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1. Introduction. Let Γ be a simple closed curve in R2={(xly x2)y

, 7=1, 2} and Ω be its interior domain. Consider a mixed problem

DM = ̂ -̂ -9!| = 0 inΩx(0,oo)
9r dxl dxl

o-_ d - _
u(x) = Q on Γ X (0, oo)v ' QXl

 v ' dx2

u(x^ 0) — UQ(X)

— (x, 0) — Uι(x)y

where bj(x),j=ly 2 and d(x) are C°°-functions defined in a neighborhood of Γ.
We suppose that bj(x)yj=ly 2, are real valued and satisfy

(1.1) bι(x)nι(x)-\-b2(x)n2(x) — 1 on Γ

where n(x)=(n1(x), n2(x)) denotes the unit inner normal of Γ at x.

Let x(s), 0<^<L be a representation of Γ by the arc length s. Set

r(s) = [bι

The result we want to show is the following

Theorem. Suppose that the curvature of Γ never vanishes. In the case

of τ(s)^0 in order that (P) is well posed in the sense of C°° it must holds that

(1.2)
ds

ΦO for alls.

We should like to give some remarks on the theorem. If τ(s) = 0 the

boundary condition is nothing but the Neumann condition or the boundary

condition of the third kind. Then it is well known that (P) is well posed in

the sense of ZA And when τ(s)Φθ for all s the mixed problem (P) is also well

posed in the sense of C°°, that is shown in [1], In both cases the results are
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254 M. IKAWA

still valid without the assumption of the convexity of Ω.
In the preceding paper [5] we gave a necessary condition for the well posed-

ness of (P). There we introduced an index IB(P^ ?o: T) of a broken ray
according to the geometrical optics with respect to the coefficients of the
boundary operator and it is proved that the condition

o, f0: T)<CT, Vp0 = (x0, ίo)eΓx(0, Γ),

is necessary for the well posedness. It is easy to verify that the supposition

implies that τ(s)$0 and τ(s) has at least a zero of infinite order. Therefore
the theorem of this paper is an improvement of the result of [5],

2. Asymptotic solutions with a caustic

From now on, we suppose that the curvature of Γ never vanishes. Then
there exist functions θ(x, a) and ρ(x, a) with the following properties:υ

(i) θ and p are real valued C°° function defined in {(#, a) x e R2,
a^[—α0, α0]} where α0 is a positive constant.

(ii) — >£>02) for #€ΞΓ
dn

f\ 2 ^

where —=^nj(x) .

(iii) Let us set

Γ* = {x; p(x, a) = a}

<»«= {χ;p(*,a)>0}.

Then for all a it holds that

(V0)2+p(Vp)2= 1 in WΛ(2.1)
1 Vθ Vp = 0 in ω

and

(2.2) P(χ, ά)=a (moda00) on Γ.

For u(x, t)^C°°(R2xR) we set

NI(->PM= Σ

1) See, for example, Appendix C of Ludwig [7], §5 of Ikawa [4].
2) Hereafter, we will use c for various constants independent of a and k.
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«>(•)..= Σ

where 12 is a bounded open set in R2 containg Ω and

and 9 ? _ f Pand d - '

Let us denote

o.β= Σ sup |Z)S.ίΦ, 01

l « l r . = Σ sup
P+q<o [0,1] X J

Taking account of

for alia
(̂ !, Λ?2)

it holds that for all u<=C~(R2xRl) and α

(2.3) |tt |QΛ.<C JM|(β,§.t.

where Ce is independent of a.
Define

9,±(*, α) = θ(x, α)±2/3p(*, «)3/2.

Let »(ΛT, ίJeC^ΓβX Λ) and set for α>0

«(*, ί; α, *) = *»<»"<••*>-'>»(*, ί)

We construct a function M(X, ί; α, k) in the form

(2.4) «(*, ί; α, ft) = β»<»<« ->-|>{r(ft*ί/>(*, αM*, ί; α, ft)

so that it may verify

\Σ\u = 0 in

Bu\τ<Λ = m(x, t α, k) on the support of v
(2.5)

asymptotically as k^>oo, where V(z)=Ai(—z) with the Airy function Ai(z).
Apply Π for φ, ί; α, A) of (2.4) and use F"(*)+#F(*)=0, F///

F^—0. Then we have
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(2.6)

Note that F(.s) and F'( s) have the following asymptotic expansions for

z-* + 00

2
where ξ= — z3/2 and

o

Therefore the function u in the form (2.4) may be represented for large k2/3p

as follows

(2.7) u(x, t; a, k) = e
tk / ^ ιk

where

G± =

From the form of G± it holds that

(2.8) |8;ap(?

