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H-COBORDISM, I; THE GROUPS AMONG THREE
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Axio KAWAUCHI

(Received September 25, 1975)

This paper will introduce a concept of a cobordism theory, called H-co-
bordism, between 3-dimensional homology handles. The set of the types of
distinguished homology orientable handles modulo H-cobordism relation will
form an abelian group Q(S'xS?), called the H-cobordism group of homology
orientable handles. As a basic property of the H-cobordism group Q(S'x S?)
the following commutative triangle will be established:

o L, Q(S'XSY)

N, A

Here, C* is the Fox-Milnor’s 1-knot cobordism group (See Fox-Milnor [3].),
G_ is the Levine’s integral matrix cobordism group (See Levine [9].), e is a
homomorphism and ¢, + are epimorphisms. In particular the H-cobordism
group Q(S*x S?) will have an infinite rank. Analogously the H-cobordism group
Q(S* % . S?) of homology non-orientable handles will be also constructed. We shall
show that the H-cobordism group Q(S*X,.S?) is isomorphic to the direct sum
of infinitely many copies of the cyclic group of order two. Furthermore, it will
be shown that the assignment 7: m—m’ of the type m of any distinguished
homology non-orientable handle to the type m’ of its 2-fold orientation-cover
(which is a distinguished homology orientable handle) induces a well-defined
homomorphism 7*: Q(S* X, S*)—T,cQ(S* X S?) from Q(S’X,S?) to the sub-
group T, of Q(S* X S?) consisting of elements of order two. As one consequ-
ence T, will be infinitely generated.

Section 1 will construct the H-cobordism group Q(S'x S?) of homology
orientable handles. In Section 2 we will discuss the properties of the invariants
of Q(S* % S?) and compare Q(S* X S?) with Fox-Milnor’s 1-knot cobordism group
C* and with the Levine’s integral matrix cobordism group G_. Section 3 will
concern the zero element and the order-two-elements of the H-cobordism group
Q(S*x 8?). It will be shown that the type m of a distinguished homology orientable
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handle M(a, ¢) represents the zero element of Q(S'xS?) (that is, m is null-H-
cobordant) if M(a, ¢) is embeddable to a homology 4-sphere. 'To consider the
order-two-elements of Q(S*X.S?), we will introduce the H-cobordism group
Q(S*x .S?) of homology non-orientable handles and determine its group struc-
ture and discuss the homomorphism 7*: Q(S*x ,S*) — T,CQ(S* X S?) in this
section.

Throughout this paper, spaces and maps will be considered from the piece-
wise linear point of view.

1. A construction of the H-cobordism group Q(S'x S?)

A 3-dimensional homology orientable handle M is a compact 3-manifold
having the integral homology group of the orientable handle S*x .S*: Hy(M; Z)
~H(S'xS?; Z). A homology orientable handle M is said to be distinguished
if generators o H,(M; Z)(~Z) and :€ H(M; Z)(~Z) are specified. In that
case the notation M(«, ¢) will be used. Two distinguished homology orientable
handles M(e, ¢), M'(a/, ) are said to have the same type if there is a piecewise-
linear homeomorphism &: M(ct, ¢) =M’(a’, ') which induces an isomorphism
hy: Hy(M(at, ¢); Z)=Hy(M'(/, ('); Z) with hy(a)=a’ and hy(c)=¢. The class
of distinguished homology orientable handles having the same type as M(«, ¢) is
called the type of M(ct,¢). The set of all types is denoted by €,(S*x.S?). Let
m be a type of M(«a, ¢). By —m we denote the type of M(a, —¢). It is
easily checked that the four distinguished handles S*x S*(a, ¢), S*XS*a, —¢),
S*x 8 (—a, —¢) and S*XS*(—a, ¢) of the orientable handle S*x S? have the
same type. We denote this type by 0.

DeriniTION 1.1. Two types m,, m, in €, (S*x S?) are H-cobordant and
denoted by m,~m,, if for some representatives M (a., t,)Em,, M,(ct,, t,) Em,
there exists a pair (W, @) where Wis a compact connected oriented 4-manifold
with 0W=M,(a,, ¢,)+M,(ct,, —¢,) (disjoint union) and ¢ is a cohomology class in
H(W; Z) whose restrictions @ |M(a;, ;)€ H(M(at;, ¢;); Z) are dual to o for
i=1, 2, and such that the infinite cyclic cover W, associated with ¢ has a finitely
generated rational homology group Hy(W,; Q) [that is, for each 7, H{(W,; Q) is
a finite dimensional vector space over Q.].

