

Title	H-cobordism. I. The groups among three dimensional homology handles
Author(s)	Kawauchi, Akio
Citation	Osaka Journal of Mathematics. 1976, 13(3), p. 567-590
Version Type	VoR
URL	https://doi.org/10.18910/8268
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kawauchi, A.
 Osaka J. Math.
 13 (1976), 567-590

\tilde{H} -COBORDISM, I; THE GROUPS AMONG THREE DIMENSIONAL HOMOLOGY HANDLES

AKIO KAWAUCHI

(Received September 25, 1975)

This paper will introduce a concept of a cobordism theory, called \tilde{H} -cobordism, between 3-dimensional homology handles. The set of the types of distinguished homology orientable handles modulo \tilde{H} -cobordism relation will form an abelian group $\Omega(S^1 \times S^2)$, called *the \tilde{H} -cobordism group of homology orientable handles*. As a basic property of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ the following commutative triangle will be established:

$$\begin{array}{ccc} C^1 & \xrightarrow{e} & \Omega(S^1 \times S^2) \\ & \searrow \phi & \swarrow \psi \\ & G_- & \end{array}$$

Here, C^1 is the Fox-Milnor's 1-knot cobordism group (See Fox-Milnor [3].), G_- is the Levine's integral matrix cobordism group (See Levine [9].), e is a homomorphism and ϕ, ψ are epimorphisms. In particular the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ will have an infinite rank. Analogously *the \tilde{H} -cobordism group $\Omega(S^1 \times \tau S^2)$ of homology non-orientable handles* will be also constructed. We shall show that the \tilde{H} -cobordism group $\Omega(S^1 \times \tau S^2)$ is isomorphic to the direct sum of infinitely many copies of the cyclic group of order two. Furthermore, it will be shown that the assignment $\tau: m \rightarrow m'$ of the type m of any distinguished homology non-orientable handle to the type m' of its 2-fold orientation-cover (which is a distinguished homology orientable handle) induces a well-defined homomorphism $\tau^*: \Omega(S^1 \times \tau S^2) \rightarrow T_2 \subset \Omega(S^1 \times S^2)$ from $\Omega(S^1 \times \tau S^2)$ to the subgroup T_2 of $\Omega(S^1 \times S^2)$ consisting of elements of order two. As one consequence T_2 will be infinitely generated.

Section 1 will construct the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ of homology orientable handles. In Section 2 we will discuss the properties of the invariants of $\Omega(S^1 \times S^2)$ and compare $\Omega(S^1 \times S^2)$ with Fox-Milnor's 1-knot cobordism group C^1 and with the Levine's integral matrix cobordism group G_- . Section 3 will concern the zero element and the order-two-elements of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$. It will be shown that *the type m of a distinguished homology orientable*

handle $M(\alpha, \iota)$ represents the zero element of $\Omega(S^1 \times S^2)$ (that is, m is null- \tilde{H} -cobordant) if $M(\alpha, \iota)$ is embeddable to a homology 4-sphere. To consider the order-two-elements of $\Omega(S^1 \times S^2)$, we will introduce the \tilde{H} -cobordism group $\Omega(S^1 \times {}_\tau S^2)$ of homology non-orientable handles and determine its group structure and discuss the homomorphism $\tau^*: \Omega(S^1 \times {}_\tau S^2) \rightarrow T_2 \subset \Omega(S^1 \times S^2)$ in this section.

Throughout this paper, spaces and maps will be considered from the piecewise linear point of view.

1. A construction of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$

A 3-dimensional homology orientable handle M is a compact 3-manifold having the integral homology group of the orientable handle $S^1 \times S^2$: $H_*(M; \mathbb{Z}) \approx H_*(S^1 \times S^2; \mathbb{Z})$. A homology orientable handle M is said to be *distinguished* if generators $\alpha \in H_1(M; \mathbb{Z}) (\approx \mathbb{Z})$ and $\iota \in H_3(M; \mathbb{Z}) (\approx \mathbb{Z})$ are specified. In that case the notation $M(\alpha, \iota)$ will be used. Two distinguished homology orientable handles $M(\alpha, \iota)$, $M'(\alpha', \iota')$ are said to *have the same type* if there is a piecewise-linear homeomorphism $h: M(\alpha, \iota) \cong M'(\alpha', \iota')$ which induces an isomorphism $h_*: H_*(M(\alpha, \iota); \mathbb{Z}) \approx H_*(M'(\alpha', \iota'); \mathbb{Z})$ with $h_*(\alpha) = \alpha'$ and $h_*(\iota) = \iota'$. The class of distinguished homology orientable handles having the same type as $M(\alpha, \iota)$ is called *the type* of $M(\alpha, \iota)$. The set of all types is denoted by $\mathfrak{C}_+(S^1 \times S^2)$. Let m be a type of $M(\alpha, \iota)$. By $-m$ we denote the type of $M(\alpha, -\iota)$. It is easily checked that the four distinguished handles $S^1 \times S^2(\alpha, \iota)$, $S^1 \times S^2(\alpha, -\iota)$, $S^1 \times S^2(-\alpha, \iota)$ and $S^1 \times S^2(-\alpha, -\iota)$ of the orientable handle $S^1 \times S^2$ have the same type. We denote this type by 0.

DEFINITION 1.1. Two types m_1, m_2 in $\mathfrak{C}_+(S^1 \times S^2)$ are *\tilde{H} -cobordant* and denoted by $m_1 \sim m_2$, if for some representatives $M_1(\alpha_1, \iota_1) \in m_1$, $M_2(\alpha_2, \iota_2) \in m_2$ there exists a pair (W, φ) where W is a compact connected oriented 4-manifold with $\partial W = M_1(\alpha_1, \iota_1) + M_2(\alpha_2, -\iota_2)$ (disjoint union) and φ is a cohomology class in $H^1(W; \mathbb{Z})$ whose restrictions $\varphi|_{M_i(\alpha_i, \iota_i)} \in H^1(M_i(\alpha_i, \iota_i); \mathbb{Z})$ are dual to α_i for $i=1, 2$, and such that the infinite cyclic cover \tilde{W}_φ associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_\varphi; \mathbb{Q})$ [that is, for each i , $H_i(\tilde{W}_\varphi; \mathbb{Q})$ is a finite dimensional vector space over \mathbb{Q} .].

As usual the triad $(W, M_1(\alpha_1, \iota_1), M_2(\alpha_2, \iota_2))$ is called *an \tilde{H} -cobordism*.

It is easily seen that $m \sim 0$ if and only if for some representative $M(\alpha, \iota) \in m$, there exists a pair (W^+, φ) where W^+ is a compact connected oriented 4-manifold with $\partial W^+ = M(\alpha, \iota)$ and $\varphi \in H^1(W^+; \mathbb{Z})$ with $\varphi|_{M(\alpha, \iota)} \in H^1(M(\alpha, \iota); \mathbb{Z})$ dual to α , and such that the infinite cyclic cover \tilde{W}_φ^+ associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_\varphi^+; \mathbb{Q})$. In this case the notation $(W^+, M(\alpha, \iota), \varphi)$ may be adopted as an \tilde{H} -cobordism.

Lemma 1.2. *The \tilde{H} -cobordism relation \sim is an equivalence relation.*

Proof. The relation \sim is reflexive, since the infinite cyclic cover \tilde{M} of any homology orientable handle M has a finitely generated rational homology group $H_*(\tilde{M}; Q)$. [To see this, notice that for any i , $i \neq 2$, $H_i(\tilde{M}; Q)$ is finitely generated (See for example Kawauchi [6, Proposition 3.4] for $i=1$).] The partial Poincaré duality theorem (See Kawauchi [6].) then asserts a duality $H^0(\tilde{M}; Q) \approx H_2(\tilde{M}; Q)$. So $H_2(\tilde{M}; Q) \approx Q$.] The relation is obviously symmetric. Further the use of the Mayer-Vietoris sequence easily yields that the relation is transitive. This completes the proof.

DEFINITION 1.3. The set $\Omega(S^1 \times S^2)$ is defined to be the set of $\mathfrak{C}_+(S^1 \times S^2)$ modulo the \tilde{H} -cobordism relation \sim .

For any $m \in \mathfrak{C}_+(S^1 \times S^2)$ the symbol $[m]$ denotes the element of $\Omega(S^1 \times S^2)$ having m as the representative.

Now we shall introduce a sum operation, called a circle union, in the set $\Omega(S^1 \times S^2)$.

Let $m_0, m_1 \in \mathfrak{C}_+(S^1 \times S^2)$ and $M_i(\alpha_i, \iota_i) \in m_i$, $i=0, 1$. Choose for each i a polygonal oriented simple closed curve ω_i in $M_i(\alpha_i, \iota_i)$ which represents the homology class α_i . Then for each i there exists a closed connected orientable surface F_i in $M_i(\alpha_i, \iota_i)$ which intersects ω_i in a single point. [To see this, first note that the identity map $\omega_i \subset \omega_i$ can be extended to a piecewise-linear map $f_i: M_i(\alpha_i, \iota_i) \rightarrow \omega_i$ by means of the elementary obstruction theory. Second, note that there is a point $p_i \in \omega_i$ such that the preimage $f_i^{-1}(p_i)$ is a closed (not necessarily connected) orientable surface. Now choose as F_i the component of $f_i^{-1}(p_i)$ containing p_i .]

Consider the solid torus $S^1 \times B^2$ and choose piecewise-linear embeddings

$$\begin{aligned} h_0: S^1 \times B^2 \times 0 &\rightarrow M_0(\alpha_0, \iota_0) \\ h_1: S^1 \times B^2 \times 1 &\rightarrow M_1(\alpha_1, \iota_1) \end{aligned}$$

such that

(1) there exist points $s \in S^1$, $b \in \text{Int } B^2$ with $h_0(s \times B^2 \times 0) \subset F_0$, $h_0(S^1 \times b \times 0) = \omega_0$, $h_1(s \times B^2 \times 1) \subset F_1$ and $h_1(S^1 \times b \times 1) = \omega_1$,

(2) both h_0 and h_1 are orientation-reversing with respect to the orientations of $S^1 \times B^2 \times 0$ and $S^1 \times B^2 \times 1$ induced from some orientation of $S^1 \times B^2 \times [0, 1]$,

(3) ω_0 and ω_1 are homologous in the adjunction space $M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1)$.

