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Molecular dynamics simulations of a nanoscale liquid droplet on a solid surface are carried out
in order to examine the pressure tensor field around the multiphase interfaces, and to explore the
validity of Young’s equation. By applying the virial theorem to a hemicylindrical droplet consisting
of argon molecules on a solid surface, two-dimensional distribution of the pressure tensor is obtained.
Tensile principal pressure tangential to the interface is observed around the liquid-vapor transition
layer, while both tensile and compressive principal pressure tangential to the interface exists around
the solid-liquid transition layer due to the inhomogeneous density distribution. The two features
intermix inside the overlap region between the transition layers at the contact line. The contact angle
is evaluated by using a contour line of the maximum principal pressure difference. The interfacial
tensions are calculated by using Bakker’s equation and Young-Laplace equation to the pressure tensor
distribution. The relation between measured contact angle and calculated interfacial tensions turns
out to be consistent with Young’s equation, which is known as the description of the force balance at
the three-phase interface. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865254]

I. INTRODUCTION

The behavior of liquid droplet on a solid surface, wetting,
is of crucial significance in various science and engineering
fields, and the motion of the three-phase interface consisting
of liquid, solid, and vapor phases has been widely studied.1

The contact angle defined as the angle between liquid-vapor
and solid-liquid interfaces is commonly used to measure wet-
tability at the macroscopic scale. By introducing the concept
of interfacial tensions and contact angle θ , Young’s equation2

is stated as follows:

γSL − γSV + γLV cos θ = 0, (1)

where γ SL, γSV , and γLV denote solid-liquid, solid-vapor, and
liquid-vapor interfacial tensions, respectively. This equation
describes the horizontal balance of these interfacial tensions
at the three-phase interface. Because Eq. (1) was derived for
the wetting at the macroscopic scale, various models for the
microscopic scale have been put forward, such as introduc-
ing microscopic contact angle,3 adding line tension term to
Eq. (1),4, 5 and dealing with precursor films.6 However, it is
difficult to validate these models mainly because experimen-
tally measuring the interfacial tensions containing solid phase
is not trivial.7, 8

Molecular dynamics (MD) simulation is a potent tool
for analysis at the microscopic and nanoscopic scale,9, 10 be-
cause it is possible to directly observe the independent molec-
ular motion, which has so far been very difficult to do by

a)Electronic mail: nishida@gcom.mech.eng.osaka-u.ac.jp.
b)Electronic mail: donatas@gcom.mech.eng.osaka-u.ac.jp.
c)Electronic mail: yamaguchi@mech.eng.osaka-u.ac.jp. URL: http://www-

gcom.mech.eng.osaka-u.ac.jp/~yamaguchi/.

experiments, especially for liquids. Nijmeijer et al.11 con-
ducted MD simulations using mono-atomic Lennard-Jones
(L-J) fluid film on a solid surface, and demonstrated that the
balance indicated by Eq. (1) is applicable there. Ingebrigtsen
and Toxvaerd12 analyzed the droplet shape of L-J nanodroplet
in detail, and Weijs et al.13 investigated the origin of line
tension for a L-J nonodroplet and its effects on the equilib-
rium contact angle. Regarding interfacial tensions, Leroy and
Müller-Plathe14 used the phantom-wall method to determine
the solid-liquid surface free energy of L-J liquid on smooth
and rough surfaces, and Grzelak and Errington15 applied the
grand canonical transition matrix Monte Carlo simulation to
compute the interfacial properties. Seveno et al.16 investigated
the Young’s equation through MD simulations of cylindrical
rod dipping into a liquid bath. Surblys et al.17 showed that
the balance also holds for droplets consisting of water-alcohol
mixture. In these works, the interfacial tensions were evalu-
ated from one-dimensional pressure distributions inside pla-
nar liquid film systems which were created separately from
the systems used for gauging wettability.

In this study, MD simulations of liquid droplets that are
composed of mono-atomic L-J molecules on a solid sur-
face are conducted in order to examine the pressure tensor
field around the multiphase interfaces, and also to explore
the validity of Young’s equation in nanoscale. A quasi-two-
dimensional droplet shape is employed to avoid the effect
of line tension which is present in three-dimensional spher-
ical droplet with small radius.12–14 From these droplets, two-
dimensional pressure tensor distribution is obtained in situ
via the virial theorem, and the contact angle and interfa-
cial tensions are calculated by using it. This two-dimensional
distribution also provides a new insight about the specific
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feature of interfaces especially of the three-phase interface at
nanoscopic scale.

