膜中の Cr 濃度は増大する.

(2) 硫酸イオンは塩化物イオンと同様に Fe の選択溶 解を促進して不働態皮膜中に Cr を濃縮するが,局部腐 食を生じることなく安定な不働態皮膜を形成した.

(3) 大気環境中で生成した不働態皮膜は酸化物層中 Cr 濃度に対応した耐局部腐食性を示すが,塩化物イオン存 在下で生成した不働態皮膜は,特に高い耐孔食性を示す 場合があった.

謝 辞

本研究はグローバル COE プログラム「構造・機能先 進材料デザイン教育研究拠点(大阪大学)」の支援により 実施された.

参考文献

- K. Asami, K. Hashimoto and S. Shimodaira, *Corros. Sci.*, 18, 151 (1978).
- V. Maurice, W. P. Yang and P. Marcus, J. Electrochem. Soc., 145, 909 (1998).

- 3) S. Fujimoto and H. Tsuchiya, Corros. Sci., 49, 195 (2007).
- 4) R.-H. Jung, H. Tsuchiya and S. Fujimoto, *Corros. Sci.*, 58, 62 (2012).
- 5) N. D. Tomashov, "Theory of Corrosion and Protection of Metals", p.367-375, Macmillan, New York (1996).
- R.-H. Jung, H. Tsuchiya and S Fujimoto, *ISIJ Int.*, **52**, 1364 (2012).
- S. Fujimoto, S. Kawachi and T. Shibata, J. Japan Inst. Metals, 63, 375 (1999).
- 8) D. R. Lide, "Handbook of Chemistry and Physics, 73rd ed.", 15, p.20, CRC Press, Boca Raton, FL (1992).
- W. Oshikawa, T. Shinohara and S. Motoda, Zairyo-to-Kankyo, 52, 293 (2003).
- 10) P. Winston and D. Bates, *Ecology*, **41**, 232 (1960).

- S. Kajikawa, Y. Isobe and M. Okido, J. Japan Inst. Metals, 74, 493 (2010).
- 12) I. Muto and K. Sugimoto, Zairyo-to-Kankyo, 47, 519 (1998).
- 13) R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote and U. Stolz, *Corros. Sci.*, 29, 899 (1989).
- 14) K. Asami and K. Hashimoto, Corros. Sci., 19, 1007 (1979).
- P. Marcus, V. Maurice and H.-H. Strehblow, *Corros. Sci.*, 50, 2698 (2008).
- 16) S. C. Britton and U. R. Evans, J. Chem. Soc., 1173 (1930).
- 17) H. P. Leckie and H. H. Uhlig, J. Electrochem. Soc., 113, 1262 (1966).

(Manuscript received May 1, 2012; in final form October 29, 2012)

要 旨

SUS304 ステンレス鋼に各種塩の希薄水溶液を塗布した試料を大気環境を模擬した相対湿度 90%,60℃ の恒温恒湿環境に保持し,不働態皮膜を光電子分光法にて解析した.不働態皮膜の厚さと Cr 濃度は微量 塩類の影響を受けた.この環境中で,ステンレス鋼表面に生成する水薄膜の厚さは塗布した塩の飽和溶液 の平衡相対湿度に対応して変化するとみられる.すなわち低い平衡相対湿度の塩を塗布した試料ほど厚い 水膜を生成し,その結果 Fe の選択溶解が進行し,より Cr 分率の大きな不働態皮膜を形成する.塩化物は Cr 濃縮を促進するが,高濃度となると局部腐食を発生した.塩化物を塗布した場合,生成する不働態皮 膜は条件次第では高い耐局部腐食性を示すことがあった.硫酸塩も Fe の選択溶解を促進するが局部腐食 を生じることはなく,不働態皮膜は安定に成長した.

キーワード 不働態皮膜,相対湿度,水薄膜,塩化物,X線光電子分光,選択溶解,クロム濃化,孔 食