Then the manifold $M = M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) - S^1 \times \text{Int } B^2 \times [0, 1]$ is a homology handle. [Proof. Let $i=0$ or 1 . Consider the manifold $M'_i = M_i - h_i(S^1 \times \text{Int } B^2 \times i)$. Let $b' \in \partial B^2$ and the simple closed curve $\omega'_i = h_i(S^1 \times b' \times i) \subset \partial M'_i$ be oriented so that ω'_i is homologous to ω_i in M_i . Let $\eta_i = h_i(s \times \partial B^2 \times i) \subset \partial M'_i$ be oriented suitably. It is easily checked that ω'_i

represents a generator of $H_1(M'_i; Z) (\approx Z)$ and η_i represents the zero element of $H_1(M'_i; Z)$ (since η_i bounds an orientable surface $F_i - h_i(s \times \text{Int } B^2 \times i)$ in M'_i) and that ω'_i, η_i represent a basis for $H_1(\partial M'_i; Z)$. Then from consideration of the Mayer-Vietoris sequence we obtain that $H_1(M; Z) \approx Z$. Since M is orientable, $H_*(M; Z) \approx H_*(S^1 \times S^2; Z)$ by Poincaré duality.]

From construction it can be seen that the homology classes $\alpha_i \in H_1(M_i(\alpha_i, \iota_i); Z)$, $i=0, 1$, specify a unique homology class $\alpha_i \in H_1(M; Z)$ and that the fundamental classes $\iota_i \in H_3(M_i(\alpha_i, \iota_i); Z)$, $i=0, 1$, specify a unique fundamental class $\iota \in H_3(M; Z)$.

DEFINITION 1.4. The distinguished homology orientable handle $M(\alpha, \iota)$ is called a *circle union* of $M_0(\alpha_0, \iota_0)$ and $M_1(\alpha_1, \iota_1)$ and denoted by $M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1)$. Also, the type of $M(\alpha, \iota)$ is called a circle union of the types m_0 and m_1 and denoted by $m_0 \bigcirc m_1$.

Clearly the type of $M_0(\alpha_0, -\iota_0) \bigcirc M_1(\alpha_1, -\iota_1)$ is $-(m_0 \bigcirc m_1) = (-m_0) \bigcirc (-m_1)$.

1.5. Remark to Definition 1.4. It should be remarked that the circle union $m_0 \bigcirc m_1$ depends upon the choices of ω_0, ω_1, h_0 and h_1 . Consider for example a distinguished orientable handle $S^1 \times S^2(\alpha, \iota)$. Let $\omega \subset S^1 \times S^2(\alpha, \iota)$ be an oriented simple closed curve representing α of geometrical index*^{*)} 1 and $T(\omega)$ be the regular neighborhood of ω in $S^1 \times S^2(\alpha, \iota)$. If the circle union $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ is defined to be the double of $cl(S^1 \times S^2)(\alpha, \iota) - T(\omega)$, then $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ has the same type as $S^1 \times S^2(\alpha, \iota)$. On the other hand, consider for example an oriented simple closed curve $\omega' \subset S^1 \times S^2(\alpha, \iota)$ representing α of geometrical index 3 and algebraic index 1 (See figure 1.) and let $T(\omega')$ be the regular neighborhood of ω' in $S^1 \times S^2(\alpha, \iota)$.

figure 1.

^{)} A simple closed curve ω in $S^1 \times S^2$ has *geometric index* λ , if λ is the least number of intersections that a curve ambient isotopic to ω can have with $S^1 \times S^2$ and has *algebraic index* λ' , if λ' is the unique integer such that ω is homologous to λ' times $S^1 \times s_2$ for a point $(s_1, s_2) \in S^1 \times S^2$.

If the circle union $S^1 \times S^2(\alpha, \iota) \cup' S^1 \times S^2(\alpha, -\iota)$ is defined to be the double of $cl(S^1 \times S^2(\alpha, \iota) - T(\omega'))$, then $S^1 \times S^2(\alpha, \iota) \cup' S^1 \times S^2(\alpha, -\iota)$ does not have the same type as $S^1 \times S^2(\alpha, \iota) \cup S^1 \times S^2(\alpha, -\iota)$, because $\pi_1(S^1 \times S^2(\alpha, \iota) \cup S^1 \times S^2(\alpha, -\iota)) \approx \mathbb{Z}$, but $\pi_1(S^1 \times S^2(\alpha, \iota) \cup' S^1 \times S^2(\alpha, -\iota))$ is non-abelian. [In fact, the natural injection $\partial T(\omega') \rightarrow S^1 \times S^2(\alpha, \iota) \cup' S^1 \times S^2(\alpha, -\iota)$ induces a monomorphism $\pi_1(\partial T(\omega')) \rightarrow \pi_1(S^1 \times S^2(\alpha, \iota) \cup' S^1 \times S^2(\alpha, -\iota))$ by the loop theorem.]

In spite of Remark 1.5 we can prove the following for arbitrary two circle unions $m_0 \cup m_1$, $m_0 \cup' m_1$ of given two types m_0 , m_1 :

Lemma 1.6. $m_0 \cup m_1 \sim m_0 \cup' m_1$.

Proof. Let $M_0(\alpha_0, \iota_0) \in m_0$ and $M_1(\alpha_1, \iota_1) \in m_1$. Assume $M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1) \in m_0 \cup m_1$ and $M_0(\alpha_0, \iota_0) \cup' M_1(\alpha_1, \iota_1) \in m_0 \cup' m_1$ are given by the following:

$$\begin{aligned} & M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1) \\ &= M_0(\alpha_0, \iota_0) \times 0 \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) \times 0 - S^1 \times \text{Int } B^2 \times [0, 1] \\ & M_0(\alpha_0, \iota_0) \cup' M_1(\alpha_1, \iota_1) \\ &= M_0(\alpha_0, \iota_0) \times 1 \cup_{h'_0} S^1 \times B^2 \times [0, 1] \cup_{h'_1} M_1(\alpha_1, \iota_1) \times 1 - S^1 \times \text{Int } B^2 \times [0, 1]. \end{aligned}$$

Then we let

$$W = M_0(\alpha_0, \iota_0) \times [0, 1] \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) \times [0, 1] \cup_{h'_0} S^1 \times B^2 \times [0, 1] \cup_{h'_1} M_1(\alpha_1, \iota_1) \times [0, 1].$$

(See figure 2.)

figure 2.

Clearly we have $\partial W = M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1) + M_0(\alpha_0, -\iota_0) \cup M_1(\alpha_1, -\iota_1)$.

Note that α_0, α_1 represent the same element α in $H_1(W; Z)$. Let $\varphi \in H^1(W; Z)$ be dual to α and \tilde{W}_φ be the infinite cyclic cover of W associated with φ . Since \tilde{W}_φ is the union of $\tilde{M}_0(\alpha_0, \iota_0) \times [0, 1]$, $R^1 \times B^2 \times [0, 1]$, $R^1 \times B^2 \times [0, 1]$ and $\tilde{M}_1(\alpha_1, \iota_1) \times [0, 1]$, each two intersections of which is empty or homeomorphic to $R^1 \times B^2$, it follows from the Mayer-Vietoris sequence that $H_*(\tilde{W}_\varphi; Q)$ is finitely generated over Q , where $\tilde{M}_i(\alpha_i, \iota_i)$ are the infinite cyclic covers of $M_i(\alpha_i, \iota_i)$, $i=0, 1$. Thus, the triad $(W, M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1), M_0(\alpha_0, -\iota_0) \cup M_1(\alpha_1, -\iota_1))$ gives an \tilde{H} -cobordism and hence $m_0 \cup m_1 \sim m_0 \cup m'$. This completes the proof.

Lemma 1.7. $m_0 \sim m_1$ is equivalent to $m_0 \cup -m_1 \sim 0$.

Proof. Assume $m_0 \sim m_1$. Then for some representatives $M_0(\alpha_0, \iota_0) \in m_0$, $M_1(\alpha_1, \iota_1) \in m_1$ there is an \tilde{H} -cobordism $(W, M_0(\alpha_0, \iota_0), M_1(\alpha_1, \iota_1))$. Note that there is a cohomology class $\varphi \in H^1(W; Z)$ such that for each i $\varphi|_{M_i(\alpha_i, \iota_i)} \in H^1(M_i(\alpha_i, \iota_i); Z)$ is dual to α_i . Let $M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1) = M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, -\iota_1) - S^1 \times \text{Int } B^2 \times [0, 1]$ and $W' = W \cup_{h_0, h_1} S^1 \times B^2 \times [0, 1]$ (See figure 3.). Clearly $\partial W' = M_0(\alpha_0, -\iota_0) \cup M_1(\alpha_1, -\iota_1)$. The cohomology class $\varphi \in H^1(W; Z)$ is easily extended to a cohomology class $\varphi' \in H^1(W'; Z)$ such that the restriction $\varphi'|_{M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1)} \in H^1(M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1); Z)$ is dual to the specified generator of $H_1(M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1); Z)$. By applying the Mayer-Vietoris sequence, it is not difficult to see that the infinite cyclic cover \tilde{W}'_φ of W' associated with φ' has a finitely generated rational homology group $H_*(\tilde{W}'_\varphi; Q)$. [Use that $H_*(\tilde{W}_\varphi; Q)$ is finitely generated over Q .] So, $m_0 \cup -m_1 \sim 0$.

figure 3.

Conversely assume $m_0 \cup -m_1 \sim 0$. For $M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1) \in m_0 \cup -m_1$ there is an \tilde{H} -cobordism $(W'', M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1), \phi)$. By the definition

of the circle union there is a natural injection $j: S^1 \times \partial B^2 \times [0, 1] \rightarrow M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, -\iota_1)$. Let $W''' = W'' \cup_j S^1 \times B^1 \times [0, 1]$. It is easy to see that the boundary $\partial W'''$ is equal to the disjoint union $M_0(\alpha_0, \iota_0) + M_1(\alpha_1, -\iota_1)$ and that the triad $(W''', M_0(\alpha_0, \iota_0), M_1(\alpha_1, \iota_1))$ gives an \tilde{H} -cobordism between $M_0(\alpha_0, \iota_0)$ and $M_1(\alpha_1, \iota_1)$. This completes the proof.

Lemma 1.8. *If $m_0 \sim 0$ and $m_1 \sim 0$, then $m_0 \cup m_1 \sim 0$.*

Proof. For $M_0(\alpha_0, \iota_0) \in m_0$, $M_1(\alpha_1, \iota_1) \in m_1$, there are \tilde{H} -cobordisms $(W_0, M_0(\alpha_0, \iota_0), \phi)$ and $(W_1, M_1(\alpha_1, \iota_1), \phi)$. Let $M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1) = M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) - S^1 \times \text{Int } B^2 \times [0, 1]$. If we let $W = W_0 \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} W_1$ (See figure 4.), then the triad $(W, M_0(\alpha_0, \iota_0) \cup M_1(\alpha_1, \iota_1), \phi)$ gives an \tilde{H} -cobordism. So, $m_0 \cup m_1 \sim 0$, which completes the proof.

figure 4.