II. SIMULATION METHOD

A. Potential model

For ease of physical understanding, argon molecules are
adopted as mono-atomic fluid molecules. Concerning inter-
actions between argon molecules, the following 12-6 L-J
potential is used:

�L−J(rij )=4εijH (rc−rij )

×
[(

σij

rij

)12

−
(

σij

rij

)6

+ c1

(
rij

rc

)2

−c2

]
, (2)

where rij is the distance between atoms i and j, while εij

and σ ij denote the L-J energy and length parameters, respec-
tively. This L-J interaction is truncated at a cut-off distance
rc = 3.5σ ij using the Heaviside step function H and correc-
tion terms are added so that this potential approaches to zero
smoothly at rc with the following coefficients:

c1 = 6

(
σij

rc

)12

− 3

(
σij

rc

)6

, (3)

c2 = 7

(
σij

rc

)12

− 4

(
σij

rc

)6

. (4)

The solid walls also consist of mono-atomic molecules.
A face-centered cubic (FCC) crystal is assumed as the struc-
ture of the wall where physical properties of platinum are
used for the mass and lattice constants. The inter-atomic po-
tential between wall molecules is expressed by the following
harmonic potential connecting the nearest neighbors:

�harmonic(rij ) = k

2
(rij − r0)2, (5)

where r0 and k denote the equilibrium distance and spring
constant, respectively.

The interactions between argon and wall molecules are
also expressed by the L-J potential and the length parameter
σ Ar–wall is given by the Lorentz mixing rule:

σAr−wall = 1

2
(σAr−Ar + σwall−wall). (6)

The energy parameter εAr–wall determines the wettability and
is changed as a calculation parameter by multiplying the fluid-
solid interaction coefficient η to the base value given by the
Berthelot mixing rule:

εAr−wall = η
√

εAr−Ar · εwall−wall. (7)

The value of η is varied so that further comparison to exist-
ing studies on similar systems11–15, 18 could be performed. The
potential and mass parameters are summarized in Table I.

B. Simulation systems

A system with an argon droplet on a solid surface is sim-
ulated in this study. A hemicylindrical shaped droplet with

TABLE I. Potential and mass parameters.

σAr–Ar (nm) εAr–Ar (K) mAr (g/mol) r0 (nm) k (N/m)

0.340 121.0 40.0 0.277 46.8

σwall-wall
a (nm) εwall-wall

a (K) mwall (g/mol)

0.350 72.4 195.1

aUsed only for Lorentz-Berthelot mixing rule.

a straight contact line achieved by means of the periodic
boundary condition is employed in order to avoid the effect
of line tension which is not included in Eq. (1),4 because it
has been shown that the contact angle is largely affected by
the line tension in a three-dimensional spherical droplet with
a large contact line curvature.13 This hemicylindrical shape
also makes it easy to calculate the two-dimensional distribu-
tion of the pressure tensor. An FCC (111) surface of a solid
crystal with three layers is placed on the bottom of the cal-
culation cell, and the argon droplet is positioned on it. The
number densities per area of (111) layer and per volume are
1.74 σ−2

Ar−Ar and 2.62 σ−3
Ar−Ar, respectively, and these values

could be used for the further comparison to existing stud-
ies on similar systems.11–15, 18 With periodic boundary con-
ditions in lateral x- and y-directions, the droplet is infinity
long in the y-direction, while mirror boundary condition is
imposed on the top boundary. The calculation region size is
26.0 × 4.3 × 12.0 nm3, consisting of 4000 argon molecules
and 5076 wall molecules. A cylindrical liquid droplet is pre-
liminary equilibrated away from the solid surface, and after its
automatic adsorption onto a solid surface through the Brow-
nian motion, an initial equilibrium hemicylindrical droplet
there is obtained with a further run of more than 1 ns. The
position of wall molecules in the bottom layer is fixed and
the temperature of those in the second layer is controlled by
the Langevin method19 at 85 K with a Debye temperature of
240 K. The velocity Verlet method is applied for the in-
tegration of Newton’s equation of motion with a time step
�t of 2 fs.