3) See Miller [8], page B 17.
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when£2/3p>C.

Applying the operator B to u of (2.7) we have

(2.9) Bu = eik^+-t^ikΦ+(G++— G+}+BG++— £<?+
I \ ϊk / ik

ik I ik

where Φ±=

Suppose that g0 and gι have the following asymptotic expansion with re-
spect to k~l when A->oo

(2.10) gfa ί; α, Λ)~ΣftX*, ί; α, A)*1'6'1-'', /•= 0, 1 .

Denote by .£, a differential operator from (C°°(R2xR))2 into itself defined

by for {#!, Λ2}

at

Substituting g0, gl of (2.10) into (2.6) and (2.9) we claim that all the coe-
fficients of k~j of (2.6) are equal to zero and those of Bu-m are also equal to zero
on the support of v. Then it must hold that

/o 11\ Γίp PI \ = 0{Δ.LijQ ~^<» iέ>oo> £ιo/ υ

and for j > 1

(2.11)y -£Λfty, g i j } = y {Πfty-i,

(2.12)y iφ-(fty-\/ Pfty) = iΦ"<5Γ-ι +5GΓ-ι + δGΓ-ι on ΓΛX Λ
IK

where Gf and G^ denote the G* and G± corresponding to the pair of k1/6goj and

To obtain the existence and the estimates of goj, g^ satisfying (2.11) and
(2.12), admit the following Lemma, whose proof will be given in the appendix.

Lemma 2.1. For {hQ) hj <=(C°°(R2xR))2 and f^C~(ΓΛxR) there exists

{alt a2} e (C°°(R2 X R))2 satisfying
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= / onTΛxR

and having the following properties:
1 b

' ' /=o «=o

(ii) When \] supp A/Πc^C {L~(x, t)] (x, ί)esupp/}, it holds that
7 = 0,1 1

/=o

(iii) W^ew {A0, AJ Ξ 0, /or (Λ, ί) e ΓΛ X

7(jc, /; a) is a C°° function on R2xRx[—a0, α0] such that

Ύ(*, f ;

(ΛJ, ί) denotes the point

where L*(x, t) denotes a line passing (x, i) defined by

Lέ \Xj t) '=• \{x-{-l\(p~~(Xj oίj) t-\~l)\

Let Λ0 be an open set in Γ Λ X R such that Λ0Dsuρp v. Set

A! = (LI(X, t) Π (ΓΛX R)- {(x, t)} (x, O^Λ0} .

Suppose that

(2.13) Λ 0 nΛ 1 = φ.

Let us set

β = inf |Φ~ I .

Using the above lemma we have £00 and g10 verifying

ί -£*feoo* 1̂0} = 0 in ω Λ X R

( goo-V Pgio = a.^_ V on Γ Λ X R

and the estimate

),a+2b+l '

Taking account of <Φ'>(*),fl<CΛ for all α>0, we have
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Then it holds that

(2-14) ΣII*«ll<->...»<Cα"« Σ <e>M.t

Let us set

E.(υ,β;j) = Σ <β>(β).,/i+/<o

Remark that the constant Ca tb depends on a and b but independent of a.
Next consider gQ1 and gu. Applying (2.8) to k1/6glQ and using (2.14) we

have

for pk2/*>C. Then, noting (2.2), it follows that

Therefore

(2.15)

From (2.14) we have

With the aid of (2.15) and the above estimate Lemma 2.1 assures the existence
£01 and £n satisfying (2.11)! in WΛ and (2.12)! such that

Σ \ (vy β; a+2b+5)

+Σ al/Έa(v, β; a+2(b-q)+2q+5)}

Now suppose that

Σ \\gu\\w a »<CΛ. ta-lίlftEJ(υ, β; β+24+4/+l).
/ = 0

Applying (2.8) to kl/6glj9 /=0, 1 we have
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Σ
1 = 0

