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1. Introduction. Let I' be a simple closed curve in R’= {(x,, x,);
x;€R, j=1,2} and Q be its interior domain. Consider a mixed problem
0u _*u 0%

== =0 in Q% (0,
Du ot? axl axg in 0x(0, )

®) ' .{ Bu = bl(x) —[—b2( )——+d(x)u(x) =0 on I"'x (0, o)
u(x,.0) = uo(x)
%‘(x, 0) = w(x),

where b,(x), j=1, 2 and d(x) are C~-functions defined in a neighborhood of T
We suppose that b,(x), j=1, 2, are real valued and satisfy

(1.1) by(x)my ()4 by(x)my(x) = 1 onT

where 7(x)=(m(x), n,(x)) denotes the unit inner normal of T' at x.
Let x(s), 0<s<L be a representation of I" by the arc length 5. Set

7(8) = [ba(o)ma(%) = b %) (%)) 105 -

The result we want to show is the following

Theorem. Suppose that the curvature of T' mever vanishes. In the case
of 7(s)=E0 in order that (P) is well posed in the sense of C= it must holds that

dr(s)
ds

We should like to give some remarks on the theorem. If 7(s)=0 the
boundary condition is nothing but the Neumann condition or the boundary
condition of the third kind. Then it is well known that (P) is well posed in
the sense of L?. And when 7(s)==0 for all s the mixed problem (P) is also well
posed in the sense of C=, that is shown in [1]. In both cases the results are

(1.2) |7(s) |+ +=0  foralls.

*)  Supported by Grant-in-Aid for Scientific Research
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still valid without the assumption of the convexity of Q.

In the preceding paper [5] we gave a necessary condition for the well posed-
ness of (P). There we introduced an index Iz(p,, &: T) of a broken ray
according to the geometrical optics with respect to the coefficients of the
boundary operator and it is proved that the condition

I(po, Eo: T)<Cr, Vo= (%, L)ET X(0, T), £, EZ,,
is necessary for the well posedness. It is easy to verify that the supposition
sup Iy(po, £o: T) = o0
20,0

implies that 7(s)0 and 7(s) has at least a zero of infinite order. Therefore
the theorem of this paper is an improvement of the result of [5].

2. Asymptotic solutions with a caustic

From now on, we suppose that the curvature of I" never vanishes. Then
there exist functions 6(x, r) and p(x, ) with the following properties:?

(i) 6 and p are real valued C= function defined in {(x, a); x € R?,
aE[—ay, a,]} where o is a positive constant.

(ii) ELp>c>02) for xeT
on

0 0
here 0 —SVp (x)_0_.
where - gn](x) ox,
(iif) Let us set
T, = {x; p(x, @) = a}

Wy = {x; p(x’ a)>0} .
Then for all « it holds that

2 2 __ 1 =
V8:Vp=0 in @,
and
(2.2) p(x, a)=a (mod a™) on T,

For u(x, t)e C~(R*X R) we set
llellw a6 = 33 sup|0;0505u(x, £)|
P+T<O Sy R

<h

1) See, for example, Appendix C of Ludwig [7], §5 of Ikawa [4].
2) Hereafter, we will use ¢ for various constants independent of a and k.
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Ww)e = 23 sup |0105u(x, 1)],
PEr=3
where (3 is a bounded open set in R? containg O and

o 200 0 2y 0p 0
a’ = ) - — q
P Y % = (; Ox; Ox; ) and  0; = (:le Ox; Gx

Let us denote

Iuln,a= >3 sup | D% iu(x; t)|

IBl<é QxR
lulr. =, 23, sup |0:0%u(x(s), £)I.
p+9<a (0,1
Taking account of
DO, p) |-,
>c>0 foralla
D(x,, x,)

it holds that for all us C~(R?*X R") and

(23) Iulﬂ,2a<ca”u“(a),a,a

where C, 1s independent of a.
Define

P*(x, a) = 0(x, a)+2/3p(x, a)*>.
Let v(x, )€ C5(T's X R) and set for >0
m(x, t; o, k) = €+ ®N"Ny(x, £)

We construct a function u(x, ¢; e, k) in the form

2.4) u(, t; ct, k) = e"""‘"“’)"){V(kmp(x, e, £ a, k)

1 .
o V()i 1 k)}

so that it may verify

Ou=20 in QX R

(2.5)
Bu|py = m(x, t; a, k) on the support of v

asymptotically as k— oo, where V(2)=Ai(—=z) with the Airy function Ai(3).
Apply [ for u(x, t; a, k) of (2.4) and use V"'(2)+=2V(2)=0, V"(2)+=V'(2)+
V(2)=0. Then we have
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26)  Du=—ero o[ Ve @R1(VOy-+p(TeF— o
+2(iRYpVp- VOg-+ik(2 %‘;"+2V€-Vgo+ A-g,
+2pVp-Vgi+(VpYgtpAp -gl)— Oé& }
4L V) BP0+ p(TPY—)gs 2HFVO- -2

+z’k(2 %‘;‘+2V0-Vg;+A9gl+2Vp-Vg§+Apgo —Dgx}] .

Note that V() and V’(z) have the following asymptotic expansions for
Z—> 4 o0

V(Z) — %7!"’/22'1/4{6‘(5‘"’4)(1—I—’é"Pl(éE))—l—e‘i(E""/‘)(l—!—E‘l Z(E))}
V() = i VTP —e I EPEN)

where = —‘;1 2¥2 and

Pf(E)Nnglg_l ’ le S5 C.3)

Therefore the function u in the form (2.4) may be represented for large k*°p
as follows

; = ekt~ 1 oo G-+ 1 G-
Q7)) ulx, t; a k) = e+ ’)(G+—i—_ikG+>—|—e = +2 )

=ut+tu"

where

Gi —1/4k—l/6e7—1t|'/4(g0:t \/?gl)

N

NE3
G+ — %;,—vzk-1/6p-7/4e*’"'/4(P1g;,+\/ P Psg)
G- — % V2R Vop= e I(Pog /P Pugl) .