Now we can derive the following theorem which is a main purpose of this section.

Theorem 1.9. *The set $\Omega(S^1 \times S^2)$ forms an abelian group under the sum $[m_0] + [m_1] = [m_0 \cup m_1]$. The zero element of this group is $[0]$. The inverse of any element $[m]$ is the element $[-m]$.*

Proof. To show that the sum $[m_0] + [m_1] = [m_0 \cup m_1]$ is well-defined, let $m_0 \sim m'_0$ and $m_1 \sim m'_1$. By Lemma 1.7 $m_0 \cup -m'_0 \sim 0$ and $m_1 \cup -m'_1 \sim 0$. Then by Lemma 1.8 $(m_0 \cup -m'_0) \cup (m_1 \cup -m'_1) \sim 0$. Since $(m_0 \cup m_1) \cup m_2 \sim m_0 \cup (m_1 \cup m_2)$ and $m_0 \cup m_1 = m_1 \cup m_0$ for all m_0 , m_1 and m_2 , we obtain $(m_0 \cup m_1) \cup -(m'_0 \cup m'_1) \sim (m_0 \cup -m'_0) \cup (m_1 \cup -m'_1)$. Hence again by Lemma 1.7 $m_0 \cup m_1 \sim m'_0 \cup m'_1$. Thus, $[m_0] = [m'_0]$ and $[m_1] = [m'_1]$ imply $[m_0] + [m_1] = [m'_0] + [m'_1]$. It is clear that $([m_0] + [m_1]) + [m_2] = [m_0] + ([m_1] + [m_2])$ and $[m_0] + [m_1] = [m_1] + [m_0]$. Also, we have $[m] + [0] = [m \cup 0] = [m]$ and, by Lemma 1.7, $[m] + [-m] = [0]$. This completes the proof.

The group $\Omega(S^1 \times S^2)$ is called *the \tilde{H} -cobordism group of 3-dimensional homology orientable handles*. The zero element is denoted by 0 and the inverse of $[m]$ is $-[m]$.

2. Relating the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ to the Fox-Milnor's group C and the Levine's group G_-

The purpose of this section is to prove the following theorem.

Theorem 2.1. *There is a commutative triangle*

$$\begin{array}{ccc} C^1 & \xrightarrow{e} & \Omega(S^1 \times S^2) \\ \phi \searrow & & \swarrow \psi \\ & & G_- \end{array}$$

of groups and homomorphisms, where the homomorphisms $\phi: C^1 \rightarrow G_-$ and $\psi: \Omega(S^1 \times S^2) \rightarrow G_-$ are onto.

A knot $k \subset S^3$ is a polygonal oriented 1-sphere k in the oriented piecewise-linear 3-sphere S^3 . Two knots $k_1 \subset S^3$, $k_2 \subset S^3$ have *the same knot type* if there is a piecewise-linear homeomorphism $(S^3, k_1) \rightarrow (S^3, k_2)$ which is orientation-preserving as both the maps $S^3 \rightarrow S^3$ and $k_1 \rightarrow k_2$. The knot type of a knot $k \subset S^3$ will mean the class of knots with the same knot type as $k \subset S^3$. The set of knot types is denoted by \mathcal{K} . Let \mathbf{k} be a knot type and $(k \subset S^3) \in \mathbf{k}$ be a representative knot. By $-\mathbf{k}$, we denote the knot type of the knot $(-k \subset -S^3)$, where $-k$ and $-S^3$ are the same as k and S^3 but have the opposite orientations, respectively.

Now we shall construct a function $e: \mathcal{K} \rightarrow \mathbb{C}_+(S^1 \times S^2)$. Let \mathbf{k} be a knot type and $(k \subset S^3) \in \mathbf{k}$ be a knot. Consider the regular neighborhood $T(k) \subset S^3$ of the knot $k \subset S^3$. Then $T(k)$ is clearly piecewise-linear homeomorphic to the solid torus $S^1 \times B^2$. We note that the solid torus $T(k)$ in S^3 has unique meridian and longitude curves*² (up to isotopies of $\partial T(k)$ and the orientations of curves).

² A meridian curve of a solid (knotted) torus T in S^3 is a simple closed curve ω in ∂T such that ω is homologous to 0 in T but not in ∂T . A longitude curve of T in S^3 is a simple closed curve ω in ∂T such that ω is homologous to 0 in $S^3 - \text{Int } T$ but not in ∂T . The uniqueness of the meridian and longitude curves follows from a more general principle: Let X be a homology orientable circle i.e. X is a compact 3-manifold with $H_(X; \mathbb{Z}) \cong H_*(S^1; \mathbb{Z})$ and $H_*(\partial X; \mathbb{Z}) \cong H_*(S^1 \times S^1; \mathbb{Z})$. If $\omega, \omega' \subset \partial X$ are homologous to 0 in X but not in ∂X , then with suitable orientations of ω, ω' , ω is isotopic to ω' in ∂X . [Proof. Take a simple closed curve ω^* in ∂X intersecting ω in single point. Using that ω represents the zero element of $H_1(X; \mathbb{Z})$ and that the natural homomorphism $H_1(\partial X; \mathbb{Z}) \rightarrow H_1(X; \mathbb{Z})$ is onto, it follows that ω^* represents a generator of $H_1(X; \mathbb{Z})$. Let $f: \partial X \rightarrow \omega^*$ be a natural projection such that for some point $p^* \in \omega^*$, $f^{-1}(p^*) = \omega$. Then we may find an extension $f': X \rightarrow \omega^*$ of f such that $(f')^{-1}(p^*) = F$ is a connected surface with $\partial F = \omega$. Since the infinite cyclic covering

The orientation of the longitude curve should be chosen so that the longitude curve is homologous to k in $T(k)$. The orientation of the meridian curve should be chosen so that the linking number of the meridian curve and the knot k in S^3 is $+1$. Let $h: S^1 \times S^1 \rightarrow \partial T(k)$ be a piecewise-linear homeomorphism such that for some point (s_1, s_2) in $S^1 \times S^1$ the curves $h(s_1 \times S^1)$ and $h(S^1 \times s_2)$ are the meridian curve and the longitude curve of $T(k)$, respectively. Define M to be the adjunction space $S^3 - \text{Int}(T(k)) \cup_h B^2 \times S^1$. (∂B^2 is identified with S^1 .) By applying the Mayer-Vietoris sequence, we have $H_1(M; \mathbb{Z}) \approx \mathbb{Z}$. Hence M is a homology orientable handle by Poincaré duality. Note that the oriented meridian curve of $T(k)$ represents a generator α of $H_1(M; \mathbb{Z})$. We specify the orientation of M compatible with the orientation of $S^3 - T(k)$ induced from that of S^3 . So, a generator $\iota \in H_3(M; \mathbb{Z})$ is specified.

DEFINITION 2.2. The distinguished homology orientable handle $M(\alpha, \iota)$ is called the distinguished homology orientable handle *obtained from S^3 by the elementary surgery along the knot $k \subset S^3$* .

By using the uniqueness of the meridian curve, the longitude curve and the regular neighborhood, it is easily checked that the type of $M(\alpha, \iota)$ is uniquely determined by the knot type κ of $k \subset S^3$. So we denote this type by $e(\kappa)$.

Thus, we have the following:

Lemma 2.3. *There is a function $e: \mathcal{K} \rightarrow \mathbb{C}_+(S^1 \times S^2)$.*

For any two knot types κ_1, κ_2 , one can construct a unique knot type $\kappa_1 \# \kappa_2$ well-known as *the knot sum*. Two knot types κ_1, κ_2 are *cobordant* if for a representative knot $k \subset S^3$ of the knot sum $\kappa_1 \# -\kappa_2$, k bounds a locally flat 2-cell in the 4-cell B^4 . The set \mathcal{K} modulo this knot cobordism relation forms an abelian group C^1 , called *the knot cobordism group*. (See Fox-Milnor [3] for details.) The sum operation of C^1 is the usual knot sum operation.

Lemma 2.4. *The function $e: \mathcal{K} \rightarrow \mathbb{C}_+(S^1 \times S^2)$ induces a homomorphism $C^1 \rightarrow \Omega(S^1 \times S^2)$ also denoted by e .*

Proof. For two knot types κ_1, κ_2 , it is directly checked that $e(\kappa_1 \# \kappa_2)$ is a circle union of $e(\kappa_1)$ and $e(\kappa_2)$ i.e. $e(\kappa_1 \# \kappa_2) = e(\kappa_1) \bigcirc e(\kappa_2)$. [Note that for $(K_i \subset S^3) \in \kappa_i, i=1, 2$, the exterior of the knot sum $(K_1 \subset S^3) \# (K_2 \subset S^3)$ is the adjunction

$p: \tilde{X} \rightarrow X$ associated with the Hurewicz homomorphism can be constructed by using f' , we may regard $F \subset \tilde{X}$. Note that $[F] \in H_2(X, \partial X; \mathbb{Z})$ is a generator (See [7, Lemma 2.5].). By using the isomorphism $p_*: H_2(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \approx H_2(X, \partial X; \mathbb{Z})$ (See [7, Remark 2.4].), $[F] \in H_2(\tilde{X}, \partial \tilde{X}; \mathbb{Z})$ is a generator i.e. a finite fundamental class (See [6].). Similarly, we can find a surface $F' \subset \tilde{X}$ with $\partial F' = \omega'$ and such that $[F']$ is a finite fundamental class of \tilde{X} . The boundary-isomorphism $\partial: H_2(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \approx H_1(\partial \tilde{X}; \mathbb{Z})$, then, implies that $[\omega]$ and $[\omega']$ are equal up to sign. That is, with suitable orientations of ω, ω' , ω is homologous to ω' and hence homotopic to ω' in $\partial \tilde{X} = S^1 \times R^1$. Accordingly, ω is homotopic to ω' in ∂X which implies that ω is isotopic to ω' in ∂X .]

space of the exteriors of $K_i \subset S^3$ along uniquely specified annuli on the boundaries] Hence it suffices to show that if a knot type κ is cobordant to the trivial knot type, then $e(\kappa) \sim 0$. According to Fox-Milnor [3], this knot type κ can be realized as a local knot type of a piecewise linear 2-sphere $S(\kappa)$ in S^4 with just one locally knotted point. Let $N=N(S(\kappa), S^4)$ be the regular neighborhood of $S(\kappa)$ in S^4 . Let $W=S^4 - \text{Int } N$ and $M=\partial W$. Notice that $H_*(\partial W; Z) \approx H_*(S^1; Z)$ by the Alexander duality. By using the Mayer-Vietoris sequence of the triple $(S^4; W, N)$, we obtain that $H_1(M; Z) \approx Z$. Hence M is a homology orientable handle. M may be a distinguished homology orientable handle obtained from S^3 by the elementary surgery along a representative knot $(k \subset S^3) \in \kappa$: $M=M(\alpha, \iota)$. [For N is obtained from a 4-cell by attaching a 2-handle along a solid torus $T \subset S^3$ representing κ . Using $H_1(M; Z)=Z$ and the unique longitude curve of $T \subset S^3$, M with suitably chosen $\alpha \in H_1(M; Z)$ and $\iota \in H_3(M; Z)$ belongs to $e(\kappa)$.] Since W has the homology of a circle, it follows from Milnor [11, Assertion 5] that the rational homology group $H_*(W; Q)$ of any infinite cyclic cover \tilde{W} is finitely generated over Q . This shows that the triad $(W; M(\alpha, \iota), \phi)$ gives an \bar{H} -cobordism. Therefore $e(\kappa) \sim 0$. This completes the proof.

