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Critical Scaling of Granular Rheology

Takahiro Hatano

Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan

Rheology of dense granular matter in the vicinity of the jamming transition is investi-
gated. Critical scaling laws that describe shear stress, pressure, and kinetic temperature are
investigated. The scaling exponents are modified from those previously estimated by the
present author [T. Hatano, J. Phys. Soc. Jpn. 77 (2008), 123002] and also compared with
those proposed by Otsuki and Hayakawa [M. Otsuki and H. Hayakawa, Prog. Theor. Phys.
121 (2009), 647].

§1. Introduction

Granular matter is a conglomeration of macroscopic particles such as sand or
cereals, the mass of which is so large that the thermal fluctuation is irrelevant to their
motion. In general, the mechanical properties of granular matter seem almost unpre-
dictable in the sense that granular matter often undergoes unexpected fluidization or
solidification,1) which typically results in a serious hazard (e.g. landslide, avalanche,
or flow cessation in a silo). The mechanical properties of granular matter are thus
important problems particularly in industrial societies and geosciences. Such sud-
den fluidization or solidification may be a reminiscence of thermodynamic phase
transition.2) However, the phenomenology of this “phase transition” has not been
extracted until very recently. A breakthrough is brought about by Aharonov and
Sparks,3) who find that the rigidity transition is accompanied by discontinuous jump
of the bulk modulus and the average coordination number, while the shear modulus
are continuous. It is three years later that O’Hern et al.4),5) rediscover the rigidity
transition in a system of frictionless spheres. Due to the simplicity of this model,
they can extract the critical nature of the rigidity transition using finite size scaling
and some other scaling relations.

Quite interestingly, the rigidity transition also affects rheology of a dense gran-
ular matter.6) A granular matter above the critical density acquires the yield stress.
Critical scaling laws, which are of the same form as those in conventional critical
phenomena, are found in the rheology of dense athermal systems near the critical
density.7),8) However, aside from numerical results and empirical laws, our under-
standing of granular rheology from the fundamental point of view is still very poor.
The main difficulty in any statistical-mechanics approach is the dissipative nature
of grains; there is no thermal equilibria regardless of the apparent similarity in some
simple driven systems.9) This means that conventional thermodynamics or equilib-
rium statistical mechanics do not apply. While a kinetic theory10) can be applied
to dense granular matter to a remarkable degree,11) the applicability is limited to a
nearly elastic system (i.e., the coefficient of restitution is close to 1.) In addition,
kinetic theories generally involve binary collisions between hard spheres and thus
cannot be applied to marginally rigid granular matter, in which the average coordi-
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nation number reaches 6. Although one may be tempted to apply any theories that
are useful in thermal systems (e.g., mode-coupling theory), we must first look into
the phenomenon very carefully before the blind application of conventional theories.

Along the line of thought, numerical simulation on a simple model plays a con-
siderable role in investigating rheology of athermal systems in order to extract phe-
nomenology. Nevertheless, we still cannot theoretically derive (or explain) dense
granular rheology obtained by simulation. The main difficulties are the strongly
correlated motion of grains developed in dense systems.12)–16) Therefore, any micro-
scopic (particle-based kinetic) theory for granular rheology must suitably incorporate
this correlation, which is generally difficult even in a simple dilute gas.17) In this
paper, we investigate the rheological properties of dense granular matter by numer-
ical simulation in order to characterize their critical nature in terms of the rigidity
transition.

§2. Model

We consider a bidisperse mixture of frictionless particles, the diameters of which
are d and 0.7d, respectively. The ratio of the numbers is 1 : 1. For simplicity,
we assume that the mass of these particles are the same, which is denoted by M .
The diameter and the position of particle i are denoted by Ri and ri, respectively.
The force between particles i and j is written as F ij = [kδij + ζnij · ṙij ] nij , where
nij = rij/|rij |, rij = ri − rj , and δij denotes the overlap length, (Ri + Rj) − |rij |.
(Note that δij = 0 if (Ri + Rj) < |rij |). Throughout this study, we adopt the units
in which d = 1, M = 1, and k = 1. We adopt ζ = 0.1, which corresponds to the
coefficient of restitution being approximately 0.85.