From the form of G* it holds that

(2.8) 1850,G™ | SCRE 2™ 1gill@r o1 181l 0.0}

3) See Miller [8], page B 17.
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when E#3p>C.
Applying the operator B to u of (2.7) we have

(29) Bu= e"‘“”"’{ikd)*(G"—l—-}k—GJf)—&—BG+ w1 56+
—I—e"”“"_"){ikq)_(G_'*"%G_)‘*‘BG_%-%BG‘ } ,

where ®*—=315 (x) 02"
ji=1 6x1

Suppose that g, and g, have the following asymptotic expansion with re-
spect to £~! when k—>co

(2.10) 2%, 85 ot )~33gix, t5 o, RFAI, 1=0,1.

Denote by £, a differential operator from (C~(R?*X R))’ into itself defined
by for {a;, a.}

Lufay @} = {22842v0-Vart- 8001+ 269 Vart (VY
+pApa,, 2 %atl—{-ZVG «Va,+Aba,+2Vp+Va,+ Apal} .

Substituting g,, g, of (2.10) into (2.6) and (2.9) we claim that all the coe-
fficients of k™7 of (2.6) are equal to zero and those of Bu-m are also equal to zero
on the support of v. Then it must hold that

(2.11), Lo{80: 810} =0 v
(2.12), 1D (goo—\/ P 1) = 2ma*e™ily onT,XR

and for j >1

1
(2-11);' La {goix glj} = 7 {Dgo,-_l, Dglj—l}
2.12), i® (g~ Par;) = i®Crs +15:G,--_1Jr;}k-BG;_1 on TyX R

where G% and G* denote the G* and G* corresponding to the pair of k/%g,; and
klleglj-

To obtain the existence and the estimates of g,;, g,; satisfying (2.11) and
(2.12), admit the following Lemma, whose proof will be given in the appendix.

Lemma 2.1. For {h, h} =(C~(R*X R))? and f €C>(T's X R) there exists
{a,, @} €(C(R?X R))? satisfying
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{ Lyia, a)} = {hy, 11} n osX R
—Vpepa=f on TyX R
and having the following properties:
() 10l,0s<Cop{l o arameit 23 2Vl ovz0-0.6}
(i1) When U supp hNwsC {L(x, t); (x, t)Esupp f}, it holds that
U supp @, NwaC {L3(x, 2); (¥, )Esupp f},
(iii) When {h,, b} =0, for (x, )T X R
@+ pa)(x, 1) = v(x, t; A)f(Pa(x, 1))
where v(x, t; a) is a C= function on R*X RX[—a,, a,] such that
v(x, t; @)=C >0
and P,(x, t) denotes the point
L, 1) N(TuX R)— {(x, 1)} ,
where LE(x, t) denotes a line passing (x, t) defined by
L*(x, t) = {(x+IVep*(x, @), t-+1); IER} .
Let A, be an open set in T, X R such that A;Dsupp v. Set

Ay = {L(x, ) N(Ta X B)—{(x, )} ; (%, )EAS} .

Suppose that
(2.13) ANA =6
Let us set

F=ulpi el

Using the above lemma we have gy, and gy, verifying
J Lo{gw g1} =0 in o, X R

L DoVl
( goo_\/ P& = craTe v

a onT, X R
1D- *

and the estimate
1 2 1/4 if4,
7ra 0
IE “glo”(m) a bgca b< >(m) a+25+1 *

Taking account of <@ > ,<C, for all ¢>0, we have
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L(P7) Dw), o <C,B~ D,

Then it holds that
1
(2.14) 23 l12nllw,0 s < Cat* ﬂﬂ@zﬂb“<v>(m),l<(¢’—)_1>(m),9
SCat D3 oD, B¢,
bHiI<a+2p+1
Let us set

Ea(v) :8 > ]) = ﬁ§0<v>(m),lﬁ—<ﬁ+l) .

Remark that the constant C, , depends on @ and b but independent of a.
Next consider gy and g,;. Applying (2.8) to k/%g,y and using (2.14) we
have

1050,G%| <C,{p "'"a*Ea(v, B; a+3)+p Ve *Ea(v, B; a+1)}
for pk#*>C. Then, noting (2.2), it follows that
<¢‘GO‘+BG0‘+-_1EBGO'>(¢) <C,aE (v, B; a+3).
i ,a
Therefore
— e _, 1 N =) —

(2.15) (@G5 —f—BGo—i—EBGo)(CI) ) 1>m,a

<Ci 2 a™Ey(v, B; I43)-87¢*

1+p<a

SCla™Eq4(v, B a+4).
From (2.14) we have

”gm”(w),a,b<Ca,balﬂEﬁ(v: ﬁ; a+2b+4+1) .

With the aid of (2.15) and the above estimate Lemma 2.1 assures the existence
ga and gy, satisfying (2.11), in @, and (2.12), such that

1
12;0 ||g11|l(as),a,b<Ca,b{cz+26+1a_5/2Ea(7), B; a+2b+5)
b
+3] @ Eu(o, £ a+2(—0)+24+5)}
<C; o™ E4(v, B; a+2b+75).
Now suppose that
1
,Z‘:, 81ill@,0,6<Cj o M1 Ey(v, B; a+2b+4+1).