(t>, β; a+4j

And

(v, β; a

Then by using Lemma 2.1 we have £/, +ι, /— 0, 1 verifying (2.11)^-+! in ωΛ and
(2.12)y+1 such that

1

Σ \\glj+l\\(*ϊ a,b

{Cj+lta+2b+1a-n^l^EΛ(vy β; flf+2ft+l+4/+4)

+Σ Cj^a-^E^v, β; a+2(b-q)+2q+4j+5)}
=

Thus by the method of induction we obtain

Lemma 2.2. For given v(x} t)^C%(TΛxK) there exist gojy gljy j=Q, 1,
2, ••• verifying (2.11); in ωΛ> (2.12)y on TΛxR and the estimate

(2.16) Σ ll^llί-)...^^^-11^^, β; a+2b+4j+l) ,

where Cj >a >b depends onj and a, b but independent of a.

Let N be a positive integer. For gtj of the above lemma we define g(f\ um by

Σ

Since

(2.17)

it holds that

(2.18)

(v, β
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Let us consider the estimates of OU(N\ In ωΛ={x; p>0} it follows
from (2.6) and the relations (2.11); , j=Q, 1, •••, N that

Using (2.16) and (2.17) we have in ωa

(2.19) \ 8*/8ί

p- a(v, β; 2(a+b+b'-p)+4N+ί) .

Next consider OU(N) in {x; ρ<0}. Note that

= *"y Σ ί Ύ Wι^^-f

v1 + -V4= y\7ι Ύ4

/

Since (V(9)2+p(Vρ)2— 1=0 in {#; p>0} we have for any M,>0 a constant CM Va

such that

(2.20) |Z)X(V0)2+p(Vp)2-l) I

for p<0. On the other hand, since V(z) satisfies

I (-z)™/2DW(z) I < CY2>M for all

it follows that for all k^ 1 and p<0

By using (2.20)

(2.21)

(v, β

About eik(Θ~^V(k2/3p)Vθ Vρgijk~J' we can obtain the same estimate as (2.21) by
taking account of the fact V0 Vρ=0 in {#; p>0}. Next consider termes of

the type
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/, = 2 +2V0 V&/+Δ0Ay+2pVp Vft,

Since {£0; , £1; } verifyies (2.11); in ωΛ we have for p<0

Therefore

ίv, β; 2/+3M/2+4/+3)
a

(v, β

and setting M=N—(j—l) it follows that

(2.22) I |/y| !(.).

Note that we have an estimate same as (2.22) for the other terms of Πwm.
From (2.19), (2.21) and (2.22) we have an estimate

(2.23) \\Ώu^\\(Λ^<CN9βtb(ka^N Σ VEΛ(v, β;2l+4N+3).
p + l*ζa + b

We set about considering Bum \ ΓΛXR. Remark that from (ii) of Lemma 2.1

ik

from which it follows that

(2.24) <βιιW-

<CNak-N Σ k*cΓlw+MEΛ(v, β', /+4ΛΓ+3) .
^+/<«

Since in ωa

by applying the expansion of the type (2.7) to the right hand side of the above
equality we may write near Ta X R
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with H* satisfying

Iβί'θ ajH*! <CN^ba-11N/iEa(v, β; a+a'+2b+4N+l) .

On the other hand applying Π to w(ΛΓ) of (2.7) we have in ωa

at

,

where G(jv)±, Gm± denote the terms corresponding to G±

y G
± of (2.7) when we

substitute g(N^ and g^ into the places of g0 and g1 of (2.4). In the same mean-
ing we will write the decomposition of (2.7) for u(N} as um=um+-{-um~. Since
Vφ+ and V^~ are linearly independent it follows that

- G ^ ) ± = k~NH± ,

from which we can derive an estimate in a neighborhood of Λ0

ik
+*'+ba-11N'*EΛ(v, β; 4N+a+a'+2b+l) ,

by taking account of the location of the support of G(ΛO++— - Gm+ and the
ik

equation Gw++— <?(AΓ)+ must satisfy. Then we have
ik

" Σ (v, β; 4JV+/+3).
J>T I =ϋs«*

Combining the above estimate with (2.24) it holds that

(2.25) <Bu^\^-eik^'-^vy(Λ}>a<CN)a(kall^YN ^kfEΛ(v9 β\ 4ΛΓ+/+3).

