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SUMMARY 

 

In this study, the whole process of liquid droplet impact onto a liquid surface up to the 

consequent formation of the central column was simulated using the SPH (Smoothed Particle 

Hydrodynamics) method, and compared with an experiment using a high-speed video camera. The 

surface tension tensor for the particle-based expression was adequately included as the gradient of 

the surface tension and that enabled the simulation leading to the formations of crater and crown as 

well as the consequent central column. The simulated time series of the crater depth and diameter 

and crown height corresponded quantitatively well with the experimental result up to the rebound 

motion while discrepancies remained as a lower central column height in the simulation, and this 

seemed to be ascribed to the difficulty in realizing the complex surface structure which inevitably 

appeared in the fast rebound motion. 

 

KEY WORDS: Smoothed particle hydrodynamics; Droplet impact; Splash; Surface tension 

 

 

 

1. INTRODUCTION 

 

Since the pioneering work of Worthington [1], studies on the single liquid droplet impact onto a 

liquid surface has long been a topic of interest not only because the structure itself known as a ‘milk 

crown’ is purely fascinating but also because the liquid contact and consequent mist and droplet 

generations are commonly seen in the field of engineering, e.g., fuel injection, ink-jet printing, or 
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spray coating. The control or suppression of such mist generation is essential especially for the 

recent high-speed and precise processes in the relief or gravure printing because a single tiny mist 

induces severe print defects.  

The post-impact droplet motion at a low impact velocity is classified into floating, bouncing and 

coalescence [2]. At a higher impact velocity, a cylindrical or crown-like structure is formed on the 

interface and secondary droplets are then ejected from the crown as a splash. Consequently, a liquid 

column rises up in the center of the impact crater called ‘Worthington jet’ named after the pioneer. 

Numbers of further experimental studies have been carried out focusing on the effects of the 

surface tension [3], fluid properties and liquid thickness [4] on the impact process. On the other 

hand, numerical simulations are performed as well primarily to realize the crown and splash 

formations using VOF [5] and MPS [6] methods, however, quite a few studies were capable of 

simulating the consequent formation of the Worthington jet. This is basically due to the difficulties 

in catching the fast-moving interface with a large curvature in mesh-based methods, or in the proper 

representation of the surface tension in particle based methods besides the system size requirement. 

In this study, the whole process of liquid droplet impact onto a liquid surface up to the formation 

of the Worthington jet is simulated using the SPH (Smoothed Particle Hydrodynamics) method with 

an appropriate expression of the surface tension, and qualitative and quantitative comparisons with 

an experiment using a high-speed video camera are provided. 

 

 

2. METHOD  

 

2.1. SPH method 

 

In the SPH method, a fluid is represented by a group of particles that carry the physical 

information of the flow field with a spatial distribution expressed by a smoothing kernel. An 

arbitrary quantity A of a particle at position ra and its gradient is described using the smoothing 

kernel W as: 

( ) ( )∑ −=
b

ba

b

b
ba hW

A
mA ,rrr

ρ
    (1) 

( ) ( )∑ −∇=∇
b

ba

b

b

ba hW
A

mA ,rrr
ρ

    (2) 

where mb, ρb and Ab denote the mass, density and quantity A of the nearby particle b, respectively 

while h is the smoothing length of the kernel. Note that the summation includes the particle a itself 

as well. 

For the kernel distribution function, we use a cubic spline form normalized for three dimensions 

as follows: 
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where r denotes the distance between two particles. The smoothing length h here is given by h = 

1.3s0 with s0 as the initial distance between neighboring particles. This roughly mimics a Gaussian 

distribution function with a cut-off length of 2h. For simplification, we abbreviate the relative 

vector ra–rb and kernel W (|ra–rb|, h) as rab and W
 h

ab, respectively in the following formula. 

The density in the bulk is evaluated by: 

∑=
b

h

abb

h

a Wmρ     (4) 

The total mass conservation is automatically satisfied as long as the number of particles is 

unchanged. An alternative density expression with a long smoothing length H = 1.5 h is used as 

well simply for the stable evaluation of the surface tension described later. 

In the SPH method, a flow governed by the Navier- Stokes (N-S) equations as a continuum is 

approximated as the group motion of particles. The SPH momentum equation of a particle a 

including the surface tension term as in this study is given as follows: 
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where v and P are the velocity and pressure, respectively. The first two terms in the summation of 

the right-hand side are equivalent to the pressure gradient in the N-S equations while Π is the 

Newtonian viscous stress. 

