<table>
<thead>
<tr>
<th>Title</th>
<th>On some representations of lattices of law relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lowig, H. F. J.</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 10(2) P.159–P.180</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1958</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8250</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8250</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
On Some Representations of Lattices of Law Relations

By H. F. J. Lowig

In this paper, I am going to consider some representations of the set of all law relations on a freely generated algebra. It is understood that all conventions concerning terminology and notation introduced in (II), (III) and (IV) hold in this paper. (See the bibliography at the end of the paper.) In particular, it is understood that the following conventions hold:

S is a set, and σ is an S-system of sets; hence if s ∈ S, the value σs of σ at s is a set. By an operator system of species σ on a set A is meant a representation F of S such that, for s ∈ S, Fs is a σs-operator on A. (See (II), Definitions 1.1 and 1.2.) An algebra of species σ (or shortly: an algebra) on A is determined if σ, A, and an operator system of species σ on A are given. A and B are algebras. The operator system corresponding to A is denoted by <A>. Hence if A is an algebra on A, s ∈ S, and a ∈ Aσs, <A>s is a σs-operator on A, and <A>s)a is an element of A. If there exists a subset Q of A which generates A and has the property that

\[(<A>s)a \notin Q \text{ for } s \in S, \quad a \in A^{\sigma_1},\]

and

\[(<A>s_1)a_1 = (<A>s_2)a_2\]

if \(s_1 \in S\) and \(a \in A^{\sigma_2}\) for \(\nu = 1, 2,\) and \(s_1 \neq s_2\) or \(a_1 \neq a_2,\)

then \(A\) is called freely generated. In this case, \(Q\) is unique; it is called the free basis of \(A\). \(\mathcal{C}, \mathcal{C}_1,\) and \(\mathcal{C}_2\) are freely generated algebras on the sets \(C, C_1,\) and \(C_2;\) their free bases are \(D, D_1,\) and \(D_2,\) \(\mathcal{M}, \mathcal{M}_1,\) and \(\mathcal{M}_2\) are sets of algebras.

The title of this paper is justified by (III), Satz 2.10.

§1. The operators \(\Psi_1{\mathcal{C}_1, \mathcal{C}_2}\) and \(\Psi_2{\mathcal{C}_1, \mathcal{C}_2}.\)

Definition 1.1. By \(\Psi_1{\mathcal{C}_1, \mathcal{C}_2}\) is meant \(\{(\Phi\mathcal{C}_2)(\mathcal{C}_1/r); r \in L\mathcal{C}_1\}.\) (See (III), Definitions 2.1 and 3.1.)

By (III), Satz 3.4, \(\Psi_1{\mathcal{C}_1, \mathcal{C}_2}\) is a representation of \(L\mathcal{C}_1\) into \(L\mathcal{C}_2.\)
Theorem 1.1. $\Psi\{E, C\}$ is the identical representation of LC.

Proof. See (III), Satz 3.8.

If ψ is a representation of LC into the set of all relations on C_2, let us say that ψ is monotonic if

$\forall r', r'' \in LC_1, r' \subset r''$.

Theorem 1.2. $\Psi\{C_1, C_2\}$ is monotonic.

Proof. See (III), Satz 3.9.

Theorem 1.3.

$\Psi(C_2, C_1)((\Phi C_2)\mathbb{A}) \supset (\Phi C_1)\mathbb{A}$.

Proof. Let c_1' and c_2'' be elements of C_2 with $c_1'((\Phi C_2)\mathbb{A})c_2''$. Let h_2 be a homomorphism of C_2 into C_2 and h be a homomorphism of C_1 into C_2. Then $h \cdot h_2$ is a homomorphism of C_1 into C_2. Hence, by (III), Definition 3.1 and Satz 3.6,

$h(h_2 c_1') = h(h_2 c_2'')$,
$h_2 c_1'((\Phi C_2)\mathbb{A}) h_2 c_2''$,
and

$c_1'((\Phi C_1)(C_2/\Phi C_2)\mathbb{A}))c_2''$.

This proves that

$\Psi(C_2, C_1)((\Phi C_2)\mathbb{A}) \supset (\Phi C_1)\mathbb{A}$.

The theorem now follows from (III), Satz 3.10.

Theorem 1.4. Let $r \in LC_1$. Then

$(\Psi(C_2, C_1)((\Psi(C_1, C_2)) r) \supset r$.

Definition 1.2. By $\Phi(C_1, C_2)$ is meant the representation of LC_1 into the set of all congruence relations on C_2 defined by the condition that, for $r \in LC_1$, $(\psi(C_1, C_2)) r$ is the intersection of all congruence relations r^* on C_2 such that

(1.1) $(\Phi C_1)(C_2/r^*) \supset r$.

Theorem 1.5.

$(\Phi C_1)(C_2/\Phi(C_1, C_2)) r \supset r$ for $r \in LC_1$.

Proof. See (III), Satz 3.11.
Theorem 1.6. Let r be a law relation on \mathbb{C}_1, let c_1' and c_1'' be elements of \mathbb{C}_1 with $c_1'rc_1''$, and let h be a homomorphism of \mathbb{C}_1 into \mathbb{C}_2. Then
\[(hc_1')((\psi(\{\mathbb{C}_1, \mathbb{C}_2\})r)(hc_1'')].\]

Theorem 1.7. Let r be a law relation on \mathbb{C}_1 and r^* be a congruence relation on \mathbb{C}_2. Then
\[r^* \supset (\psi(\{\mathbb{C}_1, \mathbb{C}_2\})r\]
if and only if (1.1) holds.

Theorem 1.8. Let $r_\nu \in L\mathbb{C}_\nu$ for $\nu = 1, 2$. Then
\[r_\nu \supset (\psi(\{\mathbb{C}_1, \mathbb{C}_2\})r_1\]
if and only if
\[(\psi(\{\mathbb{C}_2, \mathbb{C}_1\})r_2 \supset r_1].\]

Theorem 1.9.
\[(\psi(\{\mathbb{C}_1, \mathbb{C}_2\})(\psi(\{\mathbb{C}_2, \mathbb{C}_1\})r) \subset r \quad \text{for} \quad r \in L\mathbb{C}_2.\]

Theorem 1.10. Let r be a law relation on \mathbb{C}_1. Then $(\psi(\{\mathbb{C}_1, \mathbb{C}_2\})r$ is a law relation on \mathbb{C}_2. (In other words: $\psi(\{\mathbb{C}_1, \mathbb{C}_2\}$ is a representation of $L\mathbb{C}_1$ into $L\mathbb{C}_2$.)