As usual the triad (W, M,(a,, ), M(a,, ¢,)) is called an H-cobordism.

It is easily seen that m~0 if and only if for some representative M(a, ¢)Em,
there exists a pair (W™, @) where W is a compact connected oriented 4-mani-
fold with 8W*=M(«, ¢) and pe H(W*; Z) with ¢ | M(at, )EH (M(et, 0); Z)
dual to @, and such that the infinite cyclic ocver W associated with ¢ has a
finitely generated rational homology group H(W; ; Q). In this case the notation
(W, M(a, ¢), $) may be adopted as an H-cobordism.
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Lemma 1.2. The H-cobordism relation ~ is an equivalence relation.

Proof. The relation ~ is reflexive, since the infinite cyclic cover M of
any homology orientable handle M has a finitely generated rational homology
group Hy(M; Q). [To see this, notice that for any ¢, 142, H(M; Q) is finitely
generated (See for example Kawauchi [6, Proposition 3.4] for 7=1.). The
partial Poincaré duality theorem (See Kawauchi [6].) then asserts a duality
H°(M; Q)~H,(M; Q). So H,(M;0)~Q.] The relation is obviously symmetric.
Further the use of the Mayer-Vietoris sequence easily yields that the relation
is transitive. 'This completes the proof.

DrriniTION 1.3, The set Q(S* X S8?) is defined to be the set of €.(S*x S?)
modulo the H-cobordism relation ~.

For any me €, (S X S?) the symbol [m] denotes the element of Q(S* X S?)
having m as the representative,

Now we shall introduce a sum oparation, called a circle union, in the
set Q(S*x .S?).

Let m,, m,c€.(S*x S?) and My(a;, ¢;)Em;, 1=0, 1. Choose for each 7 a
polygonal oriented simple closed curve w; in M(a;, ¢;) which represents the
homology class ;. Then for each 7 there exists a closed connected orientable
surface F; in M(a;, ¢;) which intersects w; in a single point. [To see this, first
note that the identity map ;Cw; can be extended to a piecewise-linear map
fit Mi(a;, t;)—> »; by means of the elementary obstruction theory. Second,
note that there is a point p;Ew; such that the preimage f7(p;) is a closed (not
necessarily connected) orientable surface. Now choose as F; the component of
f71(p:) containing p,.]

Consider the solid torus S*x B? and choose piecewise-linear embeddings

hy: S*X B*X0 — M(at,, t)
hy: S*XB*X1— M(ay, ¢,)
such that
(1) there exist points s&.S*, b Int B? with k(s X B*X 0)C F,, hy(S* X bx 0)
=w,, l(sXB*X1)C F, and ,(S*XbX1)=0,,
(2) both &, and A, are orientation-reversing with respect to the orientat-
ions of S*x B*x 0 and S*Xx B*x 1 induced from some orientation of S* X B*x [0, 1],
(3) ®, and o, are homologous in the adjunction space M (c,, t,) U 4,S* X B?
x [0, 11U, M(ets, t,)-
Then the manifold M= M,(cty, ¢,) U4, S*XB*X [0, 17U 5, M (cts, ¢;)—S* X
Int B*x [0, 1] is a homology handle. [Proof. Let i=0 or 1. Consider the
manifold M {=M;—h,(S*xInt B®xi). Let b’=0B? and the simple closed curve
w}j=h(S*x b’"x{)COM ] be oriented so that w; is homologous to w; in M;. Let
n;=h;(s X0B*Xi)COM} be oriented suitably. It is easily checked that ]



570 A. KawaucHI

represents a generator of H,(M/; Z)(~Z) and 7, represents the zero element of
H\(M}; Z) (since 7; bounds an orientable surface F;—A;(sx IntB*X7) in M7)
and that w}, 7; represent a basis for H(0M/; Z). Then from consideration of
the Mayer-Vietoris sequence we obtain that H,(M; Z)~Z. Since M is orien-
table, Hy(M; Z)~H(S*x S?; Z) by Poincaré duality.]