C. Calculation of pressure tensor distribution

The interfacial tensions and contact angle are derived
from the two-dimensional pressure tensor distribution of the
droplet. Weng et al.20 calculated local pressure profiles and
surface tensions of L-J liquid film system in which the calcu-
lation cell was divided into thin slabs and the one-dimensional
distribution of pressure tensor was calculated by locally ap-
plying the virial theorem to each slab. In our study, extend-
ing this calculation method to the two-dimensional distribu-
tion, the calculation cell is evenly divided into small bins by
intersecting planes parallel to the xy- and yz-planes, and the
pressure tensor Pab of the bin at a-th row and b-th column is
calculated by using the following equation:

Pab = 1

V ab

〈 ∑
i∈V ab

mivi ⊗ vi +
N∑
i

N∑
j (<i)

wab
ij rij ⊗ fij

〉
. (8)

In the right-hand side of Eq. (8), the first and second terms
are the kinetic and force contributions to the bin of volume
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FIG. 1. Example of pressure contribution from atom pair i-j to each bin.

V ab, respectively, and the brackets denote the time average of
these terms. All molecules i of mass mi and velocity vi in the
bin contribute the first kinetic term. The inter-molecule inter-
actions, for which the relative position and force vectors rij

and fij pass through the bin (a, b), contribute the force term.
The force term contains a weighting function wab

ij given as the
length fraction of |rij | in the bin. For example, the effect of in-
teraction between the molecules i and j in bins (a, b) = (2, 1)
and (3, 3), shown in Fig. 1, is added to the pressure tensor
of bins (2, 1), (2, 2), (3, 2), and (3, 3) through the weighting
function wab

ij = rab
ij /|rij |.

For the calculation of solid-liquid interfacial tension, the
force contributions of wall molecules are treated the same as
those of a wall potential that has no structure,11, 17 hence the
interactions between argon and wall molecules contribute to
the pressure tensor component only in the normal direction to
the wall. Therefore pressure tensor components Pxx and Pxz

are calculated by using inter-molecular forces only between
argon molecules, while inter-molecular forces between argon
and wall molecules are included for the calculation of Pzz. The
calculation cell is divided into 131 × 60 bins with a size of
0.189 × 0.2 nm2 in xz-plane, and the pressure tensor compo-
nents are calculated by averaging the simulation results over
20 ns.

III. RESULTS AND DISCUSSION

A. Density and pressure tensor distribution

Figure 2 displays snapshots and two-dimensional density
distributions of a hemicylindrical droplet on a solid surface
with different fluid-wall interaction coefficient η. These den-
sity distributions are calculated by averaging the position of
argon molecules over 20 ns. The origins of x- and z-coordinate
are set at the droplet center of the mass and the bottom edge
of the system, respectively. The surface becomes more wet-
table and an adsorption layer is formed near the liquid-vapor
interface as the value of η increases as shown in Fig. 2.

FIG. 2. (Left) Snapshots of a hemicylindrical argon droplet on a solid surface with a calculation region size of 26.0 × 4.3 × 12.0 nm3 and (right) two-
dimensional density distributions of argon molecules. The fluid-wall interaction coefficients are (a) η = 0.2, (b) η = 0.3, and (c) η = 0.4.
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FIG. 3. Two-dimensional distributions of pressure tensor components in a
Cartesian coordinate system (a) Pxx, (b) Pxz, and (c) Pzz for the droplet on
a solid surface with a fluid-wall interaction coefficient η = 0.4. Because of
pressure tensor symmetry, Pxz is equal to Pzx.

By applying Eq. (8) to a hemicylindrical droplet, the fol-
lowing two-dimensional pressure tensor can be obtained:

P =
(

Pxx Pxz

Pzx Pzz

)
. (9)

The matrix P is symmetric due to the symmetric property of
Eq. (8) which is in accordance with macroscopic scale stress
tensor. The distributions of the components of P in a droplet
on a solid surface with η = 0.4 are shown in Fig. 3. For these
distributions, a Cartesian coordinate system identical with the
one for the density distributions in Fig. 2 is adopted.

It is observed that the value of off-diagonal compo-
nent Pxz is approximately zero at liquid and vapor bulk and
changes along the liquid-vapor interface while the diagonal
components Pxx and Pzz show different features.

B. Invariant distribution and transition layer

Focusing on the value of the diagonal components Pxx

and Pzz in Fig. 3, both Pxx and Pzz have almost the same con-
stant positive values in the liquid bulk region, and this is due
to the Laplace pressure. However, in the vicinity of each in-
terface, there exists a region where the distributions of Pxx and
Pzz are different from those in the bulk region, and the pres-
sure therein is anisotropic.