Proof. Let c_2' and c_2'' be elements of \mathbb{C}_2 such that
\[c_2'((\psi(\{\mathbb{C}_1, \mathbb{C}_2\})r)c_2'']\]
and h be a homomorphism of \mathbb{C}_q into \mathbb{C}_q. Let c_1' and c_1'' be elements of \mathbb{C}_1 with $c_1'rc_1''$ and r^* be a congruence relation on \mathbb{C}_2 satisfying (1.1). Then
\[c_1'((\Phi_{\mathbb{C}_1})(\mathbb{C}_2/r^*)c_1''].\]
Let h_2 be a homomorphism of \mathbb{C}_1 into \mathbb{C}_2. Then
\[(h(h_2c_1'))r^*(h(h_2c_1'')).\]
Hence
\[(Hr^*)(h(h_2c_1')) = (Hr^*)(h(h_2c_1''))\]
(see (III), p. 132, line 16) and
\[(h_2c_1')(R((Hr^*)\cdot h))(h_2c_1'').\]
(See (III), p. 133, line 14.) Hence
\[c_1'((\Phi_{\mathbb{C}_1})(\mathbb{C}_2/R((Hr^*)\cdot h)))c_1''].\]
Hence

$$(\Phi \mathcal{C}_1)(\mathcal{C}_2 / R((Hr^*) \cdot h)) \supset r.$$

By Theorem 1.7,

$$R((Hr^*) \cdot h) \supset (\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r.$$

Hence

$$c_2'(R((Hr^*) \cdot h))c_2'',$$

$$(Hr^*)(hc_2') = (Hr^*)(hc_2''),$$

and

$$(hc_2')(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r(hc_2'').$$

By Definition 1.2,

$$(hc_2')(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r(hc_2'').$$

This proves that $(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r$ is a law relation on \mathcal{C}_2.

Reformulation of Theorem 1.5.

$$(\psi \{\mathcal{C}_1, \mathcal{C}_2\})((\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r) \supset r \quad \text{for} \quad r \in L\mathcal{C}_1.$$

Theorem 1.11. $\psi \{\mathcal{C}, \mathcal{C}\}$ is the identical representation of $L\mathcal{C}$.

Proof. See (III), Satz 3.13.

Theorem 1.12. $\psi \{\mathcal{C}_1, \mathcal{C}_2\}$ is monotonic.

Proof. Let $r' \in L\mathcal{C}_1$, $r'' \in L\mathcal{C}_1$ and $r'' \supset r'$. Then, by Theorem 1.5,

$$(\psi \{\mathcal{C}_2, \mathcal{C}_1\})((\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r'') \supset r'' ,$$

hence

$$(\psi \{\mathcal{C}_2, \mathcal{C}_1\})((\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r') \supset r' ,$$

hence

$$(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r' \supset (\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r'$$

by Theorem 1.8.

Theorem 1.13.

$$(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r \subset (\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r \quad \text{for} \quad r \in L\mathcal{C}_1.$$

Theorem 1.13 is obvious from Theorems 1.4 and 1.8.

Theorem 1.14. Let $|\mathcal{C}_1| \leq 1$. Let $r \in L\mathcal{C}_1$. Then $(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r$ is the all relation on \mathcal{C}_2, and $(\psi \{\mathcal{C}_1, \mathcal{C}_2\}) r$ is the equality relation on \mathcal{C}_2.

Proof. The first part of the theorem is obvious. If r^* is any congruence relation on \mathcal{C}_2 then (1.1) holds. Hence the intersection of
all congruence relations on \(C_2 \) satisfying (1.1) is the equality relation on \(C_2 \). This proves the second part of the theorem.

Theorem 1.15.

\[(\psi \{ C_2, C_1 \})((\Phi C_2)) \subset (\Phi C_1) . \]

Proof. By Theorem 1.3,

\[(\psi \{ C_1, C_2 \})((\Phi C_1)) \supset (\Phi C_2) . \]

By Theorem 1.8,

\[(\Phi C_1) \supset (\psi \{ C_2, C_1 \})((\Phi C_2)) . \]

Definition 1.3. By \(\psi_0 \{ C_1, C_2 \} \) is meant the representation of \(L \mathfrak{C}_1 \) into the set of all relations on \(C_2 \) defined by the following condition: if \(r \in L \mathfrak{C}_1, c'_2 \in C_2 \) and \(c''_2 \in C_2 \) then \(c'(\psi_0 \{ C_1, C_2 \})r)c''_2 \) holds if and only if there exist elements \(c'_1 \) and \(c''_1 \) of \(C_1 \) with \(c'_1r_c''_1 \) and \(\{ c'_1, c''_1 \} \) (\(\{ C_1, C_2 \} \) - conf) \(\{ c'_2, c''_2 \} \). (See (III), Definition 1.1.)

Theorem 1.16. Let \(r \in L \mathfrak{C}_1, c'_2 \in C_2 \) and \(c''_2 \in C_2 \). Then \(c'(\psi_0 \{ C_1, C_2 \})r)c''_2 \) holds if and only if the following two conditions are satisfied:

1. \(|\mathfrak{C}_2| (P \mathfrak{C}_2)c'_2 \leq 1, |D_1| \).
2. There exist elements \(c'_1 \) and \(c''_1 \) of \(C_1 \) with \(c'_1r_c''_1 \) and a homomorphism \(h \) of \(C_1 \) into \(C_2 \) such that \(h_c'_1 = c'_2 \) and \(h_c''_1 = c''_2 \).

Proof. Let (1.2) and (1.3) hold. Let \(c' \) and \(c'' \) be elements of \(C_1 \) with \(\{ c', c'' \} \) (\(\{ C_1, C_2 \} \) - conf) \(\{ c'_1, c''_1 \} \) and \(h \) be a homomorphism of \(C_2 \) into \(C_1 \) with \(h_c'_1 = c' \) and \(h_c''_1 = c'' \). (See (III), Satz 1.2 and Satz 1.5.) Then, by (III), Definition 2.1,

\[(h(h_c'_1))r(h(h_c''_1)) . \]

Hence \(c'_1r_c''_1 \). By Definition 1.3, \(c'_2((\psi_0 \{ C_1, C_2 \})r)c''_2 \).

The converse implication follows from (III), Satz 1.1 and Satz 1.2.

Theorem 1.17. Let \(r \in L \mathfrak{C}_1 \). Then

\[\psi_0 \{ C_1, C_2 \})r \subset (\psi \{ C_1, C_2 \})r . \]

Proof. If \(c'_2 \) and \(c''_2 \) are elements of \(C_2 \) with \(c'_2((\psi_0 \{ C_1, C_2 \})r)c''_2 \) then \(c'_2((\psi \{ C_1, C_2 \})r)c''_2 \) holds by Theorems 1.16 and 1.6.

By Theorems 1.17 and 1.13,

\[(\psi_0 \{ C_1, C_2 \})r \subset (\psi \{ C_1, C_2 \})r \text{ for } r \in L \mathfrak{C}_1 . \]

Theorem 1.18. Let \(r \) be a law relation on \(C_1 \). Let \(c'_2 \) and \(c''_2 \) be elements of \(C_2 \) with
\[|\mathcal{E}[\langle P \mathbb{C}_2 \rangle c', \langle P \mathbb{C}_2 \rangle c''']| \leq |D_1| \]

and

\[c_2'((\Psi \{\mathbb{C}_1, \mathbb{C}_2\}) r) c_2'' \]

Then \(c_2'((\Psi \{\mathbb{C}_1, \mathbb{C}_2\}) r) c_2'' \).

Proof. Let \(c_1', c_2'' \) be elements of \(C \) with \(\{c_1', c_2''\} = \{\mathbb{C}_1, \mathbb{C}_2\} \). Then there exists a homomorphism \(h \) of \(C \) into \(\mathbb{C}_1 \) with \(hc_1' = c_1' \) and \(hc_2'' = c_2'' \). By (III), Satz 3.6, \(c_1' r c_2'' \). Hence \(c_2'((\Psi_0 \{\mathbb{C}_1, \mathbb{C}_2\}) r) c_2'' \).