Usually any knot type cobordant to the trivial knot type is called a *slice knot type*.

In the proof of Lemma 2.4, we have also proved the following:

Corollary 2.5 (Kato [5]). *If a knot type κ is a slice knot type, then any representative homology orientable handle of $e(\kappa)$ is embeddable to the 4-sphere S^4 .*

A *Seifert matrix* A (with sign -1) is an integral square matrix with $\det(A-A')=\pm 1$. (A' is the transpose of A .) Two Seifert matrices A_1, A_2 are said to be *cobordant* if the block sum $A_1 \oplus -A_2$ is congruent (over Z) to a matrix of the form $\begin{pmatrix} O & B \\ C & D \end{pmatrix}$ (B, C, D are square matrices of the same size.) The set of

Seifert matrices modulo this cobordism relation forms an abelian group G_- , called *the matrix cobordism group*. (See Levine [9] for details. Note that only Seifert matrices with sign -1 are considered here.) In [10] Levine calculated that G_- is isomorphic to the direct sum $\sum_{i=1}^{\infty} Z^i + \sum_{i=1}^{\infty} (Z/2Z)^i + \sum_{i=1}^{\infty} (Z/4Z)^i$.

For a while we would like to spare time for describing familiar algebraic invariants of a polygonal oriented 1-sphere in a piecewise linear oriented homology 3-sphere, called a *homological knot*. The arguments may proceed in the same way as the usual knot theory. Let $k \subset \bar{S}^3$ be a homological knot. k bounds an oriented connected surface F , called a *Seifert surface for k* , by using a notion of the transverse regularity. We define a pairing $\theta: H_1(F; Z) \otimes H_1(F; Z) \rightarrow Z$ such that $\theta(\alpha \otimes \beta) = L(\alpha, i_*(\beta))$, where L denotes the homological linking number in \bar{S}^3 and $i_*(\beta)$ denotes the translate of the cycle β off F in the positive normal direction. With a basis for $H_1(F; Z)$, θ represents an integral square matrix A ,

called a *Seifert matrix* for $k \subset \bar{S}^3$ associated with surface F . Using a formula $\theta(\alpha \otimes \beta) - \theta(\beta \otimes \alpha) = \alpha \cdot \beta$, where $\alpha \cdot \beta$ is the intersection number, we obtain $\det(A - A') = \pm 1$. (See for example Levine [8].) So, A is in fact a Seifert matrix. The integral polynomial $A(t) = \det(tA - A')$ is called the *Alexander polynomial* of $k \subset \bar{S}^3$. Let $X = \bar{S}^3 - \text{Int } T(k)$ for the regular neighborhood $T(k)$ of k in \bar{S}^3 and \tilde{X} be the infinite cyclic cover of X associated with the Hurewicz homomorphism $\pi_1(X) \rightarrow H_1(X; \mathbb{Z})$. We choose an orientation of \tilde{X} induced by that of X and a generator t of the covering transformation group of \tilde{X} associated with a generator α of $H_1(X; \mathbb{Z})$ with linking number $L(\alpha, k) = +1$. By using the Mayer-Vietoris sequence, the matrix $tA - A'$ is a relation matrix of $H_1(\tilde{X}; \mathbb{Z})$ as a $\mathbb{Z}[t]$ -module. The Seifert surface F induces a generator μ of $H_2(\tilde{X}, \partial\tilde{X}; \mathbb{Z}) \cong \mathbb{Z}$, called a *finite fundamental class* of \tilde{X} . (See Kawauchi [6, Theorem 2.3] and also Erle [1].) By Kawauchi [6, Theorem 2.3] (See also Milnor [11, p 127].) there is a duality $\cap \mu: H^q(\tilde{X}; \mathbb{Q}) \cong H_{2-q}(\tilde{X}, \partial\tilde{X}; \mathbb{Q})$ for all q , since $H_*(\tilde{X}; \mathbb{Q})$ is finitely generated over \mathbb{Q} . Hence using a canonical isomorphism $H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \cong H^1(\tilde{X}; \mathbb{Q})$, the cup product $H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \times H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \rightarrow H^2(\tilde{X}, \partial\tilde{X}; \mathbb{Q})$ is a non-singular skew-symmetric bilinear form. Define a symmetric bilinear form

$$\langle \cdot, \cdot \rangle: H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \times H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \rightarrow H^2(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \xrightarrow{\cap \mu} H_0(\tilde{X}; \mathbb{Q}) = \mathbb{Q}$$

by the equality $\langle x, y \rangle = (x \cup ty) \cap \mu + (y \cup tx) \cap \mu$. This bilinear form is isometric on t : $\langle tx, ty \rangle = \langle x, y \rangle$ and non-singular.

DEFINITION 2.6. The pair $(\langle \cdot, \cdot \rangle, t)$ is called the *quadratic form* of the homological knot $k \subset \bar{S}^3$. (See Erle [1] and Milnor [11].)

The *signature* of $k \subset \bar{S}^3$ is the signature of this form $\langle \cdot, \cdot \rangle$.

The following proposition is essentially proved by Erle [1].

Proposition 2.7. Let A be any Seifert matrix for a homological knot $k \subset \bar{S}^3$ associated with a Seifert surface. A is S -equivalent to a non-singular Seifert matrix A_* such that, with a suitable basis for $H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q})$, the linear isomorphism $t: H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \rightarrow H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q})$ and the form $\langle \cdot, \cdot \rangle: H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \times H^1(\tilde{X}, \partial\tilde{X}; \mathbb{Q}) \rightarrow \mathbb{Q}$ represent the matrices $A_*'^{-1}A_*$ and $A_* + A_*'$, respectively. (In fact, Erle [1] proved this proposition for any usual knot $k \subset \bar{S}^3$. Without difficulty, Erle's proof may be applied for homological knot $k \subset \bar{S}^3$. See Trotter [13] for a concept of S -equivalences.)

By Proposition 2.7, the signature of $k \subset \bar{S}^3$ is equal to the signature $\sigma(A_* + A_*') = \sigma(A + A')$.

Let $m \in \mathfrak{C}_+(S^1 \times S^2)$ and $M(\alpha, \iota) \in m$. We choose a polygonal oriented simple closed curve ω in $M(\alpha, \iota)$ representing α and let $T(\omega)$ be the regular neighborhood of ω in $M(\alpha, \iota)$. Also we choose polygonal oriented simple closed curves k and l in $\partial T(\omega)$ intersecting in a single point such that k is oriented so as to be

$L(k, \omega) = +1$ and bounds a 2-cell in $T(\omega)$ and such that l is homologous to ω in $T(\omega)$. (Note that in any case the choice of l is not unique.) Let $(s_1, s_2) \in S^1 \times S^1$ and define a piecewise-linear homeomorphism $h: S^1 \times S^1 \rightarrow \partial T(\omega)$ such that $h(s_1 \times S^1) = k$ and $h(S^1 \times s_2) = l$. Let $\bar{S}^3 = M(\alpha, \iota) - \text{Int } T(\omega) \cup_h B^2 \times S^1$. It is easy to see that \bar{S}^3 is a homology 3-sphere. (Notice that k is homologous to 0 in $M(\alpha, \iota) - \text{Int } T(\omega)$.) The orientation of \bar{S}^3 is chosen so as to coincide with that of $M(\alpha, \iota) - \text{Int } T(\omega)$. Thus, we obtain a homological knot $k \subset \bar{S}^3$ from $M(\alpha, \iota)$ (, although the homeomorphism type of the pair (\bar{S}^3, k) is never uniquely determined by the type of $M(\alpha, \iota)$).

DEFINITION 2.8. A Seifert matrix for the homological knot $k \subset \bar{S}^3$ associated with a Seifert surface is called a *Seifert matrix for $M(\alpha, \iota)$ (or the type m)*.

Accordingly if A is a Seifert matrix for a knot type κ , then A is also a Seifert matrix for the type $e(\kappa)$.

DEFINITION 2.9. The Alexander polynomial $A(t) = \det(tA - A')$ of $k \subset \bar{S}^3$ is called the *Alexander polynomial of $M(\alpha, \iota)$ (or the type m)*.

This definition coincides with that of Kawauchi [7, Definition 1.3], because the matrix $tA - A'$ is a relation matrix of $H_1(\tilde{M}(\alpha, \iota); Z)$ by the canonical isomorphism $H_1(\tilde{X}; Z) \approx H_1(\tilde{M}(\alpha, \iota); Z)$. Here \tilde{X} denotes the infinite cyclic cover of $X = M(\alpha, \iota) - \text{Int } T(\omega)$ with the uniquely specified generator t of the covering transformation group and with the associated orientation. $\tilde{M}(\alpha, \iota)$ denotes the infinite cyclic cover of $M(\alpha, \iota)$ such that the covering projection $\tilde{M}(\alpha, \iota) \rightarrow M(\alpha, \iota)$ is an extension of the covering projection $\tilde{X} \rightarrow X$. $\tilde{M}(\alpha, \iota)$ has an orientation compatible with that of \tilde{X} . The generator of the covering transformation group of $\tilde{M}(\alpha, \iota)$ is an extension of $t: \tilde{X} \rightarrow \tilde{X}$, also denoted by t . Note that the finite fundamental class $\mu \in H_2(\tilde{X}, \partial \tilde{X}; Z)$ determined by a Seifert surface specifies a unique generator of $H_2(\tilde{M}(\alpha, \iota); Z)$, also denoted by μ by the canonical isomorphism $H_2(\tilde{X}, \partial \tilde{X}; Z) \approx H_2(\tilde{M}(\alpha, \iota); Z)$. This $\mu \in H_2(\tilde{M}(\alpha, \iota); Z)$ is called the *finite fundamental class of $\tilde{M}(\alpha, \iota)$* . By using the canonical isomorphisms $H^i(\tilde{X}, \partial \tilde{X}; Q) \approx H^i(\tilde{M}(\alpha, \iota); Q)$, $i = 1, 2$, the bilinear form $\langle \cdot, \cdot \rangle: H^1(\tilde{X}, \partial \tilde{X}; Q) \times H^1(\tilde{X}, \partial \tilde{X}; Q) \rightarrow Q$ passes to the form $(\cdot, \cdot): H^1(\tilde{M}(\alpha, \iota); Q) \times H^1(\tilde{M}(\alpha, \iota); Q) \rightarrow Q$ defined by the equality $(x, y) = (x \cup t y) \cap \mu + (y \cup t x) \cap \mu$ for all x, y in $H^1(\tilde{M}(\alpha, \iota); Q)$.