Next consider Bum on Λlβ

-λGw+}+BGm++—BGw+\
ik I ik )

where

Let us us set

- f j ίr-V2α
y=o
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Applying (iii) of Lemma 2.1 we have

Then it holds that

(2.26) s u p l W i l ^ — ( inf |Φ+ |/ sup |φ-|)sup|»|.
2 Ci.OeΛj C*,θeΛ0

(2.27) <Wi>(.)..<C.{eu |Φ+ |£.(o, β; a)+Ea(v, β α-

Set

w2(x, t) = zΦ+

j=ι ik

Then

,

By the same consideration as M(ΛΓ)+ in Λ0 we have

<Bu^-\Aoyw_a<CN_a(kaίl/rN Σ A*^
ί + /<«

Summarizing the considerations in this section we have

Proposition 2.3. Let a>0 and v(x, t)^Co(ΓaxR) such that A0Γ\Δ.1=φ.
For every positive integer N there exists a function u^N\xf ί; a, k)EΞC°°(R2χR)
satisfying

supp um Π (ωΛX Λ)C {L~(x, t)] (x, ί)esuρρ v} ,

supp

the estimates (2.18), (2.23) aτz</ (2.25). And

N>a(ka^ΓN Σ VE^v, β;/»+/<«

where w has the following properties

— ( inf |Φ + | / sup |Φ~" | ) sup|ϊ;|
2 CΛr.oeΛj C*.oeA0

(α) a<Ca{(sup |Φ+ 1 +/S)£.(ι;, β; a)
Λl

y=ι
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where all the constants are independent of α.

3. Asymptotic solutions reflected iSΓ-time at ΓΛ

Let v(xy £)eC7(ΓΛX R) and suppτ CΛo. Define A1? Λ2, •••, Aκ succes-

sively by

Λy+1 - {L~(x, t) Π (ΓΛX R)- {(x, t)} (x,

Suppose that

(3.1) ΛyCΓΛx(ίy, ίy+1), f0<fι<-<fc+ι

Set

£ = inf_ \Bφ-\,
(ΛΓ,Oe U Ay

y=o

ι;= inf |B^+|/ sup
^ ( jc .OeuΛj

(Λ,0e U Ay
y=o

We assume for some constant Cκ

(3.2) sup \Bφ+\jβ^Cκv.
(x, 0 e u Ay

Apply Proposition 2.3 for

and have U(QN}(X, t\ a, k) with the properties

(3.3)0 '

(3.4),

(f, /9; 2/+4ΛΓ+3)
ί+/<«+ft

(3.5)0

W a(karN Σ ft*S.(», yS; 4ΛΓ+/+3) ,
P+K*

where

(3.6)ι

(3.7)! sup I Pl| > sup|β| -

(3.8) <fι>(.)..<C.(8up|φ 1 H-/8)B4,K /9; α)

+CN,. Σ (ka3YjEa(v, β 4/+α) .
=
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Since p=α on ΓΛ we have

φ+ =

= 9 Γ + α 3 / 2 o n Γ Λ ,
o

from which follows

Then #! verifies the properties (3.6)ι<
Now the application of Proposition 2.3 to ml gives the existence of a func-

tion u[N\x, t'y a, k) with the properties

(3.3), imi(βW<Cw . , Σ *»-*->*£.&, β; 4/
y=o

(3.4)! llDaί^llo.^^.^^-* Σ **£,(«!,£; 2/+4N+3)
ί+/<«+6

(3.5), <SMw I ̂ -βOw.̂  W I Λa-m^o..

/S; 4JV+/+3) .

From (3.8)! and the definition of EΛ(vl9 β', a) it follows

{C,(sup I Φ+ 1 + /3)£.(ί>, /8 p)

N,a Σ (V)" .̂K 0 > V
=

..Σ (Λα3)-' Σ S«(̂  /3; 4/'
y=ι ί+/<«

By using £.(β, β; p)β-'^Ea(v, β; p+l), we have

(3.9), £>!> /3 5 β) < Ca(sup I Φ+ 1 + β)/βEa(v, β β)

+CJV,a/3-1Σ (ftα5)

From the second part of Proposition 2.3 ίw2 can be represented as

m2(x, t;a,k) = epv+-'>v£x, t;a,k)
— eik(<e--t)eikW)<»:iPV2 = β '*

and S2 verifies from (2.7) and the above estimate (3.9),
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(3.7), sup| 0,| >
LI