Theorem 1.19. Let \(r \) be a law relation on \(\mathbb{C}_2 \). Let \(c_2' \) and \(c_2'' \) be elements of \(C \) with

\[|\mathcal{E}[\langle P \mathbb{C}_2 \rangle c', \langle P \mathbb{C}_2 \rangle c''']| \leq |D_1| \]

and

\[c_2'((\Psi \{\mathbb{C}_1, \mathbb{C}_2\}) r) c_2'' \]

Then \(c_2' r c_2'' \).

Proof. By Theorem 1.18,

\[c_2'((\Psi_0 \{\mathbb{C}_1, \mathbb{C}_2\}) r) c_2'' \]

By Theorems 1.17 and 1.9, \(c_2' r c_2'' \).

Theorem 1.20. Let

\[|D_2| \leq |D_1| \text{ or } 2m_e \leq |D_1| \]

(See (II), Definition 3.4) Then

\[\Psi_0 \{\mathbb{C}_1, \mathbb{C}_2\} = \Psi \{\mathbb{C}_1, \mathbb{C}_2\} = \Psi \{\mathbb{C}_1, \mathbb{C}_2\} \]

Proof. It is obvious that

\[|\mathcal{E}[\langle P \mathbb{C}_2 \rangle c', \langle P \mathbb{C}_2 \rangle c''']| \leq |D_1| \]

for \(c_2' \in C_2, c_2'' \in C_2 \).

After this is said the present theorem follows from Theorem 1.18.

Theorem 1.21. Let \(r_1 \) be a law relation on \(\mathbb{C}_1 \). Then

\((\Theta \mathbb{C}_2)((\Psi_0 \{\mathbb{C}_1, \mathbb{C}_2\}) r_1) = (\Psi \{\mathbb{C}_1, \mathbb{C}_2\}) r_1 \).

(See (III), Definition 2.2)

Proof. The assertion follows from the preceding theorem if \(|D_2| \leq |D_1| \). Let \(|D_2| > |D_1| \). Let \(r_2 \) be a law relation on \(\mathbb{C}_2 \) such that

\((\Psi_0 \{\mathbb{C}_1, \mathbb{C}_2\}) r_1 \leq r_2 \).
Let c'_1 and c''_1 be elements of C_1 with c'_1, c''_1 and c'_2 and c''_2 be elements of C_2 with \{c'_1, c''_1\} and \{c'_2, c''_2\}. Then
\[
c'_2((\psi_0(C_2, C_1))r_1)c''_2,
\]
\[
c'_2 r_2 c''_2,
\]
\[
c'_1((\psi_0(C_2, C_1))r_2)c''_1,
\]
and
\[
c'_1((\psi(C_2, C_1))r_2)c''_1.
\]
Hence
\[
r_1 \subset (\psi(C_2, C_1))r_2.
\]
By Theorem 1.8,
\[
(\psi(C_1, C_2))r_1 \subset r_2.
\]
This proves the assertion.

Our concept of a relation of C corresponds to Birkhoff's concept of a set of equations between functions of the given species. (See (I), p. 440, line 2 from bottom.) If B is a relation on C_1, and $|D_2| = m$, then our $(\psi(C_1, C_2))((\Theta C_1)B)$ corresponds to Birkhoff's set of all equations in m primitive symbols following from B, and our $C_2/(\psi(C_1, C_2))((\Theta C_1)B)$ corresponds to Birkhoff's $F(B, m)$.

Theorem 1.22. Let B be a relation on C_1. Then
\[
(\Phi C_1)(C_2/(\psi(C_1, C_2))((\Theta C_1)B)) > B.
\]

Theorem 1.22 is obvious from Theorem 1.5.

Compare Theorem 1.22 with the following statement occurring in (I), p. 441, line 2: "$F(B, m)$ satisfies all the laws of $B"."

Theorem 1.23. Let B be a relation on C_1. Let Q be a basis of A. Let $|Q| = |D_2|$. Let $(\Phi C_1)A > B$. Then A is a homomorphic image of $C_2/(\psi(C_1, C_2))((\Theta C_1)B)$.

Proof. If $|A| = 0$ then $|C_2| = 0$ by (II), Theorem 1.3, and the assertion is obvious. Let $|A| \neq 0$. By Theorem 1.15,
\[
(\Phi C_2)A \supset (\psi(C_1, C_2))((\Phi C_1)A) > (\psi(C_1, C_2))((\Theta C_1)B).
\]
The assertion now follows from (III), Satz 3.22.

Compare Theorem 1.23 with the following statement occurring in (I), p. 441, lines 3 and 4: "Every algebra of species Σ generated by m elements and of which B is a set of laws is a homomorphic image of $F(B, m)$."
§ 2. The relation \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \).

Definition 2.1. We define a cardinal \(l_\sigma \) in the following way:

1. \(l_\sigma \) is defined if there exists an element \(s_0 \) of \(S \) with \(|\sigma s_0| = 0 \), and \(|\sigma s| \leq 1 \) for all elements \(s \) of \(S \), then \(l_\sigma = 1 \).
2. \(l_\sigma = 2 \) if \(|\sigma s| = 1 \) for all elements \(s \) of \(S \).
3. \(l_\sigma = m_\sigma \) if there exists an element \(s \) of \(S \) with \(|\sigma s| > 2 \).

It follows from this definition and from (II), Definition 3.4, that

\[
l_\sigma = m_\sigma
\]

except the case considered under (2.2). Also,

\[
l_\sigma = 2m_\sigma
\]

except the case considered under (2.1).

Theorem 2.1. Let \(|D| \geq l_\sigma \). Then \(|C| \geq 2 \).

Proof. The assertion is obvious if \(|D| \geq 2 \). If \(|D| = l_\sigma = 1 \) then the hypotheses of (2.1) are satisfied, \(S \) is not void, and \(|C| \geq 2 \) by (II), Theorem 2.8.

Definition 2.2. \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \) or \(\mathbb{C}_2 \sqsubseteq \mathbb{C}_1 \) means that \(|D_1| \leq |D_2| \), or \(l_\sigma \leq |D_2| \), or \(|S| = 0 \) and \(|D_1| \leq 1 \).

From this definition it is obvious that \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \) or \(\mathbb{C}_2 \sqsubseteq \mathbb{C}_1 \) for any two freely generated algebras \(\mathbb{C}_1 \) and \(\mathbb{C}_2 \).

Theorem 2.2. Let \(\mathfrak{M} \) be a set of freely generated algebras. Then \(\sqsubseteq \) is a quasi-ordering of \(\mathfrak{M} \).

Theorem 2.3. Let \(l_\sigma \leq |D_1| \) and \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \). Then \(l_\sigma \leq |D_2| \).

The proof of Theorems 2.2 and 2.3 is left to the reader.

Definition 2.3. \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \) means that \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \) as well as \(\mathbb{C}_2 \sqsubseteq \mathbb{C}_1 \).

Hence \(\mathbb{C}_1 \sqsubseteq \mathbb{C}_2 \) if and only if \(|D_1| = |D_2| \), or \(l_\sigma \leq |D_\nu| \) for \(\nu = 1, 2 \), or \(|S| = 0 \) and \(|D_\nu| \leq 1 \) for \(\nu = 1, 2 \).

Theorem 2.4. Let \(\mathfrak{M} \) be a set of freely generated algebras. Then \(\sqsubseteq \) is an equivalence relation on \(\mathfrak{M} \).