DEFINITION 2.10. The pair $((\cdot, \cdot), t)$ is called the *quadratic form of $M(\alpha, \iota)$ (or the type m)*.

The *signature of $M(\alpha, \iota)$ (or the type m)*, denoted by $\sigma(M(\alpha, \iota))$ (or $\sigma(m)$) is the signature of the homological knot $k \subset \bar{S}^3$. So, the signature of $M(\alpha, \iota)$ coincides with the signature of the bilinear form (\cdot, \cdot) . Easily $\sigma(M(\alpha, \iota)) = \sigma(M(-\alpha, \iota))$ and $\sigma(M(\alpha, -\iota)) = -\sigma(M(\alpha, \iota))$.

From Proposition 2.7, the following is immediately obtained:

Lemma 2.11. *Let A be a Seifert matrix for $M(\alpha, \iota)$. A is S -equivalent to a non-singular Seifert matrix A_* such that, with a suitable basis for $H^1(\tilde{M}(\alpha, \iota); Q)$, the linear isomorphism $t: H^1(\tilde{M}(\alpha, \iota); Q) \rightarrow H^1(\tilde{M}(\alpha, \iota); Q)$ and the form $(\cdot, \cdot): H^1(\tilde{M}(\alpha, \iota); Q) \times H^1(\tilde{M}(\alpha, \iota); Q) \rightarrow Q$ represent the matrices $A_*'^{-1}A_*$ and $A_* + A_*'$, respectively.*

Note that by Lemma 2.11 $\sigma(M(\alpha, \iota)) = \sigma(A_* + A_*') = \sigma(A + A')$.

For the quadratic form $((\cdot, \cdot), t)$ of the type m of $M(\alpha, \iota)$, if $H^1(\tilde{M}(\alpha, \iota); Q)$ contains a half-dimensional vector subspace V with $tV = V$ and such that $(x, y) = 0$ for all x, y in V , then the quadratic form $((\cdot, \cdot), t)$ is said to be *null-cobordant* (See Levine [10].).

The following theorem is a basically important result.

Theorem 2.12. *If $m \sim 0$, then the quadratic form $((\cdot, \cdot), t)$ of m is null-cobordant.*

Proof. Since $m \sim 0$, for $M(\alpha, \iota) \in m$ there exists an \tilde{H} -cobordism $(W, M(\alpha, \iota), \phi)$. Hence for some $\varphi \in H^1(W; Z)$ with $\varphi|_M(\alpha, \iota) \in H^1(M(\alpha, \iota); Z)$ dual to α , the infinite cyclic cover \tilde{W}_φ associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_\varphi; Q)$. Note that by Kawauchi [6, Theorem 2.3], the Poincaré dualities $\cap \bar{\mu}: H^*(\tilde{W}_\varphi; Q) \approx H_{3-*}(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Q)$ and $\cap \bar{\mu}: H^*(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Q) \approx H_{3-*}(\tilde{W}_\varphi; Q)$ hold, where $\bar{\mu} \in H_3(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Z)$ is a finite fundamental class determined from μ by the boundary-isomorphism $\partial: H_3(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Z) \approx H_2(\tilde{M}(\alpha, \iota); Z)$.

Now we consider the following commutative (up to sign) diagram:

$$\begin{array}{ccccccc} \longrightarrow & H^1(\tilde{W}_\varphi; Q) & \xrightarrow{i^*} & H^1(\tilde{M}(\alpha, \iota); Q) & \xrightarrow{\delta} & H^2(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Q) & \longrightarrow \\ & \downarrow \cap \bar{\mu} & & \downarrow \cap \mu & & \downarrow \cap \bar{\mu} & \\ \longrightarrow & H_2(\tilde{W}_\varphi, \tilde{M}(\alpha, \iota); Q) & \xrightarrow{\partial} & H_1(\tilde{M}(\alpha, \iota); Q) & \xrightarrow{i^*} & H_1(\tilde{W}_\varphi; Q) & \longrightarrow . \end{array}$$

Here the top and bottom sequences are exact and the vertical homomorphisms are isomorphisms.

For all $u \in H^1(\tilde{W}_\varphi; Q)$, suppose $(i^*(u), y) = 0$. This situation is equivalent to $\delta(t - t^{-1})y = 0$ i.e. $(t - t^{-1})y \in \text{Im } i^*$, because $(i^*u, y) = [i^*(u) \cap (t - t^{-1})y] \cap \mu = [u \cup \delta(t - t^{-1})y] \cap \bar{\mu}$. Using $(t - t^{-1})\text{Im } i^* \subset \text{Im } i^*$ and the isomorphism^{*)} $t - t^{-1}: H^1(\tilde{M}(\alpha, \iota); Q) \approx H^1(\tilde{M}(\alpha, \iota); Q)$, $(t - t^{-1})y \in \text{Im } i^*$ is equivalent to $y \in \text{Im } i^*$. Thus we showed that the orthogonal complement of $\text{Im } i^*$ is $\text{Im } i^*$ itself. In particular, $\dim_Q \text{Im } i^* = \frac{1}{2} \dim_Q H^1(\tilde{M}(\alpha, \iota); Q)$. Since $t \text{Im } i^* \subset \text{Im } i^*$, the quad-

^{*)} To prove this isomorphism, it suffices to check that the characteristic polynomial $A'(t)$ of $t: H^1(\tilde{M}(\alpha, \iota); Q) \rightarrow H^1(\tilde{M}(\alpha, \iota); Q)$ satisfies $A'(\pm 1) \neq 0$, because $t - t^{-1} = t^{-1}(t-1)(t+1)$. For the Alexander polynomial $A(t)$ of $M(\alpha, \iota)$, $A'(t)$ equals to $A(t)$ up to units of $Q[t]$: $A'(t) = A(t)$. (See [7, Lemma 2.6].) Since $A(\pm 1) \neq 0$, the result follows.

ratic form $((,), t)$ is null-cobordant. This completes the proof.

Lemma 2.13. *There is a homomorphism $\psi: \Omega(S^1 \times S^2) \rightarrow G_-$.*

Proof. Let $m \in \mathbb{C}_+(S^1 \times S^2)$ and A a Seifert matrix for m . We define $\psi[m] = [A]$. To prove the well-definedness, first we shall show that if $m \sim 0$, then A is null-cobordant. By Lemma 2.11, A is S -equivalent to a non-singular Seifert matrix A_* such that t represents $A_*'^{-1}A_*$ and the form $((,), t)$ represents $A_* + A'_*$. Since by Thoerem 2.13 the quadratic form $((,), t)$ is null-cobordant, there exists a *symplectic* basis $e_1, e_2, \dots, e_s, e_1^*, e_2^*, \dots, e_s^*$ of $H^1(\tilde{M}(\alpha, \iota); Q)$: $(e_i, e_j) = (e_i^*, e_j^*) = 0$, $(e_i, e_j^*) = \delta_{ij}$ such that the vector subspace V spanned by e_1, e_2, \dots, e_s is invariant under t . (See for example Milnor-Husemoller [12, p 13].) Then there is a non-singular *rational* matrix P such that the matrix $P^{-1}A_*'^{-1}A_*P$ is of the form $\begin{pmatrix} Q & R \\ O & S \end{pmatrix}$ (, since $tV = V$), where Q, R, S are rational square matrices of the same size, and such that $P'(A_* + A'_*)P = \begin{pmatrix} O & I \\ I & O \end{pmatrix}$, $I = \begin{pmatrix} O & 1 \\ \ddots & O \end{pmatrix}$.

Using the equality $P'A_*P = [P'(A_* + A'_*)P(E + P^{-1}A_*'^{-1}A_*P)^{-1}]'$ (E is the unit matrix.), it is not difficult to see that the matrix $P'A_*P$ is of the form $\begin{pmatrix} O & B \\ C & D \end{pmatrix}$. (B, C, D are rational square matrices of the same size.) [Note that $\det(E + P^{-1}A_*'^{-1}A_*P) \neq 0$, since the Alexander polynomial $A(t)$ satisfies $A(-1) \neq 0$.] Then by Levine [9, Lemma 8] A_* is null-cobordant. Since A is S -equivalent to A_* , it follows that A is cobordant to A_* . Hence A is null-cobordant. Let $m_1, m_2 \in \mathbb{C}_+(S^1 \times S^2)$. Notice that if A_1, A_2 are Seifert matrices for m_1, m_2 , respectively, then the block sum $A_1 \oplus A_2$ is a Seifert matirx for a circle union $m_1 \bigcirc m_2$. [To see this, let $M_i(\alpha_i, \iota_i) \in m$, $i = 1, 2$, and consider homological knots $k_i \subset \tilde{S}_i^3$ obtained from $M(\alpha_i, \iota_i)$, $i = 1, 2$. Then one can verify that the homological knot sum $(k_1 \subset \tilde{S}_1^3) \# (k_2 \subset \tilde{S}_2^3)$, defined to be analogous to the usual knot sum, is a homological knot obtained from some circle union $M_1(\alpha_1, \iota_1) \bigcirc M_2(\alpha_2, \iota_2)$. Now the desired result easily follows.] If $m_1 \sim m_2$, then $m_1 \bigcirc -m_2 \sim 0$. Hence the block sum $A_1 \oplus -A_2$ is null-cobordant, since $A_1 \oplus -A_2$ is a Seifert matrix for $m_1 \bigcirc -m_2$. Thus, $[m_1] = [m_2]$ implies $[A_1] = [A_2]$; that is, $\psi[m] = [A]$ is well-defined. Further, ψ is a homomorphism, since for any $m_1, m_2 \in \mathbb{C}_+(S^1 \times S^2)$

$$\begin{aligned} \psi([m_1] + [m_2]) &= \psi[m_1 \bigcirc m_2] \\ &= [A_1 \oplus A_2] \\ &= [A_1] + [A_2] \\ &= \psi[m_1] + \psi[m_2]. \end{aligned}$$

This completes the proof.