- C Σ (M";' ίQsup I ΦΊ + β)lβE.(v, β 4/)

Σ (ΛαV^ K /3; 4/+4A)}
Λ — 1

(ϊ,, yS; 4/ )

.̂  β; W

(3.8),

< C0(sup I Φ+ 1 +β) {CaCvEa(v, β; a)

iEa(v, β; 4j+α)}

a CvEa(v, β; 4j+a)

CN^(ka3γhEa(v, β y 4h+4j+a)}
h = 2

<C'a(sup\Φ+\+β).V Ea(v, β; a)

+ Cbttv ^(kcή-'EJίυ, β; 4/ +a)

2N

Σ(ftαί)-^.(β, β; 4/ +α) .
i=2

Repeating this process we obtain uψ\x, t; a, k), j=Q, 1, 2, ••-, K verifying

(3.3), ll«f )ll(«),β,»<CΛr>αιί

 JΓΣ+'̂ 4''"*"1/5^«(^ , β; 4A+1)
jy + a + b

Λ = 0

(3.4)y IIDttf ̂ (^.α.^C^XΛα3)"^ Σ kpEΛ(Vj, β\ 21+4N+3)

(3.5),

supp

(3.7),

/-I

/=! A^7

J -1 /JV

-Cj/} Σ "''-' Σ (ka3)-"Ea(v, β 4/r)
= =
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~ •—•- - Ea(v, β 4h+a)
1=1

hEa(v, β] Vi+a) .

By using v^Cβ~l it follows from (3.8),. that

(3.10),. <£,.>(„,
/=0 A = /

Set

x, t; α, A) = Σ (-l)y«Γ(*, ί; α, A) .

Then we have from (3.3)^(3.10)^

Proposition 3.1. Let v(x, ί) e C^(Γα> X R) such that

Suppose that (3.1) and (3.2). 77î  there exists a function Uψ\x, t\ α, k) with
the following properties :

(3.11) supp ί7^)n(Ωx/2)cΩx(ί0, oo)

" '

l=o

(3.13)

(3.14)

^C^XAα8)-* Σ
ί + /<« + 6 9 = 0 A = 9

(3.15) sup |C7^|>(i-^sup
r*χ(/o.**) \ 2 /

K-l I

-CN Σ "y-' Σ (Aα8)-*^, /3; 4A)
IN

Σ
A = /

where the constants CN>Kf0>b and CN>K>0 are independent of a.
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4. Proof of the theorem

Lemma 4.1. Suppose that τ(0)=τ'(0)=0 and

sup τ(s)>0
0<*<8

for any £>0. Then there exist a constant δ>l/2 and a sequence

with the following properties:

sn — > 0 as n — > oo
(4 1) A-,W>.

dm/ /or ίzwy positive integer K there exists a constant Cκ such that

(4.2)

Proof. When ί=0 is a zero of finite order, namely for some

τ(0) - τ'(0) = - = τ<«>(θ) - 0 , τ<*+1>(0)>0

it holds that for some s0>0

I τ'(j) I <Cτ(^/(«+1> for

Since for

)-τ(ί) I <tτ(s) I τ'

<ίτ(ί){|τ'(j)|+ίi7τ(ί)(supτ//)}

and the sequence sn=l/n are the desired one.
Next consider the case that s=Q is a zero of infinite order.

Case 1. τ(s) is monotonically increasing in 0<s<£0 for some £0>0.
Suppose that for some l>δ>0 theie is no sequence with property (4.1) verify-
ing

(4.3) τ'(*.)<τ(Oδ, V n .

This assumption implies that it holds that for some ^X)

τ'(ί)>τ(ί)δ for

from which it follows
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— rfc)1-' = (l-8)τ(j)-V(ί)>(l-S) for 0<s<ε1 .
ds

Then we have

8)s forQ<s<εl9

namely τ(s)>(l — δ)sv(1~δ). This is contradict with the assumption that τ(ί)

has a zero of infinite order at s=0. Then we see that for any l>δ>0 there

exists {sn} verifying (4.1) and (4.3). By using (4.3) and

n)-βn = tβnτ'(sn+ηtβn) ,

I τ'(sn+ηtβH)-τ'(Su) I <tβn SUp I τ"(

we have for all

\r(sn+tβn)-βn

Thus (4.2) is proved.