Theorem 2.4 is obvious from Theorem 2.2.

Lemma 2.1. Let \(|D_2| \leq |D_1| \). Let \(c_0 \in C_1 \). Let \(r \) be the relation on \(C_1 \) defined by the condition that, for \(c_1 \in C_1 \), \(c_1'' \in C_1 \), \(c_1'rc_1'' \) holds if and only if

\[
|\mathbb{P}[\mathbb{P}_1 c_1', (\mathbb{P}_1 c_1'')]| \leq |D_2|, \tag{2.4}
\]
Representations of Lattices

and there exist homomorphisms \(h' \) and \(h'' \) of \(\mathbb{C}_1 \) into \(\mathbb{C}_1 \) such that \(h'c_0 = c_1' \) and \(h''c_0 = c_1'' \). Let \(h_1' \) and \(h_1'' \) be homomorphisms of \(\mathbb{C}_1 \) into \(\mathbb{C}_1 \). Then

\[
(2.5) \quad (h_1'(c_0)(\Psi(\mathbb{C}_1, \mathbb{C}_1))(\Psi(\mathbb{C}_1, \mathbb{C}_2))((\Theta \mathbb{C}_1)r))(h_1''c_0) .
\]

Proof. Let \(h_2 \) be a homomorphism of \(\mathbb{C}_1 \) into \(\mathbb{C}_2 \) and \(h_1 \) be a homomorphism of \(\mathbb{C}_2 \) into \(\mathbb{C}_1 \). For abbreviation, let us put

\[
h_2(h_1'(c_0)) = c_2' .
\]

and

\[
h_2(h_1''(c_0)) = c_2'' .
\]

Let \(c_1' \) and \(c_1'' \) be elements of \(\mathbb{C}_1 \) such that

\[
\{ c_1', c_1'' \} (\{ \mathbb{C}_1, \mathbb{C}_2 \} \text{-conf}) \{ c_2', c_2'' \} .
\]

Then (2.4) holds. Let \(h_2'(c_0) = c_1' \) and \(h_2''(c_0) = c_1'' \). Let \(h_1''c_1'' = c_2'' \). Then

\[
h_1''c_1'' = c_2'' .
\]

and

\[
h_1''c_1'' = c_1'' .
\]

Hence \(c_1'r c_1'' \). Hence

\[
c_1'((\Theta \mathbb{C}_1)r)c_1'' .
\]

Because \((\Theta \mathbb{C}_1)r \) is a law relation on \(\mathbb{C}_1 \),

\[
(h_1(h_2'(c_0))((\Theta \mathbb{C}_1)r)(h_1(h_2''c_1'')).
\]

Hence

\[
(h_1c_1')((\Theta \mathbb{C}_1)r)(h_1c_1'').
\]

Hence

\[
(h_1(h_2(c_0))((\Theta \mathbb{C}_1)r)(h_1(h_2'(c_0))).
\]

By (III), Satz 3.6,

\[
(h_2(h_1'(c_0))((\Psi(\mathbb{C}_1, \mathbb{C}_1))(\Psi(\mathbb{C}_1, \mathbb{C}_2))((\Theta \mathbb{C}_1)r))(h_2(h_1''c_0)) .
\]

Applying Satz 3.6 of (III) again, we find that (2.5) holds.

Definition 2.4. By \(\rho \mathbb{C} \) is meant the element of \((\alpha \mu_o)^c \) defined by the condition that, for \(c \in \mathbb{C} \), \((\rho \mathbb{C})c \) is that element \(\alpha \) of \(\alpha \mu_o \) for which \(c \in ((E \mathbb{C})D)\alpha \). If \(c \in \mathbb{C} \), \((\rho \mathbb{C})c \) is called the rank of \(c \) with respect to \(\mathbb{C} \). (See (IV), Definitions 1 and 2 and Theorems 2 and 3.)

Lemma 2.2. Let \(c \) be an element of \(\mathbb{C}_1 \) and \(h \) be a homomorphism of \(\mathbb{C}_1 \) into \(\mathbb{C}_2 \). Then
Proof. (2.6) obviously holds if \(c \in D_1 \). Let \(s \) be an element of \(S \) and \(c \) be an element of \(C \) such that
\[
(pE)^{h(ck)} \geq (pE^c) \quad \text{for} \quad k \in s.
\]
If \(|s| = 0 \) then
\[
(pE)(h((C,s)c)) = (pE)((C,s)(h \cdot c)) = I = (pE)((C,s)c).
\]
If \(|s| \neq 0 \) then
\[
(pE)(h((C,s)c)) = (pE)((C,s)(h \cdot c)) = \text{Succ}((pE)(h \cdot c))
\geq \text{Succ}((pE)(c)) = (pE)((C,s)c).
\]
In both cases,
\[
(pE)(h((C,s)c)) \geq (pE)((C,s)c).
\]
This proves that (2.6) holds generally.

Lemma 2.3. Let \(m \) be a cardinal. Let \(r \) be the relation on \(C \) defined by the condition that, for \(c' \in C, c'' \in C, c'rc'' \) holds if and only if \(c' = c'' \), or \((pE)c' \geq m \) and \((pE)c'' \geq m \). Then \(r \) is a law relation on \(C \).

Proof. It is obvious that \(r \) is an equivalence relation on \(C \). Let \(s \) be an element of \(S \), and let \(c' \) and \(c'' \) be elements of \(C \) such that
\[
(c'k)r(c''k) \quad \text{for} \quad k \in s.
\]
Let
\[
(C,s)c' = (C,s)c''.
\]
Then \(c' \equiv c'' \). Let \(k_0 \) be an element of \(\sigma s \) such that
\[
c'k_0 = c''k_0.
\]
Then \((pE)(c'k_0) \geq m \) and \((pE)(c''k_0) \geq m \). Also,
\[
(pE)((C,s)c') = \text{Succ}((pE \cdot c') > (pE)(c'k_0)).
\]
Hence
\[
(pE)((C,s)c') \geq m.
\]
For a similar reason,
\[
(pE)((C,s)c'') \geq m.
\]
Hence
\[
((C,s)c')r((C,s)c'').
\]
Hence \(r \) is homomorphic with respect to \(C \).

Let \(c' \) and \(c'' \) be elements of \(C \) with \(c'rc'' \). Let \(h \) be a homomorphism of \(C \) into \(C \). Let
Let \(r \) be a relation on \(C \). Let \(\mu = \omega \) if \(\mu_s = 2 \), and \(\mu = \mu_s \) if \(\mu_s = 2 \). Let \(\tau \) be the \(\mathfrak{b}_\omega \)-system of relations on \(C \) which has the following two properties:

I. \(\tau \emptyset = r \).

II. If \(\gamma \in \mathfrak{b}\{1, \mu\} \), \(c' \in C \) and \(c'' \in C \) then \(c'(\tau \gamma) c'' \) holds if and only if at least one of the following conditions (2.7) to (2.12) is satisfied:

(2.7) \(c'(\tau \alpha) c'' \) for some \(\alpha \in \alpha \gamma \).

(2.8) \(c' = c'' \).

(2.9) \(c'(\tau \alpha) c' \) for some \(\alpha \in \alpha \gamma \).

(2.10) There exist an element \(c \) of \(C \) and elements \(\alpha_1 \) and \(\alpha_2 \) of \(\alpha \gamma \) with \(c'(\tau \alpha_1) c \) and \(c(\tau \alpha_2) c'' \).

(2.11) There exist an element \(s \) of \(S \), elements \(c' \) and \(c'' \) of \(C^s \) and an element \(\beta \) of \((\alpha \gamma)^s \) with \((c'k)(\tau(\beta k))(c''k) \) for \(k \in s \), \((\langle C \rangle s) c' = c' \) and \((\langle C \rangle s) c'' = c'' \).

(2.12) There exist elements \(c_i' \) and \(c_i'' \) of \(C \), an element \(\alpha \) of \(\alpha \gamma \) and a homomorphism \(h \) of \(C \) into \(C \) with \(c_i'(\tau \alpha) c_i'' \), \(hc_i' = c' \) and \(hc_i'' = c'' \).

Then

\[\tau \mu = (\Theta C)r. \]

The proof is left to the reader.

Compare Lemma 2.4 with Definition 5 on p. 440 of (I).

Lemma 2.5. Let \(c_0 \) be an element of \(C \) and \(m \) be a cardinal which is \(\leq (\pi C)c_0 \). (See (II), Definition 3.3) Let \(r \) be the relation on \(C \) defined by the condition that, for \(c' \in C \), \(c'' \in C \), \(c' r c'' \) holds if and only if \(|C[(P C) c', (P C) c'']| \leq m \), and there exist homomorphisms \(h' \) and \(h'' \) of \(C \) into \(C \) with \(h' c_0 = c' \) and \(h'' c_0 = c'' \). Let \(c_i \) be an element of \(C \) with \(c_i((\Theta C)r)c_0 \). Then \(c_i = c_0 \).

Proof. If \(c' \) and \(c'' \) are elements of \(C \) with \(c' r c'' \) then, by Lemma 2.2,
Let \(r \) be the relation on \(C \) defined by the condition that, for \(c' \in C \), \(c'' \in C \), \(c'r_c'' \) holds if and only if \(c' = c'' \), or \((\rho C)c' \geq (\rho C)c_0 \) and \((\rho C)c'' \geq (\rho C)c_0 \). Then

\[
\Rightarrow r,
\]

and \(r \) is a law relation on \(C \) by Lemma 2.3. Hence

\[
r \Rightarrow (\Theta C)r.
\]

Hence

\[
(\rho C)c' \geq (\rho C)c_0
\]

and

\[
(\rho C)c'' \geq (\rho C)c_0.
\]

Let us now define an ordinal \(\mu \) and a \(b\mu \)-system \(r \) of relations on \(C \) in the same way as in Lemma 2.4. Then

\[
r\mu = (\Theta C)r.
\]

I assert that the following proposition holds:

\[
(\rho C)c_0 \geq (\rho C)c''
\]

by Lemma 2.2. By (2.13),

\[
(\rho C)c' \geq (\rho C)c_0.
\]

Hence

\[
(\rho C)c'' \geq (\rho C)c_0.
\]

By the definition of \(r \), and because \(c' \neq c'' \), at least one of the propositions (2.7) and (2.9) to (2.12) holds. If (2.7), (2.9) or (2.10) holds, (2.14) is obvious. If (2.11) holds then, by (2.13),

\[
(\rho C)((\langle C \rangle s)c'') = \text{Suc}((\rho C)c'' > (\rho C)c_0,
\]

and

\[
(\rho C)c'' > (\rho C)c_0,
\]
contrary to (2.15). Hence (2.11) does not hold. If (2.12) holds then $\gamma' = \gamma''$, and

$$(h_0 \cdot h) \gamma'' = h_0 (h \gamma'') = h_0 \gamma'' = \gamma_0.$$

This completes the proof of (2.14).

It is now obvious that the assertion of (2.14) can be improved by adding that α can be made $= 0$. I.e., under the hypotheses of (2.14), there exist a homomorphism h_1 of \mathfrak{L} into \mathfrak{C} and elements γ', γ'' of \mathfrak{C} such that $\gamma' = \gamma'', \gamma' \gamma_1 \gamma''$ and $h_1 \gamma'' = \gamma_0$.

Let us now assume that

$$\gamma_1 = \gamma_0.$$

Then the hypotheses of (2.14) are satisfied if we put $\gamma = \gamma_1$, $\gamma' = \gamma$, and $\gamma'' = \gamma_0$ and let h_0 be the identical representation of \mathfrak{C}. Let h_1 be a homomorphism of \mathfrak{C} into \mathfrak{C} and γ' and γ'' be elements of \mathfrak{C} such that $\gamma' = \gamma''$, $\gamma' \gamma_1 \gamma''$ and $h_1 \gamma'' = \gamma_0$. Let h'' be a homomorphism of \mathfrak{C} into \mathfrak{C} with $h'' \gamma_0 = \gamma''$. (h'' exists by the definition of r.) Then

$$(h_1 \cdot h'') \gamma_0 = \gamma_0.$$

By (II), Theorem 3.10,

$$(h_1 \cdot h'') \gamma = \gamma \quad \text{for} \quad \gamma \in (P \mathfrak{C}) \gamma_0.$$

Hence

$$h'' \gamma \in D \quad \text{for} \quad \gamma \in (P \mathfrak{C}) \gamma_0.$$

By (II), Theorems 3.11 and 3.1,

$$(P \mathfrak{C})(h'' \gamma) = [h'' \gamma; \gamma \in (P \mathfrak{C}) \gamma_0].$$

Hence

$$(P \mathfrak{C}) \gamma'' = (P \mathfrak{C}) \gamma_0.$$

Hence

$$(\pi \mathfrak{C}) \gamma'' = (\pi \mathfrak{C}) \gamma_0.$$

Hence

$$(\pi \mathfrak{C}) \gamma'' > m.$$

But by the definition of r,

$$|\mathfrak{C}[(P \mathfrak{C}) \gamma', (P \mathfrak{C}) \gamma'']| \leq m.$$

Hence

$$(\pi \mathfrak{C}) \gamma'' \leq m,$$

contrary to (2.16). Hence our assumption that $\gamma_1 = \gamma_0$ is wrong. Hence $\gamma_1 = \gamma_0$ as asserted.

Theorem 2.5. $\mathfrak{C}_1 \sqsubseteq \mathfrak{C}_2$ if and only if

$$\psi_1(\mathfrak{C}_2, \mathfrak{C}_1) = \psi_1(\mathfrak{C}_2, \mathfrak{C}_1).$$
Proof. Let \(C_1 \subseteq C_2 \). We wish to prove that (2.17) holds. This is obvious if \(|S| = 0\) and \(|D_1| \leq 1\). Let \(|S| = 0\) or \(|D_1| > 1\). If \(|D_1| \leq |D_2|\) then (2.17) holds by Theorem 1.20. Let \(|D_2| < |D_1|\). By Definition 2.2, \(l_\sigma \leq |D_2| \).

If \(2m_\sigma \leq |D_2| \) then (2.17) holds by Theorem 1.20. Let \(|D_2| < 2m_\sigma \).

Then \(l_\sigma < 2m_\sigma \), and we have the case considered under (2.1). Hence \(l_\sigma = m_\sigma = 1 \), and \(|D_2| = 1\).

Let \(s_0 \) be an element of \(S \) such that \(|\sigma s_0| = 0\). Let \(r \) be a law relation on \(C_2 \), and let \(c'_1 \) and \(c''_1 \) be elements of \(C_1 \) with

\[
(2.18) \quad c'_1((\psi(C_2, C_1))r)c''_1.
\]

We wish to prove that

\[
(2.19) \quad c'_1((\psi(C_2, C_1))r)c''_1
\]

holds. By (II), Theorem 3.15, \((\pi C_1)c'_1 \leq 1\) and \((\pi C_1)c''_1 \leq 1\). Hence

\[
|\mathcal{E}[(P\mathcal{C}_1)c'_1, (P\mathcal{C}_1)c''_1]| \leq 2.
\]

If \(|\mathcal{E}[(P\mathcal{C}_1)c'_1, (P\mathcal{C}_1)c''_1]| < 2\), (2.19) holds by Theorems 1.18 and 1.17. Let

\[
|\mathcal{E}[(P\mathcal{C}_1)c'_1, (P\mathcal{C}_1)c''_1]| = 2.
\]

Then \((\pi C_1)c'_1 = (\pi C_1)c''_1 = 1\). Let \(b' \) be the only element of \((P\mathcal{C}_1)c'_1\) and \(b'' \) be the only element of \((P\mathcal{C}_1)c''_1\). Then \(b' \neq b'' \). Let \(h \) be a homomorphism of \(C_1 \) into \(C_2 \). Let \(c_0 \) be the void system, \(h_0 \) be a homomorphism of \(C_1 \) into \(C_2 \) such that

\[
h_0b' = h_0b'' = (\langle C_1, s_0 \rangle)c_0,
\]

and \(h' \) and \(h'' \) be homomorphisms of \(C_1 \) into \(C_2 \) such that

\[
h'b' = h'b'', \quad h'b'' = (\langle C_2, s_0 \rangle)c_0,
\]

and

\[
h''b' = (\langle C_2, s_0 \rangle)c_0, \quad h''b'' = h''b''.
\]

By (II), Theorem 3.8,

\[
(2.20) \quad h'c'_1 = h_1,
\]

and

\[
(2.21) \quad h''c''_1 = h_1''.
\]
Also
\[h(h_0b') = h(h_3b'') = h((<\mathcal{C}_1, s_0>c_0) = (<\mathcal{C}_2, s_0>c_0). \]
Hence
\[h(h_0b') = h''b' \]
and
\[h(h_0b'') = h'b''. \]
By (II), Theorem 3.8,
\[(2.22) \quad h(h_0c_i') = h'c_i' \]
and
\[(2.23) \quad h(h_0c_i'') = h'c_i''. \]
By (2.18),
\[(2.24) \quad (h'c_i')r(h'c_i'') \]
and
\[(2.25) \quad (h'c_i')r(h'c_i''). \]
By (2.20), (2.23) and (2.24),
\[(hc_i')(h(h_0c_i'')) . \]
By (2.21), (2.22) and (2.25),
\[(h(h_0c_i'))r(hc_i'') . \]
Hence
\[(2.26) \quad c_i'((\Psi\{\mathcal{C}_2, \mathcal{C}_3\})r(h_0c_i'')) \]
and
\[(2.27) \quad (h_0c_i'((\Psi\{\mathcal{C}_2, \mathcal{C}_3\})r)c_i'' . \]
Also,
\[(2.28) \quad (h_0c_i'((\Psi\{\mathcal{C}_2, \mathcal{C}_3\})r)(h_0c_i'')) . \]
By (II), Theorems 3.11 and 3.2,
\[(P\mathcal{C}_i)(h_0c_i') = (P\mathcal{C}_i)(h_0b') = (P\mathcal{C}_i)((<\mathcal{C}_2, s_0)c_0) = \mathcal{C}_i((P\mathcal{C}_i)c_0) . \]
Hence \((P\mathcal{C}_i)(h_0c_i')\) is void. For a similar reason, \((P\mathcal{C}_i)(h_0c_i'')\) is void. Hence (2.26), (2.27) and (2.28) imply
\[(2.29) \quad c_i'((\psi\{\mathcal{C}_2, \mathcal{C}_3\})r(h_0c_i'')) , \]
\[(2.30) \quad (h_0c_i'((\psi\{\mathcal{C}_2, \mathcal{C}_3\})r)c_i'' , \]
and
\[(2.31) \quad (h_0c_i'((\psi\{\mathcal{C}_2, \mathcal{C}_3\})r)(h_0c_i'') . \]
(2.29), (2.30) and (2.31) imply (2.19). Hence

\[(\Psi\{\mathbb{C}_2, \mathbb{C}_1\})^r \subset (\Psi\{\mathbb{C}_2, \mathbb{C}_1\})^r.\]

By Theorem 1.13,

\[(\Psi\{\mathbb{C}_2, \mathbb{C}_1\})^r = (\Psi\{\mathbb{C}_2, \mathbb{C}_1\})^r.\]

Hence (2.17) holds.

Let us now start from the hypothesis that \(\mathbb{C}_1 \sqsubset \mathbb{C}_2\) does not hold. Hence

\[|S| \neq 0 \text{ or } |D_1| > 1,\]

and

\[|D_2| < |D_1|,\]

Also,

\[|C_1| \geq 2;\]

for if \(|D_1| = 1\) then \(|S| = 0\). We wish to prove that (2.17) does not hold. This follows from Theorem 1.14 if \(C_2\) is void. Therefore let us assume that \(C_2\) is not void.

Let us, firstly, treat the case that

\[|\sigma \sigma| = 1 \text{ for } \sigma \in S.\]

Then \(m_\sigma = 1, l_\sigma = 2,\) and

\[|D_2| < 2.\]

If \(|D_3| = 0\) then \(|C_3| = 0,\) contrary to hypothesis. Hence

\[|D_3| = 1\]

and

\[|D_1| > 1.\]

By (II), Theorems 3.12 and 3.15,

\[(\pi \mathbb{C}_1) c_1 = 1 \text{ for } c_1 \in C_1,\]

and

\[(\pi \mathbb{C}_2) c_2 = 1 \text{ for } c_2 \in C_2.\]

Let \(r_2\) be the all relation on \(C_2,\) and let

\[r_1 = R(P\mathbb{C}_1).\]

Then, for \(c'_1 \in C_1, c''_1 \in C_1,\) the following propositions (2.32) to (2.36) are equivalent:

(2.32) \[c'_1 r_1 c''_1.\]
(2.33) \((P_{\mathcal{C}_1})c'_1 = (P_{\mathcal{C}_1})c''_1 \).

(2.34) \(|\mathcal{E}[(P_{\mathcal{C}_1})c', (P_{\mathcal{C}_1})c''_1]| \leq 1 \).

(2.35) There exist elements \(c'_2 \) and \(c''_2 \) of \(C_2 \) with \(\{ c'_2, c''_2 \} \left(\{ \mathcal{C}_2, \mathcal{C}_1 \} - \text{conf} \right) \{ c'_1, c''_1 \} \).

Hence

\[(\psi_0(\mathcal{C}_2, \mathcal{C}_1))r_2 = c''_1. \]

By (III), Satz 2.8, \(r_1 \) is a law relation on \(\mathcal{C}_1 \). Hence

\[(\psi(\mathcal{C}_2, \mathcal{C}_1))r_2 = r_1. \]

Hence \((\psi(\mathcal{C}_2, \mathcal{C}_1))r_2 \) is not the all relation on \(\mathcal{C}_1 \). On the other hand, it is obvious that \((\psi(\mathcal{C}_2, \mathcal{C}_1))r_2 \) is the all relation on \(\mathcal{C}_1 \). Hence (2.17) does not hold.

Let us, secondly, treat the case that

\[|\sigma_s| = 1 \] for some element \(s \) of \(S \).

Then

\[l_\sigma = m_\sigma. \]

By (II), Theorem 3.19,

\[|D_2| < \sup (\pi_{\mathcal{C}_0}). \]

Let \(c_0 \) be an element of \(\mathcal{C}_1 \) with

\[(\pi_{\mathcal{C}_0})c_0 \supset |D_2|. \]

Let \(a \) be an element of \(\mathcal{P}_{\mathcal{C}_1}^1 \) such that

\[ab \vdash b \] for some element \(b \) of \(\mathcal{C}_1 \).

Put

\[(\varphi(\mathcal{C}_1, \mathcal{C}_1))a = h. \]

Then

\[hc_0 \vdash c_0. \]

Define a relation \(r \) on \(\mathcal{C}_1 \) by requiring that, for \(c'_1 \in \mathcal{C}_1, c''_1 \in \mathcal{C}_1, c'_1r c''_1 \) holds if and only if

\[|\mathcal{E}[(P_{\mathcal{C}_1})c'_1, (P_{\mathcal{C}_1})c''_1]| \leq |D_2|, \]

and there exist homomorphisms \(h' \) and \(h'' \) of \(\mathcal{C}_1 \) into \(\mathcal{C}_1 \) with \(h'c_0 = c'_1 \) and \(h''c_0 = c''_1 \). Then, by Lemma 2.1,
(hc_0)((Ψ{C_2, C_1})((Ψ{C_1, C_2})((ΘC_0)r)))c_0.

By Lemma 2.5, \((hc_0)((ΘC_0)r)c_0\) does not hold. By Theorem 1.9,
\[(hc_0)((Ψ{C_2, C_1})((Ψ{C_1, C_2})((ΘC_0)r)))c_0\]
does not hold. Hence \((2.17)\) does not hold.
This completes the proof of Theorem 2.5.

\section*{§3. Further theorems on the operators \(Ψ\{C_1, C_2\}\) and \(Ψ\{C_1, C_2\}\).}

\textbf{Theorem 3.1.} Let \(C_1 ⊆ C_2\). Then
\[(Ψ{C_2, C_1})(ΦC_0)M = (ΦC_0)M = (Ψ{C_2, C_1})(ΦC_0)M\).

\textbf{Proof.} See Theorems 1.3, 1.15 and 2.5.

\textbf{Theorem 3.2.} Let \(C_1 \sqsubseteq C_2\). Let \(M_1\) as well as \(M_2\) be an algebra or a set of algebras. Let
\[(ΦC_0)M_1 = (ΦC_0)M_2.

Then
\[(ΦC_0)M_1 = (ΦC_0)M_2\).

\textbf{Proof.} See Theorem 3.1.

Theorem 3.2 represents an improvement of Satz 3.3 of (III).

\textbf{Theorem 3.3.} Let \(C_1 \sqsubseteq C_2\). Then each of \(Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\), \(Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\), \(Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\) and \(Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\) is the identical representation of \(L_C\).

\textbf{Proof.} Let \(r \in LC_1\). Then, putting \(M = [C_i/r]\) in Theorem 3.1, we find that
\[(Ψ{C_2, C_1})(Ψ{C_1, C_2})r = r = (Ψ{C_2, C_1})(Ψ{C_1, C_2})r\).

Hence, by Theorems 1.2 and 1.13,
\[(Ψ{C_2, C_1})(Ψ{C_1, C_2})r \subseteq r\).

By Theorem 1.5,
\[(Ψ{C_2, C_1})(Ψ{C_1, C_2})r = r\).

By Theorem 2.5,
\[(Ψ{C_2, C_1})(Ψ{C_1, C_2})r = r\).

\textbf{Theorem 3.4.}

\[Ψ{C_2, C_1} \cdot Ψ{C_1, C_2} = Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\]

and
\[Ψ{C_2, C_1} \cdot Ψ{C_1, C_2} = Ψ{C_2, C_1} \cdot Ψ{C_1, C_2}\].
Proof. For the case that $C_1 \subseteq C_2$, Theorem 3.4 follows from Theorem 3.3. For the case that $C_2 \subseteq C_1$, it follows from Theorem 2.5.

Theorem 3.5. Let $\Psi \{C_2, C_1\} \cdot \Psi \{C_1, C_2\}$ be the identical representation of LC_1. Then $C_1 \subseteq C_2$.

Proof. Let $C_1 \subseteq C_2$. Then, by Theorem 3.3, $\Psi \{C_1, C_2\} \cdot \Psi \{C_2, C_1\}$ is the identical representation of LC_2. Hence

$$\Psi \{C_2, C_1\} = \Psi \{C_2, C_1\} \cdot (\Psi \{C_1, C_2\} \cdot \Psi \{C_2, C_1\}) = \Psi \{C_2, C_1\}.$$

By Theorem 2.5, $C_1 \subseteq C_2$.

Theorem 3.6. Let $C_1 \subseteq C_2$. Let $r_\nu \in LC_\nu$ for $\nu = 1, 2$. Then

$$(3.1) \quad (\Psi \{C_2, C_1\}) r_\nu = r_1$$

if and only if

$$(3.2) \quad (\Psi \{C_1, C_2\}) r_1 \subseteq r_2 \subseteq (\Psi \{C_1, C_2\}) r_1.$$

Proof. (3.1) implies (3.2) by Theorems 1.4 and 1.9. If (3.2) holds then

$$(\Psi \{C_2, C_1\})(\Psi \{C_1, C_2\}) r_1 \subseteq (\Psi \{C_2, C_1\}) r_2 \subseteq (\Psi \{C_2, C_1\})(\Psi \{C_1, C_2\}) r_1$$

by Theorem 1.2, and (3.1) holds by Theorem 3.3.

Theorem 3.7. Let $C_1 \subseteq C_2$. Let r_1 and r_2 be law relations on C_1. Then the following propositions (3.3) to (3.5) are equivalent:

$$(3.3) \quad r_1 \subseteq r_2.$$

$$(3.4) \quad (\Psi \{C_1, C_2\}) r_1 \subseteq (\Psi \{C_1, C_2\}) r_2.$$

$$(3.5) \quad (\Psi \{C_1, C_2\}) r_1 \subseteq (\Psi \{C_1, C_2\}) r_2.$$

Theorem 3.7 is obvious from Theorems 1.2, 1.12 and 3.3.

Theorem 3.8. Let

$$\chi_1 \in [\Psi \{C_2, C_1\}, \Psi \{C_2, C_1\}]$$

and

$$\chi_2 \in [\Psi \{C_1, C_2\}, \Psi \{C_1, C_2\}].$$

Then the following propositions (3.6) to (3.8) are equivalent:

$$(3.6) \quad \chi_2 \text{ is simple}.$$

$$(3.7) \quad \chi_1 \text{ takes all values of } LC_1.$$

$$(3.8) \quad \chi_1 \cdot \chi_2 \text{ is the identical representation of } LC_1.$$

Proof. By Theorem 3.3, $\chi_1 \cdot \chi_2$ is the identical representation of LC_1, or $\chi_2 \cdot \chi_1$ is the identical representation of LC_2. In the latter case,
it is obvious that (3.6) as well as (3.7) implies (3.8). Conversely, (3.8) implies both (3.6) and (3.7).

Theorem 3.9. The following propositions (3.9) to (3.22) are equivalent:

(3.9) \[\mathcal{C}_1 \subseteq \mathcal{C}_2, \]

(3.10) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\}. \]

(3.11) \[\Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is simple.} \]

(3.12) \[\Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is simple.} \]

(3.13) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \text{ takes all values of } \mathcal{L}\mathcal{C}_1. \]

(3.14) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \text{ takes all values of } \mathcal{L}\mathcal{C}_1. \]

(3.15) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is the identical representation of } \mathcal{L}\mathcal{C}_1. \]

(3.16) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is the identical representation of } \mathcal{L}\mathcal{C}_1. \]

(3.17) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is the identical representation of } \mathcal{L}\mathcal{C}_1. \]

(3.18) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} \text{ is the identical representation of } \mathcal{L}\mathcal{C}_1. \]

(3.19) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\}. \]

(3.20) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\}. \]

(3.21) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\}. \]

(3.22) \[\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot \Psi\{\mathcal{C}_1, \mathcal{C}_2\}. \]

Proof. (3.11) to (3.18) are equivalent by Theorem 3.8. (3.9) is equivalent to (3.10) by Theorem 2.5 and equivalent to (3.15) by Theorems 3.3 and 3.5. (3.19) to (3.22) are equivalent by Theorem 3.4. (3.9) implies (3.19) by Theorem 2.5. (3.19) implies (3.15) by Theorems 1.4 and 1.9.

Theorem 3.10. Let \(\mathcal{C}_1 \subseteq \mathcal{C}_2 \). Then \(|\mathcal{L}\mathcal{C}_1| \leq |\mathcal{L}\mathcal{C}_2| \).

Proof. By Theorem 3.9, \(\Psi\{\mathcal{C}_1, \mathcal{C}_2\} \) is simple. Hence \(\Psi\{\mathcal{C}_1, \mathcal{C}_2\} \) is a one-to-one representation of \(\mathcal{L}\mathcal{C}_1 \) onto a sub-set of \(\mathcal{L}\mathcal{C}_2 \).

Theorem 3.11. Let \(\mathcal{C}_1 \subseteq \mathcal{C}_2 \). Then \(|\mathcal{L}\mathcal{C}_1| = |\mathcal{L}\mathcal{C}_2| \).

It follows that, in particular, \(|\mathcal{L}\mathcal{C}_1| = |\mathcal{L}\mathcal{C}_2| \) if \(|D_1| \geq l_\sigma \) and \(|D_2| \geq l_\sigma \).

Definition 3.1. By \(w_\sigma \) is meant \(|\mathcal{L}\mathcal{C}| \) if \(|D| = l_\sigma \). (See (IV), Theorem 11.)

Theorem 3.12. \(w_\sigma \geq 2 \).

Proof. Let \(|D| = l_\sigma \). Then, by Theorem 2.1, \(|C| \geq 2 \). Hence the equality relation on \(C \) is different from the all relation on \(C \). Hence \(|\mathcal{L}\mathcal{C}| \geq 2 \).

Theorem 3.13. \(|\mathcal{L}\mathcal{C}| \leq w_\sigma \).
Theorem 3.14. Let $|D| \geq l_\sigma$. Then $|L\mathcal{C}| = w_\sigma$.

Theorem 3.15. The relation \subseteq on $L\mathcal{C}$ determines a w_σ-lattice-algebra on $L\mathcal{C}$. (See (III), p. 133, line 5 from bottom.)

Proof. See (III), Satz 2.9.

Definition 3.2. By \mathcal{L} is meant the w_σ-lattice-algebra on $L\mathcal{C}$ determined by the relation \subseteq on $L\mathcal{C}$.

Theorem 3.16. Let $\mathcal{C}_1 \subseteq \mathcal{C}_2$. Then $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ is a homomorphism of $\mathcal{L}\mathcal{C}_2$ onto $\mathcal{L}\mathcal{C}_1$.

Proof. By Theorem 3.9, $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ takes all values of $L\mathcal{C}_1$. Let $b \in (L\mathcal{C}_2)^{(I, \Omega_{w_\sigma})}$. Then, by (III), Satz 3.10,

$$(\Psi\{\mathcal{C}_2, \mathcal{C}_1\})((\langle L\mathcal{C}_2 \rangle 1)b) = (\langle L\mathcal{C}_1 \rangle 1)(\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot b).$$

Let r be a law relation on \mathcal{C}_1 such that

$$r \supseteq (\Psi\{\mathcal{C}_2, \mathcal{C}_1\})(b\alpha) \quad \text{for} \quad \alpha \in b\{I, \Omega_{w_\sigma}\}.$$

Then, by Theorems 2.5 and 1.8,

$$(\Psi\{\mathcal{C}_1, \mathcal{C}_2\})r \supseteq b\alpha \quad \text{for} \quad \alpha \in b\{I, \Omega_{w_\sigma}\}.$$

Hence

$$(\Psi\{\mathcal{C}_1, \mathcal{C}_2\})r \supseteq (\langle L\mathcal{C}_2 \rangle 2)b,$$

and

$$r \supseteq (\Psi\{\mathcal{C}_2, \mathcal{C}_1\})((\langle L\mathcal{C}_2 \rangle 2)b).$$

Hence

$$(\Psi\{\mathcal{C}_2, \mathcal{C}_1\})((\langle L\mathcal{C}_2 \rangle 2)b) = (\langle L\mathcal{C}_1 \rangle 2)(\Psi\{\mathcal{C}_2, \mathcal{C}_1\} \cdot b).$$

Theorem 3.17. The following propositions (3.23) to (3.32) are equivalent:

(3.23) $\mathcal{C}_1 \subseteq \mathcal{C}_2$.

(3.24) $\Psi\{\mathcal{C}_2, \mathcal{C}_1\} = \Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ and $\Psi\{\mathcal{C}_1, \mathcal{C}_2\} = \Psi\{\mathcal{C}_1, \mathcal{C}_2\}$.

(3.25) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ is simple and takes all values of $L\mathcal{C}_2$.

(3.26) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ is simple and takes all values of $L\mathcal{C}_1$.

(3.27) $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ is simple and takes all values of $L\mathcal{C}_1$.

(3.28) $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ is simple and takes all values of $L\mathcal{C}_2$.

(3.29) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ and $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ are inverse to each other.

(3.30) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ and $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ are inverse to each other.

(3.31) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ and $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ are inverse to each other.

(3.32) $\Psi\{\mathcal{C}_1, \mathcal{C}_2\}$ and $\Psi\{\mathcal{C}_2, \mathcal{C}_1\}$ are inverse to each other.
Theorem 3.17 is obvious from Theorem 3.9.

Theorem 3.18. Let $\mathcal{C}_1 \subseteq \mathcal{C}_2$. Then $\Psi(\mathcal{C}_2, \mathcal{C}_1)$ is an isomorphism of $L\mathcal{C}_2$ onto $L\mathcal{C}_1$.

Proof. By Theorem 3.17, $\Psi(\mathcal{C}_2, \mathcal{C}_1)$ is simple. See Theorem 3.16.

Department of Mathematics, University of Alberta.

(Received August 1, 1958)

Bibliography