2.14. Proof of Theorem 2.1. Levine [9] defined the homomorphism $\phi: C^1 \rightarrow G_-$ sending any knot cobordism class to the matrix cobordism class of the corresponding Seifert matrices. By Lemma 2.4, the homomorphism $e: C^1 \rightarrow \Omega(S^1 \times S^2)$ is obtained and by Lemma 2.13, the homomorphism $\psi: \Omega(S^1 \times S^2) \rightarrow G_-$ is obtained. From construction, we have $\psi e = \phi$. Since ϕ is onto (See for example Levine [9].), ψ is onto. This proves Theorem 2.1.

Here are four corollaries to Theorem 2.1.

Corollary 2.15. *The \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ has the free part of infinite rank.*

This follows from the facts that G_- has the free part of infinite rank and that the homomorphism ψ is onto.

The reduced Alexander polynomial $\tilde{A}(t)$ of a type $m \in \mathbb{C}_+(S^1 \times S^2)$ is the integral polynomial obtained from the Alexander polynomial $A(t)$ of m by cancelling the factors of the type $f(t)f(t^{-1})$.

Corollary 2.16. *If $m \sim 0$, then the Alexander polynomial $A(t)$ splits as follows: $A(t) = f(t)f(t^{-1})$ for some integral polynomial $f(t)$ and the signature $\sigma(m)$ is 0. More generally, if $m_1 \sim m_2$, then the reduced Alexander polynomials $\tilde{A}_1(t), \tilde{A}_2(t)$ are the same polynomial (up to $\pm t^i$): $\tilde{A}_1(t) = \tilde{A}_2(t)$ and the signatures $\sigma(m_1), \sigma(m_2)$ are equal: $\sigma(m_1) = \sigma(m_2)$.*

Corollary 2.17. *For any $[\ell] \in C^1$, the equalities $\sigma[\ell] = \sigma([e(\ell)])$ and $\tilde{A}_{[\ell]}(t) = \tilde{A}_{[e(\ell)]}(t)$ hold.*

Corollary 2.18. *For any $m \in \mathbb{C}_+(S^1 \times S^2)$, the signature $\sigma(m)$ is even. For any integer i , there exists $m \in \mathbb{C}_+(S^1 \times S^2)$ with $\sigma(m) = 2i$.*

2.19. Addendum. Re-examination of the Seifert matrices. Let $m \in \mathbb{C}_+(S^1 \times S^2)$ and $M(\alpha, \iota) \in m$. A Seifert matrix for $M(\alpha, \iota)$ (or m) may be also defined as follows: Let $f: M(\alpha, \iota) \rightarrow S^1$ be a piecewise-linear map with $f_*: H_1(M(\alpha, \iota); \mathbb{Z}) \approx H_1(S^1; \mathbb{Z})$ and such that for some point $0 \in S^1$, $F = f^{-1}(0)$ is a closed orientable connected surface (See Kawauchi [6, Corollary 1.3].). Using that $[F] \in H_2(M(\alpha, \iota); \mathbb{Z})$ is a generator, we may orient F so that $[F] = \varphi \cap \iota$, where $\varphi \in H^1(M(\alpha, \iota); \mathbb{Z})$ is a dual element of $\alpha \in H_1(M(\alpha, \iota); \mathbb{Z})$. Let M^* be the oriented manifold (with orientation induced by that of $M(\alpha, \iota)$) obtained from $M(\alpha, \iota)$ by splitting along F . Let $\partial M^* = F \cup F'$. Here the component of ∂M^* with orientation coinciding with that of F is identified with F . F' denotes the copy of F but with the opposite orientation. Let $i': F \rightarrow F' \subset \partial M^* \subset M^*$ be the natural injection. If $a \in H_1(F; \mathbb{Z})$, let $a' \in H_2(M(\alpha, \iota), M(\alpha, \iota) - F; \mathbb{Z})$ be the image of a under the composite

$$H_1(F; Z) \xrightarrow{i'_*} H_1(M^*; Z) \xrightarrow{\approx} H_1(M(\alpha, \iota) - F; Z) \xrightarrow{\approx} H_2(M(\alpha, \iota), M(\alpha, \iota)F; Z).$$

By using a duality $\gamma_U: H_2(M(\alpha, \iota), M(\alpha, \iota) - F; Z) \approx H^1(F; Z)$, relating a slant product, where U is the Thom class of $M(\alpha, \iota)$ corresponding to the fundamental class ι , define a pairing

$$\theta': H_1(F; Z) \otimes H_1(F; Z) \rightarrow Z$$

by the equality $\theta'(a \otimes b) = \gamma_U(a') \cap b \in H_0(F; Z) = Z$.

It is checked that with a basis for $H_1(F; Z)$ θ' represents a Seifert matrix for $M(\alpha, \iota)$. The formula $\theta'(a \otimes b) - \theta'(b \otimes a) = a \cdot b$ is also obtained.

3. Elements of $\Omega(S^1 \times S^2)$ of order zero and two and the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^3)$ of homology non-orientable handles

A general problem of bringing about a better understanding of \tilde{H} -cobordism between the types of distinguished homology orientable handles seems still difficult, but a partial answer is presented here.

Theorem 3.1. *If a representative homology orientable handle $M(\alpha, \iota)$ of a type $m \in \mathfrak{C}_+(S^1 \times S^2)$ is embeddable in a homology 4-sphere \bar{S}^4 , then $m \sim 0$.*

Proof. Assume $M(\alpha, \iota) \subset \bar{S}^4$. Then $M(\alpha, \iota)$ separates \bar{S}^4 into two manifolds, say, W_1, W_2 and, by easy computation of the homology, one of W_1, W_2 has the homology of a circle, say, $H_*(W_1; Z) \approx H_*(S^1; Z)$. Then the triad $(W_1, M(\alpha, \iota), \phi)$ gives an \tilde{H} -cobordism. This completes the proof of Theorem 3.1.

Here are a few examples, whose somewhat analogous properties were also noticed by Kato [5, Theorems 5.1 and 5.5] in higher dimensions.

EXAMPLES 3.2. First we consider a (suitably oriented) trefoil 3_1 . (See figure 5.)

figure 5.

Using that $\sigma(e(3_1)) = \sigma(3_1) = \pm 2 \neq 0$ or that $A(t) = t^2 - t + 1$ is irreducible, $e(3_1) \not\propto 0$. Hence by Theorem 3.1, $e(3_1)$ is not embeddable to the 4-sphere S^4 . Note that $e(3_1)$ is locally-flatly embeddable to the 5-sphere S^5 , since according to Hirsch [4] every compact orientable 3-manifold is locally-flatly embeddable to S^5 .

On the other hand, consider the stevedore's knot 6_1 . (See figure 6.)

figure 6.

Since this knot is a slice knot, by Corollary 2.5, $e(6_1)$ is embeddable to S^4 .

Similar arguments also apply for the granny knot $3_1 \# 3_1$ and the square knot $3_1 \# -3_1^*$. (See figure 7.)

figure 7.

In fact, $e(3_1 \# 3_1)$ is not embeddable to S^4 , although $e(3_1 \# -3_1^*)$ is embeddable to S^4 , since $\sigma(e(3_1 \# 3_1)) = 2\sigma(3_1) = \pm 4 \neq 0$ and $3_1 \# -3_1^*$ is a slice knot.

Next we would like to discuss order-two-elements of $\Omega(S^1 \times S^2)$. To do

this, we shall introduce the \tilde{H} -cobordism group of homology non-orientable handles.

A homology non-orientable handle M is a compact 3-manifold having the homology of the non-orientable handle $S^1 \times_{\tau} S^2$: $H_*(M; Z) \approx H_*(S^1 \times_{\tau} S^2; Z)$, and is said to be *distinguished* if a generator $\alpha \in H_1(M; Z)$ is specified. If a homology non-orientable handle M is distinguished, then the notation $M(\alpha)$ will be used. Two distinguished homology non-orientable handles $M_1(\alpha_1)$, $M_2(\alpha_2)$ have the same type if there is a piecewise-linear homeomorphism $h: M_1(\alpha_1) \rightarrow M_2(\alpha_2)$ such that $h_*(\alpha_1) = \alpha_2$. The type of $M(\alpha)$ is the class of distinguished homology non-orientable handles with the same type as $M(\alpha)$. The set of the types is denoted by $\mathfrak{C}_+(S^1 \times_{\tau} S^2)$.

In $\mathfrak{C}_+(S^1 \times_{\tau} S^2)$ an \tilde{H} -cobordism relation is defined as an analogy of Definition 1.1.

DEFINITION 3.3. Two types m_1 , m_2 in $\mathfrak{C}_+(S^1 \times_{\tau} S^2)$ are *\tilde{H} -cobordant* and denoted by $m_1 \sim m_2$ if for $M_1(\alpha_1) \in m_1$, $M_2(\alpha_2) \in m_2$ there exists a pair (W, φ) , where W is a compact connected 4-manifold with $\partial W = M_1(\alpha_1) + M_2(\alpha_2)$ (disjoint union) and $\varphi \in H^1(W; Z)$ whose restrictions $\varphi|_{M_i(\alpha_i)} \in H^1(M_i(\alpha_i); Z)$ are dual to α_i , $i=1, 2$, such that the infinite cyclic cover \tilde{W}_φ associated with φ is orientable and has a finitely generated rational homology group $H_*(\tilde{W}_\varphi; Q)$. [Note that any infinite cyclic cover $\tilde{M}(\alpha)$ is always orientable (See Kawauchi [7].).]

Let m_0 , $m_1 \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ and $M_0(\alpha_0) \in m_0$, $M_1(\alpha_1) \in m_1$. Choose polygonal oriented simple closed curves $\omega_0 \subset M_0(\alpha_0)$, $\omega_1 \subset M_1(\alpha_1)$ which represent α_0 , α_1 , respectively. It is not difficult to see that the regular neighborhoods $T(\omega_0) \subset M_0(\alpha_0)$ and $T(\omega_1) \subset M_1(\alpha_1)$ of ω_0 and ω_1 are both piecewise-linearly homeomorphic to the solid Klein bottle $S^1 \times_{\tau} B^2$. Note that there exists closed connected *orientable* surfaces $F_0 \subset M_0(\alpha_0)$, $F_1 \subset M_1(\alpha_1)$ transversally intersecting ω_0 , ω_1 , in single points, respectively.

Consider two piecewise-linear embeddings

$$\begin{aligned} h_0: S^1 \times_{\tau} B^2 \times 0 &\rightarrow M_0(\alpha_0) \\ h_1: S^1 \times_{\tau} B^2 \times 1 &\rightarrow M_1(\alpha_1) \end{aligned}$$

such that there exist points $s \in S^1$, $b \in \text{Int } B^2$ with $h_0(S^1 \times_{\tau} b \times 0) = \omega_0$, $h_0(s \times_{\tau} B^2 \times 0) \subset F_0$, $h_1(S^1 \times_{\tau} b \times 1) = \omega_1$ and $h_1(s \times_{\tau} B^2 \times 1) \subset F_1$ and such that ω_0 and ω_1 are homologous in the adjunction space $M_0(\alpha_0) \cup_{h_0} S^1 \times_{\tau} B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1)$.

