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On Some Representations of Lattices of Law Relations

By H. F. J. LOWIG

In this paper, I am going to consider some representations of the
set of all law relations on a freely generated algebra. It is understood
that all conventions concerning terminology and notation introduced in
(II), (III) and (IV) hold in this paper. (See the bibliography at the end of
the paper.) In particular, it is understood that the following conven-
tions hold:

S is a set, and σ is an S-system of sets hence if s € S, the value
σs of σ at 5 is a set. By an operator system of species σ on a set A
is meant a representation F of S such that, for s G S, Fs is a σ-s-operator
on A. (See (II), Definitions 1.1 and 1.2.) An algebra of species σ (or
shortly: an algebra) on A is determined if σ , A, and an operator system
of species σ on A are given. 31 and 23 are algebras. The operator
system corresponding to 31 is denoted by <3X>. Hence if §1 is an algebra
on Ay seS, and aeAσ\ <31>s is a σ-s-operator on A, and «3l>s)# is an
element of A. If there exists a subset Q of A which generates 31 and
has the property that

for seS, aeAσ

and

if s v €S and a€.AσSv for ^ = 1,2, and s±φs2 or ^

then SI is called freely generated. In this case, Q is unique; it is called
the free basis of 31. (£, Sx and (£2 are freely generated algebras on the
sets C, Ci and C 2; their free bases are Dy Dx and D2. 9Jί, (33l1 and SJK2

are sets of algebras.

The title of this paper is justified by (III), Satz 2.10.

§1. The operators Ψ{&19 ©2} and ψ{&ly KJ.

DEFINITION 1.1. £y Ψ ^ , K2} is meant {(Φ(£2)((£1/r) r e L K J . (See
(III), Definitions 2.1 and 3.1.)

By (III), Satz 3.4, Ψ{&19 &J is a representation of L ^ into L(£2.
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Theorem 1.1. Ψ{®, &} is the identical representation of L(L

Proof. See (III), Satz 3. 8.

If ψ is a representation of LE^ into the set of all relations on C2,
let us say that ψ is monotonic if

^r'C^r" for r'eL^, r"eL&ly r'Ό".

Theorem 1.2. Ψί&i, ©2} is monotonic.

Proof. See (III), Satz 3. 9.

Theorem 1.3.

(ψ{<s2,

Proof. Let c/ and c/' be elements of Cx with c/^ΦSjSty/'. Let Λ2

be a homomorphism of Ki into (£2 and h be a homomorphism of (£2 into
SX. Then A A2 is a homomorphism of Kx into 91. Hence, by (III), Defini-
tion 3.1 and and Satz 3. 6,

and

This proves that

The theorem now follows from (III), Satz 3.10.

Theorem 1.4. Let reL^. Then

Proof. In Theorem 1.3, put Af=[K 1 /r] .

DEFINITION 1.2. By ψί&x, S J ^s meant the representation of
he set of all congruence relations on (£2 defined by the condition that,

for r£L&19 (ψ{®i, &2})r is the intersection of all congruence relations r*
on K2 such that

(1.1)

Theorem 1.5.

Proof. See (III), Satz 3.11.
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Theorem 1.6. Let r be a law relation on &ly let c/ and c/' be
elements of C1 with c/rc/', and let h be a homomorphism of Ĝ  into (£9.
Then

Theorem 1. 7. Let r be a law relation on Ĝ  and r* be a congruence
relation on (£2. Then

if and only if (1.1) holds.

Theorem 1. 8. Let rv e L(£v for v = \,2. Then

if and only if

Theorem 1.9.

(ψ{^, ©2})((Ψ{e2,e i})r)C^ for

Theorem 1.10. Let r be a law relation on G .̂ Then
is a law relation on (£2. (In other words: ψ{^ιt K2} is a representation
of LG; into Le2.)