In order to evaluate the thickness of these regions, the
trace I1 and determinant I2 of the pressure tensor P are em-

ployed as invariants that are independent of the coordinate
system,

I1 = Pxx + Pzz, (10)

I2 = PxxPzz + Pxz
2. (11)

By using these invariants, mean principal pressure Pave and
maximum principal pressure difference �Pmax are respec-
tively defined by

Pave = Pxx + Pzz

2
= I1

2
, (12)

�Pmax =
√

(Pxx − Pzz)
2 + 4Pxz

2 =
√

I1
2 − 4I2

2. (13)

The values of −Pave and �Pmax correspond to mean principal
stress and maximum stress difference in continuum mechan-
ics, respectively.

Figure 4 shows the distributions of invariants Pave and
�Pmax calculated from the components of P in Fig. 3. In both
distributions of Fig. 4, there exist regions which henceforth
are called “transition layers” where the values of Pave and
�Pmax change abruptly in the vicinity of each interface. This
is especially apparent in Fig. 4(b), where a positive value of
�Pmax is obtained in the transition layers under anisotropic
pressure, while the value approaches zero in the bulk region
under isotropic pressure. The thicknesses of liquid-vapor and
solid-liquid transition layer are both estimated about 2 nm
from the distribution of �Pmax. In addition, the solid-vapor
transition layer, which is thinner than the others, is also ob-
served just above the solid wall with about the thickness of
single bin.

Since each transition layer has a certain thickness with
a specific distribution of invariants along each interface as
shown in Fig. 4, there exists an overlap region among the
transition layers in the vicinity of the three-phase interface.
This overlap is considered to be negligible in the macroscopic

FIG. 4. Two-dimensional distributions of the (a) mean principal pressure
Pave, and (b) maximum principal pressure difference �Pmax for the droplet
on a solid surface with a fluid-wall interaction coefficient η = 0.4.
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FIG. 5. Schematic of the force balance at the three-phase interface of a liquid
droplet, where each interface has a transition layer with a certain thickness as
indicated in Fig. 4. Three interfacial tensions are calculated from the regions
where the transition layers do not overlap in the following discussion.

model of interface in Eq. (1), where the three interfacial ten-
sions are described to act at the contact line and not inside
the overlap region. The schematic of the three transition lay-
ers and the overlap region is exhibited in Fig. 5. Considering
this feature, we extract the distribution of the anisotropic pres-
sure in each two-phase transition layer, and hence use it to
calculate each interfacial tension from regions without over-
lap among them as described in Fig. 5 and in the following
discussion.

C. Measurement of contact angle

From the distributions of the invariants, each transition
layer can be extracted as the change in the value of Pave and
�Pmax. The value of Pave is smaller in the liquid-vapor tran-
sition layer than those in the bulk region as seen in Fig. 4(a),
and contact angle θ is approximated by fitting a least squares
circle to the bins considered to be inside the liquid-vapor tran-
sition layer. In practice, the position of the center and ra-
dius of the fitting circle is obtained by using the least square
method to the position of the bins with Pave < −2.5 MPa and
z > 1.2 nm. The contact angle is defined as the angle between
this fitting circle and the wall surface, where the position of
the wall surface is set to the equilibrium position of the wall
molecules in the top layer. Indeed the definition of wall sur-
face position includes arbitrariness, and it is more likely that it
is positioned between the first adsorption layer and the present
position, but the contact angle obtained with the present po-
sition has turned out to give a good match with the predicted
contact angle described later in Sec. III F.

D. Diagonalization of pressure tensor

Besides the invariants of the pressure tensor P, the direc-
tion and magnitude of the principal pressure calculated from P
are used for the investigation of the transition layers and their
overlap region. The symmetric matrix P can be diagonalized
to Pdiag as

Pdiag = U−1PU =
(

P1 0

0 P2

)

=
(

Pave + �Pmax
2 0

0 Pave − �Pmax
2

)
, (14)

U = ( v1 v2 ) =
(

cos φ − sin φ

sin φ cos φ

)
, (15)

cos(2φ) = Pxx − Pzz

�Pmax
, (16)

sin(2φ) = 2Pxz

�Pmax
, (17)

where the eigenvalues P1 and P2, respectively, denote the
principal pressures corresponding to eigenvectors v1 and v2,
and the principal directions are obtained as φ from the
eigenvectors.