Case 2. For some £0>0

forO<0<£0

and τ(s) is not monotonically increasing in 0<s<£ for any £>0. From

the assumption for any £>0 there exists s such that 0<O<£ and τ'(s)=Q.

Then we can choose sΛ>0 with the propertiy (4.1) such that τ'(ίn)=0. Then

β2

n Vn.

Thus {yn}~.o is the desired one.
Case 3. τ(s)f does not verify the properties of the case 1 nor 2. Then

there exists a sequence θn>θn+ι> — >0 such that τ(θn)=0 and sup τ($)>0,
*e[βw+1,βn]

since for any £>0 there exists 0<s<8 such that τ(j)>0. If we choose sn as

τ(sn) = max τ(s) ,
*e[β»+ι, 0«]

it holds that r(ίn)>0 and τ'(jn)=?=0. Evidently s«->0. As case 2 we see that

this {SΛ} verifies (4.2). Q.E.D.

Since n(x)=(n1(x), n2(x)) may be considered as a C°°-vector defined in

a neighborhood of Γ

η(χ) = bί(x)n2(x)—b2(x)n1(x)

is also a C°°-function defined in a neighborhood of Γ. We show that (P) is

not well posed in the sense of C°° when τ(s) of the introduction, i.e., τ(ί)=
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η(x(s)) verifies the condition on τ(s) of Lemma 4.1. Note that

(4.4)

271

P (Vp0+αVpd- )+V00+αV0ι+

and n(x) Vp0 = I Vp 01, n(x) VΘ0=Q on Γ4).

Then we have

n(x) Vφ-(x, a) = a1

on
on Γ

Vθ(x, 0) Vφ-(x, a) = l+O(α) on Γ .

Therefore n(x) Vφ~(x, a)lVθ(x, ά) Vφ~(x> a) decreases monotonicaJly to zero
uniformly in #eΓ when α-»+0. Let {sn} be the sequence with the property

(4.1) for the above τ(s)
For every n set yn=x(sn) Then an>0 is determined uniquely for large n

by the relation

(4.5)
Vθ(yn,

From the above relations we have

(4.6)

a.)

Vn,

where cί9 c2 are positive constants.
Note that for α=0

On the other hand # and dx
ds

o n Γ .

= 1. Then it follows that

θ(x(s), 0) = ί+ constant.

Without loss of generality we may pose the constant=0. Since we have from
(2.1) and the property (ii) of p

9fl 90}

dx1 dx2
rank

dp dp

dx1 dx2/

= 2,

there exists uniquely XΛ(S) verifying xa(s) -> x(s) as α-^0 and

θ(x*(ή, 0) = s

4) See, for example, pages 70 and 71 of [41.
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for small s and a. Moreover we have

I xa(s)-x(s) ]< C { I P(xa(s), «)- p(x(s), α) I + I θ(xa(s), 0)-θ(x(ή, 0) | }

<C\a-p(x(ή,a)\.

Using (2.2) and #(s)eΓ, we obtain for any P>0

\xa(s)-x(ή\<CPa
p.

Then we have

(4.7) I (Bφ*) (xa(s), ά)-(Bφ±)(x(S\ a) \ < C^

for all α>0 and ί. Note that

(Bφ^x, a) = n(x) Vφ±(x, α)— ̂ V^oW V^*^, a) .

Then we have

(4.8) (Bφ-)(yn, an) = (βx+βln+s/2-τ(sn))Vθ0(yn) Vφ-(yn, an)

yn, an)

Taking account of (4.4) it holds that

n(x(t+s)) Vφ±(x(s+t))-n(x(s))

= ± χ/F( I VPo(x(s+t)) I - I Vp0(*(ί

Since | Vρ0(x) \ is C~ we have

\n(x(sa+tβn))'Vφ±(x(sn+tβa\ an)-n(x(sn))'Vφ±(x(sn), an)\

By the same consideration it holds that

,), an)-Vθ0(x(sn))'Vφ±(x(slt), an)\

Mn.