Proof. Let c/ and c/' be elements of C2 such that

and A be a homomorphism of ®2 into ©2. Let c/ and c/' be elements of
Q with c/rc/' and r* be a congruence relation on (£2 satisfying (1.1).
Then

Let /r2 be a homomorphism of ©x into (£2. Then

Hence

(see (III), p. 132, line 16) and

(/*2 <:/)

(See (III), p. 133, line 14.) Hence
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Hence

By Theorem 1. 7,

Hence

z2'{R{{Hr*).h))z2" y

(Hr*)(hc2') = (Hr*)(hc2");

and

(hc2')r*(hc2").

By Definition 1.2,

This proves that (ψ{^iy &2})r is a law relation on K

Reformulation of Theorem 1. 5.

(Ψ{&19&2})((ψ{®ιΛ2})r)^r for r

Theorem 1.11. ψ{&, K} is the identical representation of

Proof. See (III), Satz 3.13.

Theorem 1.12. ψ{^iy K2} is monotonic.

Proof. Let r'el&iy rf/eL^ and r"~^>r\ Then, by Theorem 1.5,

hence

hence

by Theorem 1. 8.

Theorem 1.13.

iψφx, K J X t Ψ f t , (£2})r /or

Theorem 1.13 is obvious from Theorems 1. 4 and 1. 8.

Theorem 1.14. Let \CX\<1. Let reL^. Then (Ψ{&19 &2})r is the
all relation on C2, and (ψ{&19 &2})r is the equality relation on C2.

Proof. The first part of the theorem is obvious. If r* is any
congruence relation on (£2 then (1.1) holds. Hence the intersection of
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all congruence relations on (£2 satisfying (1.1) is the equality relation
on C2. This proves the second part of the theorem.

Theorem 1.15.

Proof. By Theorem 1. 3,

By Theorem 1. 8,

(Φe jaK ^ (ψ{ea, ε

DEFINITION 1.3. By ψo{&19 ©2} & meant the representation of
ί«fo £/z£ s#£ 0/ <z// relations on C2 defined by the following condition : if
r£L&ly c2'eC2 and c2"eC2 then c2'((ψ0{&ly &2})r)c2" holds if and only if
there exist elements c/ and c/' of Cλ with c/rc/' and
conf){c/, c/7}. (See (III), Definition 1.1.)

Theorem 1.16. Let r€l&19 c2'eC2 and c2"£C2. Then
(/" <̂ ŵ  ^^/y «/ ίAβ following two conditions are satisfied:

(1.2) I Θ[(PS2) c/, (P(E8) c2"] I ̂  IAI (See (II), Definition 3. 2.)

(1. 3) 77ter0 exist elements c/ ^wrf c/' of C1 with c/rc/7 ^wrf # homomorphism
h of Kj mfo S2 5wc/? //?<ar̂  hc/ = c2 and hc/' = c2

//.

Proof. Let (1.2) and (1.3) hold. Let cr and c7/ be elements of Cx

with {c7, c/7} ({Kj, K2} -conf) {c/, c/7} and ^x be a homomorphism of (£2 into
e x with h,z2

f = e and hxz2" = z". (See (III), Satz 1.2 and Satz 1.5.) Then,
by (III), Definition 2.1,

Hence cVc". By Definition 1.3,

The converse implication follows from (III), Satz 1.1 and Satz 1. 2.

Theorem 1.17. Let rβL^. Then

Proof. If c/ and c2" are elements of C2 with c2'((ψ0{&ly &2})r)c2"
then ^ ( ( f ί e ^ e j j r ) ^ holds by Theorems 1.16 and 1.6.

By Theorems 1.17 and 1.13,

£2})r for r

Theorem 1.18. Let r be a law relation on 0^. L^/ c/ ^wrf c2

/7

elements of C2 with
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and

Then c2

Proof. Let c/ and c/' be elements of Cx with {c/, c/'} ( { ^ , (£2} -
conf) {c/, c2"}. Then there exists a homomorphism h of K2 into ®t with
Ac2

/ = c1

/ and hc2

// = c/\ By (III), Satz 3.6, c/rc/'. Hence c2'((ψ0{&19 &2})r)c2".