From construction it can be seen that the homology classes o€
H(My(«a;, ); Z), i=0, 1, specify a unique homology class o, H,(M; Z) and
that the fundamental classes ;€ H,(M(a;, ¢;); Z), 1=0, 1, specify a unique
fundamental class c= H,(M; Z).

DrriniTiON 1.4. The distinguished homology orientable handle M(«, ¢)
is called a circle union of M(a,, ¢,) and M,(a,, ¢;) and denoted by M(cy, ¢,)O
M(a,, ¢;). Also, the type of M(e, ¢) is called a circle union of the types m, and
m, and denoted by m,Om,.

Clearly the type of M(ay, —t,) OM (cty, —t,) is —(mOm,)=(—m) O(—m,).

1.5. Remark to Definition 1.4. It should be remarked that the circle
union m,Om, depends upon the choices of w, w,, 4, and A,. Consider for
example a distinguished orientable handle S'XxS*a, ¢). Let 0CS'XS¥a, ¢)
be an oriented simple closed curve representing « of geometrical index* 1 and
T(v) be the regular neighborhood of w in S*Xx.S*«, ¢). If the circle union
S*X 8%, )OS X S*(a, —¢) is defined to be the double of ¢/(S*X S*)(a, ¢)—
T(w)), then S*'XS*a, )OS* X S*a, —¢) has the same type as S*'XS*a, ¢).
On the other hand, consider for example an oriented simple closed curve
o' CS*X S*(a, ¢) representing o of geometrical index 3 and algebraic index 1
(See figure 1.) and let T(o’) be the regular neighborhood of o’ in S*XS*a, ¢).

S'%S?

figure 1.

*> A simple closed curve  in S!X.S% has geometric index 2, if 2 is the least number of intersec-
tions that a curve ambient isotopic to @ can have with s, X.S% and has algebraic index X', if X'
is the unique integer such that @ is homologous to 1’ times S1Xs, for a point (s, 5;) €S1X S2.
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If the circle union S*' X S*(«, ¢)O’S' X S¥ @, —¢) is defined to be the double of
c(S'x S*(a, ¢)— T (o)), then S* X S*(a, ¢)O’S* X S*(a, —¢) does not have the same
type as S* X S*a, ()OS X S*(a, —¢), because 7,(S*X S*a, )OS X S*(a, —¢))
~Z, but 7,(S* X S*(at, ¢)O’S* X S*, —¢)) is non-abelian. [In fact, the natural
injection 07T (»’)—S'XS*a, ¢)O'S*XS*a, —¢) induces a monomorphism
7,07 (")) = 7,(S* X S* (@, ¢)O’S* X S*(a, —¢,)) by the loop theorem.]

In spite of Remark 1.5 we can prove the following for arbitrary two circle
unions m,Om,, my(O’m, of given two types m,, m,:

Lemma 1.6. m,Om,~m,O'm,.

Proof. Let My(ct,, ¢t,) Em, and M(ay, ¢,) Em,. Assume M,(ety, £,)O
M(etyy e )Em,Om, and M(a,, ¢,)O’'M,(ay, ¢,)Em,O’m, are given by the
following:

Mty 1) OM (@, ¢,)
= My(ctyy 1) X 0U 4, S*X B*X [0, 11U 5, M(cts, ¢,) X 0—S*x Int B>x [0, 1]
M (o, ¢) O'My(ety ¢,)
= M(cto, t0) X 1UpS* X B*X [0, 1]y Mi(et;, ¢,) X 1—S*x Int B*x [0, 1] .

Then we let

Uny S'XB*X[0, 1] U4,
W = M(a, ¢,) X [0, 1] M(ay, ¢,)X[0, 1].
U S™XB*X [0, 171U

(See figure 2.)

M et m)ﬁ?ﬂ Mieb) (0, 1]

Py Pty nl Y St B*x[0, 1j = ~~o
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Clearly we have 0W=DMycty, t,) OM,(ats, )+ M(cto, —t0) O’ My(ety, —¢y).