In order to ensure uniform shear flow, we adopt the SLLOD equations18) together
with the Lees-Edwards boundary conditions.19)

q̇i =
pi

mi
+ γqz,iny, (2.1)

ṗi =
∑

j

F ij − γpz,iny, (2.2)

where γ denotes the shear rate. The system is of constant volume and consists
of 4000 particles. Here we investigate several volume densities ranging from 0.63 to
0.66. We discuss the rheological properties of this system with respect to two control
parameters: the shear rate γ and the volume density φ. Note that the shear stress
and the pressure are defined through the virial.20)

§3. Rheology and jamming

3.1. Rheology

First we investigate rheology of the present system at several densities near the
critical density, above which granular matter acquires yield stress. As is shown in
Fig. 1, the shear stress tends to a nonzero constant in the γ → 0 limit for the density
larger than 0.648. The critical density is thus located between 0.645 and 0.648 in
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Fig. 1. (Color online) Granular rheology near the critical density. The data at the same density are

linearly connected by the solid line, which is a guide for the eye. The error bars are the square

root of the variance with respect to the temporal fluctuation; e.g., 〈S(t)2〉 − 〈S(t)〉2. (a) Shear

stress. The dashed line is proportional to γ0.63. (b) Pressure. The dashed line is proportional

to γ0.57. (c) Kinetic temperature. The dashed line is proportional to γ1.3.

the present system. Below the critical density, the shear stress S and the pressure
P vanish in the γ → 0 limit, obeying Bagnold’s scaling,21) S ∝ γ2 and P ∝ γ2.
Note also that the kinetic temperature defined by T = (3N)−1〈

∑
i p

2
i 〉 vanishes in

the γ → 0 limit irrespective of density.

3.2. Estimate of the critical density

In order to determine the critical density more precisely, we adopt the following
protocol, which is similar to that utilized by O’Hern et al.4),5) (i) Prepare a system
of given density φ, in which the grains are randomly distributed. (ii) Realize a steady
state with shear rate γ = γ0. (iii) Stop shear flow (let γ = 0) at t = 0 and let the
system relax. (iv) Observe the relaxation of shear stress, S(t). The system is jammed
if the residual shear stress exists (S(∞) > 0, as is shown in Fig. 2 (a)). (v) Iterate the
above procedure using a different configuration of grains. The jamming probability
is then obtained as a function of density, PJ(φ). Here we adopt γ0 = 10−2.

As the present system is rather small (N = 4000), PJ(φ) is a smooth function
as is shown in Fig. 2(b), although it is expected to be a step function in the N → ∞
limit. We define the critical density of the present system as the density at which
the jamming probability is 0.5. By doing so, the critical density φJ of the present
binary system is estimated as 0.6472 < φJ < 0.6474. Note that the critical density of
the present system is apparently smaller than that for the infinite (N → ∞) system,
which is estimated as 0.648 using finite size scaling.4)

Interestingly, in the vicinity of the critical density, the decay of shear stress obeys
a power law t−α, where α � 0.7. (See Fig. 2(a).) This power-law relaxation of shear
stress is also observed in the relaxation process using overdamp dynamics, where
α � 0.5.22)
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Fig. 2. (Color online) (a) Relaxation of shear stress after the flow cessation at t = 0. Shown is a

jammed system, in which the shear stress eventually relaxes to a nonzero value. The dashed

line is proportional to t−0.7. (b) The jamming probability PJ(φ). See text for the definition.

The dashed line is 0.5. The symbols are linearly connected by the solid line, which is a guide for

the eye. (c) The residual shear stress (circles) and pressure (squares). (d) The residual friction

coefficient. The error bars are the square root of the variance.

However, it should be remarked that the critical density determined in this
manner seems to depend on the initial shear rate, γ0, although the dependence is
small.