Theorem 1.19. Let r be a law relation on K2. Let c/ and c2" be
elements of C2 with

and

Then c2'rc2".

Proof. By Theorem 1.18,

By Theorems 1.17 and 1. 9, c/rc/'.

Theorem 1.20. Lβί

lAI^IAI or

(See (II), Definition 3. 4.) Then

Proof. It is obvious that

for c / ^ / ,

After this is said the present theorem follows from Theorem 1.18.

Theorem 1.21. Let rx be a law relation on K1# Then

(See (III), Definition 2. 2.)

Proof. The assertion follows from the preceding theorem if
IAI ^ IAI. Let IAI > IAI Let r2 be a law relation on (£2 such that
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Let c/ and c/' be elements of C1 with c/z^c/' and c/ and c2" be elements
of C2 with {c/, c/'Hί^, (£2}-conf){c/, c2"}. Then

and

Hence

By Theorem 1.8,

This proves the assertion.
Our concept of a relation of C corresponds to Birkhoffs concept of

a set of equations between functions of the given species. (See (I),
p. 440, line 2 from bottom.) If B is a relation on Cλ, and \D2\—rn, then
our (ψ{Ki, &2})((®&1)B) corresponds to Birkhoffs set of all equations in
m primitive symbols following from B, and our
corresponds to Birkhoffs F(B, m).

Theorem 1.22. Let B be a relation on Cλ. Then

B.

Theorem 1. 22 is obvious from Theorem 1. 5.
Compare Theorem 1. 22 with the following statement occurring in (I),

p. 441, line 2: "F(B, m) satisfies all the laws of B"

Theorem 1.23. Let B be a relation on Cx. Let Q be a basis of Sί.
Let |Q| = |D 2 | . Let (ΦKjSί^S. Then SI is a homomorphic image of

Proof. If |3t| = 0 then |C2 | = 0 by (II), Theorem 1.3, and the
assertion is obvious. Let |Sί|ΦO. By Theorem 1.15,

The assertion now follows from (III), Satz 3. 22.
Compare Theorem 1.23 with the following statement occurring in

(I), p. 441, lines 3 and 4: "Every algebra of species 2 generated by
m elements and of which B is a set of laws is a homomorphic image
of F(B, m)r
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§2. The relation (

DEFINITION 2.1. We define a cardinal lσ in the following way:

(2.1) If there exists an element s0 of S with |σso |=:O, and | σ s | < ; l
for all elements s of S, then /σ = l.

(2.2) If |σs | = l for all elements s of S then lσ = 2.

(2. 3) If there exists an element s of S with | σ s 11> 2 then lσ = mσ.

It follows from this definition and from (II), Definition 3. 4, that

except the case considered under (2. 2). Also,

h = 2mσ

except the case considered under (2. 1).

Theorem 2.1. Let \D\^lσ. Then | C | ̂  2.

Proof. The assertion is obvious if | D | ^ 2 . If | D | = / σ = l then
the hypotheses of (2.1) are satisfied, S is not void, and | C | ^ 2 by (II),
Theorem 2.8.

DEFINITION 2.2. (^iz:(£2 or ^ZΏ^ means that | A | <1|A1, or lσ<,\D2\,

or | S | = 0 and | A I < 1
From this definition it is obvious that &λπi&2 or ^2rz^λ for any two

freely generated algebras (^ and (£2.

Theorem 2. 2. Let Sΰl be a set of freely generated algebras. Then

cz is a quasi-ordering of ςJίί.

Theorem 2. 3. Let /σ ^ | AI and ^ c=<£2. Then lσ ^ | AI -
The proof of Theorems 2. 2 and 2. 3 is left to the reader.

DEFINITION 2.3. K1cnS2 means that G^inG^ <zs W0// as &2 [=:&!.
Hence ^ o ^ if and only if |AI = IAI> or / σ ^ | D J for ^ = 1,2, or

| S | = 0 and | D J ^ 1 for v = l,2.