Note that a,, a, represent the same element ¢ in H,(W; Z). Let p=
HY(W; Z) be dual to a and W, be the infinite cyclic cover of W associated with
@. Since W, is the union of M(a,, ¢,)x [0, 1], R* X B*x [0, 1], R*x B*x [0, 1]
and M,(a,, ¢,) X [0, 1], each two intersections of which is empty or homeomorphic
to R'x B?, it follows from the Mayer-Vietoris sequence that H(W,; Q) is finitely
generated over O, where Mi(ai, ¢;) are the infinite cyclic covers of M;(a;, ¢;),
i=0, 1. Thus, the triad (W, My(ct,, t,) OM,(cts, t,), M(toy t0) O’ Mi(ats, ¢,)) gives
an H-cobordism and hence m,Om,~m,’m. This completes the proof.

Lemma 1.7. my~m, is equivalent to myO—m,~0.

Proof. Assume m,~m,. Then for some representatives My(a, ¢,) E my,
M (o, ¢,)Em, there is an H-cobordism (W, My(at,, ¢,), My(at,, ¢,)). Note that
there is a cohomology class p € H'(W; Z) such that for each 7 @ | M(a;, ¢;)E
H\(M(at;, ¢;); Z) is dual to a;. Let My(aty, to)) OM,(aty, —t1) = My(cto, ¢6) U s,
S*X B*x [0, 1]U s My(aty, —¢,)—S'X Int B*x [0, 1] and W= W Uy, 4,S" X B
% [0, 1] (See figure 3.). Clearly 0W’'=M(cty,—¢,) OM,(aty, —¢,). The cohomo-
logy class o= H(W; Z) is easily extended to a cohomology class ¢’ H*(W’; Z)
such that the restriction @’|M(cty, ¢o) O My(ety, —t,) € H' (M (aty, ¢t0) OM,(aty,
—u¢,); Z) is dual to the specified generator of H,(M(a,, ¢t,) OM,(a;, —t,); Z). By
applying the Mayer-Vietoris sequence, it is not difficult to see that the infinite
cyclic cover W} of W’ associated with ¢’ has a finitely generated rational homo-
logy group Hy(W/; Q). [Use that Hy(W,; Q) is finitely generated over Q.]
So, m,O—m,~0.

S'%x B*x [0, 1]

figure 3.

Conversely assume m,O—m,~0. For My(a,, ¢,)OM,(a;, —¢,)Em,O—m,
there is an H-cobordism (W”, My(ct,, t,) OM,(ct;, —¢,), ). By the definition
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of the circle union there is a natural injection j: S*X0B*X [0, 11— M,(ety, ¢,)O
M(a,, —¢,). Let W"”=W"U;S*xB*x[0,1]. It is easy to see that the
boundary 8W’” is equal to the disjoint union My(ety, ¢,)+M,(ct;, —¢,) and that
the triad (W', My(ty, ¢), Mi(at;, ¢,)) gives an H-cobordism between M (at,, ¢,)
and M,(a;, ¢;). This completes the proof.

Lemma 1.8. If my~0 and m,~0, then m,Om,~0.

Proof. For M,(at, t,) € my, M,(aty, ¢;) Em,, there are H-cobordisms
(W, My(cto, @) $) and (W), M,(at;, v.), ¢). Let My(a, ) OM,(ay, 1) =
My(atgy o) U py S* X B*X [0, 17U 4, M (cts, ¢,)—S* X Int B*X [0, 1]. If we let W=
WoUp, S*XB*X [0, 1]U 4, W, (See figure 4.), then the triad (W, M(a,, ¢,) O
M (at;, ¢)), $) gives an H-cobordism. So, m,(Om,~0, which completes the proof.

figure 4.

Now we can derive the following theorem which is a main purpose of
this section.

Theorem 1.9. The set Q(S*x S?) forms an abelian group under the sum
[mo]+[m,])=[m,Om,]. The zero element of this group is [0]. The inverse of anmy
element [m] is the element [—m].