As an analogy of Definition 1.4, we may have Definition 3.4.

DEFINITION 3.4. The homology non-orientable handle

$$M_0(\alpha_0) \circ M_1(\alpha_1) = M_0(\alpha_0) \cup_{h_0} S^1 \times_{\tau} B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1) - S^1 \times_{\tau} \text{Int } B^2 \times [0, 1]$$

distinguished naturally is called a *circle union* of $M_0(\alpha_0)$ and $M_1(\alpha_1)$. The type of $M_0(\alpha_0) \bigcirc M_1(\alpha_1)$ is denoted by $m_0 \bigcirc m_1$.

It is not difficult to check that for two circle unions $m_0 \bigcirc m_1$, $m_0 \bigcirc' m_1$, $m_0 \bigcirc m_1 \sim m_0 \bigcirc' m_1$. Further, we can prove that $m_0 \sim m_1$ if and only if $m_0 \bigcirc m_1 \sim 0$ as an analogy of Lemma 1.7, where 0 is the type of $S^1 \times_{\tau} S^2$. [Note that $S^1 \times_{\tau} S^2(\alpha)$ has the same type as $S^1 \times_{\tau} S^2(-\alpha)$.] As a result, the set $\Omega(S^1 \times_{\tau} S^2) = \mathfrak{C}_+(S^1 \times_{\tau} S^2)/\sim$ forms an abelian group under the sum $[m_0] + [m_1] = [m_0 \bigcirc m_1]$, called the \tilde{H} -cobordism group of homology non-orientable handles. Every non-zero element of $\Omega(S^1 \times_{\tau} S^2)$ has order 2, since $m \sim m$ implies $m \bigcirc m \sim 1$. The zero element of $\Omega(S^1 \times_{\tau} S^2)$ is the \tilde{H} -cobordism class containing the type 0 of $S^1 \times_{\tau} S^2$.

Theorem 3.5. $\Omega(S^1 \times_{\tau} S^2)$ is the direct sum of infinite copies of the cyclic group of order 2.

To prove Theorem 3.5, the Alexander polynomial seems to be usefull.

The Alexander polynomial $A(t)$ of $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ is the integral polynomial which is a generator of the smallest principal ideal containing the ideal associated with a relation matrix of $H_1(\tilde{M}(\alpha); Z)$ as a $Z[t]$ -module (See Kawauchi [7] for details.). Here, $\tilde{M}(\alpha)$ denotes the infinite cyclic cover of $M(\alpha) \in m$ and t denotes a generator of the covering transformation group of $\tilde{M}(\alpha)$, related to the generator $\alpha \in H_1(M(\alpha); Z)$. $A(t)$ is the complete invariant of $M(\alpha)$ or the type m up to units $\pm t^s \in Z(t)$. $A(t)$ satisfies the properties that $A(t) \doteq A(-t^{-1})$ and $A|(1)| = 1$; and, conversely, any integral polynomial with these properties is the Alexander polynomial of some $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$. (See [7].) For characteristic polynomial $A'(t)$ of the linear isomorphism $t: H_1(\tilde{M}(\alpha); Q) \rightarrow H_1(\tilde{M}(\alpha); Q)$ we have $A(t) \doteq A'(t)$, that is, $A(t)$, $A'(t)$ are equal up to units $qt^s \in Q[t]$.

The following is an analogous result to Corollary 2.16.

Lemma 3.6. Let $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$. If $m \sim 0$, then the Alexander polynomial $A(t)$ of m has a type of $f(t)f(-t^{-1})$ for some integral polynomial $f(t)$.

Before showing Lemma 3.6 we shall show Theorem 3.5.

3.7. Proof of Theorem 3.5. Consider for example the irreducible integral polynomials $A_n(t) = nt^2 + t - n$, $n = 1, 2, 3, \dots$. These $A_n(t)$ are realized as the Alexander polynomials of some $m_n \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$, $n = 1, 2, 3, \dots$. Then it is easy to see that m_1, m_2, m_3, \dots represent a set of linearly independent elements of $\Omega(S^1 \times_{\tau} S^2)$. [Notice that if $A_1(t)$, $A_2(t)$ are the Alexander polynomials of m_1 , m_2 , respectively, then the product $A_1(t)A_2(t)$ is the Alxeander polynomial of any circle union $m \bigcirc m_2$.] This completes the proof.

3.8. Proof of Lemma 3.6. Since $m \sim 0$, for $M(\alpha) \in m$ there exists a pair (W, φ) , where W is a compact connected 4-manifold with $\partial W = M(\alpha)$ and $\varphi \in H^1(W; \mathbb{Z})$ with $\varphi|_M \in H^1(M(\alpha); \mathbb{Z})$ dual to α , such that the infinite cyclic cover \tilde{W}_φ is orientable and has a finitely generated rational homology group $H_*(\tilde{W}_\varphi; \mathbb{Q})$. Then from the exact sequence $H^1(\tilde{W}_\varphi; \mathbb{Q}) \xrightarrow{i^*} H^1(\tilde{M}(\alpha); \mathbb{Q}) \xrightarrow{\delta} H^2(\tilde{W}_\varphi, \tilde{M}(\alpha); \mathbb{Q})$ we obtain the short exact sequence $0 \rightarrow \text{Im } i^* \rightarrow H^1(\tilde{M}(\alpha); \mathbb{Q}) \rightarrow \text{Im } \delta \rightarrow 0$. Then we have $A(t) \doteq B(t)C(t)$, where $B(t)$, $C(t)$ are the characteristic polynomials of $t: \text{Im } i^* \rightarrow \text{Im } i^*$, $t: \text{Im } \delta \rightarrow \text{Im } \delta$, respectively. Since the square

$$\begin{array}{ccc} H^1(\tilde{M}(\alpha); \mathbb{Q}) & \xrightarrow{\delta} & H^2(\tilde{W}_\varphi, \tilde{M}(\alpha); \mathbb{Q}) \\ \approx \downarrow \cap \mu & & \approx \downarrow \cap \bar{\mu} \\ H_1(\tilde{M}(\alpha); \mathbb{Q}) & \xrightarrow{i_*} & H_1(\tilde{W}_\varphi; \mathbb{Q}) \end{array}$$

is commutative, we obtain the Poincaré dual isomorphism $\cap \bar{\mu}: \text{Im } \delta \approx \text{Im } i_*$, where $\mu \in H_2(\tilde{M}(\alpha); \mathbb{Z})$ and $\bar{\mu} \in H_3(\tilde{W}_\varphi, \tilde{M}(\alpha); \mathbb{Z})$ are the finite fundamental classes such that $\bar{\mu}$ is mapped to μ by the boundary isomorphism $\partial: H_3(\tilde{W}_\varphi, \tilde{M}(\alpha); \mathbb{Z}) \approx H_2(\tilde{M}(\alpha); \mathbb{Z})$ ($\approx \mathbb{Z}$). (See Kawauchi [6, Theorem 2.3].) Notice that $t\bar{\mu} = -\bar{\mu}$. Using the identity $\text{Im } i^* = \text{Hom}(\text{Im } i_*, \mathbb{Q})$ and the equality $(tu) \cap \bar{\mu} = -t^{-1}(u \cap \bar{\mu})$, the Poincaré dual isomorphism $\cap \bar{\mu}: \text{Im } \delta \approx \text{Im } i_*$ gives the equality $C(-t^{-1}) \doteq B(t)$. This proves Lemma 3.6.

Lemma 3.9. *This is a well-defined function*

$$\tau: \mathfrak{C}_+(S^1 \times {}_\tau S^2) \rightarrow \mathfrak{C}_+(S^1 \times S^2)$$

induced by the 2-fold orientation covering.

Proof. Let $m \ni \mathfrak{C}_+(S^1 \times {}_\tau S^2)$ and $M(\alpha) \in m$. Consider the infinite cyclic covering $p: \tilde{M}(\alpha) \rightarrow M(\alpha)$ associated with the Hurewicz homomorphism. Let t be the generator of the covering transformation group of $\tilde{M}(\alpha)$ related to α . The 2-fold covering $\tau': M' \rightarrow M(\alpha)$ from the orbits space $M' = \tilde{M}(\alpha)/t^2$ to $M(\alpha)$ induced by the projection $p: \tilde{M}(\alpha) \rightarrow M(\alpha)$ is the 2-fold orientation covering, since $\tilde{M}(\alpha)$ is orientable.

We must prove that M' is a homology orientable handle. Let $p': \tilde{M}(\alpha) \rightarrow M'$ be the natural projection. The short exact sequence $0 \rightarrow C_*(\tilde{M}(\alpha)) \xrightarrow{t^2-1} C_*(\tilde{M}(\alpha)) \xrightarrow{p'} C_*(M') \rightarrow 0$ of simplicial chain $\mathbb{Z}[t^2]$ -modules induces the following exact sequence

$$H_1(\tilde{M}(\alpha); Z) \xrightarrow{p'_*} H_1(M'; Z) \rightarrow H_0(\tilde{M}(\alpha); Z) \rightarrow 0$$

$$\qquad\qquad\qquad \parallel$$

$$\qquad\qquad\qquad Z$$

of $Z[t^2]$ -modules, where $H_1(M'; Z)$ and $H_0(\tilde{M}(\alpha); Z)$ are regarded as trivial $Z[t^2]$ -modules. Let $\varepsilon: Z[t^2] \rightarrow Z$ be the augmentation homomorphism such that $\varepsilon(t^2)=1$. By taking a tensor product, we obtain an exact sequence

$$H_1(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z \xrightarrow{p'_* \otimes 1} H_1(M'; Z) \otimes_{\varepsilon} Z \rightarrow H_0(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z \rightarrow 0.$$

$$\qquad\qquad\qquad \parallel$$

$$\qquad\qquad\qquad H_1(M'; Z) \qquad\qquad\qquad Z \qquad\qquad\qquad \parallel$$

Sublemma 3.9.1. $H_1(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z = 0$.

By assuming this sublemma, we obtain that $H_1(M'; Z) \approx Z$. By the Poincaré duality, M' is a homology orientable handle. Let $\alpha' \in H_1(M'; Z)$ be a generator determined by α under the 2-fold orientation covering $\tau: M' \rightarrow M(\alpha)$. Let $\iota \in H_3(M'; Z)$ be any generator. The distinguished homology orientable handles $M'(\alpha', \iota)$, $M'(\alpha', -\iota)$ have the same type, because t of $\tilde{M}(\alpha)$ induces a homeomorphism $t': M' \rightarrow M'$ with $t'_*(\alpha') = \alpha'$ and $t'_*(\iota) = -\iota$. This type is denoted by $\tau(m)$. Thus the function $\tau: \mathfrak{C}_+(S^1 \times_{\tau} S^2) \rightarrow \mathfrak{C}_+(S^1 \times S^2)$ is obtained. This completes the proof.