The principal pressures around the overlap region for the
droplet with η = 0.4 are indicated by arrows superimposed
on its density distribution in Fig. 6. Here two pairs of arrows
are produced at each bin in Fig. 3, while the bins used for the
calculation of the density are sized by half in the length scale.
An inline arrow pair toward the center denotes a compressive
principal pressure with a positive eigenvalue, while a inline
arrow pair outward the center denotes a tensile principal pres-
sure with a negative eigenvalue, and the length of the arrows
indicates the magnitude for both.

The direction of the arrows shown in Fig. 6 is examined
below. Notable tensile principal pressure is observed around
the liquid-vapor transition layer, whose direction is tangen-
tial to the liquid-vapor interface. Principal pressure tangential
to the interface also exists around the solid-liquid transition
layer, where the pressure has both tensile and compressive di-
rections because of the inhomogeneous density distribution.
Finally, the vectors in the liquid-vapor and solid-liquid transi-
tion layers intermix inside the overlap region, hence the prin-
cipal directions there are tangential to neither the liquid-vapor
nor the solid-liquid interface.

E. Three interfacial tensions

The invariants and principal pressure calculated in
Subsection III D inside the overlap region are different from
those in the two-phase transition layers. Because of this, the
components of P in the regions away from the overlap region
are used for the calculation of the interfacial tensions.

According to Bakker’s equation,11 interfacial tensions γ

of a flat interface normal to the z-direction can be calculated
from the difference of pressure tensor components as

γ =
∫

(Pzz − Pxx)dz, (18)

where the integration range has to cover the whole interface.
This equation is used for calculation of γ SL and γSV . As an
example, the one-dimensional distributions of Pxx and Pzz at
x = 0 are shown in Fig. 7, which are used to calculate γ SL

of the droplet on a solid surface with η = 0.4. From the dis-
tribution of Pxx in Fig. 7, the area between z = 0.7 nm and z
= 3.0 nm is considered to contain the solid-liquid transition
layer, and is employed as the integration range of Eq. (18).
In practice, for the case of η = 0.4, the mean value of (Pxx

− Pzz) in the region of |x| ≤ 2.0 nm away from the overlap,
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FIG. 6. Principal pressures inside and around the overlap region for the droplet on a solid surface with η = 0.4 superimposed on its density distribution. Two
inline arrow pairs are produced at every bin of Fig. 3 with a size of 0.189 × 0.2 nm2 in xz-plane, while the size of the bin used for the density distribution is
0.094 × 0.1 nm2. The direction and length of the arrows, respectively, correspond to the direction and magnitude of the principal pressure of P, where inline
arrow pairs toward and outward the center indicate the compressive and tensile principal pressures, respectively.

where the distributions are similar to those at x = 0, is inte-
grated along the z-direction, and the same range between z =
0.7 nm and z = 3.0 nm is used for integrating the mean value
of (Pxx − Pzz) at |x| ≥ 7.0 nm to obtain γSV . Different ranges
are used for the calculation of γ SL and γSV for the cases with

 0
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FIG. 7. One-dimensional distributions of Pxx and Pzz at the center plane of
x = 0 nm for the droplet on a solid surface with η = 0.4. The positive isotropic
pressure inside the liquid bulk is due to the Laplace pressure.

different η to exclude the overlap. We have indeed calculated
the distribution of the pressure tensor around the solid-liquid
interface in a quasi-one-dimensional flat system for liquid ar-
gon as well as that for water-alcohol mixture,17 and the basic
feature was the same as in Fig. 7 except for the fact that the
isotropic pressure inside the liquid bulk was the same as those
in vapor and solid bulk because the flat interface does not pro-
duce Laplace pressure. It should also be noted that the values
of γ SL and γSV obtained by using Eq. (18) are not absolute
but “relative” to those of a solid-vacuum interface, and this is
discussed later in this subsection.

Different from the interfacial tensions γ SL and γSV , γLV

should not be calculated by using Eq. (18) because the liquid-
vapor interface is hemicylindrical. In order to calculate γLV ,
the Young-Laplace equation

γLV

R
= PL − PV (19)

is used instead, where R, PL, and PV denote the radius of the
droplet and the pressures at liquid and vapor bulk, respec-
tively. Here the radius R is obtained from the fitted circle men-
tioned in the Subsection III C, while PL and PV are evaluated
as the spatial averages of Pave in liquid and vapor bulk shown
in Fig. 4(a), respectively.

