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In this paper we sharpen previous results of the author [4] concerning
local Holder conditions for Gaussian processes with stationary increments. Of
particular interest is the form of these results which suggests how they may be
extended to processes which we have not considered.

Let X(¢) be a separable, real valued continuous Gaussian process with
stationary increments. For our purposes, it is sufficient to describe these
processes by their incremental variance i.e.

E{(X()—X(5))} = o*(|t—s|), (where o*(h) >0 as h— 0).

We are concerned with finding those processes and the corresponding functions
@(h) for which the following inequalities will be satisfied with probability 1:

C,<lim sup | X(t+h)—X(@)| <C, (1)
w0 P(h)

where the constants 0<<C,<C,< o can vary for the different processes. (Also
note that the function @(%) depends on ¢*(k).)
A major role in this paper is played by the function defined below,

1 (*o*(u)
tog 1/4) = -~ |7 Wdu. 2
flog 11h = s [ (2)
In the various cases considered some or all of the following conditions will also
be used:

A.) f(s) is increasing as s—oo (s=log 1/h)

B) f(29)<2f(s)

C.) log s<f(s)<ks, for some constant &.

The processes for which we can obtain expressions of the form of (1) are given
in Theorem 3.

Theorem 3. Let X(t) be a separable, real valued, mean continuous Gaussian
process with stationary increments for which o*(h) is concave for he[0, 8] for
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some §>>0. Let the function f (log 1/h) satifsy conditions A), B) and C) given
above. Then with probability 1

: | X(241)—X(2)|
Coéhr?jup (Shi‘Mdu)w <C, (3)
u

[

where 0<<C, < C,<< oo,

We prove this Theorem first by studying lower bounds for the ratio in (1).
These results are given in Theorem 1. The function f{s), appearing above, need
only satisfy condition A.) and the upper inequality in C.) in this theorem. Next
the upper bounds are studied and the results given in Theorem 2. The function
4r is introduced which is assumed to be monotonically increasing and is such
that

E{| X(0)— X(5) I <y(I2—s]);

and also a new class of functions

1 ("9
log k) = —~ | " Wau,  1<ax2,
putog 1) = oo [V Wau, 150
obviously similar to the function defined in (2). Analagous to the discussion
following (2) we will occassionally impose conditions A.), B.) and C.) on p,(s).
The results of Theorem 2 are

lim sup | X(t+h)—XO)| o
w0 = (W (h)pa(log 1/R))*

where for a<<2, p, must satisfy only conditions A.) and the lower inequality
in C.). When a=2, p, must satisfy A.), B.) and C.). Note that » is not re-
quired to be concave. Theorem 3 is obtained by combining Theorems 1 and 2
and including all the conditions necessary for each one.

Theorem 3 extends the results in [4]. In that paper results of this kind were
obtained only when the derivative of o*(h) had certain regularity properties,
here the conditions are on ¢*(h) and the integral expression. This significantly
extends the processes for which expressions like (1) are obtained. This point

(4)

will be elaborated upon in section 3. The function Shaz(u)/u-du is also of
0

interest. It is monotonically increasing for all ¢°(%), concave when o*(h) is
concave, and we wonder if it might not provide insight into obtaining Holder
conditions for those processes which we have not been able to handle.

1. Lower bounds

We prove the following Theorem related to the lower bound of the ratio
given in (1). For what follows the function f is the one defined in (2).
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Theorem 1. Let X(¢) be a separable, real valued, mean continuous Gaussian
process with stationary increments for which o*(h) is concave for h=[0, 8] for
some 8>0. Then, with probability 1,

lim sup 7;;;41;);5)92' zC

o U

where C>0 and f(s) satisfies condition A.) and the upper inequality in C.).