The viscous force Π in Eq. 5 is expressed as in Eq. 6 using the viscosity µ and relative velocity 

vab with η2
 = 0.01h

2
 appended to avoid the singularity at |rab| = 0. 
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The pressure used in Eq. 5 is given by the following equation of state [7]: 













−







= 1

0

0

χ

ρ
ρ h

PP     (7) 

where P0 and ρ 0 denote the reference pressure scale and density, respectively with a characteristic 

exponent χ = 7. As it is well established that SPH is unstable when attractive forces act between 
particles [8-10], the pressure of a particle with a density ρ h

 smaller than ρ 0, which appears at a free 

surface, is set to zero in this study to avoid attractive force leading to the instability in the 

calculation. The pressure scale factor P0 in Eq. 7 is given by: 
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where cs and V are the sound speed and characteristic fluid velocity, respectively. The Mach number 

is equal to 0.1 here. 

The surface tension term as in Eq. 5 is formulated as the interaction between particles referring 

[11] in a way that the total momentum is conserved. Different from ordinary expression evaluating 

the curvature at the surface, the surface tension here is expressed as the gradient of the surface 

tension tensor Tij as:  
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where ∇a,jWab is the j-th direction component of the kernel gradient Wab with respect to particle a 

using a long smoothing distance H. The dummy index j indicates the summation. The surface 

tension tensor Tij is written as: 

( )
jiijijT nnn ˆˆ−= δασ     (10) 

where σ and δij denote the surface tension coefficient and Kronecker’s delta, respectively while n 

and n̂  are the surface normal and its unit normal explained below. An intensity parameter α = 4.5 
is multiplied to Eq. 10 so that the strength of the surface tension in the SPH expression here 

corresponds to the actual value. This was preliminary determined through the oscillation frequency 

of a droplet formed using the SPH simulation [12]. 

For tracking the interface, we use the color function c of the particles given by: 

∑=
b

H

abH

b

b

a W
m

c
ρ

    (11) 

A long smoothing length H is adopted here as well. The surface normal n in Eq. 10 is calculated as 

the gradient of this color function as: 
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b
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To avoid the singularity, the unit normal n̂  is redefined as in Eq. 13 with ε = 0.01/H. 
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As well as the axi-symmetric oscillation of a single droplet, the binary droplet collision processes 

and the ensuing migration or detachment depending on the offset were successfully simulated using 

this expression [12]. 

 

2.2. Simulation system 
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Basic calculation parameters for the simulation with the corresponding dimensionless numbers 

are summarized in Table 1, where the density, viscosity and surface tension are set assuming a 

mixture of water and glycerin referring to our experimental condition. Both sample fluids for the 

projectile liquid droplet and target surface have the same physical properties. A spherical droplet 

with a diameter d of 3.75 mm consisting of 1791 SPH particles impinges onto a liquid surface 

where two impact velocities U0 of 2.42, 3.13 m/s perpendicular to the liquid film surface are chosen 

corresponding to the free fall from initial heights of 300 and 500 mm, respectively under the normal 

gravity. The droplet is initially located just above the liquid film surface with the bottom position of 

the droplet 2.0s0 from the liquid surface. 

The size of the three-dimensional calculation cell is 40×40 mm2
 in horizontal directions with the 

periodic boundary condition, and a liquid film with a depth of 10 mm is located on a solid wall, 

where the non-slip condition is imposed at the liquid-solid interface. The boundary condition for the 

top boundary is open while small splashing mists passing the lateral boundaries are removed from 

the calculation cell. 1,024,000 SPH particles are initially located at lattice points with an initial 

spacing s0 between particles of 0.25 mm. 

The velocity Verlet method is adopted in order to integrate the equation of motion with a time 

increment of 1.0×10−6 s. 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1. Impact process 

 

Figure 1 shows the simulation snapshots of the droplet impact onto a liquid surface at a velocity 

U0 of 3.13 m/s, where a cross section with a thickness of 1 mm including the impinging axis is 

depicted for the three-dimensional simulation with the elapsed time t after the impact. Small 

splashing mists are ejected just after the impact [Figure 1(c)] and a hemispherical crater grows with 

a crown-like rim. The crater depth and crown height reach the maximum at about 20 ms [Figure 

1(e)] while the crater further extends to the lateral direction. Due to the rebound motion 

concentrated toward the crater center, a prominent peak structure appears at t = 60 ms [Figure. 1(h)] 

and continues to rise up to form a central column called ‘Worthington jet.’ 