Applying (2.8) to k¢ g,;, I=0, 1 we have
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o _ 1 =\ e =)\ 1
<(<I> G;+BGj; +EBG',~)(<I> ) >(u),a

1 1
<Cap§a(a_7/4§ Ilgzjllmxp,l-!-a‘“"‘z_.: g1l p,0) =B~ ¢
<Ca',?,1-<'a Cippa Wi 1 Ey(v, B; p+2+4+1)87"""
KCjp,a MUVAE(v, B; a+4j+-1).
And
”Dgzj”(m),a b<cj,a,ba_.uj/4Ed('U: B; a+2b+4j+5).

Then by using Lemma 2.1 we have g,;,;, [=0, 1 verifying (2.11),,, in @, and
(2.12);4, such that

Sl gl o
SCop{Cintarmna ™ E (v, B a+2b+1+4j14)
+§:‘3 C;.sa MM Ey(v, B; a+2(b—q)+29+4j+5)}
KCji o MUVAE (v, B; a-+2b4-4(j+1)+1).
Thus by the method of induction we obtain

Lemma 2.2. For given v(x, t)eC5(TsX R) there exist gy;, &, j=0, 1,
2, -+ verifying (2.11); in @4, (2.12); on T'y X R and the estimate

1 ) )
(216) I—ZO ||glj|l(m)'“'l’<Ci.“,ba_lI]/4Ed(v) B; a+2b+4j+1) ’

where C; , , depends on j and a, b but independent of a.

Let N be a positive integer. For g,; of the above lemma we define g4, u™ by

N
gV(x, t; a, k) = D g,i(x, t; a, R)RVE, 1=0,1
ji=o0

WG, 1 @, By = o0 Vg + L v og)
2
Since
(2.17) lle* @OV (R p) | (a),a,5 < C 5+
it holds that
(2.18) 1] l@,4,5

N

SCyap 23 R ETTHEE (v, 85 214+4j+1)

p+i<a+b  j=0

N +a+
<Cyos 3} BHIEo, B 4+1).
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Let us consider the estimates of [(Ju®™). In @,={x; p>0} it follows
from (2.6) and the relations (2.11);, j=0, 1, -+, N that

O = k5200 [P () gon-+— V' (Bp) g | -
7

Using (2.16) and (2.17) we have in @,

/ N 1
(2.19) 070305 0u™ | <Cpapk ™ 37 k™ 5|0 gunllca, v,
T+I<h+b

SCyo k™M S kPME,(v, B; I+2r+4N+1)
pt+i<a
q+r<h+ b’

<CN,,,,»(ka“"‘)‘”a%bk”Ew(v, B; 2(a+b+b"—p)+4N+1).
=0 :
Next consider [(Ju®™ in {x; p<<0}. Note that
DZ't(eik(o—t)V(ézlsp)((ve)2+p(vp)2_ 1)gojk_j)

—k 3 ( v )Dylei”("”)Dsz(kz/3p)-Dya((Vﬁ)z—f-p(Vp)z—l)Dy‘go,- .
-yl+..uy4=-y f)ll.--f)/4

Since (VG)"—{-p(Vp)é— 1=0in {x; p>0} we have for any M.>0 a constant C), ,
such that

(2.20) | D(VOY+p(VPY—1)| < Car,(—p)™")
for p<0. On the other hand, since V(2) satisfies
[(—2)*™2D%V(2)| <Cy,,  for all 2<0
it follows that for all 2>1 and p<0 |
|(—p)™2D%V (R p) | < Coy k™™ .
By using (2.20)

(2.21) ||e* @OV (R3p)((VO)Y+ p(V ) —1)goik /|l (@),a,5
<Cha sk RMEI g0l (@) a5
K Cyp o kT MI0q WNE (v, B; 2a+b+4j+1) .

About e*@~ OV (k*3p)VO-Vpg ;k~7 we can obtain the same estimate as (2.21) by
taking account of the fact V@-Vp=0 in {x; p>0}. Next consider termes of
the type

Ij — eik(o—l) V(k2/3p)]jk-j+l—5/6
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Bo..
Ji= 2584 2V0- Vot Abgoy 260 Vg,

-I-(Vp)zgl,-—l-prgl,-—l-—zl,— LJgoj-1-

Since {g,;, g1;} verifyies (2.11); in @, we have for p<<0

/7
|0} 6;’:85];'] <CM(—P)3M/2{||goj||(a),a+b’,b+3M/2+1
—i—l|glj||(m),a+b’,b+3M/2+1+“goj—lll(m),a+b’,b+3M/2+z} .
Therefore

W l@),a5 SCjapk™™RTITIHN6 ST kP

I1+p<a+d

* {a—lljﬂ Z 2 ,|1§’th|(w),r,q+3114/2+1‘|‘Ol—u(j_l)/4 2 ”goj“(w) r,q+3M/2+l}
h=07+4a<] r+a<]

<C; ook MR SY R {qUiME (v, B 21+ 3M[2+4j+3)

I+p<a+bd

+a MWVAE (v, B; 214+-3M[2+4(j—1)+4)} ,
and setting M=N—(j—1) it follows that
222) Wl ,es<Cjapk™Na ™0™ 33 RPE,(v, B 214+-4N+3).

I+p<a+d

Note that we have an estimate same as (2.22) for the other terms of [Ju™,
From (2.19), (2.21) and (2.22) we have an estimate

(223) IOl @,0,5<Cr,os(ka™)™ 33 kEq(v, 8; 21+4N+3).

p+i<a+bd

We set about considering Bu™ |, «g. Remark that from (ii) of Lemma 2.1
supp Bu®™ | L,xrCAUA, .
OnTyX R
By~ gik(¢7=Ngy — ik(¢™ =) p=N {@‘G;—I—BG;—}—%BG’;} s

from which it follows that

(2.24) {Bu™=—e* ™" D> ) 4
SCy k7Y 33 R UONE (v, B; 14-4N+-3).
?

¥i<a
Since in wy
Du — 0o V(R p) gt

1RV/3 V’(k2/3p)|:|gm }k"N"w6 s

by applying the expansion of the type (2.7) to the right hand side of the above
equality we may write near I'y; X R
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Ou®™ = ¢+ HH “k~Np g* ¢ O kN |
with H* satisfying
|04°950 H* | <Cy o0 " W1Ey(v, B; a+a’+2b+4N+1).
On the other hand applying [J to ‘™ of (2.7) we have in o,

Clut = e"‘(“’_“){z'k(Z %—I—ZVq)'-V—l—Acp')—l— D}(G<N>‘+?1];G<N>'>
koD {z‘k(z %+2V¢+ VAt )+ O (G Z_L Gw),

where G®™*, GM* denote the terms corresponding to G*, G* of (2.7) when we

substitute g{* and g{" into the places of g, and g, of (2.4). In the same mean-

ing we will write the decomposition of (2.7) for #®™ as uM=y¢™*4 4™~ Since
Vo' and Ve~ are linearly independent it follows that

y _8_ +, + (N)x i (Nt — L-NIJ=*
{zk(Zat 1 2VpE V4 Ag )+D}<G +1¢ ) — kNH*®,
from which we can derive an estimate in a neighborhood of A,

5 63'8§(G<”)++%G’U">+>

SCy ok VT UNAE (o, 85 4N+a+a'+2b+-1),
by taking account of the location of the support of G‘N)++_‘1];G(N)+ and the
:

equation G& ’W—%G‘N )* must satisfy. Then we have
i

<B’7"’(N)+IAo>(aﬂ),a<C’N,a(kauﬂ)—pr< kﬁE‘”(‘v’ '8; 4N+l+3) *
Combining the above estimate with (2.24) it holds that
(2.25) <Bu(”)|Ao—e""(“’_“)v>(m),a<CN,,(ka““)‘"pE R?’E (v, B; AN+1+3).
ti<a

Next consider Bu™ on A,.

Bu+

= e"”(“’+"){ikd>+ (G<N>+ +,lk G(N)+>+BG<”>+ +%BG<N>+}
] ]

Ay

where
N
GO = S e e gy P e
j=o

Let us us set
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wi(x, 1) = 1@ (gt P ) -
Applying (iii) of Lemma 2.1 we have

w(x, 1) = 'y,,(x)CID‘L(%) (Pu(x, 1)) .

Then it holds that
(2.26) sup || >-—( inf [®*|/ sup |®|)sup|o].
2 “anen, =,HEN,
(2.27) @@, <Cof sup |@7|Eo(0, B; a)+Eu(v, 85 a—1)} .
1,HEN;
Set

wy(x, 1) = i+ i (8o B kI i® G+ BGa+ +;_1];BG<~>+ .
Then
w4 <Cro 2 () TEo(o, ; 4i-+0)
By the same consideration as #‘™* in A, we have
CBUM™ | s>ias <o k™™ 33 KE(v, 85 4N+143).
Summarizing the considerations in this section we have

Proposition 2.3. Let a>0 and v(x, t)ECT(TouX R) such that AyN Ay=6.
For every positive integer N there exists a function u™(x, t; a, k) C~(R*X R)

satisfying
supp #M N (ws X R)C {L;(x, t); (%, {)Esupp v} ,
supp Bu®™ | pyxrC AU Ay,

and the estimates (2.18), (2.23) and (2.25). And

{Bu™| Al_eik(¢+_t)w>(m),a
SCu k)™ 33 KEq(v, B; 4N+1+3)
+i<a

where w has the following properties
1, .
> + -1)-
sup |w| 2 ((x,glefAl |® l/(g})lg%@ [)-sup|o|
—C33 (ka3 Bu(o, Bi)
W) «<C, {(SXP |@F |+ B)Es(v, B; a)

+Cuo 3} (k™) Bul0,8; 4+0)}
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where all the constants are independent of a.

3. Asymptotic solutions reflected K-time at T,

Let v(x, t)eC7(I's X R) and supp vC A, Define A, A,, --+, Ax succes-
sively by

A= {L7(x, )N (TaxX R)—{(x, t)}; (x, £)EA} .
Suppose that
3. N, CTaX (8, L), Loe<ty <o <tgir.
Set
B= inf [Bp7|,

K
(x,t)e v Aj
j=0

v= inf |Be'|/ sup |Be~|.
(x,)eup;j

K
(x,t)e U Aj
i=0

We assume for some constant Cp

(3.2) sup |Bept|/B<Ckrv.

(x, )€ UNj

Apply Proposition 2.3 for

my(x, t; o, k) = €@ =0 Ny(x, 1)

and have u§")(x, t; o, k) with the properties
(3.3) 6l ,0< Crves 23 K350, 3 4-+1)
(3.4), %6 w05
<Cyaskad®)™™ 3 K El(v, 8; 21+4N+3),
p+i<a+b
(3.5) B | pg—MoD @) ot <BUE | A, =MD 4
<CN,,,(ka‘)'NpZé k?E4(v, B; 4N+1+3),
Yi<a
where
m, = eik(¢+—t),vl ,
(3.6); supp; vC A
N o
(3.7 sup | 24| > sup|v| —C 31 (k) Eu(v, B3 4))
3.8) VD@, <Co(sup| D | +B)Eu(v, B; @)

4 Cy. f‘f (k) B2, B; 4+a).
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Since p=«a on T, we have

2 2 4
t gLl g 3/2 3/2
P +3p 3P +3a
IS 7
=@ +3a on Iy,

from which follows

. —-—— iy~ ~ : 3/2
ml = e’k(w t)lJl 5 vl == e’4l3k“ 4 1)1 .

Then #, verifies the properties (3.6);~(3.8),.
Now the application of Proposition 2.3 to m, gives the existence of a func-
tion u{"(x, ¢; ar, k) with the properties

N+a+b . . .
G Ml as <y 31 BT E (o, 5 47H1)
(3.4) 186 l@,0,, < Coo,sk®)™ 33 K Eafvy, 8; 214+-4N+3)
(3'5)1 <Bu§N) , Al_ml>(m),a+<Bu§N) I Az—m2>(m),a

<CN,,,(ka3)‘”p+}?_<,ak’Ew(vl, B; 4N+1+3).
From (3.8), and the definition of E,(v,, B; a) it follows
Ey(v1, B; a) =p§a<vl><m>,,,/3""
< 33, {C(sup|®* | +B)Eu(e, 63 1)
+Coa 3} (k) T E (o, 5 44)} B
SCo(sup| ¥ +8) 3 Eofo, B; DB
+Coe 23 (k)7 33 Eulo, 65 440)B717.
By using E (v, B; p)B'<E (v, B; p-+1), we have
(3.9 Ey(v1, B; )< Cy(sup D™ |+B)/BEL(v, B; a)
+Cu o7 2 (k) B0, B 4j+a)
From the second part of Proposition 2.3 m, can be represented as

. __ Lik(et-t .
my(x, t; o, k) = ¢ Doy, t; a, k)
— eik(w-—t)eik(4/3)m3/2 v, = eik(qo‘—-t)ﬁz ,

and 9, verifies from (2.7) and the above estimate (3.9),
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~ 1 1 N 3_ H . o
3.7), sup | 7, | 27 v(;v sup|v|—Cy ]El (ka)*PE,(v, B; 4)) >
—c ﬁ (ka®) 1 {C.(sup | D+ |+ B)|BE.(v, B; 4)
+Cr o8 3 (k) Eulo, B 4-+40)}
1 \2 b ) .
>(v) suplol —Co 5 (k) VEufe, 5 4)
—CoB 3} (k) VL0, 63 4)
(3.8), O, s < Co(sup | D |+ B)Eu(v1, B; a)
+Coe 3} () E (o, 85 47+-0)

<C,(sup | D" |4 B){C,CvE,(v, B; a)
1 CyB! % (ko) i Ea(v, B; 4+a)}

+Cy,e 2 (k) {C,- Cv Eo(o, B; 4i+0)

+B7 oo 2 (k) Eo(o, B 4t 4+ )}
<Ci(sup|®*|+B)-v-Eu(v, B; a)
+ Chov 33 (k) B0, B85 4i-+a)

+ChoB 3 (k) oo, B 40)

Repeating this process we obtain u{"(x, ¢; a, k), j=0, 1, 2, --+, K verifying

+b

B3 s <Cres 3% k1B (0, 85 4h+1)
(4); N8l ,0s<Croska)™ 51 K Ea(v;, B; 20+4N+3)

p+1<a+s
(3.5); <Bui"| A/_mi><¢),a+<B”S‘N) [ ajpi—Mjt 1@ 0
SCyo(ka’)™ 33 K E4v), B; 4N+14+3),
»

Yi<a
e k(T =)
m;=e v;

supp 9;CA,;

i
(3.7); sup | ;] 2(%1}) sup [v]

S0t S (ka?) B (o, B; 4h)
1=1 h=1
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P 8 bt B, 85 ),
(3.8); <P w, <CY(sup|®*|+RB) v Ea(v, B; a)
+C3% 0571 3 (k) HEolo, 85 4h-+a)
h=1

1=1
+C 87 S (k) P Eul(o, 85 4hta) .
By using v<<CB7! it follows from (3.8); that
(3.10); <, <OV 33 890 53 (k) Bule, B3 4h-+)
=0 =

<O 33 (k) Bulo, B3 4h-+j—1+a).
Set
U, 1 a, 1) = 53 (D", 15 0 B).
Then we have from (3.3),~(3.10);

Proposition 3.1. Let v(x, {)C5(T'y X R) such that
supp vCAy.

Suppose that (3.1) and (3.2). Then there exists a function UY’(x, t; a, k) with
the following properties:

(3.11) supp UR’N(Qx R)COX (&, )

(312) U Nw0s<Crras S kI3
K IN o
22N (kt®) " Eofv, B; 4h+K—14-4j+2)

1=0 h=1

(3.13)  OUP w00
<Curasked)™ 31 k351 (k) Eul(o, B; 4ht K—q+204+-4N+3)

pHi<a+d 9=0 h=

<

(314) <BU${N)Ir‘¢x(to,;x)—mo>(¢)’a
<Cuaka)™ 31 k315 (k') +Eu(o, B; 4k K—q+21+4N+3)
h=q

p+i<a+b  ¢=0

(.15  sup |U| ><%v>xsup o]

T x (¢0, t8)
K-1

—Cy S0 S (R M Eo(v, B 4h)

—cNﬁ—lfg’;(kw)-hE,,(v, B; 4h),

where the constants Cy  ,, and Cy x , are independent of .



Mixep ProBLEMS FOR THE WAVE EqQuaTioN 11 269

4. Proof of the theorem
Lemma 4.1. Suppose that 7(0)=7'(0)=0 and
sup 7(s)>0

o<s<e
for any €>0. Then there exist a constant 6>1[2 and a sequence
sl>s2> cee >s“>s”+l> “ee >0
with the following properties:

s,—0 as n—

1) B, = 7(s)>0

and for any positive integer K there exists a constant Cx such that

(4'.2) sup sup ’T(sn—f_tﬁn)—ﬁnl <CK .

" 0<t<K 148

Proof. When s=0 is a zero of finite order, namely for some ¢g>1
7(0) = 7'(0) = - = 7(0) =0, T@(0)>0
it holds that for some 5s,>0
[7'(s)| SCr(s)¥/ @tV for 0<s<s,.
Since for s>0, >0,
|7(s+27())—7(s) | <tr(s) [7'(s+ntr(s))|  (0<n<1)

<tr(s){|7'(s)| +tnr(s) (sup 7)}
L Cgr(s)H e (0<t<K),

8=q/(g+1) and the sequence s,=1/n are the desired one.

Next consider the case that s=0 is a zero of infinite order.

Case 1. 7(s) is monotonically increasing in 0<s<<§, for some &>0.
Suppose that for some 1>06>0 there is no sequence with property (4.1) verify-

ing
(4.3) 7'(5,)<7(5,)° Vn.

This assumption implies that it holds that for some & >0
T'(s)=7(s)?  for 0<s<§,

from which it follows
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g‘iT(s)l-ﬁ — (1—=8)r(s)r()=(1—8)  for O<<s<&,.
L)

Then we have
T(s)' 3= (1—8)s for 0<s<§,

namely 7(s)>(1—238)s¥@~®. This is contradict with the assumption that 7(s)
has a zero of infinite order at s=0. Then we see that for any 1>8>0 there
exists {s,} verifying (4.1) and (4.3). By using (4.3) and

T(S,+18,)— B = tB,7 (s, +mB,), 0<n<]
[ 7' (s,+1tB,)—7'(s,) | <tB,sup|7”(s)|

we have for all 0<t<K

| 7(ss+18,)— Bl SKB(7'(5,)+CKB,) < CxBn™® .

Thus (4.2) is proved.
Case 2. For some &>0

7(5)>0 for 0<s<<§,

and 7(s) is not monotonically increasing in 0<<s<<¢ for any €>0. From
the assumption for any €>0 there exists s such that 0<<s<<€ and 7'(s)=0.
Then we can choose s,>0 with the propertiy (4.1) such that 7'(s,)=0. Then

[7(sat-282)—Bul < [7'(s,+-726,) | -2,
<CK?.3 Vn.

Thus {s,} -0 is the desired one.
Case 3. 7(s) does not verify the properties of the case 1 nor 2. Then
there exists a sequence 8,>6,,,>+--—0 such that 7(d,)=0and sup 7(s)>0,

SE[0 n+1,04]

since for any €>0 there exists 0<<s<<€ such that 7(s)>0. If we choose s, as

7(s,) = max 7(s),
s€[0n+1, 1]

it holds that 7(s,)>0 and 7'(s,)=0. Evidently s,—0. As case 2 we see that
this {s,} verifies (4.2). Q.E.D.

Since n(x)=(m(x), n,(x)) may be considered as a C=-vector defined in
a neighborhood of T

(%) = by(x)my(%) —by(x)m(x)

is also a C=-function defined in a neighborhood of I". We show that (P) is
not well posed in the sense of C~ when 7(s) of the introduction, z.e., 7(s)=
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7(x(s)) verifies the condition on 7(s) of Lemma 4.1. Note that

Vo* = £V p (Vo t+aVp+ )+ Vl+aVh+ -

4.4
(+4) and n(x)-Vp, = |Vp,|, n(x)-V8, =0 on I'.

Then we have
n(x)- Vo~ (x, a) = al/ng—FO(a) onT
n
VO(x, 0):Vop~(x, &) = 1+0(a) onT.

Therefore n(x)-Vo~(x, a)/VO(x, a)- Ve~ (x, &) decreases monotonically to zero
uniformly in x&T" when a——+0. Let {s,} be the sequence with the property
(4.1) for the above 7(s)

For every n set y,=x(s,). Then a,>0 is determined uniquely for large »
by the relation

4.5 n(.yn)'v¢_(ym an) =B, '11+8/2.
(+3) Vo (3 0)-Vo-(ymay TP

From the above relations we have
(4‘6) clﬁnga}./zgczﬁn ) vn ’

where ¢, ¢, are positive constants.
Note that for a=0

VO-Vp=0, |Vl =1 onT.
dx

On the other hand x(s)ET" and A 1. Then it follows that
s

0(x(s), 0) = s+constant.
Without loss of generality we may pose the constant=0. Since we have from
(2.1) and the property (ii) of p

00 06
Ox, 0
rank M 0% =2,
9p 9p
0x, Ox, ::2(0)

there exists uniquely x,(s) verifying x,(s)— x(s) as ¢ —0 and
O(xa(s), 0) =

Pa(¥a(5), @) =

4) See, for example, pages 70 and 71 of [4].
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for small s and . Moreover we have
|2a(s)—2(s) | SC {| p(xals), @)—p(2(5), @) |+ |0(a(s), 0)—0(x(s), 0) [}

<Cla—p(x(s), @)

Using (2.2) and x(s) €T, we obtain for any P >0
|2a(s)—2(s) | <Cpa®.
Then we have
(4.7) | (Bp*)(xa(s), @) —(Bo®)(x(s), @)| <Cra”
for all @ >0 and s. Note that
(Bp*)(x, @) — n(x)- Ver*(x, @) —n(x)V0sx)- Vo*(x, a).

Then we have

(4.8)  (BoT)(¥m ) = (ButBa™—1(5,)) V(1) VR (¥ t)
= B;+S/2V00(yn)'v¢—(ym an)
= B (1+0(B,)) -

Taking account of (4.4) it holds that
n(x(t+-5)) - Vop*(2(s+2)) —n(x(s)) - Vop(x(s))
= £V a(|Vpy(x(s+8))| — 1 Vex(s) |)+O(a) -
Since |Vp,(x)| is C~ we have

| n(2(s,+18,)) - Vo= (2(s,+18,), o) —n(%(s,)) - VP~ (x(54), )]
<CtB: Vn.

By the same consideration it holds that

| Veo(x(sn_l_ tBn)) * Vg)i(x(sn_{_ tBn)) an) - Vao(x(sn)) ¢ V(pi(x(s,,), a,,) '
<Cta,<CtS;, Vn.

Therefore we have for 0<t<K

[(Bo™)(%(s,+1B0), 0ty)—(Bp™)(%(s,), et,) ]
< I T(S”+t,8”)—7(5”) l +CKB§ .

Combinig (4.2) and (4.7) it follows that
(4.9) |(Bp™)(x(sst-£6,), ats)— Ba**| < Cy 8"

for all 0<<¢<K and n. By the same consideration we have
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(4.10) [(Bp™)(x(s,+18,), aa)—28,] <Gx By**
for all 0<#<K and n. Then by using (4.6), (4.7) and (4.9) or (4.10) we have

Lemma 4.2. Suppose that 7(s) is equipped with the properties of Lemma
4.1. Then for any K>O0 there exists a constant Cy such that

(41 1) I (B¢—)(xm”(sn+tﬁﬂ)) an)_B}l+8/2 | < CKB'It+8
(4'12) I (B¢+)(x¢,,(sn+t18n): an)_zﬁn | < C'K Brlt+8/2
for all 0<t<K and n.

Suppose that the problem (P) is well posed in the sense of C~. Then for
any T there exist ¢ and C; such that for all t<T

(4.13) [u|o,a><(—eo,t)<cr{{Dulq,nx(—w,:)‘l‘ |B”[q,r‘><(—°°,t)}
for all u(x, t)€C=(2 X (— oo, T)) verifying u=0 for <0, where
|7J[q,n><(—w,t) = sup |D;’_t7Jl

1YI<e Qx (=,

[V] 4 rx(-w p = > sup )[D’,’(VGO(x)°V)"v|.

P+7<g I'x(~o,t

On the supposition on 7(s) of Lemma 4.1 we will show the existence of
a sequence of functions which violates (4.13).

Let A(s, t)e C5(R?) such that
suplk|=1, supphC[O0, 1]Xx][0, 1].
For each 7 define v,(x, ) C7(T's, X R) by

ou(wa,(5), 1) = H(* 5, L),
a,  a,
Put
A= {(%a,(5), 2); |s—s,| <a,, 0<t<a,},

and define A,;, j=1, 2, .-+, K according to the description in the beginning
of §3. Since e/, < | Py (%, 1)—(x, t)| <crv/a, it holds that

A CTy, X (R, tajs1)
0=t <t <--<tgx<cKa,.
From Lemma 4.2 we have

inf  |Bp~ | >CBit¥*> Ca, ,

K
(x,)e U Dg;
i=0
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inf |Bp*|/ sup |Bp~|>CyxBY
(x,0)e ﬁ BDnj (x,t)e_ﬁ Dy
i=0 j=0

and
sup |Bp*|/ inf |Bp |<CkBY?,

K
(x,0)€ U Baj x,0€ U By
j=0 j=0

where Cg and C% are independent of #.

Let us fix K as
(4.14) %K8>20q+1
and N as
(4.15) 6N >2K-+6.

For each n we apply Proposition 3.1 and obtain U{¥(x, ¢; a, k). Note that
it holds that

<‘vn>(m,,),a < Ca oy’
where C, is a constant independent of n. Then
E, (v a5 @)<Cpotz @™ .

Setting k= 3;% we have

N+a+b

(4.16) NURlla,05<Covep 2 B

K IN

,z;) S (BaP o) hoy th=K+i=4i=2-1
=0 n=1
< CN,K,a,an—zo(a+b) .

(4‘17) HDUsll},f)“(d,,),a,bgCN,a,b(ﬁ;mai)—N
K N
. —20p —20 3~ ,,—4h—K+r—21-4N-3
p+1<Za+bl8n 'ZME:'(B,. an) Qy

< CN.,a,b BﬁNB;ZK—Gg CN,a,b
(4.18) CBUIR |ry xtyosturd) —M0>@,),a< O oo

(N) _1_ K —K8/2
(+19) sup USRI >() 6

ﬂx(t,,o,t,,g)
R-1 24
—Cy 23 B E P 3 (B an) oy !
=0 h=1
1 RN
—Cy B 23 (B as) Fayt?
h=K

1 K —K&/2 —(K—1)8/2
>() B —Cy e B0,
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Since
<Mda,,a<ColBx™
we obtain by using (4.16), (4.18) and (2.2)
(4.20) |BUGR | 4,0 (=o0,t00 < Cq 8770 .
Taking acount of (2.3) the substitution of (4.17), (4.19) and (4.20) into (4.13)

gives
LN o ke -1)8/2 20
('2—> B X2 —Cy Bz ¥ DL C, B,

which shows a contradiction, because K verifies (4.14) and 8,—0 as n—oo.
Thus the theorem is proved.

Appendix

By a change of variavhles
{ O(x) =y
p(*) =0

the equation L, {a,, a,} = {h,, A} turns to
299 1 5(90y29% | A ayt-20(Vp) 2% 4 (Vp)ia,
ot a_y Oc
(A.1) +olApay=hy ino>0

290 4 2(v0y % 4 Agat2Vp2 2% Apegy =By in ¢30
ot 6y 0o

Oa,
0o ;

J

bo, 3, OB}y, O, 1= 0,1

First consider how a,;(y, t)=< )(0, 9, t) is determined. Let us set

(VOF(e, N~B4,0)7", (80)(e N~ Ci(3)o”

(VoF(e, N~DB3)e",  (8p)er H~TDy(3)o’
and

afa, v, t)Nga,j(y, o’ .