Proof. This proof follows the proof of Theorem 1 in [4]. Some details
contained in the earlier paper will not be repeated here.
The sequence ¢, is defined as follows:

t, = {min ¢: f(log 1/¢t) = log k} .
Consider the random variables

= X(2)—X(te+1) E>k,
(o*(te)f(log 1/2,)) N

where k, is chosen so that #, <<8. Because of the concavity of o*(k), E{Y, Y} <0,
j=+k. From this it follows that P{Y,>C, Y,;>C}<P{Y,>C}P{Y,>C},
j=k. Thus by the Chung-Erdos Lemma [1], [4], P{Y,>C infinitely often}=1
if and only if SP{Y,>C}=co. The same result can be obtained using Slepian’s
[7] relationship between the elements of the covariance matrix of a Gaussian

process and the bounds for the random variables of the joint distributions.
We have

2 -1/2 2
P(Y,>CY [ <028 fiog 176 | Mexp {25 B piog 1)
o (te—er1) o (tk_tk+1)
Let us write o*(h)=e *%°8"®  Since o’(h) is concave, o’'(h) will be defined
everywhere by its right hand derivative. Thus f'(s) is everywhere defined
and f'(s)=2¢'(s)f(s)—1. Then

2 log 1/¢, +log (¢, /t, —t 41
() _ e {S BT ‘zg'(s)ds}
O'Z(tk— tk+1) log 1/t
_ exp Slogl”k+log(tk/tk_‘k+l)[f(sl)_!_i]ds
log 1/t f)  f(9)

f(log 1/2,-+log )

tk_tk+1 {Slogl/tk+log (tk/tlc—tk+1) ds

Fllog 1/t) o, &l )

The concavity of o*(k) implies that 2g’(s)<<1l. Hence f'(s)<f(s). By the
argument used in [4] this implies that
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b <(1+¢&)logk

tk k+1

log

for any €,>0 as long as k is sufficiently large. We may as well assume that
k, is chosen so that K>k, is large enough. Since f{s) is monotonic increasing the
exponential term in (5) is bounded above by e'*®:. 'Therefore

o'z(tk) 148 3
—*__ f(log 1/t;)<e lf(log 1/t,+log p )

o (te—tp11) |
<eé'*'if(log 1/t,+(14-6,) log k)
<e""1f(log 1/t,+(14-¢,)f(log 1/t4))

and
ZP YZC}SE COIlSt. —
H =50 [fllog 1/te+(1-+¢€,)f(log 1/4))]”
X exp {—a f(log 1/t+(1+¢,)f(log 1/4))}
where a= i The terms of this series are positive and monotonically

2e1+sl’
decreasing thus its divergence is equivalent to the divergence of the following
integral in which #, is replaced by #(x); where #(x)={min ¢: f(log 1/t)=log }.

« const.
S [t(log 1/t(x)+(1+€;) f(log 1/#(x))]*
X exp {—af(log 1/t(x)+(1-+¢&,)f(log 1/t(x))}dx . (6)

Making the substitution s=e/1°8#@ the integral in (6) becomes

| o it e iog g P (U 0B (1) log s . (7)
Note that
S l0g 9+ (148 log ) = log s " pau. (8)

Recall that f(s)<<ks. 'This implies that there exists a sequence x,—co for which

fw)du<(14-€,)k log s .

Sx,,+(1+el) logs

Xn

Set s,=e/“»; from (8) we obtain

f(f'(log s,)+(14-6,) log s,) <log s, (14+(1+&)k) .

Returning to equation (7) we see that the integrand is monotonically decreasing
and when s=s, it exceeds
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const. 1
(log s,,)”z s‘:(1+(1+?l)k) :

If a(14+(14¢&)k)<1 then for sufficiently large N this integral exceeds 1/s,
along the sequence s,, n>N. Thus the integrand is a monotonic function
h(x) for which lim sup xh(x)>1. The integral of such an integrand diverges.

Thus P{Y,>C}=0co which is what we set out to prove. The transition from
this fact to the statement of the theorem is simple; the details are given in [4].
Hence the theorem is proved.

If we add the condition that f(2s) <2f(s) then the proof is c0n31derably
simplified since in this case

o) _ e, fllog 1/t (14+6)f(log 1))
oty tir) f(log 1/t,)

For f(s)<ks, this is bounded and the proof follows easily. The significance of
this condition will be discussed in Section 3.

2. Upper bounds

The upper bounds for the Holder condition in (1) are expressed in terms
of a function +» which dominates the incremental variance of the process, i.e.
E{(X()—X(s))} <¥*(|t—s|) where » is considered to be continuous and
monotonically increasing. Let «(h)=e 4?°8"®; the following functions will
appear in the sequel:

_ 1 (*y(w
pw(logl/h)_w(h)go Way,  1<a<2 (9)
where
Pals) = €% S”e-wm du (10)
and
Pas) = ag'(s)pa(s)—1. (11)

(Note p,’'(s) is everywhere defined by our previous remark.) Furthermore we
assume that the following conditions are satisfied by p,(s), for s sufficiently
large:
2-A) p4(s) is increasing in s and p,(s) >log s.
2-B)  pa(25)<2p4(s)-

In proving Theorem 2 we use a version of Fernique’s lemma due to the
author [6]. This is

Lemma 1. Let X(t) be a real valued, separable Gaussian process on [0, 1].
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Suppose E((X(t)—X(s)))<v*(|t—s|) and Sw\lf(e"z)dx<oo. Let n(p) denote

n**, n an integer greater than 1. Then

P{I[XlleC\/thn[I“/2+\/7 b3 2#/2\1,(.71(_11;))]}

oo

<4n? S e dy (12)

c "log n

where |NX||. is the maximum of |X(t)| on [0,1] and I" is the maximum of
E{X(t)X(s)}, t, s€[0, 1].

We proceed to Theorem 2.

Theorem 2. Let X(t) be a real valued separable Gaussian Process. Let
yr and p, be defined as above. Assume \r(t)>t'*" for some 7>>0 and t [0, 8] for
some 6>0. Then

P{lim sup | X(e+h)—X(B)| C’l} =1
w0 (Y(h)pa(log 1/h))*
(where C, is a positive constant) with the following additional restrictions:

1.) When 1<a<2 condition 2—A) holds.
2.) When a=2 condtions 2—-A) and 2-B) hold.

The constant C, can depend on +r.

Proof. Lemma 1 relates to the maximum of the process on the unit interval.
In order to change the scale we define
Yi(t) = X(tte+t)—X(t)  0<t<1.
Then
E{(Yi(t)— Ya(s) <w(I2—slt)
E(Y()Y(5)) SW(tt(st) <y(t)  0<s, t<1.
From (12) we obtain
PV Cy)Viogn (142 S3y (e oo
1412 C () Togn (1452 1y ks )2 )|
<4n Sw e rdu . (13)

c‘/log n

Starting with some positive, small £, we define the sequence #, by the.
equation yr(t,)=0y(t,_,), where §<<1. For a fixed value of ¢, we choose the
integer n as follows:

n = [exp {p,(log 1/t,)}]+1
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(where [x] denotes the integral part of x). Obviously # also depends on a. Let
us assume that it is fixed; we can do the problem separately for each . We
have

V pa(log 1]t <Viog n</ pa(log 1]t)+1 (14)
Since t,'*"<yr(#,)<O%r(2,) and
log n~p,(log 1/t,) >log, 1/t,>(1—¢€) log &

for some £>0 and k sufficiently large, we see that for an appropriate constant
C the right side of (13) is a term of a convergent series. If we show that

1 & ¢

——— V| )22 M (15)
V(ty) =1 <”(P)>

(i.e. that the series is uniformly bounded for all #,) we can use the Borel-Cantelli

lemma to show that

P{lim sup lX(ttk+t°)—X(t°)ll < const.} =1.
e (W(t) pa(log 1/2))"

It is a simple step to pass from here to the desired result (see [4]). Thus our
problem is reduced to showing that (15) is uniformly bounded in the #,’s. We
write (15) as follows:

° og 1, P log
2 exp {_sl g /f],+2 log gr(s)ds}zplz
p=1 log 1/t
=5 [ pa(log 1/2) ]sz/z exp {__1_ Sloz!/t,,wi’log" du } (16)
=11Lp (log 1/t,+2? logn) a Jogi/ts Pa(t)

where we have made use of (11).  Since p,(s) is increasing this sum is dominated
by

[ pallog 1/ ]Wzm exp{— L Zlogn __|
=1L p (log 1/t,+42? log n) a po(2? log n+log 1/t,)

3 [ pa(log 1/t) ]w o/ exp{—i 22 polog 1/t) } (17)
— =lp,(log 1/t,+2? log n) o pa(2* log nt-log 1/)

(using (14)). The sum in (17) is of the form pi 20121/% exp {—2?z[a}. The

maximum value of each summand occurs for z=1/2?; substituting into (16)
we obtain

oo

1
1;121,(1/ﬁ/—25exp {—1/a} (18)

which converges for «<<2. When a=2 the situation is not so simple.
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Returning to equation (16) we wish to show the uniform boundedness of
this sum when a=2. For simplicity we denote p,(log1/t,) by p(log 1/t,).
Replacing log » by p(log 1/t,) increases the sum in (16). Also we replace
log 1/t, by s. We show that with the additional condition 2-B)

o zpp(s) 1/2 1p 2Pp(s)+sﬂ 19
pz:'x[p(pr(s)—l—s)] eXp{ Y S p(u)} (19)
converges uniformly in s. Equation (19) is bounded above by

s [_2p(9 17 . 2%(s)

25 [p(ZPp(s)Jrs)] exe | 2p(21>p(s>+s)]

p2i p2ipedts gy
152 S _}
esp {125 .

. (20)
For fixed s, let p, denote the integer for which
220p(s) <5 <20%1p(s)

(If there is no p, for which this is true ignore the following step.) We need
only be concerned with s large. By 2-B) p(25)<2p(s); therefore

22p(s) > Zl’p(s)zzp_z for p<p, . (21)
2p(22p(s)+-s) ~ 2p(2s)

Thus the sum of (20) from p=1 to p=p, is dominated by

)
V2 D (287 2 exp {2077 <1
=1

For simplicity assume now that p,>4. The sum of (20) from p,-+1 to oo is
bounded above by

i exp {_1/20—1 Szjﬁcs)+s ﬁ}

p=py+1 zi_lp(s)+sp(u)

S exp (= Dol 5 2700)

where we have again used (21). Since for j>p,

TP 27 o 27 s
292 p)+9) T 2p(2ts) T 2N

equation (22) is dominated by
- ?
S exp (— 22— (p—p—2) 2777
p=py+1 j=1

< > exp {—(p—p—1)2%7H<1.

p=pg+1
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Thus the series is uniformly bounded in s; this completes the proof of the theorem.

It is of interest to note that this theorem could also have been proved in the
a=2 case under the weaker condition that f(25) <kf(s) for any % as long as f(s)
<Const. s.

3. Discussion of results

Theorem 3, which is stated in the Introduction follows immediately from
Theorems 1 and 2 since it includes as hypotheses the conditions necessary for
each of them. We shall not bother to restate it here.

There are a number of points relating to the results in Theorems 1 and 2
that are worth mentioning. Our goal in studying these results is to hopefully
gain insight into the form that the function @(%) in equation (1) should take in
order to provide a solution to our problem for all separable, mean continuous,
Gaussian processes with stationary increments. One might conjecture that when

S"Mduz o*(h) log, 1/h,
o u

ho¥(u) , \¥2 . . o
cp(h)z(STdu) . This is probably incorrect since it appears that ¢(k)

0
will have to be smoother than this function. We shall proceed to attempt to
justify this opinion and at the same time examine the relationship between the
different bounds that appear in the theorems and in [4].
Note that the functions p,(log 1/h) 1<a<<2 can be written in terms of
p.(log 1/h), since

N L VS W S T S O

N LRV R R O R LI
_ 2—a\ (* 0
= pog 1 +(*%) | putog 1) a 700 (23)

- S ) ,
This integration is possible as long as S + "/ du exists.
o u

We can obtain from (23) that it is possible for lim sup p,/p,=c0, a<<2. Let
k>0
us now assume that V(| t—s|)=E{(X(t)—X(s))}=0c*|t—s|). Note that only

for «a=2 does p,(log 1/h) exist whenever ra(e"“z)dx<oo, i.e. only for a=2

h 2
do the integrals S (1) du converge for all those processes that Fernique has
o u

shown to be continuous.

In [4] the lower bound for equation (1) was given as 1/g’(log 1/k), (recall
that o*(h)=e *¥4°e"/® and we are considering concave o*(k)). The functions
pa(log 1/k) are smoothings of this function since
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1 (*a™u),, a(u) 4o°(w)
o*(h) So u = 1a gouo "(u) o*(h)

and 1/g’ (log 1 /u)_ (1(‘)) The best result in [4] relating to the problem con-
sidered here is that p(h)=(c*(k)1/g’(log 1/h))* where 1[g’(s) is a regularly

varying function with exponent less than 1. When this is the case }_1’111 &' ()pa(5)

=1/a, so we can replace for 1/g’(s) any of the functions p,(s).

We see from (11) and the above remarks that 1/g’(s) regularly varying
implies that p,’(s)—>0. However p,(s) can be regularly varying and monotonic
without p,’(s) converging to 0 and Theorem 3 holds for regularly varying p,(s)
(exponent less than 1). In fact the conditions f(25s)<2f(s) and f(s) monotone is
equivalent to f(s) being of dominated variation [2], a more relaxed condition than
regular variation. In comparing this paper to [4] we see that both the lower
bound and the upper bound have been smoothed and this is the direction that

h 2
improvements should take. Returning to the question of whether S %)—du
0
is the appropriate Holder condition in general (assuming that it is greater than
a’(h) log, 1/k). My guess is that it is still not smooth enough.

In Theorem 3 it is required that p,(s)<ks for some constant k. However,

it is possible for p,(s) to take on larger values; (the fact that S pdu

. (1
diverge shows what values p,(s) can take.) Note that no upper bounds are
placed on p,(log 1/h), 1 <a<<2; therefore we can take for @(h) in (1) the function
(o’(h)pn(log 1/R))2, a<<2. However, when p,(s)>>logs a better choice for
(k) is given in [4] namely

must

()
So uV'log 1/u . ()

1/:
Nevertheless, (SMLZ@ du) ’ is less than (24); in fact it converges for more
o U

o(e**)dx under

processes than does Sw o(e *)dx. (Equation (24) is Si
log1/h
a change of variables.) )

As for the smoothness of S:#du itself, the hypothesis that p,(s)>log s
implies that this function is slowly varying and the hypothesis that o%(u) is
concave 0<u<h implies that this function is concave. Thus for those pro-
cesses for which (1) is actually obtained, the Holder condition is both concave and
slowly varying.

Our major concern in this paper has been processes for which log s< f,(s)
<ks. In those cases studied in [4] for which f,(s)<log s we obtained
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. X(t+h)—X ()|
C, <l , <
o= 5P (o) Tog, 1y =

and in some of these cases C,=C,=+/2.

Another interesting question is the following: Suppose k/c?*(h)—0, is it
true that if o,(k)~o,(h) then the two processes have the same Holder condition?
From Theorem 2 we see that the upper bounds are the same in this case, the
problem for the lower bounds is not clear. The question is answered
affirmatively for the processes considered in Theorem 6 in [4] and one would
also expect it to be true when the uniform Hoélder condition is being considered.
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