Proof. To show that the sum [m,]+[m,]= [m,Om,] is well-defined, let
my~m} and m;~m{. By Lemma 1.7 m,(—m§~0 and m,O—mj~0. Then by
Lemma 1.8 (m,O—mg)O(m,O—mi)~0. Since (m,Om,)Om,~m,O(m,Om,)
and m,Om,=m,Om, for all m,, m, and m,, we obtain (m,QOm,)O—(miOmi)~
(myO—m)O(m,O—mi). Hence again by Lemma 1.7 m,Om,~mgOmi. Thus,
[m)]=[ms] and [m,]=[mi] imply [m,]-+[m,])=[mg]+[mi]. It is clear that
([ + [+ [m,] = [l +-(fm.]+[m]) and [m]+[m] = [m]+m]. Also, we
have [m]+[0]=[mQ0]=[m] and, by Lemma 1.7, [m]+[—m]=[0]. This
completes the proof.
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The group Q(S'xS?) is called the H-cobordism group of 3-dimensional
homology orientable handles. 'The zero element is denoted by 0 and the inverse
of [m] is —[m].

2. Relating the H-cobordism group Q(S'x S?) to the Fox-Milnor’s
group C and the Levine’s group G_

The purpose of this section is to prove the following theorem.
Theorem 2.1. There is a commutative triangle

e

c (ST % 8?)

4\ /!f
G-

of groups and homomorphisms, where the homomorphisms ¢: C*—G_ and
Jr: Q(S* X 8?)— G_ are onto.

A knot kC S? is a polygonal oriented 1-sphere k in the oriented piecewise-
linear 3-sphere S°. Two knots k,C.S% k,C.S® have the same knot type if there
is a piecewise-linear homeomorphism (S° k,)—(S° k,) which is orientation-
preserving as both the maps S°— S® and k,—k,. The knot type of a knot kC S°
will mean the class of knots with the same knot type as k< .S°. The set of knot
types is denoted by K. Let £ be a knot type and (kC S°)#£ be a representative
knot. By —#, we denote the knot type of the knot (—kC —S°), where —k and
—.S*® are the same as k and .S° but have the opposite orientations, respectively.

Now we shall construct a function e: K—€,(S*'xS?). Let £ be a knot
type and (kCS®)e4 be a knot. Consider the regular neighborhood T'(k)C S®
of the knot k. S®. Then T(k) is clearly piecewise-linear homeomorphic to the
solid torus S*X B’. We note that the solid tours 7'(k) in S* has unique meridian
and longitude curves™® (up to isotopies of 97'(k) and the orientations of curves).

*) A meridian curve of a solid (knotted) torus 7 in S3is a simple closed curve ® in 0T such
that @ is homologous to 0 in T but not in 87. A longitude curve of T in S? is a simple
closed curve @ in 0T such that @ is homologous to 0 in S3-IntT but not in 7. The
uniqueness of the meridian and longitude curves follows from a more general principle:
Let X be a homology orientable circle i.e. X is a compact 3-manifold with Hy(X; Z)~H4«(S*; Z)
and Hy(0X; Z)=~H4(S1xS'; Z). If w, w’ C0X are homologous to 0 in X but notin 80X, then
with suitable orientations of w, @', w is isotopic to @’ in 0X. [Proof. Take a simple closed
curve ®* in 0X intersecting @ in single point. Using that @ represents the zero element of
H,(X; Z) and that the natural homomorphism H,(0X; Z)—~H,(X; Z) is onto, it follows that
@* represents a generator of H,(X; Z). Let f: 3X—w* be a natural projection such that
for some point p*cw*, f "1(p*)=w. Then we may find an extension f’/: X —w* of f such
that (f)"Y(p*)=F is a connected surface with dF=w. Since the infinite cyclic covering
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The orientation of the longitude curve should be chosen so that the longitude
curve is homologous to k in 7(k). The orientation of the meridian curve
should be chosen so that the linking number of the meridian curve and the
knot k£ in S®is 41. Let h: S'xS*—-0T(k) be a piecewise-linear homeomor-
phism such that for some point (s,, 5,) in S*X.S* the curves A(s,xS*) and
h(S*Xs,) are the meridian curve and the longitude curve of T'(k), respectively.
Define M to be the adjunction space S*-Int (7T'(k)) U,B*x S*. (0B* is identified
with S*.) By applying the Mayer-Vietoris sequence, we have H,(M; Z)~Z.
Hence M is a homology orientable handle by Poincaré duality. