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AKIO KODAMA

(Received November 30, 1977)

Introduction. Let SD be a generalized Siegel domain in CN with exponent
1/2 and $(Φ) the Lie algebra consisting of all complete holomorphic vector
fields on 5). In [3], Kaup, Matsushima and Ochiai studied the structure of
$(®) and applied the results to the equivalence problem for Siegel domain of
the second kind. They showed that every biholomorphic isomorphism of
a Siegel domain of the second kind onto another one is biraticnal. Moreover,
using this fact they showed also that two Siegel domains of the second kind are
holomorphically equivalent only if they are linearly equivalent. Motivated
by these results, in [5] we studied the equivalence problem for a certain class
of generalized Siegel domains.

The purpose of this note is to generalize our previous results in [5]. After
some preparations in section 1, we showτ the following theorems in section 2.

Theorem 1. Every biholomorphic isomorphism between two generalized
Siegel domains in CxCm with exponent 1/2 is birational.

By means of this theorem and our result in [5], we obtain

Theorem 2. Let 3J and 35' be generalized Siegel domains in C X Cm with
exponent 1/2. Then 2) and ®' are holomorphically equivalent only if they are
linearly equivalent, that is, there exists a non-singular linear mapping S\ CxCm->
CxC" such that

Throughout this note we use the same notations as in [4], unless otherwise
stated.

The author would like to express his thanks to professer S. Murakami for
his useful advices.

1. Preliminaries

According to Kaup, Matsushima and Ochiai [3], we say that a domain ®
in Cn X Cm is a generalized Siegel domain with exponent 1/2 if it satisfies the follow-

ing conditions:
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(1) SD is holomorphically equivalent to a bounded domain in Cn+m and
S) contains a point of the form (#, 0) where # e C n and 0 denotes the origin of Cm.

(2) S) is invariant by the holomorphic transformations of Cn f w of the follow-
ing types:

(a)

(b)

(c)

(*.

(*>

(*>

a;) t-

w) H-* (e'i

\-a,w)

ev~uw)

Ϊ , e ( 1 / 2^'a;)
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for
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βeΛ ;

ίei?

t(ΞR.

Let Aut(i£>) be the group of all holomorphic transformations of S). Then it
is known that Aut(®) is a real Lie group and its Lie algebra is canonically iden-
tified with the Lie algebra g(®) consisting of all complete holomorphic vector
fields on 3). We know that the following holomorphic vector fields on S) are
contained in

(a) A for k=l,2,-,n;
zk

(h) / = v / - l

(c) £=Σ*»
2 *=i

where (zly z2, * , #Λ, ̂ , , wm) is the natural coordinate system in Cn X Cm. Now,
we have the following theorems on generalized Siegel domains with exponent
1/2.

Theorem A (Kaup, Matsushima and Ochiai [3]). Let ® be a generalized
Siegel domain in CnxCm with exponent 1/2. Then we have

(l.i)

(1.2) dίmR g_!/2 = 2A /or some O^k^m .

Theorem B (Kodama [4]). Let 3) be a generalized Siegel domain in CxCm

with exponent 1/2 and dίmR g_ 1/2=2^ O^k^m. Let Auto(3)) denote the identity
component ofAut(<3)). Then there exists a non-singular linear mapping φ: CX Cm->
CxCm such that the image S)=φ{ST) is also a generalized Siegel domain with
exponent 1/2 and} by choosing a suitable coordinate system (z,wly --,wm) in CxCm,

(1.3) the orbit 3)0 of Auto(β) containing the point (v^T,0, •• ,0)e.2) is the
elementary Siegel domain
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(1.4) if we put

then i^v-ϊ is a circular domain in Cm~k containing the origin o of Cm~k.

(1.5) Let cj(ίί))=Σ gλ be the decomposition of Q(3)) as in Theorem A. Then
we have

fl-iΛ = {2V

/-Γ^K, C) 9 - + Σ c*£-\C = (c«)(ΞCk}

«/=(«;!, •••, wft) and F: Ck X Ck->C is a hermitian form given by

F(u, v) = il u*v* for u = « ) , v = (/J

Let (zl9 '- ,zN) be a coordinate system in C^ and D a domain in CN. For a
holomorphic mapping /=(/i , •• ,/τv) D~*CN, we denote by Jf(p) the Jacobi
matrix (dfJdZj) of/at a point p<=D.

Theorem C. Lef D be a domain in CN which is holomorphically equivalent
to a bounded domain in CN and f a holomorphic mapping of D into itself. Suppose
that there exists apointp^D such thatf(p)=p andJf(ρ)=lN. Thenf is the identity
transformation of D.

Proof. This is immediate from Theoreme VII, Chap. II in [1]. q.e.d.

Theorem D. Let D and Ώf be two circular domains in CN with centers o3 the
origin of CN. We suppose that at least one of these domains is holomorphically
equivalent to a bounded domain in CN. Let /: D->D; be a biholomorphic isomorphism
such thatf(o)=o. Then f is linear.

Proof. By using Theorem C we can prove this theorem in the same way
as in Theoreme VI, Chap. II in [1]. q.e.d.

2. Proof of Theorems

To prove Theorem 1 we need few preparations. Let 3) and (z,wu "-9wm)
be a generalized Siegel domain in CxCm with exponent 1/2, dimiίg_1/2=2/ί and
a coordinate system in CxCm as in Theorem B. We consider a mapping
φ: {z(ΞC\lm.z>O}xCm->Cm+ι defined by

(2.1) zι= (z-\/^ϊ)(z+\/^ϊ)-\ s' = 2zV l(*+v /-l)-1

for ;=2, 3, •• , w + l . Then, as is shown in the proof of Theorem 2 in [4], φ
defines a biholomorphic isomorphism of 3) onto the image domain 3)=φ(3))
in Cm+1. Under these notations we have the following
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Lemma 1. The domain iS is a circular domain in Cmrl with center o which is
holomorphically equivalent to a bounded domain in Cm+1.

Proof. Since (\ ^ Ί , 0)<=β and φ(y/~—ί,0)=o, it is clear that
Put

and

SU(k+l,l)= U(k+l,l)ΓiSL(k+2,C).

Then from Remark 3 of section 4, [4], we know that Auto(i2)= {ψy>A:

(β+1, 1), i^Gi^J/Γί}, where i ^ ^ i is the identity component of the isotropy
subgroup of Aut(j®v/-i) at the origin O ε ^ v - ϊ , and moreover Auto(jS) operates

on S> as follows. For y=(A h)eSU(k+l, 1) and K<=K^C.GL(m-k, C),
V c d I

Ψy κ acts on i3 by the holomorphic transformation

(2.2) Ψ V ;

where y~'(s1, •••, £λ>+1) and S/=ί(^*+2, •••, zm+ι). If we set now, for any Θ^R

0 '•• s.
OV =

0

and

0 ••• 0

0 e^-'V

zSL(k+2yC)

then γ^GiSL^H-l, 1) and kθ^K%^ι, since ^vz-ί is a circular domain in Cm k

with center O by Theorem B. Thus, by (2.2) we see that

is a one-parameter subgroup of Auto(iS). This implies that J is a circular
domain with center O. Since 3) is holomorphically equivalent to a bounded

domain in C" so is i3. q.e.d.

Λs in the case of bounded Rcinhardt domains [6] [7], we can show the
following lemma.

Lemma 2. Let W be a generalized Siegel domain in CxCnι with exponent
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1/2 and put dimR $_1/2=2k as before. Then we have

dim (Auto(<£)).(\ - T , 0))<dim (Auto(£)).(zy w))

for any (z, w)ζ=$) not belonging to the orbit AutQ{W) (y - — 1, 0).

Proof. First we remark that if k-=m> Auto(j2)) (γ — I , ΰ)=S) by Theorem

B. So we assume in the following that k<m. By using the concrete expres-

sion of Ψγ f iCeAut0(i2)) as in section 2 of [4], we can shcwr that for any (#, w)&.£)

there exists a point (w°k^ u •••, wo

m)<=l3)v-ι such that

Aut o(i)).(*, to) = Aut o ( j®).(\/-1, 0, .- , 0, wUu ..-, «&).

On the other hand, we know from Theorem B that a point ( v — 1, 0, •••, 0, zvk+u

•••, wm) of 2) does not belong to the orbit Aut o (^) (v/ — 1 , 0) only if (wk+u •••,

wm)Φ(0, •••,0). Thus, to prove Lemma 2 it is enough to show that

d i m ( A u t o ( ^ ) . ( v / - l , O ) ) < d i m ( A u t o ( i ) ) . ( v / - l , O , - , 0 , ^ + 1 , -,tom))

for any (wk+u •••, ^ w ) φ ( 0 , •••, 0). For this let G be the one-parameter subgroup

fψΊ kθ\Θ^R} of Auto(iD) defined by the identity element 1 of SU(k+l, 1) and

kθ^K°viτι as in the proof of lemma 1. For a given point (#, w)^W we denote

by K(2 w) the isotropy subgroup of Auto(i2)) at (#, w). Now, take a point (>/ — 1,

0, •••,0, wk+ly — ,«;,„)e4) with (wΛ+1, ••-, ww)=t=(0, •••, 0). Then it is easy to

check by using Theorem 2 in [4] that K(V—lfO)'DK(^—ltOt.. ,O,H'A + 1>...,WW) a n < l t n e o n e -

parameter subgroup G is contained in K(y/—lj0) but not in K(VzrlfOf ..toιWk+it...,»„,)>

since («?*+!, •••, ^, ; ί)Φ(0, •••, 0). This implies that dim X'(N/zi>o)>dim K(y/~10...t

o wk+1 . ŵ)>
 a n d hence we have as a result that

dim (Auto(^) (\/=T, 0)) - dim (Auto(i))/iί: (^o,)

= dim Auto(i2)) — dimi^(Vrj,o)

< dim Auto(j3)) — dim K^—lfQ>. >0 ^ 4 lf...fW|ll)

= dim (Auto(i))/Λ:(v=ϊA....Wik+li.. ,*j)

^ / ^ • , ^ ) ) . q.e.d.

Proof of Theorem 1. Let 5). (resp. S)r) be a generalized Siegel domain in

in CxCm with exponent 1/2 and dimΛg_1/2—2k (rcsp. dimΛcjl1/2=2Λ/). Let

Φ: 2)->3)r be a given biholomorphic isomorphism. From Theorem B there

exists a non-singular linear mapping φ: CxCm->CxCm (resp. φ'\ CxCm->Cx

Cm) such that 3)==φ($)) (resp. S)f^φf{$)')). Therefore, in order to prove Theorem

1 it is sufficient to show that the biholomorphic isomorphism Φ: ~φr'Φ φ~x of

3) onto §)f is birational. First we suppose that k<m. We claim now that

Φ(Auto(i)) (V— ί, O))=Auto(j®/)#(v/;=:T, 0), and so it follows in particular that
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k=k'. Indeed, by Lemma 2 the orbit Φ(Auto(3)) - (V — 1, 0)) is of lowest di-

mension, it must coinside with the orbit Auto(^/) (v/—1,0). Thus we can

choose an element g^Auto(3)) in such a way that (Φ g) (V —1,0)=(\/— 1, 0).
Put Φ=Φ'g. Once it is shown that Φ: 3)-* 3)r is birational, our proof can be
completed, sinceg: 3)->3) is birationaly by Theorem 2 in [4]. To show this we
consider again the biholomorphic isomorphism φ: 3)-*<B defined in (2.1). Let
φ': iZ)'—>J3' be the corresponding isomorphism of 3)f onto the image domain
J37. Then, by Lemma 1 i3 and J$' are both circular domains in Cm+1 with the
origin O of Cm+ι as their centers. Moreover, putting φ : =φ/ φ φ~1

y we get a
biholomorphic isomorphism <J>: β->J$' satisfying the condition that <3>(O)=O.
Hence it follows from Theorem D that φ : fB^>$>r is linear. Noting that φ
and φf are birational from (2.1), we conclude that Φ is also birational. It remains
the case where k=m. But, in this case the domain 3) (and so 3)') is necessarily
a Siegel domain of the second kind by Corollary 1 in [4]. Thus our theorem
follows from [3]. q.e.d.

The proof of Theorem 2 is now an immediate consequence of Theorem 1
and our previous result [5], but we give a proof here for completeness.

Proof of Theorem 2. Since it is trivial that 3) and 3)/ are holomorphically
equivalent if they are linearly equivalent, we have only to show the converse.
Let β(3))='Σ 8λ (resp. fl(5)/):=Σ ffiO be the decomposition of Q(3>) (resp. of
Q(3)/)) due to Kaup, Matsushima and Ochiai as in Theorem A. Put dim^cj.j^
=2k and dimΛ flii/2^2/?7. Suppose that there exists a biholomorphic isomorphism
Φ: 3)—>3)r. Then, by Theorem 1 Φ is a birational holomorphic mapping, and
moreover k-^k' as we showed in the proof of Theorem 1. In the following,
for the domain Qj' we employ the notation Af for denoting the object corre-
sponding to an object A for the domain 3). Let ψ\ CxCm-^CxCm be a non-
singular linear mapping as in Theorem B such that 3)=φ(3)). We claim:

(*) there exists a non-singular linear mapping X\ CxCm->CxCm of the
form

w[

a

0

0

0

A

0

0

*

B

-

Wm

X\

such that X{3T)—3)', where a^R and A (resp. B) is a kxk (resp. (m—k)χ
(m—k)) matrix.

If (*) is valid, we obtain our proof by putting X—φf~ X φ. We shall
show that (*) is really true. Let Φ be a biholomorphic isomorphism of 3) onto
3)' defined by Φ=φ'*Φ-φ-\ Put Ψ ^ Φ " 1 . Since cj(iD) (and also
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has the graded structure as in Theorem A and since Φ is birational, it can be
shown in the same way as the proof of Theorem 11 in [3] that we may assume
the mappings Φ: 3)-^ 3)' and Ψ: 3)'->3) are both affine transformations of
the forms

(2.3)

and

(2.4)

Φ :
w[

o Θ?+ I

iι+i

2
w + 1

r1

•
z

w:

Wm

+

C1

σ
C m + 1

Ψ :

Λl Ah

0 ΛΪ'

0 -AT K,X

z'

w[

K y

+

' D1

D2

βm+l
^ /

9 1 " ' 9
We consider now the vector field E=z (-•—^ wa of

3z 2 «=i 9wΛ

computations we see

Σ
*.C.λ=i

\ Σ
2 *=i

oz'

By direct

where Φ^:
l w 4 1 , we have

O is the differential of Φ. Since (Λ;).(θί)=(θί).(Λj)=

and hence Θ J Λ ^ ^ ~ Σ ®«+iKϊl
2 *-1

Φ E= -' d \ ι
 Σ « ? :

 8

9 ^ 2 a^1 9 ^

~ θίΛ^+1. As a result we get
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1 τv»+i

Put

X =
2 «-

and

* £Λi Λ i -..M ϋ j _ V^ / NΠ β\λ H i n«> 111 _ £ _

Since Φ*£ and ^ ^ ^ A . + .L 2 ^A_ belong to g(iD')> X+ - l y belongs also
OZ' 2 «-i OWa 2

to 8(4)0 Then, from the concrete expression of holomorphic vector fields

belonging to 8(^0 (see [3], (3.1) and (3.2)), we have X^8-i and Y^QL1/2. Recall

that

(2.5) ai1/2 = \2\/-ΊF(w\ 0 ^ + 2 ^ / 7
I dzr «-i o^i

where «/=(«;ί, •••, wQ. By comparing the components of Y with (2.5) wτe see

that

(2.6)

(2.7)

(2.8)

Σθiί

ΘIΛ.L41 = 2

= 0

m

Σ ®«

for

for

for l ^ μ ^ A .

On the other hand, since Φ Ψ is the identity mapping, it follows from (2.3)

and (2.4) that

(2.9) ΣΘ£:iZ)*

Then, from (2.6) and (2.9) we get

C λ + 1 = 0 for +

Thus we have shown that Φ is of the form

Φ : ^ = Σ θ r . i ! r o λ + c Λ f l

λ " 1

for

for

Since the group Aut(^0 contains the affine transformations
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la: (*', w'y w") ι ->(* '+a, w'y to") (aeR)

and

pe: (*', to', w") h-> \z'-\-2\/~^ΛF{w'\ C)+χ/~~\F(C, C), w ' + C w") (C(=Ck)

where w'~(w[, --^wί) and w"=(w'k+i, - ^ i ) , changing Φ by a suitable affine
transformation la pc Φ if necessary, we may assume that Φ is of the form

Now, for I'=\/— 1 Σ V°Λ— > we have

because Λ}θi + 1 + Σ Λi4 xθjίί=0 for λ ^ l . Since Ψ*/7 and W ^ Σ w

belong to g(^), so does Z: = — V - T Σ Λ ί β ^ iw λ —. We have then V ^

= [/, Z]eg(iZ)). By H. Cartan's principle for bounded domains, we see Z=0.
This shows that

(2.10) ΘJ+1 = O for l ^ λ ^ m ,

since Λ}Φ0. It remains to show that C1=0, but this can be proved with the
same arguments as in the proof of Theorem 11 in [3]. Finally we have shown
that Φ is a linear mapping. Moreover, as is shown in the proof of Theorem 1
we have

o) = φ(Auto(i>).(%/"!, 0)) - A u t o ^ Ή v 7 ^ , 0) - $& .

Obviously these facts imply that (*) is valid. We have thus completed the
proof of Theorem 2. q.e.d.
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