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On Some Representations of Lattices of Law Relations

By H. F. J. Lowic

In this paper, I am going to consider some representations of the
set of all law relations on a freely generated algebra. It is understood
that all conventions concerning terminology and notation introduced in
(IT), (III) and (IV) hold in this paper. (See the bibliography at the end of
the paper.) In particular, it is understood that the following conven-
tions hold :

S is a set, and ¢ is an S-system of sets; hence if s€S, the value
os of o at s is a set. By an operator system of species ¢ on a set A
is meant a representation F' of S such that, for s€ S, Fs is a os-operator
on A. (See (II), Definitions 1.1 and 1.2.) An algebra of species o (or
shortly : an algebra) on A is determined if o, A, and an operator system
of species ¢ on A are given. U and B are algebras. The operator
system corresponding to 2 is denoted by <2>. Hence if U is an algebra
on A, s€S, and ac A°, <A>s is a os-operator on A, and (KA>s)a is an
element of A. If there exists a subset @ of A which generates 2l and
has the property that

(>s)agQ for seS, a€A”,
and
(QA>s)a, #+= W sy)a,
if s,€S and a€ Ay for »=1,2, and s,==s, or a,=a,,
then U is called freely gemerated. In this case, @ is unique; it is called
the free basis of A. €, €, and €, are freely generated algebras on the
sets C, C, and C,; their free bases are D, D, and D,. 9t M, and M,

are sets of algebras.
The title of this paper is justified by (III), Satz 2. 10.

§1. The operators V{€,, €} and {€,, C}.

DerFiniTION 1.1. By V{€,, €} is meant {(PC,)(C,/r); re LE}. (See
(III), Definitions 2.1 and 3. 1.)

By (III), Satz 3.4, ¥{€,, €,} is a representation of LC, into LE,.
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Theorem 1.1. V{C€, €} is the identical representation of LG.
Proof. See (III), Satz 3. 8.

If 4 is a representation of LE, into the set of all relations on C,,
let us say that +r is monotonic if

N/ C A" for v e L€, v el€,, ¥ 1.
Theorem 1.2. V{€,, €,} is monotonic.
Proof. See (III), Satz 3. 9.
Theorem 1. 3.
(Z{€,, €}((PE,)M) D> (PE,)Wt .

Proof. Let ¢,/ and ¢,” be elements of C, with ¢/((P€,)A)c,”. Let 4,
be a homomorphism of €, into €, and % be a homomorphism of €, into
A. Then k-h, is a homomorphism of €, into . Hence, by (III), Defini-
tion 3.1 and and Satz 3.6,

h(hye)) = h(h,c,”),

(7,0, ) (PE)A) (A, c,”)
and

¢/ (PE)E,/ (PE,)W))c,” .

This proves that
(W{E,, EH(@E,)A) D (PE,)A .
The theorem now follows from (III), Satz 3. 10.
Theorem 1.4. Let r€ LE,. Then
(PHE,, EHY{E, E})n Dr.
Proof. In Theorem 1.3, put M=[€,/r].

DerFINITION 1.2, By {C,, C,} is meant the representation of LE,
into the set of all congruence relations on €, defined by the condition that,
for re L€, (Y{€,, €})r is the intersection of all congruence relations r*
on &, such that

(1.1) (PC)(E,/r*) Dr.
Theorem 1. 5.
(PC)EC,/(P{C,, C})yr) Dr  for relLC,.
Proof. See (III), Satz 3. 11.
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Theorem 1.6. Let » be a law relation on €,, let ¢/ and ¢/ be
elements of C, with ¢/rc”, and let h be a homomorphism of €, into G,.
Then

(he/ ) (PAE,, €17 (he,”) .

Theorem 1.7. Let 7 be a law relation on €, and r* be a congruence
relation on €,. Then

r* 2 (P{€,, €}
if and only if (1.1) kolds.
Theorem 1.8. Let r,€ L€, for v=1,2. Then
7. O (P {€,, €1,
if and only if
(\I,{(SZ) @l} )rZ > rl .
Theorem 1.9,
(P {C,, ENY{E,, )N C»  for relLE,.

Theorem 1.10. Let » be a law relation on €,. Then (Y{€,, C})»
is a law relation on €,. (In other words: {€,, €,} is a representation
of L€, into LG,.)

Proof. Let ¢, and c¢,” be elements of C, such that
¢ (v{€,, €1’

and % be a homomorphism of €, into €,. Let ¢/ and ¢,” be elements of
C, with ¢/7c,” and »* be a congruence relation on €, satisfying (1.1).
Then

¢/ (PE)(E,/r*))c,” .

Let %, be a homomorphism of €, into €,. Then
(h(hye,))r*(h(hyc,”)) .

Hence
(Hr*)(h(hzcl/)) = (Hr*)(h(hzcl//))

(see (III), p. 132, line 16) and
(B )(R((Hr*) - B))(R.c,”) -
(See (III), p. 133, line 14.) Hence
¢/ ((PC,)(C,/ R(Hr*)-h))c,”.
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Hence
(PC)(C,/R((Hr*)-h)) D.
By Theorem 1.7,
R((Hr*)-h) D (v{€,, €,})r.
Hence
¢, (R((Hr*)-h))e,”
(Hr*)(he,’) = (Hr*)(he,”) .
and
(he))r*(he)’) .
By Definition 1. 2,
(e W (P A{C,, €1 (he,”) .
This proves that ({€,, €,})» is a law relation on €,.

Reformulation of Theorem 1.5.
(T{C,, CI)N({C,C ) Dr  for relLC,.
Theorem 1.11. {€, €} is the identical representation of LE.
Proof. See (III), Satz 3. 13.
Theorem 1.12. {C€,, €} s monotonic.
Proof. Let »€L€, r”€LC€, and " >#. Then, by Theorem 1.5,
(¥{C,, EN{E,, &Hr) D77,
hence
(P{C,, EIN(V{E,, E1Hr) D7,
hence
(W {€,, €1r" D (W {€,, €}
by Theorem 1.8.
Theorem 1. 13.
(P{C,, Chr C(¥{€,CY)yr for relG,.
Theorem 1.13 is obvious from Theorems 1.4 and 1.8.

Theorem 1.14. Let |C,|<1. Let re LE,. Then (V{C,, €} )7 is the
all relation on C,, and (Y{C€,, €})r is the equality relation on C,.

Proof. The first part of the theorem is obvious. If * is any
congruence relation on €, then (1.1) holds. Hence the intersection of
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all congruence relations on €, satisfying (1.1) is the equality relation
on C,. This proves the second part of the theorem.
Theorem 1. 15.
(v{€,, E}(PE,)I)  (PEC,)Mk .
Proof. By Theorem 1.3,
(Y{€,, E1H((PC)IM) D (PC,)I .
By Theorem 1.8,
(PE)M D (v{E,, €} (PEC,)M) .

DerFINITION 1.3. By ¥,{€,, €,} is meant the representation of L€,
into the set of all relations on C, defined by the following condition: if
relLC,, ¢/€C, and ¢,” €C, then ¢/ ((V.{€,, € })r)c,” holds if and only if
there exist elements ¢/ and ¢ of C, with ¢/re)” and {c¢/, ¢/}({€,, €.}~
conf){c,, ¢,”}. (See (III), Definition 1.1.)

Theorem 1.16. Let r€ L&, ¢/ €C, and ¢, €C,. Then c/((Y{€,,
C 1)), holds if and only if the following two conditions are satisfied :

1.2) |S[L(PE,)¢c,/, (PC,)c,” 1 <|D,|. (See (II), Definition 3.2.)
(1.3) There exist elements ¢, and ¢ of C, with ¢/ rc,” and a homomorphism
hoof €, into €, such that he/=c, and hc,”=c,”.

Proof. Let (1.2) and (1.3) hold. Let ¢ and ¢” be elements of C,
with {¢/, ¢} ({€,, €,}-conf){c,, ¢,”} and %, be a homomorphism of €, into
€, with Ac¢/=¢ and k¢, =c". (See (III), Satz 1.2 and Satz 1.5.) Then,
by (III), Definition 2.1,

(hy(he))) r(hy(he”)) .
Hence ¢'»¢”. By Definition 1.3, c,/((¥,{€,, €.})7)c,”.
The converse implication follows from (III), Satz 1.1 and Satz 1.2.

Theorem 1.17. Let r€ LE,. Then
(PofCy, € 1)r T (P {C,, E})r.

Proof. If ¢/ and c¢,” are elements of C, with ¢/((Y,{€,, €} )»)c,”
then ¢,/(V{€,, €,})7)c,”” holds by Theorems 1.16 and 1.6.
By Theorems 1.17 and 1. 13,

(PofC,, €}r C(¥{€,, C1)yr  for relLG,.

Theorem 1.18. Let v be a law relation on €,. Let ¢,/ and ¢, be
elements of C, with
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[SL(PC,)c,, (PC,)c,”]I <D,
and
¢ (T{C,, €.
Then o/ ((¢{C,, € })7)c,”.

Proof. Let ¢/ and ¢, be elements of C, with {c/, ¢,}({€,, €,}-
conf){c,/, ¢,”}. Then there exists a homomorphism % of €, into €, with
ke, =c/ and ke’ =c¢,”. By (IIl), Satz 3.6, ¢, 7rc,”. Hence ¢,/((4,{€,, €,})7)c,”.

Theorem 1.19. Let » be a law relation on €,. Let ¢, and ¢, be
elements of C, with

ISL(PE,)c,/, (PC,)c,”]I <D, .
and
¢ (P{C,, NP {E,, E})n)c,”.

Then ¢/ rc,”.

Proof. By Theorem 1. 18,

& (o {C,, EHYA{E,, C})m)e”.

By Theorems 1.17 and 1.9, ¢,/ 7c,”.

Theorem 1.20. Let |

|D,|<|D,| or 2m,<|D,]|.
(See (II), Definition 3.4.) Then
Vo {€,, €} =4 {€,C} =¥{C€,C}.
Proof. It is obvious that

|SL(PE,)c,, (PC,),” ]| <|D,|
for ¢/€C,,¢,”€C,.

After this is said the present theorem follows from Theorem 1. 18.
Theorem 1.21. Let 7, be a law relation on €,. Then
(OC) (Y {€,, E})r) = (P{€,, C})r,.
(See (III), Definition 2. 2.)

Proof. The assertion follows from the preceding theorem if
|D,| <|D,|. Let |D,|>|D,|. Let r, be a law relation on €, such that

($o{Cy, €} 7.



Representations of Lattices 165

Let ¢/ and c¢,” be elements of C, with ¢/7,¢,” and ¢, and ¢,” be elements
of C, with {c¢/, ¢,”}({€,, €,}-conf){c,/, ¢,”}. Then

&' ((Po{C,, € P,
&' 7,0,

& (Vof{C,, € H)ro)e)”,
and

¢/ ((P{C,, €17, .
Hence

rnC (P{C,, C})r,.
By Theorem 1.8,

({€,, Ehr. 7.

This proves the assertion.

Our concept of a relation of C corresponds to Birkhoff’s concept of
a set of equations between functions of the given species. (See (I),
p. 440, line 2 from bottom.) If Bis a relation on C,, and |D,|=m, then
our (Y{€,, €,})((BC,)B) corresponds to Birkhoff’s set of all equations in
m primitive symbols following from B, and our €,/({€,, €,})((®C,)B)
corresponds to Birkhoff’s F(B, m).

Theorem 1.22. Let B be a relation on C,. Then
(PC)(C,/ (v {€,, €,})((®C,)B)) D B.

Theorem 1.22 is obvious from Theorem 1.5.
Compare Theorem 1.22 with the following statement occurring in (I),
p. 441, line 2: “F(B, m) satisfies all the laws of B.”

Theorem 1.23. Let B be a relation on C,. Let Q be a basis of .
Let |Q|=|D,|. Let (PC€)A DSB. Then N is a homomorphic image of
€./ (¢{€,, €.})((BC,)B).

Proof. If |2A|=0 then |C,|=0 by (II), Theorem 1.3, and the
assertion is obvious. Let |2|==0. By Theorem 1. 15,

The assertion now follows from (III), Satz 3. 22.

Compare Theorem 1.23 with the following statement occurring in
(I), p. 441, lines 3 and 4: “Every algebra of species = generated by
m elements and of which B is a set of laws is a homomorphic image
of F(B, m).”
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§2. The relation C,—C,.
DeFINITION 2.1. We define a cardinal I, in the following way :

2.1) If there exists an element s, of S with |os,)=0, and |os| <1
for all elements s of S, then I,=1.
2.2) If |os|=1 for all elements s of S then [,=2.
2.3) If there exists an element s of S with |os|=2 then l,=m,.
It follows from this definition and from (II), Definition 3. 4, that

l,=m,

except the case considered under (2.2). Also,
l, = 2m,

except the case considered under (2. 1).

Theorem 2.1. Let |D|=1,. Then |C|=2.

Proof. The assertion is obvious if |D|=2. If |D|=/,=1 then
the hypotheses of (2.1) are satisfied, S is not void, and |C|=2 by (II),
Theorem 2. 8.

DErFINITION 2.2. @&,=C€, or €,=2C, means that |D,| < |D,|, or I, <|D,l,
or |S|=0 and |D,|<1.

From this definition it is obvious that €, =€, or €,—€, for any two
freely generated algebras €, and €,.

Theorem 2.2. Let I be a set of freely genmerated algebras. Then
— is a quasi-ordering of M.

Theorem 2.3. Let [,<|D,| and €,=C,. Then [, <|D,|.
The proof of Theorems 2.2 and 2.3 is left to the reader.

DErFINITION 2.3. €,=3C, means that €,=C, as well as €,=C,.
Hence €,=€, if and only if |D,|=|D,|, or ,<|D,| for »=1,2, or
|S|=0 and |D,|<1 for v=1,2.

Theorem 2.4. Let I be a set of freely generated algebras. Then
is an equivalence velation on M.
Theorem 2. 4 is obvious from Theorem 2. 2.

Lemma 2.1. Let |D,|<|D,|. Let ¢,€C,. Let r be the relation on
C. defined by the condition that, for ¢/ €C,, ¢, €C,, ¢/r¢/” holds if and
only if
2.4) ISL(PE)) ¢/, (P, ]| <D, ,
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and there exist homomorphisms W and K’ of €, into €, such that h'c,=c/’
and K’'co=c,". Let h/' and h,” be homomorphisms of &, into €,. Then
(2.5) (7 c)((ZH{E,, 1T H{E,, €}(OC)))) (A ¢,) .
Proof. Let %, be a homomorphism of €, into €, and %, be a homo-
morphism of €, into €,. For abbreviation, let us put
hy(hc) = ¢,
and
Rk c)) =1¢ .
Let ¢/ and ¢,” be elements of C, such that
{¢/, ¢, }({€,, €.} -conf){c,, ¢,”’} .
Then (2.4) holds. Let %#¥ be a homomorphism of €, into €, such that
Ffe,/=c/ and k¥c,’=c,”. Let h¥ be a homomorphism of €, into €, such
that A¥c/=c, and A¥c,”’=c,’. Then
h¥E(hy (b c)) = ¢/
and
WE(h (R c)) = ¢ .
Hence ¢,/7¢,””. Hence
¢/ ((BC)r)c,” .
Because (®C,)r is a law relation on €,,

(A (BN (BC)7) (A (hFc,”)) .
Hence
(B, )((BC)7)(hc,”)
Hence
(hy(By(R) e N)(BC)7) (By(Ro(R, ¢,)))
By (III), Satz 3.6,
(Bo(R) ¢))((TH{E,, €} (BC)7))(hy(h," c,)) .

Applying Satz 3.6 of (III) again, we find that (2.5) holds.

DerFINiTION 2.4. By p€ is meant the element of (aw,)¢ defined by
the condition that, for c€C, (p€)c is that element & of ap, for which

c€ (EC)Dja. If ce€C, (p€)c is called the rank of ¢ with respect to €.
(See (IV), Definitions 1 and 2 and Theorems 2 and 3.)

Lemma 2.2, Let ¢ be an element lof C, and h be a homomorphism
of €, into €,. Then
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(2. 6) (p8,)(he) = (pC,)c .

Proof. (2.6) obviously holds if ceD,. Let s be an element of S
and ¢ be an element of C{* such that

(P&,) (A(ck)) = (p€,)(ck) for k€os.
If |os|=0 then
(PC)(H((KE > 5)e)) = (PCI(KED s)(h+c)) = 1 = (pC)((KE > s)c) .
If |os|==0 then
(PC)(B((KE D 5)c)) = (pE)((KE D s)(h-c)) = Suc((p€,)-(h-c))
= Suc((p€,)e) = (pC)((KE,>s)c) .
In both cases,
(PE)A((KE > 5)e)) = (PE)((KE, > s)e) .
This proves that (2.6) holds generally.

Lemma 2.3. Let m be a cardinal. Let r be the relation on C defined
by the condition that, for ¢ €C, ¢”€C, 'r” holds if and only if /=",
or (p&)'=m and (p€)' =m. Then r is a law relation on €.

Proof. It is obvious that » is an equivalence relation on C. Let s
be an element of S, and let ¢’ and ¢” be elements of C°® such that

(c’R)r(c"’k) for k€os.

Let
(KE>s)c" == KE>s)c” .
Then ¢’==¢”. Let k, be an element of &s such that
c’ky=E "k, .

Then (p€)(c’k)=m and (pC)(c"k)=m. Also,
(PEN(CE> 5)c’) = Suc((p€)-¢') > (pC)(c'k) .

Hence

(PENKE>s)c) = m .
For a similar reason,

(PENKE>s)c”) = m.
Hence

((KE>8)c) 7 (KE>s)c”) .
Hence 7 is homomorphic with respect to €.

Let ¢/ and ¢” be elements of C with ¢’»¢”. Let 2 be a homomor-
phism of € into €. Let
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he’ == he”’ .
Then ¢’==¢”. Hence (p€)c’=m and (p€)¢’=m. By Lemma 2.2,
(PC)(he') = m
and
(eC) Ay = m .
Hence
(heYr (he”) .

Hence 7 is a law relation on C.

Lemma 2. 4. Let r be a relation on C. Let p=w if p,=2, and
p=p, if p,==2. Let t be the b,-system of relations on C which has the
following two properties :

L. r0=r.

II. If yeb{l, p}, /€C and ¢’ €C then c(xy)¢” holds if and only
if at least one of the following conditions (2.7) to (2.12) is satisfied :

2.7) d(xayc” for some acay.
(2.8) ¢ =c".
(2.9) ¢’(xa)c’ for some a€ay.

(2.10) There exist an element ¢ of C and elements o, and «, of ay with
d(xa,)e and c(ra)c”.

(2.11)  There exist an element s of S, elements ¢ and ¢’ of C°° and an
element B of (ay)°* with (k) (c(BkR)c"'k) for keaos, (E>s)c'=¢c
and (K&>s)c”"=c",

(2.12)  There exist elements ¢,/ and ¢, of C, an element c of ay and a
homomorphism h of € into € with c/(xa)c,”, he/=c" and he,”=c".

Then

T = (@@)1’ .

The proof is left to the reader.
Compare Lemma 2.4 with Definition 5 on p. 440 of (I).

Lemma 25. Let ¢, be an element of C and m be a cardinal which is
< (7€)c,. (See (II), Definition 3.3) Let » be the relation on C defined by
the condition that, for ¢ €C, ¢’ €C, v’ holds if and only if |S[(PC)c,
(P&) ]| <m, and there exist homomorphisms ' and h"” of € into € with
Weo=c" and W'c,=c". Let ¢, be an element of C with ¢ ((®C)»)c,. Then

¢, =¢,.

Proof. If ¢/ and ¢” are elements of C with ¢’7¢” then, by Lemma 2. 2,
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(€)' = (pC)¢,
and
(PC) " = (pC)c,.

Let », be the relation on C defined by the condition that, for ¢ €C,
¢’ € C, /r,¢” holds if and only if ¢/=¢", or (p€)'=(pC)c, and (p€)c”"=(p€)c,.
Then

nor,
and 7, is a law relation on € by Lemma 2.3. Hence
r, DO (BC)r.
Hence

(2.13) if ¢ and ¢” are elements of C with ¢/((®€)r)c” then ¢/ =c", or
(p€)' = (p€)¢, and (p€)c” = (p€)c,.

Let us now define an ordinal # and a bp-system t of relations on
C in the same way as in Lemma 2.4. Then

T = (@@)7’ .
I assert that the following proposition holds :

(2.14) Let yeb{1, p}, h, be a homomorphism of € into €, and ¢’ and
¢” be elements of C such that ¢==¢”, ¢/(ty)¢” and A, =c,.
Then there exist an element « of ay, a homomorphism %, of €
into € and elements ¢, and ¢,” of C such that ¢/==¢,", ¢/(xa)c,”’
and 72,¢,” =c¢,.

To prove (2.14), we first observe that

(p€) ¢, = (pC)c”
by Lemma 2.2. By (2.13),

(PC)¢” = (p€)c, .
Hence
(2. 15) (p€) ¢ = (p€)c,.
By the definition of #, and because ¢’=Fc¢”, at least one of the proposi-
tions (2.7) and (2.9) to (2.12) holds. If (2.7), (2.9) or (2.10) holds,
(2.14) is obvious. If (2.11) holds then, by (2.13),

(PE)(KE>s)c”’) = Suc((p€)-c”) > (p€)c,,

and

(p&) " > (pC)c, ,
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contrary to (2.15). Hence (2.11) does not hold. If (2.12) holds then
¢/==c¢, and

(ho=h) cl” = ho(hc,”) = hyt” =¢,.
This completes the proof of (2. 14).

It is now obvious that the assertion of (2.14) can be improved by
adding that « can be made =0.l.e. under the hypotheses of (2.14),
there exist a homomorphism %, of € into € and elements ¢ and ¢ of
C such that ¢/==¢”, ¢/7c,”” and h,¢”’ =c,.

Let us now assume that

G =Fc.
Then the hypotheses of (2.14) are satisfied if we put vy=p, ¢’=c, and
¢”=c, and let 4, be the identical representation of C. Let %, be a
homomorphism of € into € and ¢/ and ¢ be elements of C such that
¢/ =+=¢”, ¢/re)” and h,c”=c,. Let #” be a homomorphism of € into €
with #”¢c,=c,”. (K’ exists by the definition of ».) Then

(B l)eo=1¢,.
By (II), Theorem 3. 10,
(hsh)o=1D for de(PC€),.

Hence
W'deD for b€ (PC)c,.

By (II), Theorems 3. 11 and 3.1,
(PC)H'c) =[H'D; de(PC)c,].

Hence

(7€) ¢, = (z€)c,.
Hence
(2. 16) (7€) ¢, >m.

But by the definition of 7,
[SLPEC)c/, (PC)," ]I <m.
Hence
(7€), <m,

contrary to (2.16). Hence our assumption that ¢,==¢, is wrong. Hence
¢,=¢, as asserted.

Theorem 2.5. C,=C€, if and only if
(2. 17) "zb\{@z’ @1}= \I’{@m @1} .
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Proof. Let €,=C,. We wish to prove that (2.17) holds. This is
obvious if |S|=0 and |D,|<1. Let |S|==0 or |D,|>1. If |D,| <|D,]
then (2. 17) holds by Theorem 1.20. Let |D,|<(|D,|. By Definition 2.2,

ls < |D,l.
If 2m,<|D,| then (2.17) holds by Theorem 1.20. Let
| D,|<2m, .
Then /,<2m,, and we have the case considered under (2.1). Hence
l,=m,=1,
and
|D,|=1.

Let s, be an element of S such that |os,|=0. Let r be a law relation
on €,, and let ¢/ and ¢, be elements of C, with

(2.18) ¢/ (W{C,, €})r)e,” .
We wish to prove that
(2.19) o/ ({€,, € })r)e)”

holds. By (II), Theorem 3.15, (=€)c¢/ <1 and (=€,)c,”” <1. Hence
ISLPE)e/, (PC)e,"]I<L2.

If |S[(PC,)c/, (PC)c]1< 2, (2.19) holds by Theorems 1.18 and 1.17.
Let
|S[(PE)c/, (PEC)c,/]|=2.

Then (=€)c¢/= (=€ )¢/ =1. Let b be the only element of (P& )c,/ and
b’ be the only element of (P€)c¢”. Then d==bd”. Let % be a homo-
morphism of €, into €,. Let ¢, be the void system, /%, be a homomorphism
of €, into €, such that

hd = hd’ = (KE>s)c,,
and % and #” be homomorphisms of €, into €, such that
Y =hd, WY = (K& s)c,,
Ry = (KE&ps)e,, MV =hd".
By (II), Theorem 3.8,
(2. 20) we! = he)
and
(2.21) n'e) = he)”.
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Also
(hDd') = (D) = (K& s)) c)) = (KEDs)) ¢,
Hence
h(hd') = W'd
and

h(hd") = WD .
By (II), Theorem 3.8,

(2.22) h(he) =K'/
and
(2.23) e’y = Hc,” .
By (2.18),
(2. 24) (Heyr(Hce)
and
(2. 25) (Z'e/yr(H'c).
By (2.20), (2.23) and (2. 24),
(e) 7 (h(hge,”)) .
By (2.21), (2.22) and (2. 25),
(A(he)) 7 (he’) .
Hence
(2. 26) ¢/ (V{E,, € 1) (he)
and
(2.27) (2 )P L{C,, €1\ .
Also,
(2. 28) (he/ (Y LE,, € Hr)(Ae) .

By (II), Theorems 3. 11 and 3.2,
(P(‘g1)(hoc1/) = (Pgl)(hob/) == (P@1)((<@1> So)co) = @((P@J'Co) .

Hence (PC)(kc/) is void. For a similar reason, (PE€)(kc,’) is void.
Hence (2. 26), (2.27) and (2. 28) imply

(2. 29) ¢/ (P{S,, €17 (A, ,
(2. 30) (7t N(PAE,, € 1)),
and

(2. 31) (he/ NS, €1 (he,”) .
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(2.29), (2.30) and (2.31) imply (2.19). Hence
(¥{6,, €})r C(v{6,, € })r.
By Theorem 1.13,
(‘P{(Sz) @1} )7’ = (\I,{(gz» @1})7’-

Hence (2. 17) holds.
Let us now start from the hypothesis that € —€, does not hold.
Hence

[S[#0 or |D|>1

| D, |<|ID,l,
and

| D, | <5
Also,

1Cl=2;

for if |D,|=1 then |S|#=0. We wish to prove that (2.17) does not
hold. This follows from Theorem 1.14 if C, is void. Therefore let us
assume that C, is not void.

Let us, firstly, treat the case that

los|=1 for seS.
Then m,=1, [,=2, and

|D,|<2.

If |D,|=0 then |C,|=0, contrary to hypothesis. Hence
|D,|=1

and .
|D,|>1.

By (II), Theorems 3. 12 and 3. 15,
(=€), =1 for ¢, €C,,
and
(7€), =1 for ¢,€C,.
Let », be the all relation on C,, and let
r,= R(PC).

Then, for ¢/ €C,, ¢,/ €C,, the following propositions (2.32) to (2. 36) are
equivalent :

(2.32) ¢'7.¢”.
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(2.33) (PC€)c/ = (PC)c”.
(2.34) IS[(PC)c/, (PC)e,]I< 1.
(2.35) There exist elements ¢,/ and ¢,/ of C, with
{c)/, "} {&,, €}-conf){c/, ¢’} .
(2. 36) ¢/ (P {€,, €Ny .
Hence
(P {C,, €y, =7,
By (III), Satz 2.8, 7, is a law relation on €,. Hence
P{C,, Cr,=r,.

Hence ({€,, €})r, is not the all relation on C,. On the other hand,

it is obvious that (¥{€,, €})r, is the all relation on C,. Hence (2.17)
does not hold.

Let us, secondly, treat the case that

les|==1 for some element s of S.
Then
ly, =m,.

By (II), Theorem 3. 19,

| D,| < sup (7€) .
Let ¢, be an element of C, with

(7€) e, >|D,]|.

Let @ be an element of CP: such that

ad == bd for some element d of (PC)c,.

Put
@{€,,Chya="h.
Then
hd == b for some element d of (PE€)c,.
Hence

he, == ¢, .

Define a relation » on C, by requiring that, for ¢/€C,, ¢ €C,, ¢/ 7c”
holds if and only if

[SLPEC)e, (PC)e,"]I<|D,l,

and there exist homomorphisms # and %’ of €, into €, with #c¢,=¢/
and #’c,=¢,””. Then, by Lemma 2.1,
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(he)(FAE,, EHYHE,, E}1)(BC)))c,.
By Lemma 2.5, (4c,)((®€))7)c, does not hold. By Theorem 1.9,

(e (Y{€,, €1 {E,, €1 (OC)))¢,

does not hold. Hence (2.17) does not hold.
This completes the proof of Theorem 2.5.

§3. Further theorems on the operators V{C€ k6 €} and {C€, 6 C}.

Theorem 3.1. Let € —C,. Then
(\If{@z; @1})((¢@2)M) = (®@1)M= (\F{@:z, C‘8:1} )((®@2)M) .
Proof. See Theorems 1.3, 1.15 and 2.5.
Theorem 3.2. Let € C,. Let M, as well as M, be an algebra or
a set of algebras. Let
(q)@z)m1 = (¢@2)m2 .
Then
(PE)IM, = (PC )M, .

Proof. See Theorem 3. 1.
Theorem 3.2 represents an improvement of Satz 3.3 of (III).

Theorem 3.3. Let € =C,. Then each of V{C,, C}.-v{C,K6 €},
VG, €} €, €}, V{C,, C}. V{€, C} and Y{€,, C}-{C€,6 C} is the
identical representation of LE,.

Proof. Let € L€,. Then, putting M =[€,/r] in Theorem 3.1, we
find that

(P {&,, ENTHE,, E})r) = r = (¥{C,, E}((V{C,, E})).
Hence, by Theorems 1.2 and 1. 13,
(T{E,, EN({E,, € 7.
By Theorem 1.5,
(V{E,, EINWH{E,, E1)r) = 7.
By Theorem 2.5,
(WP {C,, EINP{C,, C})r) = 7.
Theorem 3. 4.
v{C,, €} . v{€, €} =v{C, C}-4{€,k €}
and
¥{&,, 6} {C,, E,} ={C,, €} -{C,, C,} .
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Proof. For the case that € —€,, Theorem 3.4 follows from
Theorem 3.3. For the case that €,—€,, it follows from Theorem 2.5.

Theorem 3.5. Lot V{C,, €}.V{C,,6 €} be the identical representation
of L&,. Then € —C,.

Proof. Let €,—=€,. Then, by Theorem 3.3, V{€,, G} .-{C,, €} is
the identical representation of LE,. Hence

\I’{(Sz: @1} = \I’{@z, C‘5:1}' '(\I,{@n @2} ‘11’{@2) @1}) = ‘P‘{@z’ @1} .
By Theorem 2.5, €,=G,.

Theorem 3.6. Let € —C,. Let r,€LC, for v=1,2. Then

(3 1) (\I'{(Sz» @1} )r,=r,
if and only if
(3.2) (P {€,, €}, Cr, C(¥{E,, €,})r, .

Proof. (3.1) implies (3.2) by Theorems 1.4 and 1.9." If (3. 2) holds
then

(W{C,, EN(W{E,, &})r) T(V{E,, € })r, C(V{E,, EH((¥{E,, €.})n)
by Theorem 1.2, and (3.1) holds by Theorem 3. 3.

Theorem 3.7. Let € C,. Let r, and r, be law relations on C,.
Then the following propositions (3.3) to (3.5) are equivalent :

(3.3) rn7,.
(3.4) (P{C,, &}r, C(¥{C,, &,})r,.
(3.5) ({6, Ehyr, C(P{€,, €})r,.

Theorem 3.7 is obvious from Theorems 1.2, 1.12 and 3. 3.
Theorem 3.8. Let
X, e[Y{C,, C}, ¥{C,, €C}]
and
x. €[¥{C,, &}, ¥v{C,, C,}].
Then the following propositions (3.6) to (3.8) are equivalent :

(3.6) X, 1is simple.
3.7 X, takes all values of LE,.
(3.8) X,+X, 1is the identical representation of LG, .

Proof. By Theorem 3.3, X,-X, is the identical representation of
L€, or X,-X, is the identical representation of LE,. In the latter case,
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it is obvious that (3.6) as well as (3.7) implies (3.8). Conversely, (3.8)
implies both (3.6) and (3. 7).

Theorem 3.9. The following propositions (3.9) to (3.22) are equivalent:
(3.9 € =6,.
(3.10) J{C,, €} =T{C,, C}.
(3.11) v{€,,K6 C,} is simple.
(3.12) {C€,, €} is simple.
(3.13) v{C,, €} takes all values of LG, .
(3.14) J{€,, €} takes all values of LE,.
(3.15) v{C,, C}-¥{€,, C,} is the identical representation of LE, .
(3.16) V{C,, €} (€, G} is the identical representation of L€, .
(3.17) J{€,, €} - W{€, , C,} is the identical representation of LE,.
(3. 18) o {C,, €} {€,, €} is the identical representation of L€, .

(3.19) i€, €} . ¥{¢,,C} =¥{C,, C}-v{€, C}.
(3. 20) Vi€, €} - v{C€,,6 €} =V{C,, C}-{C, €} .
(3.21) Y{C€,, €} . {€,, C} =V{C,, C} . ¥{C,, C,}.
(3.22) {€,, €}-{C,, €} =V¥{C,, €}-y{C,6 C,}.

Proof. (3.11) to (3.18) are equivalent by Theorem 3.8. (3.9) is
equivalent to (3.10) by Theorem 2.5 and equivalent to (3. 15) by Theorems
3.3 and 3.5. (3.19) to (3.22) are equivalent by Theorem 3.4. (3.9)
implies (3.19) by Theorem 2.5. (3.19) implies (3.15) by Theorems 1.4
and 1.9.

Theorem 3.10. Let €, =C,. Then |LC | <L|LG,]|.

Proof. By Theorem 3.9, ¥{€,, €} is simple. Hence ¥{€,, €,} is
a one-to-one representation of L&, onto a sub-set of LE,.

Theorem 3.11. Let C,3€,. Then |LC,|=|LG,|.
It follows that, in particular, |L€,|=|LG,| if |D,|=!, and |D,|=/,.

DeriniTION 3.1. By w, is meant |LE&| if |D|=/,. (See (IV), Theorem
11.)

Theorem 3.12. w,=>2.

Proof. Let |D|=I,. Then, by Theorem 2.1, |C|=2. Hence the
equality relation on C is different from the all relation on C. Hence
[LE|=2.

Theorem 3.13. |LC|<w,.
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Theorem 3.14. Let |D|=!,. Then |LC|=w,.

Theorem 3.15. The relation C on LE determines a w,-lattice-algebra
on LE. (See (III), p. 133, line 5 from bottom.)

Proof. See (III), Satz 2.9.

DeFINITION 3.2. By € is meant the w,-lattice-algebra on L deter-
mined by the relation C on LG.

Theorem 3.16. Let € —C€,. Then V{€,, €} is a homomorphism of
RCE, onto LE,.

Proof. By Theorem 3.9, V{€,, €} takes all values of LE,. Let
be (LG, {1 s}, Then, by (III), Satz 3.10,

(T{C,, E}(KEE>1)b) = KBEH>1N(¥{E,, €} -0).
Let » be a law relation on €, such that
r DO (¥{C,, C})ba)  for aeb{l,Q,}.
Then, by Theorems 2.5 and 1.8,
({€,, C})r Db for aeb{1,Q,}.

Hence

(¥{C,, C,1Hr > (KLE>2)b,
and

r O (P{C,;, CI)NKLE,>2)b) .
Hence

(W{C,, CINKLE,>2)b) = (KLE>2)(Y{C,, €.} D).

Theorem 3.17. The following propositions (3.23) to (3.32) are
equivalent :
(3.23) €, ¢,.
(3.24) vi{C,, €} =v{C,, €} and V{€,K6 C}=v{C,6GC,}.
(3. 25) vi{C,,6 C,} is simple and takes all values of LG,.
(3. 26) i€, €} is simple and takes all values of LG, .
(3.27) V{C,, €} is simple and takes all values of LG,.
(3. 28) V{CS,, €} is simple and takes all values of LE,.
(3. 29) vi{€,C} and V{S,, €} are inverse to each other.
(3.30) Vi€, 6 €} and {€,, €} are inverse to each other.
(3.31) Vi€, G} and V{C,, €} are inverse to each other.
(3. 32) Vi€, €} and {C,, €} are inverse to each other.



180 H. F. ]J. Lowic

Theorem 3.17 is obvious from Theorem 3. 9.

Theorem 3.18. Let € 3€,. Then V{C,, C} is an isomorphism of
LG, onto LE,.

Proof. By Theorem 3.17, ¥{C,, €} is simple. See Theorem 3. 16.
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