Therefore we have for 0<f <1£

\(Bφ-)(x(Sn+tβn), ax)-(Bφ-)(x(sa), aa)\

Combinig (4.2) and (4.7) it follows that

(4.9) \(Bφ-)(x(sn+tβa\ an)-β

for all O^t^K and n. By the same consideration we have
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(4.10) \(Bφ+)(x(sΛ+tβΛ), an)-2βn

for all 0<t^K and n. Then by using (4.6), (4.7) and (4.9) or (4.10) we have

Lemma 4.2. Suppose that τ(s) is equipped with the properties of Lemma
4.1. Then for any K>0 there exists a constant Cκ such that

(4.11) \(Bφ-)(xΛn(sΛ+tβΛ), O-

(4.12) I (Bφ+)(XaH(sn+tβn), an)-2β

for alKXt^Kandn.

Suppose that the problem (P) is well posed in the sense of C°°. Then for
any T there exist q and Cτ such that for all t < T

(4.13) | M | o f Q χ ( - o o f

for all u(x, *)<ΞC°°(Ωx(- oo, T)) verifying u=0 for /<0, where

.Qχ(-co.ί>= Σ sup \DΐttV\
QxC0 0,/)

l» l f . rχ(-«)= Σ sup |Dί(V0o(*) V)Γ«;|.
/> + ̂ <ί ΓxC-°°,O

On the supposition on τ(^) of Lemma 4.1 we will show the existence of
a sequence of functions which violates (4.13).

Let h(s, t)<EΞC%(R2) such that

s u p | A | = l , supp/zc[0, l]x[0; 1} .

For each n define vn(x, t) e CS>(Γα>π X R) by

Put

and define ΛM; , j=l, 2, - ,UΓ according to the description in the beginning

of §3. Since c2\/cΓn^ lp*H(x> t)—(χ> 0 1 <^ι\/c^ it holds that

0 -

From Lemma 4.2 we have

inf

jc.Oe u
y=o
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inf \Bφ+\l sup \Bφ~\>Cκβl'2

and

= /u &nj (*,f)e U

sup |5?>+|/ inf \Bφ-\<C'κβl'\
ε

(*,/)ε u Λn (*,
y=o '

where Cκ and Ci: are independent of n.
Let us fix K as

(4.14)

^
and N as

(4.15)

For each n we apply Proposition 3.1 and obtain U(

n*$(x, t\ a, k). Note that
it holds that

where Ca is a constant independent of n. Then

Setting k=βήw we have

(4.i6) \\uw\\<*j.,
j

fSΣ(^"«2)-*αϊtt-

(4.17)

(4.18)

(4.19) sup

p VI β-(K-j)δ VI ( β-20sv3

^N ZJ P» Zj VPn OT»
/=0 A = /

=0 h=r

0-
Pn

20^\~h ~,-4
ίn) Cίn

h —J£

>
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Since

we obtain by using (4.16), (4.18) and (2.2)

(4.20)

Taking acount of (2.3) the substitution of (4.17), (4.19) and (4.20) into (4.13)
gives

which shows a contradiction, because K verifies (4.14) and /3Λ-^0 as

Thus the theorem is proved.

Appendix

By a change of variavhles

p(x) = σ

the equation -CΛ{al9 a2} = {hQ, hλ} turns to

Qt v ' Qy

(A.I) \ +σΔρa1 = h0 in

Λ,0 ., . ,0 Λ __ , ^

9ί v 7 9j

First consider how atj(y, t)=(-^ j(0, y, t) is determined. Let us set

y, ί)~
y=o

y)~Σ BXy)^, (Δp)(σ,
j=--o j=o

and
00

<Φ , v, 0~Σ3
> =

Note that the facts AQ(y)^c>0 and β0(3;)>ί:>0 follow from the the proper
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of θ and p. Substitute the above expansions into (A.I) and set equal the

coefficients of σ1 of the both sides of the equations. Then we have

(A.2)0 2

(A.3)0 2 -£s+2Aΰ+Cΰa10+Bΰaal+D<ίaw = h10at ay

and

B,
1 = 1

(A.3)y

Then if we set am(y, t)=Q, (A.2)0 determines alϋ and subsequently (A.3)0 de-
termines a01. In (A.2)! besides αu all terms are determined, therefore au is

determined, and next (A.3)! determines #02. Continuing this process we obtain

successively aljy j—O, 1, ••• . By the manner of determing atj it holds that

(A.4) Σ {sup I D"yttθQj+ι(y> t) I +sup I ΐfytt
a\j(y» t) I}

<ca ij Σ lγ l<βΣ._Λ) sup i Dithlk(y, 01 -

6

If we set #/(σ, y, ί)=Σ β/y(^ 0°";> ^e estimate (A.4) gives

Lemma A.l. For any b positive integer there exists {aϋ, a^ such that
00(0, y, ί) = Q .