Figure 8 displays the relation between η and the interfa-
cial tensions evaluated by using Eqs. (18) and (19). Note that
the values γSV and γ SL are not absolute but relative ones as
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described later in this section, and therefore negative interfa-
cial tensions are not unphysical. The value of γSV is almost
zero and slightly decreases to become negative with a larger
η. Similarly, γLV is almost constant regardless of η because
the liquid-vapor interface is not affected by the solid surface.
The error-bar is relatively large for larger η values because the
bulk region is small due to the small contact angle in our case.
A similar value of γLV = 11.9 × 10−3 N/m in MD simulation
is reported by Yaguchi et al.21 On the other hand, although the
value of γ SL is close to γLV at η = 0.1, it becomes smaller and
eventually negative with the increase of η. The change in the
value of γ SL is the main cause of increase in droplet wettabil-
ity.

The meaning of the “relative” solid-liquid and solid-
vapor interfacial tensions, which take negative values, should
be addressed here. Because in this study the interaction be-
tween solid particles is modeled by the harmonic potential in
which the interaction pairs are prescribed to connect the near-
est neighbors and zero point of the potential energy is set at
an equilibrium distance, the total potential energy of a crys-
tal solid surface without thermal vibrations placed in vacuum
is zero and solid bulk has no energetic advantage over sur-
face in this model even though the particles in solid bulk have
more interaction pairs than those at the surface. When a small
amount of argon molecules is adsorbed onto this solid sur-
face, the total potential energy becomes negative because the
L-J potential for the fluid-wall interaction has a negative well.
This means that the values of γ SL and γSV calculated by us-
ing Eq. (18) are relative to vacuum and become apparently
negative due to the zero-point setting of the harmonic poten-
tial model. Since only the difference between the solid-liquid
and solid-vapor interfacial tensions has influence on wettabil-
ity as shown in Eq. (1), relative values are enough for the two
for the evaluation in Sec. III F. On the other hand, the val-
ues of γLV calculated by using Eq. (19) are absolute ones and
always positive.
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FIG. 9. Relation between fluid-wall interaction coefficient η and cosine of
contact angle θ of the droplet. Measured contact angles and ones derived
from Young’s equation using the interfacial tensions in Fig. 8 are displayed.

F. Interfacial tension balance and contact angle

The relation between η and cosine of the measured con-
tact angle θ is shown by black circle symbols in Fig. 9.
The two seem to be linearly correlated, as also reported by
Maruyama et al.22 The white circle symbols in Fig. 9 display
the η-cos θ relation in which cos θ values are obtained by sub-
stituting the interfacial tension values in Fig. 8 into Young’s
equation in Eq. (1). They correspond well to the measured
contact angle, and this shows that the relation between the
balance among evaluated interfacial tensions and measured
contact angle is consistent with Young’s equation. The cos θ -η
relation agrees well with the earlier reports14, 15 which show
slight deviation from first-order correlation. In addition, In-
gebrigtsen and Toxvaerd12 reported the deviation of contact
angle values from those obtained by Young’s equation using
interfacial tensions for larger η values, and they claimed that
this was due to the weak short-ranged L-J dispersion force-
field. This deviation is also shown in the results of Leroy and
Müller-Plathe.14 In our case the contact angle values include
larger error for large η values, and it is difficult to evaluate the
feature.

IV. CONCLUDING REMARKS

MD simulations of single hemicylindrical argon droplet
on a solid surface were performed. By applying the virial
theorem to the droplet, two-dimensional distributions of the
pressure tensor and its invariants were calculated. The change
in the distributions of these invariants indicated two-phase
transition layers of a certain thickness in which the pressure
is anisotropic, and the contact angle was measured by using
least square fitting circles. The distribution of the principal
pressure, which is derived by diagonalizing the pressure ten-
sor, revealed a specific feature of intermix inside the overlap
region of the two-phase transition layers. Three interfacial
tensions were derived in the region away from this overlap
area and showed that the relation between contact angle
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and balance among three interfacial tensions turned out to
correspond well to Young’s equation in our simulation
system, indicating that Young’s equation holds in nanoscale.
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