Theorem 2. 4. L ^ Ίίl be a set of freely generated algebras. Then o
is an equivalence relation on Sΰl.

Theorem 2. 4 is obvious from Theorem 2. 2.

Lemma 2.1. L̂ tf | D2 \ < \ D1 \. Let c0 € d . L ^ r ft^ ί̂ ^ relation on
Cλ defined by the condition that, for c / e d , c / ' e d , c/rc/7 holds if and
only if

(2. 4) I ©[(/><£,) c/, (PS,) c/'] I < IAI ,
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and there exist homomorphisms h! and h" of Kx into ^ such that k'00 = 0/

and h//c0 = c1

//. Let A/ and h" be homomorphisms of Gt̂  into K lβ Then

(2. 5) (A

Proof. Let A2 be a homomorphism of 6^ into (£2 and /^ be a homo-

morphism of (£2 into G^. For abbreviation, let us put

h2(h/cQ) = c2'

and

A2(A1

//c0) = c a

/ / .

Let c/ and C!/7 be elements of Cx such that

Then (2. 4) holds. Let hf be a homomorphism of (£2 into Kj such t h a t

hfc2' = c/ and hfc2" = c/\ Let hf be a homomorphism of Ej into ©2 such

that kξzί = tj and A*c1

// = ca

//. Then

and

Af (WA/'Co)) = c/'

Hence c/rc/'. Hence

Because (ΘK^r is a law relation on

(A^A

Hence

(

Hence

(AxίA^A/

By (III), Satz 3. 6,

Applying Satz 3. 6 of (III) again, we find that (2. 5) holds.

DEFINITION 2.4. 5y pK is meant the element of (aμσ)
c defined by

the condition thaty for c € C, (/o(£)c w that element a of aμσ for which

c£((E&)D)a. If c e C , (/oK)c w ra/ferf /fe raw^ of c wίίA r β ^ c ί fo (£.

(See (IV), Definitions 1 and 2 and Theorems 2 and 3.)

Lemma 2.2. Let c be an element lof Cx and h be a homomorphism

of ©! into E 2 Then
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(2. 6) (p<E2)(*c)

Proof. (2.6) obviously holds if ceD1. Let s be an element of S
and c be an element of CΓ such that

(p&2)(h(ck)) ̂  (pEJίdfe) for Jfe G σs .

If | σ < s [ = 0 then

If |σs |ΦO then

In both cases,

This proves that (2. 6) holds generally.

Lemma 2. 3. Let m be a cardinal. Let r be the relation on C defined
by the condition that, for c '€C, c"€C, cVc" holds if and only if c' —cr/,
or (p&jz'^m and (pK)cr/^m. Then r is a law relation on K.

Proof. It is obvious that r is an equivalence relation on C. Let
be an element of S, and let c' and c" be elements of C σ s such that

((/k)r(c"k) for kβσs.

Let

Then c'φc". Let &0 be an element of σs such that

O RQ '—γ~ C /VQ .

Then (pWk^rn and (/oe)(c"*o)^»ι. Also,

(p^)(«^>sW) = Suc((p&)-c')

Hence

(p^)(«(S>sy) ^ m.

For a similar reason,

(p<E)((<<£>s)c") ̂  m.

Hence

Hence r is homomorphic with respect to (£.
Let c' and c/7 be elements of C with cVc/7. Let h be a homomor-

phism of & into (£. Let
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Ac' Φ Ac".

Then c ' φ c " . Hence (p&jc'^ni and (p&)c"^im. By Lemma 2.2,

(f>(£)(Ac') ^ m

and

Hence

(ht')r(ht").

Hence r is a law relation on C.

Lemma 2.4. L<?/ r be a relation on C. Let μ = ω if μσ=2y and
P^Pσ if Pσ^^ Let x be the b^-system of relations on C which has the
following two properties:

I. xθ = r.
II. // γ£b{2, μ}, c 'eC and c"eC then c'(rγ)c" holds if and only

if at least one of the following conditions (2. 7) to (2.12) is satisfied:

(2. 7) c'(rα:) c" /or stfm^ α: e αγ .