Figure 2 shows the snapshots of the corresponding experiment using a high-speed video camera 

with the same conditions. Formations of the crater, crown-like rim as well as the Worthington jet 

agree well with the simulation result. However, the central column appears later and its final height 

is apparently lower in the simulation, and the rebounding crater is rather skewed from a 

hemispherical shape in the experiment as shown in Figure 2 (e). 

Figures 3 and 4 display the comparison between simulation and experiment for a slower impact 

velocity U0 of 2.42 m/s. Similar to the case for U0 = 3.13 m/s, the crater and crown formations can 

be seen both for simulation and experiment while both are smaller, and the consequent crater 
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rebound takes place earlier than in Figures 1 and 2. The central column appears earlier with a sharp 

peak structure and it erects up higher in the experiment, which results in the droplet detachment 

above the Worthington jet. Except for this difference, however, the structural feature and the time 

scale are well reproduced in the simulation. 

 

3.2. Quantitative comparison between simulation and experiment 

 

In order to further compare the simulations with experiments, the time series of the size 

information of the crater and crown in the experiment are extracted from the high-speed movie 

using an image processing software developed in our group. Figure 5 depicts the comparison 

between simulation and experiment regarding the time series of the crater depth for two impact 

velocities U0, where the height from the initial surface level to the deepest point of the crater is 

defined as the depth D, i.e., the depth takes a negative value during the crater formation. Both for 

U0 = 3.13 and 2.42 m/s, the simulated initial profiles toward the maximum depth up to 15 ms agree 

very well with the experiment. The rebound velocity, which appears as the gradient after 30 ms, is 

faster in the experiment for both impact velocities, and this indicated that the rebound force is 

underestimated in the simulation consequently resulting in a lower column height. 

Figure 6 shows the time series of the crater diameter, where the crater diameter φ is determined at 
the initial surface level. As seen in the snapshots in Figures 1-4, the apparent crater diameter 

continues to increase even in the rebound process. Similar to the crater depth in Figure 5, the initial 

simulated profiles until 10 ms correspond well with the experiment for both impact velocities, and 

the apparent difference is observed in the post-growth rebound motion. 

Figure 7 displays the comparison regarding the crown height H, which is evaluated as the height 

defined from the initial surface level. Although the exact trace including mist detachments is rather 

difficult, the initial and decay profiles in the simulation agree well with the experiment for both 

impact velocities. 

 

3.3. Pressure and velocity distributions 

 

Figures 8 and 9 shows the pressure and velocity fields upon the droplet impact onto a liquid 

surface for both impact velocities U0 = 3.13 and 2.42 m/s, corresponding to the simulation in 

Figures 1 and 3. Different from the cross sectional view in Figures 1 and 3, axi-symmetric average 

is displayed here. In both cases, the pressure just below the impinging point rises up above at 5 ms 

after the impact, and this induces outward upflow around the crater up to 20 ms in the liquid film. 

Upon the recovery process after 30 ms, inflow concentrating toward the center leads to the pressure 

rise beneath the crater, and the concentrated flow is released as the upward jet. 

 

3.4. Discussions 
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The apparent features in the simulation shown in Figures 1 and 3 corresponded qualitatively well 

with the experiment showing that the whole motion at least up to the crater formation is fairly 

expressed with the SPH method. The discrepancy was observed basically in the column height and 

thickness. The reason has not fully investigated yet, however, it is clear that the present resolution 

using the initial spacing s0, which is set to one-fifteenth of the drop diameter, is not small enough as 

Colagrossi and Landrini mentioned [13] and we also have checked in the binary droplet collision 

[12]. This resolution seems especially insufficient to express the complex skewed free surface 

appears in the experiment as in Figure 2 (f) and (g) or in Figure 4 (e) during the recovery process, 

even though we have applied more than one million particles in the simulation. Worthington also 

mentioned that this sharp peak seen in Figures 2 and 4 is so sensitive to the surface tension that it 

would easily by blunted with a small addition of milk [1], and this indicates the difficulty in 

realizing this extending sharp peak structure appearing in a short and extreme moment as well. 

 

 

4. CONCLUDING REMARKS 

 

The whole process of liquid droplet impact onto a liquid surface up to the formation of the central 

column was simulated using SPH method with the surface tension. The formations of crater and 

crown as well as the consequent central column were simulated, and the time series of the crater 

depth and diameter and crown height agreed quantitatively well with the experimental result up to 

the rebound motion although discrepancies remained as a time delay and lower column height in the 

simulation. 

 

 

REFERENCES 

 

1. Worthington, A.M. A Study of Splashes 1908. Longman and Green, London. 

2. Rein, M. Phenomena of liquid drop impact on solid and liquid surface. Fluid Dynamics 

Research 1993; 12: 61-93. 

3. Manzello S.L., Yang, J.C. An experimental study of a water droplet impinging on a liquid 

surface. Experiments in Fluids 2002; 32: 580-589. 

4. Vander Wal, R.L., Berger, G.M., Mozes, S.D. Droplets splashing upon films of the same fluid 

of various depths. Experiments in Fluids 2006;40: 33-52. 

5. Nikolopoulos, N., Theodorakakos, A., Bergeles, G. Normal impingement of a droplet onto a 

wall film: a numerical investigation. International Journal of Heat and Fluid Flow 2005; 26: 

119-132. 

6. Xie, H., Koshizuka, S., Oka, Y. Numerical simulation of liquid drop deposition in annular-mist 

flow regime of boiling water reactor. Journal of Nuclear Science and Technology 2004; 41: No. 

5, 569-578. 

Page 7 of 18

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

7. Monaghan, J.J. Simulating free surface flows with SPH. Journal of Computational Physics 

1994; 110: 399-406.8. Morris, J.P., Fox, P.J., Zhu, Y. Modeling low Reynolds number 

incompressible flows using SPH. Journal of Computational Physics 1997; 136: 214-226. 

9. Balsara, D.S. Von-Neumann stability analysis of Smoothed Particle Hydrodynamics: 

Suggestion for optimal algorithms. Journal of Computational Physics 1995; 121: 357-372. 

10. Swegle, J.W., Hicks, D.L., Attaway, S.W. Smoothed Particle Hydrodynamics stability analysis. 

Journal of Computational Physics 1995; 116: 123-134. 

11. Morris, J.P. Simulating surface tension with smoothed particle hydrodynamics. International 

Journal for Numerical Methods in Fluids 2000; 33: 333-353. 

12. Yamana, K., Inaba, T., Yamaguchi, Y. SPH simulations on the droplet motion. Proceedings of 

the JSME 19th Computational Mechanics Conference 2006; 345-346 (in Japanese). Movies for 

binary droplet collision are available at:  

http://www-gcom.mech.eng.osaka-u.ac.jp/gallery/droplet/droplet.html. 

13. Colagrossi, A., Landrini, M. Numerical simulation of interfacial flows by smoothed particle 

hydrodynamics. Journal of Computational Physics 2003; 191: 448-475. 

 

Page 8 of 18

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

Table 1 Calculation parameters. 

 

density, ρ (kg/m3
) 1.10×103 

viscosity, µ (Pa·s) 3.50×10−3 
surface tension coefficient, σ (N/m) 6.70×10−2 

initial spacing between particles, s0 (mm) 0.25 

lateral calculation region, X × Y (mm2
) 40 × 40 

liquid film thickness, T (mm) 10 

number of particles for liquid film 1,024,000 (160×160×40) 
droplet diameter, d (mm) 4 

number of particles for impinging droplet 1791 

initial distance between droplet and film surface 2s0 

impact velocity, U0 (m/s) 2.42 3.13 

corresponding free falling height (mm) 300 500 

Weber number, We 385 643 

Reynolds number, Re 3042 3935 

Ohnesorge number, Oh 6.45×10−3 
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Simulation snapshots of the droplet impact onto a liquid surface (U0 = 3.13 m/s).  
161x129mm (72 x 72 DPI)  

 

Page 10 of 18

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

 
  

 

 

Experimental snapshots of the droplet impact onto a liquid surface  (U0 = 3.13 m/s).  
136x188mm (72 x 72 DPI)  
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Simulation snapshots of the droplet impact onto a liquid surface (U0 = 2.42 m/s).  
161x129mm (72 x 72 DPI)  
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Experimental snapshots of the droplet impact onto a liquid surface  (U0 = 2.42 m/s).  
136x188mm (72 x 72 DPI)  
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Comparison of crater depth between simulation and experiment. 
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Comparison of crater diameter between simulation and experiment. 
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Comparison of crown height between simulation and experiment.  
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Axi-symmetric pressure and velocity fields upon droplet impact onto a liquid surface corresponding 
to the simulation in Figure 1 (U0 = 3.13 m/s).  
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Axi-symmetric pressure and velocity fields upon droplet impact onto a liquid surface corresponding 
to the simulation in Figure 3 (U0 = 2.42 m/s).  
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