(A.5) Σ Σ suplfl^D^ KC^ΣΣ Σ su

(A.6) Σ sup I DΊytt(XΛ {aQj aλ} — {hQί h^) |

..* Σ Σ Σ sup i DI Mfa, y, t) i

Next consider that case

(A.7) Dίhfl, y,t) = Q for p = 0, 1, 2, -, b .

If we claim fl0=0 on {σ=0} the solution of (A.I) is given for σ>0 by
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<<r> y 0 = \ (G+(V^, y, t)+G+(-VT, y, t)}

«ι(σ, y, t) = ̂ = {G+Cv7^, y, t)-G+(-V^, y, t)} ,
/v 0"

where G+(s, 3;, £) is the solution of

X+G+ = (2 j-t+2(Vθγ(y, *')A+2(Vp)U *2)£

+(^ j, ί) = H +(z, y, t)

ί/+(0, j, ί) = h0(z2, y, tϊ+zh^z2, y, t) .5>

The assumption (A.7) implies that for r<ό, |γ| <α

Ka , = Σ Σ sup I DJi(Z>ίA,(σ, y, ί) I
/ = 0 |γ|<β

Therefore it holds that

Σ i z>:z>;.t G
+(^ ̂  «) i < c..,̂ ., i * i "«-- ,

ιvι<β

from which it follows immediately that

Σ Σ sup I D&ltafc, y, t) I < Cα>^β>,, σ>0 .
r = o | y|<0 + 2(6 + l-O

Using (ΛO— \/"p"Λι)(α> ^> 0==:Gί+(^ t, —v/~a) we have

Lemma A 2. On the supposition (A.7) ίA^r^ exists a solution of (A.I) veriy-

ing α0(0, 3;, ^)=0 and it holds that

(A.9) Σ Σ

(A.10) Σ sup |Z)}>o- V P «ι)(α, y, 01

5) See, § 1 of Ludwig [6] and Lemma 5.2 of Ikawa [4].
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When A/=0, the solution of (A.I) verifying

ao—\/ p a\ I <Γ=Λ — f(y> f)

is given by (A.8) where G+ is the solution of

f -C+G+ = 0

( G+(—\/~a, y, f) =f(y, t).

Evidently

ΣJZ>ίZ)J.,αol < (Σ . Σ/upl^ZλίG^y, ί)l

And we see easily that

Σβ sup I D19,tt G+(z, y, t) \ < C.Σβ sup | D^tf(y9 t) \.

Thus we have

Lemma A.3. When hQy h^Q, the solution of(AΛ) verifying a0—\/ p a1 \ σ=a

=f has the estimate

(A.ll) ΣΣ <Σ& . sup|Z)y)Jfie^,y, ί)l

Σ «

To show (i) of Lemma 2.1 for fixed integer 6 first apply Lemma A.I and
we obtain {ά0, άλ} satisfying (A.6), and next apply Lemma A.2 to J^Λ{&Q^ άi} —
{hQ, Aj} then we have {bQ, b^ verifying

By using (A.5), (A.6) and (A.9) we have

Σ Σ { I DIjDίafr, y,t)\ + \ D}9tDί(σ, y , t } \ }
= -

< C.,t Σ Σ Σ sup I DID}., ht(σ, y,t}\.
y=o ;=o |γ|<β+2C4-Λ

Moreover it follows form (A.5) and (A.10) that

su

< cα,t Σ Σ Σ sup i D'jy,tthAσ, y,t)\.
ι=o j=o |γ|<β+2ζ*-y)

Then using Lemma A.3 we have {c0, Cι} verifying
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%-VT'ι IP— = f-((άQ+t>v)-\/~p(άι+I>ι))\p=Λ .

Then we see immediately that al=άl-\-bl+ch /— 0, 1 are solutions of the pro-
blem (A.I) verifying the boundary condition and they satisfy the estimate of
(i) of Lemma 2.1.
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