(2. 8) cr = c" .

(2. 9) C"(XQOC' /or some a e αγ .

(2.10) TA^r^ ^ tr/sί /̂/ element z of C and elements aλ and cc2 of αγ with

(2.11) TΛ^r^ exist an element s of S, elements c' ^^J cr/ of Cσs and an
element β of (σγ)σs with {c'k){x(βk)){c"k) for keσsy «&>s)c' = c'
and

(2.12) There exist elements c/ and c/' of C, an element oc of αγ and a
homomorphism h of & into K with c/ίxαOc/', hc( = cr and hc1

// = c/\

Then

The proof is left to the reader.
Compare Lemma 2. 4 with Definition 5 on p. 440 of (I).

Lemma 2.5. Let c0 δ# an element of C and m be a cardinal which is
<C(7Γ®)co (See (II), Definition 3.3) Let r be the relation on C defined by
the condition that, for c 'eC, c"eC, cVc" holds if and only if \®[(P1$,)c'9
(PKJc"]! <m, and there exist homomorphisms hf and h" of (£ into K with
h'co = c' and A//c0 = c//. Let q be an element of C with ^((ΘG^rJCo. Then

Proof. If c7 and cr/ are elements of C with cVc" then, by Lemma 2. 2,
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and

(p©) c" ;>(/>(£) c0.

Let rx be the relation on C defined by the condition that, for c'eC,
c" e C, c V holds if and only if c' = c", or (P&)c'^(P&)c0 and
Then

and rx is a law relation on & by Lemma 2. 3. Hence

Hence

(2.13) if c' and c" are elements of C with c'((@S)r)c" then c' = c", or
and

Let us now define an ordinal μ and a bμ-system r of relations on
C in the same way as in Lemma 2. 4. Then

I assert that the following proposition holds :

(2.14) Let γ G b {2, /*}, ^0 be a homomorphism of © into (£, and cr and
c" be elements of C such that c 'φc", c/(xγ)c// and hoc" = co.
Then there exist an element a of αγ, a homomorphism hx of K
into K and elements c/ and c/' of C such that c/φc/ ' , c/ί
and AjC^^Co.

To prove (2.14), we first observe that

by Lemma 2. 2. By (2.13),

Hence

(2.15)

By the definition of r, and because c 'φc", at least one of the proposi-
tions (2.7) and (2.9) to (2.12) holds. If (2.7), (2.9) or (2.10) holds,
(2.14) is obvious. If (2.11) holds then, by (2.13),

and

(Pe)c" >(/><£) Co,
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contrary to (2.15). Hence (2.11) does not hold. If (2.12) holds then
c/7, and

This completes the proof of (2.14).
It is now obvious that the assertion of (2.14) can be improved by

adding that a can be made =0. I.e., under the hypotheses of (2.14),
there exist a homomorphism hλ of (£ into (£ and elements c/ and c/' of
C such that c/φc/ ' , c/rc/' and h1c

// = c0.
Let us now assume that

Ci 4= c 0 .

Then the hypotheses of (2. 14) are satisfied if we put 7 = /*, c/==c1 and
C^^CQ and let h0 be the identical representation of C. Let hλ be a
homomorphism of (£ into & and c/ and c/' be elements of C such that
c/Φc/7, c/rc/7 and / ^ C / ^ C Q . Let /z" be a homomorphism of K into E
with A//co = c//. (A" exists by the definition of r.) Then

(/v/^Co^Co.

By (II), Theorem 3.10,

(h1.h")\> = \) for be(P©)c 0.

Hence

A^beί) for be(P(£)c0.

By (II), Theorems 3.11 and 3.1,

Hence

Hence

(2.16)

But by the definition of r,

Hence

contrary to (2.16). Hence our assumption that qφCo is wrong. Hence
cx=:c0 as asserted.

Theorem 2.5. (SjtziG^ if and only if

(2.17)
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Proof. Let K1i=E2. We wish to prove that (2.17) holds. This is
obvious if | S | = 0 a n d l A I ^ L Let |S|ΦO or IAI>1- If l A I ^ I A I
then (2.17) holds by Theorem 1.20. Let | A K I A I By Definition 2.2,

If 2mσ ^ IAI then (2.17) holds by Theorem 1. 20. Let

IAi<2mσ.

Then lσ<^2mσy and we have the case considered under (2.1). Hence

K = mσ = 1,

and

IAI=1

Let s0 be an element of S such that | σs0 \ = 0. Let r be a law relation
on (£2, and let c/ and c/' be elements of Cλ with

(2.18)

We wish to prove that

(2.19)

holds. By (II), Theorem 3.15, H E j c / ^ l and (π ̂ ) c / ' ^ 1. Hence

If ^ [ ( P e j c / , (PS1)c/ /]|<2, (2.19) holds by Theorems 1.18 and 1.17.
Let

Then (»<£,) c/ = (wei)c1" = l. Let b' be the only element of (/><£,)<:/ and
b" be the only element of (P&X". Then b 'φb" . Let h be a homo-
morphism of GÊ  into ®2. Let cΰ be the void system, h^ be a homomorphism
of ®! into ©x such that

and h! and h" be homomorphisms of Sj into (£2 such that

By (II), Theorem 3.8,

(2. 20) /ί'c/ = he/

and

(2.21) h"t/' = fa/'
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Also

h(h0W) = h(hob") = /*((<<£,> s0) c0) = (<<£2>50) cr0.

Hence

h(hob') = Λ"b'

and

W ) = /z'b".

By (II), Theorem 3. 8,

(2.22)

and

(2.23)

By (2.18),

(2.24)

and

(2.25)

By (2. 20), (2. 23) and (2. 24),

By (2.21), (2.22) and (2.25),

(h(hoc/))r (he/').

Hence

(2.26) c/((Ψ{®2, Gy

and

(2.27)

Also,

(2.28)

By (II), Theorems 3.11 and 3. 2,

Hence (P®i)(Aoc/) is void. For a similar reason, (PG^MAoC/') is void.
Hence (2.26), (2.27) and (2.28) imply

(2.29)

(2.30)

and

(2.31)
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(2. 29), (2. 30) and (2. 31) imply (2.19). Hence

By Theorem 1.13,

Hence (2.17) holds.
Let us now start from the hypothesis that Q ĉnQ^ does not hold.

Hence

or |A
IAKIAI,

and

Also,
|CJ:>2;

for if IAI = 1 then |S|ΦO. We wish to prove that (2.17) does not
hold. This follows from Theorem 1.14 if C2 is void. Therefore let us
assume that C2 is not void.

Let us, firstly, treat the case that

| σ s | = l for seS.

Then mσ = l, /σ = 2, and

If IAI = 0 then | C21 = 0, contrary to hypothesis. Hence

IAI=1
and

IAI>1.
By (II), Theorems 3.12 and 3. 15,

^ l for c ^ Q ,

and

(τr6:2)c2 = 1 for c2 e C2.

Let r2 be the all relation on C2, and let

Then, for c/GQ, c/ 'eQ, the following propositions (2.32) to (2.36) are
equivalent :

(2.32) c/r l C ι".
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(2.33)

(2.34) ! ©[(pejc/, ( P W : ι <ς I .

(2. 35) There exist elements c/ and c2" of C2 with

{c2

/,ca

//}({KB,eι}-conf){c1

/,c1

//}.

(2.36) c/αto^,^})^/'.

Hence

By (III), Satz 2.8, rx is a law relation on Klβ Hence

Hence (ψ{K2, K J ) ^ is not the all relation on C1. On the other hand,
it is obvious that (Ψ{K2, K J ) ^ is the all relation on C,. Hence (2.17)
does not hold.

Let us, secondly, treat the case that

I σs I =t= 1 for some element 5 of S.

Then

K = m σ .
By (II), Theorem 3.19,

IAI < sup

Let c0 be an element of C\ with

Let a be an element of C?1 such that

ώ φ b for some element b of

Put

Then

Ab φ b for some element b of ^ Q

Hence

ΛCO Φ Co .

Define a relation r on Cλ by requiring that, for c/£Cly c1

//£C19 c/rc/
holds if and only if

and there exist homomorphisms h! and h" of Sj into Kx with Λ/c0 = c/
and A//c0 = c1

//. Then, by Lemma 2 . 1 ,
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By Lemma 2. 5, (hco)((®&1)r)co does not hold. By Theorem 1. 9,

does not hold. Hence (2. 17) does not hold.
This completes the proof of Theorem 2. 5.

§3. Further theorems on the operators Ψ{K1? K2} and

Theorem 3.1. Let ^

Proof. See Theorems 1.3, 1.15 and 2. 5.

Theorem 3.2. Let G^czC ,̂. Let 9 ^ as well as ςJDΐ2 be an algebra or
a set of algebras. Let

Then

Proof. See Theorem 3.1.
Theorem 3. 2 represents an improvement of Satz 3. 3 of (III).

Theorem 3.3. Let ^πz^. Then each of Ψ{£2, (SJ -Ψ{&19 K2},
® j . ψ {e l f e2}, ψ{g;, e j . ψ { ^ , e2} and ψ{&2, e j . ^ { e l f e2} « ^

identical representation of LK1#

Proof. Let r e L ^ . Then, putting aK = [©1/r] in Theorem 3.1, we
find that

= r =

Hence, by Theorems 1. 2 and 1.13,

By Theorem 1. 5,

By Theorem 2. 5,

Theorem 3. 4.
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Proof. For the case that &λ cz K2, Theorem 3.4 follows from
Theorem 3.3. For the case that S^czS^, it follows from Theorem 2.5.

Theorem 3.5. Let Ψ{&2, EJ •¥{©!, <£2} be the identical representation

of Le lβ TAew e ^ e , .

Proof. Let ^ c z ^ . Then, by Theorem 3.3, ¥{<£„ KJ ψ {©2, KJ is
the identical representation of L(£2. Hence

By Theorem 2.5, ^

Theorem 3. 6. Let ^ c r ^ . Let r^eL^ for u = 1,2. Then

(3.1)

(3.2)

Proof. (3.1) implies (3.2) by Theorems 1.4 and 1.9. If (3.2) holds
then

by Theorem 1. 2, and (3.1) holds by Theorem 3. 3.

Theorem 3.7. Let G^ciGΰj. Lei ^ αwf r2 δe /aw relations on C1.
Then the following propositions (3. 3) to (3. 5) are equivalent:

(3.3) r,Cr,.

(3.4)

(3.5)

Theorem 3. 7 is obvious from Theorems 1. 2, 1.12 and 3. 3.

Theorem 3.8. Let

fλe following propositions (3. 6) fo (3. 8) ^r^ equivalent:

(3.6) %2 ί5 simple.

(3.7) %! te*β5 Λ// ^ / W ^ of LK1#

(3.8) Xi X2 ^ 'Λβ identical representation of LKX.

Proof. By Theorem 3.3, %!-%2 is the identical representation of
LS^, or %2 %i is the identical representation of L(£2. In the latter case,
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it is obvious that (3. 6) as well as (3. 7) implies (3. 8). Conversely, (3 8)
implies both (3. 6) and (3. 7).

Theorem 3.9. The following propositions (3.9) to (3.22) are equivalent:

(3.9) (S^cze,.

(3.11) Ψ{&19 £2} is simple.

(3.12) ψ{&ly e2} is simple.

(3.13) Ψ{(£2, KJ te*^ #// ra/«^ of

(3.14) ψ{&2, KJ ta£es Λ// fw/wes of LK,.