3.3. Residual shear stress

Here we investigate further the properties of residual stress, which is a symptom
of a jammed system. We define the averaged residual stress S0 as 〈S(∞)〉. This
quantity increases as a function of density as is shown in Fig. 2(c), where the residual
stress is proportional to the distance from the critical density, S0 ∝ Φ ≡ φ − φJ .
Here we set φJ = 0.6473 based on the analysis in the previous subsection. As the
shear modulus G is proportional to Φ0.5 for Hookean spring particles,5) the residual
strain, ε0 = S0/G, is also proportional to Φ0.5. We can also define the averaged
residual pressure P0 = 〈P (∞)〉, which is proportional to the density difference Φ
as is shown in Fig. 2(c). Note that this behavior is also observed in an unsheared
system.5) Contrastingly, the averaged residual friction coefficient defined as μres =
〈S(∞)/P (∞)〉 is independent of the density as is shown in Fig. 2(d). It is important
to notice that μres � 0.01 is much smaller than the kinetic friction in the γ → 0
limit, which is typically estimated as 0.06 or 0.1.23),24) Thus, the residual shear
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stress should not be identified as the shear stress in the γ → 0 limit, which is
expected to exhibit a different behavior as is discussed in the next subsection.

3.4. The quasistatic limit

Here we show that the properties of shear stress and pressure in the γ → 0
limit are apparently different from those of a static system (γ = 0). We simulate
the quasistatic shear deformation by iterating the following procedure. i) A system
undergoes instantaneous shear deformation with the applied strain being ε0. ii) The
system is relaxed to a local energy minimum using the conjugate gradient method.
Iterating the above procedure for n times, the total strain ε applied to the system
is nε0. Then shear stress and pressure are represented as functions of strain, such
as S(ε), P (ε). A typical behavior of S(ε) is shown in Fig. 3(a). Then we take the
averaged stresses with respect to the strain. Here we adopt S = n−1

∑n+100
i=100 S(iε0).

Here we choose n = 200 and ε0 = 0.001. Note that we discard the data for ε < 0.1.
The averaged stress and pressure as functions of density are shown in Fig. 3(b).

Here we wish to stress that the shear stress and the pressure are proportional to |Φ|1.5,
whereas the residual stress and pressure are proportional to |Φ|1.0 as is confirmed
in the previous subsection. Note also that the friction coefficient is approximately
0.1, which is comparable to the results from extrapolation (γ → 0) of the dynamic
simulation.23),24) This indicates that the elastic properties of a marginally yielding
system is different from those far from yielding. In terms of strain, the yield strain,
εY = S0/G, is proportional to Φ1.0, whereas the residual strain after the flow cessation
is proportional to Φ0.5. However, at this point, we do not have any explanation for
these scaling properties.

It should also be noted that the equivalence of this protocol for the quasistatic
deformation to the vanishing shear rate limit with inertia is not trivial. We do not
discuss further this problem in this paper.

Fig. 3. (a) The behavior of shear stress as a function of strain in the quasistatic shear deformation.

(γ → 0). The density is 0.66. (b) The averaged shear stress and pressure in the γ → 0 limit.

The dashed and dotted lines are proportional to |Φ|1.5.
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§4. Scaling properties

4.1. Scaling laws

Rheology of a dense granular matter obeys critical scaling of the following form,8)

S = |Φ|yΦS±
(

γ

|Φ|yΦ/yγ

)
, (4.1)

where S±(·) is a scaling function and Φ denotes φ − φJ . Note that S+ and S−
correspond to Φ > 0 and Φ < 0, respectively. The data shown in Fig. 1(a) collapse
using this scaling law with the exponents yΦ = 1.5(1) and yΦ/yγ = 2.5(1), as is shown
in Fig. 4(a). We set the critical density φJ = 0.6473, which is obtained in §3.2. By
inseting γ = 0 into Eq. (4.1) and provided that S+(0) 	= 0, we obtain S ∝ |Φ|1.5,
which is consistent with the result obtained in §3.4.

The pressure and the kinetic temperature also obey scaling laws of the same

Fig. 4. (Color online) Critical scaling laws for mechanical properties: (a) Eq. (4.1) for shear stress,

(b) Eq. (4.2) for pressure, (c) Eq. (4.3) for kinetic temperature, and (d) Eq. (4.4) for shear

stress.
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form as Eq. (4.1).

P = |Φ|y′
ΦP±

(
γ

|Φ|y′
Φ/y′

γ

)
, (4.2)

T = |Φ|xΦT±
(

γ

|Φ|xΦ/xγ

)
, (4.3)

as is shown in Figs. 4(b) and (c). Note that yΦ/yγ � y′Φ/y′γ � xφ/xγ � 2.5. These
scaling laws imply that shear stress, pressure, and kinetic temperature are expressed
as homogeneous functions of γ and Φ in the vicinity of the critical density. Further-
more, they are of the same form as those in conventional critical phenomena and
thus may be due to the criticality of the jamming transition.

The exponents estimated here are slightly different from those previously esti-
mated by the present author,8) where the crossover exponent was 1.9(2), and yΦ = y′Φ
was 1.2(1). For several reasons, we believe that the exponents presented here are
more precise than before: (i) The density range is closer to the critical density
(|Φ| < 0.015, while |Φ| < 0.15 in the previous paper.) (ii) The precision of the crit-
ical density is improved by using a procedure independent of steady-state rheology.
(iii) Shear rate is much lower (10−7 ≤ γ ≤ 10−2) than before (10−4 ≤ γ ≤ 10−1) in
order to approach the critical point located at γ = 0 and φ = φJ .

4.2. Critical region

The scaling law for shear stress, Eq. (4.1), can be rewritten as

S = |γ|yγS∗
(

Φ

|γ|yγ/yΦ

)
, (4.4)

which predicts S ∝ |γ|yγ at the critical density (Φ = 0). This relation can be used
for the direct estimate of yγ and thus important. In using Eq. (4.4), it is essential to
notice that we cannot exactly set Φ = 0 in numerical simulation because the critical
density is not analytically obtained; i.e., the numerical error is inevitable in the
estimated critical density. If a numerical value of φJ contains ±ε error, the critical
rheology can be observed only where S∗ (±ε/|γ|yγ/yΦ

)
� S∗(0). The behavior of the

scaling function S∗(x) is shown in Fig. 4(d). Note that S∗(x) � S∗(0) only where
|x| < 3 × 10−2. Therefore, the region in which the critical rheology can be observed
is

|γ| > (30ε)yΦ/yγ . (4.5)

We can quantitatively confirm the critical region, Eq. (4.5), together with
Eq. (4.4). For example, as the critical density is estimated as φJ = 0.6473(1) in
§3.2, the numerical error is ε � 1× 10−4. Then Eq. (4.5) leads to |γ| > 5× 10−7. As
is shown in Fig. 5(c), rheology at φ = 0.6473 shows the critical behavior S ∝ γyγ with
yγ = 0.63(2) for |γ| ≥ 1×10−6, whereas the deviation is apparent for |γ| = 1×10−7.
Similarly, Eq. (4.5) predicts that the critical rheology can be observed only where
|γ| > 1 × 10−4 at φ = 0.6480 and 0.6466, as ε � 7 × 10−4. This behavior is also
confirmed in Fig. 5(c).
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§5. Discussion

5.1. Comparison with other results

We numerically estimate the exponents in a critical scaling law, Eq. (4.1); yΦ =
1.5(1) and yΦ/yγ = 2.5(1). It should be noted that Otsuki and Hayakawa31),32)

(OH) also investigate Eq. (4.1) to propose yΦ = 1.0 and yΦ/yγ = 2.5. They compare
this result with the previous result of the present author and concluded that the
exponents8) was not precise because it is conducted in a parameter region away from
the critical point. In the present paper, we thus set shear rate (γ ≥ 10−7) as low as
theirs (γ ≥ 5 × 10−7) with the system size being the same with theirs (N = 4000).
As a result, we obtain yΦ/yγ � 2.5, which is consistent with that of OH. However,
each exponent is still different: Here we estimate that yΦ = 1.5(1) and yγ = 0.63(2),
whereas OH conclude that yΦ = 1.0 and yγ = 0.4.

In order to make a further comparison, we adopt only the data at lower shear
rates (10−7 ≤ γ ≤ 10−5), which is 20 percents smaller than theirs (5 × 10−7 ≤ γ ≤
5×10−5), to find that the data cannot collapse with the exponents proposed by OH.
See Fig. 5(b). Note that OH use φJ = 0.6480 upon scaling collapse,32) which may be
considered as the critical density in the N → ∞ limit.4) We wish to remark that the
critical density of a finite system (φJ = 0.6473 for N = 4000) is more appropriate for
scaling of a finite system, otherwise the estimate of the exponents cannot be accurate
due to finite size effect.

The error in critical density also affects the estimate of yγ using Eq. (4.4). If
we assume φJ = 0.648, the deviation from the true critical density, φJ = 0.6473(1),
is 7 × 10−4. Then, from Eq. (4.5), the critical rheology (S ∝ γyγ ) can be observed
only where |γ| > 1 × 10−4. Because OH use γ < 5 × 10−5, they can never observe
the true critical behavior. Although rheology for γ ≤ 10−4 seems to be consistent
with their prediction yγ � 0.4, these data cannot be used for the estimate of yγ as is

Fig. 5. (Color online) Critical scaling law for shear stress using only the data for lower shear rates

(10−7 ≤ γ ≤ 10−5). The critical density is set to be 0.6473. (a) Scaling collapse using the

exponents estimated in the present paper. (b) Scaling collapse using the exponents estimated

by Otsuki and Hayakawa. (c) Critical rheology and crossover. See text and Eq. (4.4).
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explained above and in §4.2. it should be stressed that we can obtain yγ = 0.63 in the
critical region estimated with Eq. (4.5). It should also be remarked that yγ � 0.63
is obtained in a monodisperse system of much larger size.16)

The other exponent yΦ involves the dynamic yield stress; i.e., S(Φ, γ) → |Φ|yΦ in
the γ → 0 limit. OH proposed yΦ = 1.0 based on the facts that P ∝ Φ1.0 in unsheared
systems4) and that S/P = Φ0 in sheared systems.23),24) However, it is not so trivial
that the pressure in an unsheared system and that in a very-slowly sheared system
show the same behavior. Indeed, as we have seen in §3.4, they are different. Note
also that Olsson and Teitel7) obtain S(Φ, γ) → |Φ|yΦ with yΦ = 1.2(1), and that
Tighe et al. obtain yΦ = 1.533) in model systems without inertia.

5.2. Criticality of jamming

Although the apparent similarity of the jamming transition to conventional crit-
ical phenomena, jamming does not involve spontaneous symmetry breaking. In this
sense, there is no apparent order parameter for the jamming transition. Alterna-
tively, the bulk modulus, which is the second order derivative of the internal energy,
undergoes discontinuous change upon jamming. This may classify the jamming tran-
sition into a second-order phase transition with pressure being an order parameter,
although the shear modulus exhibits continuous change. However, as pressure and
shear stress do not show any long-wavelength fluctuation, a simple mean-field theory,
which leads to ξ ∼ |Φ|−0.5, does not apply to pressure or shear stress. It is remark-
able that, in the jamming transition, long wavelength fluctuation can be detected
only in purely dynamic quantities such as velocity7),16) or the particle displacement
during a certain time lag.13)–15) This makes an essential contrast to conventional
critical phenomena, where an order parameter itself exhibits long wavelength fluctu-
ation. Mean-field theory for the jamming transition, which predicts the divergence
of correlation length, must take this difference into account. The relation between
the scaling laws and the correlation length has to be investigated further.

5.3. Conclusion

We investigate scaling laws describing the rheological properties of dense granu-
lar matter, Eqs. (4.1) – (4.3), which are of the same as those in conventional critical
phenomena. These scaling laws imply that shear stress, pressure, and kinetic tem-
perature are expressed as homogeneous functions of γ and Φ in the vicinity of the
critical density, and thus may be due to the criticality of the jamming transition.
The exponents in these scaling laws are modified from those previously obtained
by the present author.8) The exponents are also compared with those obtained by
Otsuki and Hayakawa.31),32) We find that the difference between them is due to the
numerical error in the estimate of critical density. We show how the numerical error
affects these exponents.
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