3.10. Proof of Sublemma 3.9.1. Note that there exists a presentation square matrix $S(t)$ of $H_1(\tilde{M}(\alpha); Z)$ as a $Z[t]$ -module *i.e.* $Z[t]^{2g} \xrightarrow{S(t)} Z[t]^{2g} \rightarrow H_1(\tilde{M}(\alpha); Z) \rightarrow 0$ is exact for some integer $g \geq 0$. [To see this, let $F \subset M(\alpha)$ be a closed orientable connected 2-sided surface in $M(\alpha)$ intersecting a simple closed curve representing α in a single point, and M^* be the manifold obtained from $M(\alpha)$ by splitting along F . Since M^* is orientable, we have an isomorphism $H_1(M^*; Z) \approx H_1(F; Z)$. Let $i_1, i_2: F \rightarrow F_1 \cup F_2 = \partial M^* \subset M^*$ be two natural identifications. With suitable bases of $H_1(F; Z)$, $H_1(M^*; Z)$, $i_{1*}, i_{2*}: H_1(F; Z) \rightarrow H_1(M^*; Z)$ represent square integral matrices S_1, S_2 , respectively. By applying the Mayer-Vietoris sequence, we obtain an exact sequence

$$H_1(F; Z) \otimes Z[t] \xrightarrow{i_*} H_1(M^*; Z) \otimes Z[t] \rightarrow H_1(\tilde{M}(\alpha); Z) \rightarrow 0,$$

where $i_*(x) = t i_{1*}(x) - i_{2*}(x)$. Thus, we can obtain an exact sequence

$$Z[t]^{2g} \xrightarrow{S(t)} Z[t]^{2g} \rightarrow H_1(\tilde{M}(\alpha); Z) \rightarrow 0,$$

where $S(t) = tS_1 - S_2$.] By taking a tensor product, we obtain an exact sequence

$$Z[t]^{2g} \otimes_{\varepsilon} Z \xrightarrow{S^{\varepsilon}(t)} Z[t]^{2g} \otimes_{\varepsilon} Z \rightarrow H_1(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z \rightarrow 0.$$

$$\qquad\qquad\qquad \parallel$$

$$\qquad\qquad\qquad [Z[t]/(t^2-1)]^{2g} \qquad\qquad\qquad [Z[t]/(t^2-1)]^{2g}$$

We shall show that $A^\varepsilon(t) = \det S^\varepsilon(t)$ is a unit in the quotient ring $Z[t]/(t^2 - 1)$. Note that $A(t) = \det S(t)$ is the Alexander polynomial of $M(\alpha)$. So, $A(t)$ satisfies $A(t) \doteq A(-t^{-1})$ and $|A(1)| = 1$. We can write $t^{-s}A(t) = \sum_{i=-s}^s a_i t^i$, $a_i = (-1)^i a_{-i}$ ($s > 0$). Then $t^{\eta(s)} A^\varepsilon(t) = A^\varepsilon(1)$ and $A^\varepsilon(t) = t^{\eta(s)} A^\varepsilon(1)$ is a unit in $Z[t]/(t^2 - 1)$, where $\eta(s) = 0$ if s is even, 1 if s is odd. This implies that the homomorphism $S^\varepsilon(t): Z[t]^{2g} \otimes_{\mathbb{Z}} Z \rightarrow Z[t]^{2g} \otimes_{\mathbb{Z}} Z$ is an isomorphism. Therefore $H_1(\tilde{M}(\alpha); Z) \otimes_{\mathbb{Z}} Z = 0$. This proves Sublemma 3.9.1.

Lemma 3.11. *The function $\tau: \mathfrak{C}_+(S^1 \times_{\tau} S^2) \rightarrow \mathfrak{C}_+(S^1 \times S^2)$ carries the Alexander polynomial $A(t)$ of any $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ to the Alexander polynomial $A^\tau(t)$ of $\tau(m) \in \mathfrak{C}_+(S^1 \times S^2)$ such that $A^\tau(t^2) \doteq A(t)A(-t)$.*

Proof. Let $M(\alpha) \in m$. With a basis for $H_1(\tilde{M}(\alpha); Q)$, $t: H_1(\tilde{M}(\alpha); Q) \rightarrow H_1(\tilde{M}(\alpha); Q)$ represents a matrix B . Then $A(t) \doteq \det(tE - B)$. For the linear isomorphism $t' = t^2: H_1(\tilde{M}(\alpha); Q) \rightarrow H_1(\tilde{M}(\alpha); Q)$ representing B^2 , we have $A^\tau(t') \doteq \det(t'E - B^2)$. Hence,

$$\begin{aligned} A^\tau(t^2) &\doteq \det(t^2E - B^2) \\ &\doteq \det(tE - B) \det(tE + B) \\ &\doteq A(t)A(-t). \end{aligned}$$

This completes the proof.

The reduced Alexander polynomial $\tilde{A}(t)$ of $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ is the integral polynomial obtained from the Alexander polynomial $A(t)$ of m by cancelling the factors of the type $f(t)f(-t^{-1})$.

Theorem 3.12. *The function $\tau: \mathfrak{C}_+(S^1 \times_{\tau} S^2) \rightarrow \mathfrak{C}_+(S^1 \times S^2)$ induces a homomorphism $\tau^*: \Omega(S^1 \times_{\tau} S^2) \rightarrow T_2 \subset \Omega(S^1 \times S^2)$ carrying the reduced Alexander polynomial $\tilde{A}(t)$ to the reduced Alexander polynomial $\tilde{A}^\tau(t)$ such that $\tilde{A}^\tau(t^2) \doteq \tilde{A}(t)\tilde{A}(-t)$, where T_2 is the subgroup of $\Omega(S^1 \times S^2)$ consisting of elements of order 2.*

Proof. For $m_1, m_2 \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$, the equality $\tau(m_1 \odot m_2) = \tau(m_1) \odot \tau(m_2)$ is easily obtained. For $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$, assume $m \sim 0$. Then for $M(\alpha) \in m$ there exists an \tilde{H} -cobordism $(W, M(\alpha), S^1 \times_{\tau} S^2)$. The 2-fold orientation cover $(W', M', S^1 \times S^2)$ of $(W, M(\alpha), S^1 \times_{\tau} S^2)$ gives an \tilde{H} -cobordism. So, $\tau(m) \sim 0$. Therefore τ^* is a homomorphism to T_2 . The remainder follows from Corollary 2.16 and Lemmas 3.6 and 3.11. This completes the proof.

Corollary 3.13. *T_2 is infinitely generated.*

Proof. Consider for example $m_n \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ with Alexander polynomial $A_n(t) = nt^2 + t - n$, $n = 1, 2, 3, \dots$, as in 3.7. Then the Alexander polynomial of the 2-fold orientation cover $\tau(m_n)$ is $A_n(t) = n^2 t^2 - (2n^2 + 1)t + n^2$. Since for

$n=1, 2, 3, \dots$ these Alexander polynomials $A_n(t)$ are irreducible and mutually distinct, the set $\{\tau(m_1), \tau(m_2), \tau(m_3), \dots\}$ gives a linearly independent subset of T_2 , which completes the proof.

One may ask whether the subgroup T'_2 of order-2-elements of the Fox-Milnor's knot cobordism group C^1 is infinitely generated.

As a matter of fact, T'_2 is also infinitely generated, although it seems to be difficult to set up a general argument.

Claim. T'_2 is infinitely generated.

In fact, consider the knot $k_n \subset S^3$ with the numbers of crossings $2n, 2n, \dots$ illustrated in figure 8". In the case $n=1$, this knot k_1 is called the figure eight knot: $k_1=4_1$ (See figure 8¹.).

This question seems closely related to a question due to Fox and Milnor: Is an element of order 2 of C^1 necessarily determined by a -amphicheiral knot?

One may also ask whether τ^* is injective, although the author expects a negative answer.

The following conjecture seems to be justified by Lemma 3.11.

Conjecture. *The Alexander polynomial $A(t)$ of a -amphicheiral knot necessarily satisfies $A(t^2) \doteq f(t)f(-t)$ for some integral polynomial $f(t)$ with $f(t) \doteq f(-t^{-1})$.*

One can easily checked that any -amphicheiral knot in the Alexander and Briggs knot table satisfies this assertion.

For example, the Alexander polynomial of the knot 8_{12} which is known to be -amphicheiral is $A(t) = t^4 - 7t^3 + 13t^2 - 7t + 1$. Then,

$$A(t^2) = (t^4 + t^3 - 3t^2 - t + 1)(t^4 - t^3 - 3t^2 + t + 1).$$

OSAKA CITY UNIVERSITY

References

- [1] D. Erle: *Die quadratische Form eines Knotens und ein Satz über Knotenmanigfaltigkeiten*, J. Reine Angew. Math. **236** (1969), 174–218.
- [2] R.H. Fox: *A quick trip through knot theory*, Topology of 3-Manifolds and Related Topics, M.K. Fort, Jr., Prentice-Hall 1962.
- [3] ——— and J.W. Milnor: *Singularities of 2-spheres in 4-space and cobordism of knots*, Osaka J. Math. **3** (1966), 257–267.
- [4] M.W. Hirsch: *The imbedding of bounding manifolds in Euclidean space*, Ann. of Math. **74** (1961), 494–497.
- [5] M. Kato: *Higher dimensional PL knots and knot manifolds*, J. Math. Soc. Japan **21** (1969), 458–480.
- [6] A. Kawauchi: *A partial Poincaré duality theorem for infinite cyclic coverings*, Quart. J. Math. **26** (1975), 437–458.
- [7] ———: *Three dimensional homology handles and circles*, Osaka J. Math. **12** (1975), 565–581.
- [8] J. Levine: *Polynomial invariants of knots of codimension two*, Ann. of Math. **84** (1966), 537–554.
- [9] ———: *Knot cobordism groups in codimension two*, Comment. Math. Helv. **44** (1969), 229–244.
- [10] ———: *Invariants of knot cobordism*, Invent. math. **8** (1969), 98–110.
- [11] J.W. Milnor: *Infinite cyclic coverings*, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston Mass. 1968.
- [12] ——— and D. Husemoller: *Symmetric Bilinear Forms*, Springer, 1973.
- [13] H.F. Trotter: *On S -equivalences of Seifert matrices*, Invent. math. **20** (1973) 173–207.