Note that the facts Ay(y)=¢>0 and By(y)=>¢>0 follow from the the proper
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of 6 and p. Substitute the above expansions into (A.1) and set equal the
coefficients of ¢’ of the both sides of the equations. Then we have

(A.2), 6“°°+ 24,2 -}—Coaw—}-Boam — Iy,
(A.3), 2 %’+2Ao%] +Cothigt+Boau+Doay = hy
and for j >1

(A2, 2% g% 4%

6y +E Ciay;- 1+22(] DBy,

+Z By 25+ I)Boalj+20 Diay; 1y = hy;

0a
(A‘3)i 211!_*‘22441 i I+E Cl“l, 1+22Bl(]+1 l)a01+l 1
+IEO Dlaoj—l = hlj .

Then if we set ay(y, t)=0, (A.2), determines a,, and subsequently (A.3), de-
termines ay. In (A.2), besides a;, all terms are determined, therefore a;, is
determined, and next (A.3), determines a,,. Continuing this process we obtain
successively a;, j=0, 1, ---. By the manner of determing g;; it holds that

(A4) ng {sup | D} 1a0;11(y, t)| +sup | D}, (y, ) [}

<G S sup| DLy, t)l.

k=0 1=0 |yi<6+2(j k)

If we set @,(a, y, t)zzb] a,i(y, t)o’, the estimate (A.4) gives
ji=o
Lemma A.l. For any b positive integer there exists {a,, a,} such that

ay(0, y, t)=0 and

A5) X sup|DLDW|<C,,3>) ) sup|DYDH,

k=0 |yI<aT206- k) 1=0 k=0 |yi<d+2(b—k)

(A.6) sup | D} (Latao, ar} — {ho, 1i})]

lvl<a

b
<lelMC, S 1 sup|DY.Dih(e, y, )]

1=0 k=0 |Y|<@+2(b-k)
Next consider that case
(A.7) Dth0,y,t) =0 forp=0,1,2,-,b.

If we claim a¢y=0 on {o=0} the solution of (A.1) is given for ¢>0 by
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a3, 1) = G (W 7,3, 0+ C (—V/ 7,3, 1)
a(e, 3, 1) = 5= 16"/ 7,3, )=C*(—V/ 7, 3,1}
where G*(z, y, t) is the solution of
0 0 )
+Gt =(2% 192 2 29 19 2 2 0
L6 = (20 2AVOY, ) + AP ) g

A0y, ) +H(AT, 2))G (= 3, ) = H' (5, 3, 1)
G*(0,y,8)=0
H*(2,y, t) = hy(2%, y, t)+z2m(2%, y, t) D
The assumption (A.7) implies that for r<b, |7| <a
| DD} H* (2, y, )| S CooKo |27
K, =3} Ssup| D}, Dihi(a, 3, 1)1

Therefore it holds that

SV |DIDY,GH(z, 3, )| <C, K, 5 2| %3

lvl<a

from which it follows immediately that

o

+

-

SUP ID;D},taI(U'; y) t)l < Ca,bKa,ln U>0 .

=0 |y|<at2cb+1-1)
Using (a,—\/ p a)(a, y, )=G*(y, t, —/ a) we have

Lemma A-2. On the supposition (A.7) there exists a solution of (A.1) veriy-
ing ay(0, v, t)=0 and it holds that

(A9) X S suplDiDYale )|
<C.s 3 32 sup| DY, Dih(o, 3, )|

and

(A.10) 3, supID(a—/ b @), 3, 1)

|Yl<@+2b+2

<C,; 23 23 sup|Dj,hfo,y,t)l.

1=0 |Y|<6+2b+1

5) See, §1 of Ludwig [6] and Lemma 5.2 of Ikawa [4].
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When £%,=0, the solution of (A.1) verifying

46—/ P 1| o-0 = f(3, 1)
is given by (A.8) where G* is the solution of
LGt =0
{ G (—Va,yt)=f51.

Evidently
23 |DiDj a0 < 3 33 sup| Dy DiGH(z, y, 1)

1Yl<a |1p1<2j |yI<@

23 1DiD} e | < 33 33 sup| D}, DiG*(z, p, t)].

Ivl<e 1p]<2j+1 |yl<@

And we see easily that

> sup| DY, .G (3, v, t)| <Caw|2<asup|D}",f(y, 1)].

lyl<e
Thus we have

Lemma A.3. When hy, hy=0, the solution of (A.1) verifying ay—~/ p & |s=,
={ has the estimate

1 b
(A.11) 232 2 sup|DiD}afo, y, 1)

1=0 j=0 |y|<a+2(b~j)

<Ca,b2 P SUPID}',tf(J’:tH-

770 |y|<2a+b+1

To show (i) of Lemma 2.1 for fixed integer b first apply Lemma A.1 and
we obtain {@, @} satisfying (A.6), and next apply Lemma A.2 to £,{d,, &} —
{ho, by} then we have {b,, b} verifying

-Cm{bo, bl} = {ho, hl} _-Eu{do: dl} .
By using (A.5), (A.6) and (A.9) we have

b o~ .
2 2 {ID},tDéal(o'»y) t)|+|D},tDaj~(0') Y, t)l}

7=0 [pl<a+2(b-j)

<Ca,b

.
-
(=}

sup|D{Dj ko, y, ).

1=0 |y|<@+2(0- 1)
Moreover it follows form (A.5) and (A.10) that
sup ID},t((do‘l—bo)_ \/F(dl-l_bl)) |p=¢ l

1 .
<C'a,bz 2 2 SUP|D§D},th1(0" Y, t) I .

1=0 j=0 |y|<@+2(b-j)

Then using Lemma A.3 we have {c,, ¢;} verifying



MixeD PROBLEMS FOR THE WAVE EquaTioN 11 279

{ Ly{c, e} =0  inp>0
=\ P t1lo=a = f—((Go+b))—V P (@1+b1)) =0 -
Then we see immediately that a,=@&,+b,+¢,;, [=0, 1 are solutions of the pro-

blem (A.1) verifying the boundary condition and they satisfy the estimate of
(1) of Lemma 2.1.
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