(3.15) Ψ{(£2, KJ •¥{(£„ K2} is the identical representation of

(3.16) Ψ{®2> ®i} #ΛH^i> ®2} ^ ^ identical representation of

(3.17) ψ{&2, Ki} Ψ{®i, K2} w ίAe identical representation of

(3.18) ψ{£2, Kxl ψ'ί©!, K2} i5 the identical representation of

(3.19)

(3. 20)

(3.2i)

(3. 22)

Proof. (3.11) to (3.18) are equivalent by Theorem 3.8. (3.9) is
equivalent to (3.10) by Theorem 2.5 and equivalent to (3.15) by Theorems
3.3 and 3.5. (3.19) to (3.22) are equivalent by Theorem 3.4. (3.9)
implies (3.19) by Theorem 2. 5. (3.19) implies (3.15) by Theorems 1. 4
and 1.9.

Theorem 3. 10. Let S^dS^. Then

Proof. By Theorem 3.9, Ψ{^ly^2} is simple. Hence Ψ{&ly <£2} is
a one-to-one representation of LEX onto a sub-set of L(£2.

Theorem 3.11. Let ( E 1 α e a . Then \L&1\ = |LK 2 | .
It follows that, in particular, | L ^ | = | L(£21 if | Dx | ̂  /σ and | D2 \ ^ /,,..

DEFINITION 3.1. By wσ is meant |LE| ί/ | D | = /σ. (See (IV), Theorem

11.)

Theorem 3.12. wσ^2.

Proof. Let \D\ = lσ. Then, by Theorem 2.1, | C | ^ 2 . Hence the
equality relation on C is different from the all relation on C. Hence

Theorem 3. 13. | LK | <; ww.
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Theorem 3. 14. Let \D\^,lσ. Then \L&\ = wσ.

Theorem 3.15. The relation d on LK determines a wσ-lattice-algebra

on L(£. (See (III), p. 133, line 5 from bottom.)

Proof. See (III), Satz 2.9.

DEFINITION 3. 2. By £(£ is meant the wσ-lattice-algebra on L(£ deter-
mined by the relation CZ on L(£.

Theorem 3.16. Let G^IZIQ^. Then Ψ{&2, Ĝ } is a homomorphism of
£(£2 onto 8©,.

Proof. By Theorem 3.9, Ψ{£2, S J takes all values of Uίλ. Let

b e {L&2)
lV> Q « Ά Then, by (III), Satz 3.10,

(ψ{εa, ejxKSβ^i)*) - Kse^iHΨίe*, e j .6).

Let r be a law relation on Ĝ  such that

r ^ ί Ψ ί e , , ^ } ) ^ ) for Λeb{I,ΩWff},

Then, by Theorems 2. 5 and 1. 8,

(¥{<£„ <£*})Ofc* for

Hence

and

Hence

Theorem 3. 17. TAe following propositions (3.23) to (3.32) are
equivalent:

(3. 23) e x • (E2.

(3.24) t{<£2, e j = ψ{e2, e j ΛΛrf ψ{®19 e j = ψ { ^ , e 2 } .

(3. 25) Ψ {®!, K2} w simple and takes all values of L(£2.

(3.26) φ{&!, K2} 15 simple and takes all values of L(£2.

(3.27) Ψ{K2, e j w 5/mί/β ŵ<i te*^5 Λ// t β/w^ o/ L©x.

(3.28) ψ{®2> ®i} ^ simple and takes all values of LKX.

(3.29) Ψ{&i,ε2} ««^ ^{^2,^1} are inverse to each other.

(3.30) ^{^1,^2} and ψ{®2> ®i} ^ ^ inverse to each other.

(3.31) ^{®!, K2} ^^ύί Ψ j ^ ̂ 1} «rβ inverse to each other.

(3.32) ψί^jKJ <zwd ^{&2> ®i} «rβ inverse to each other.
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Theorem 3.17 is obvious from Theorem 3. 9.

Theorem 3. 18. Let (^•Kg. Then Ψ{&2> ®J is an isomorphism of

L<£2 onto L&λ.

Proof. By Theorem 3.17, Ψ{&2, &J is simple. See Theorem 3.16.
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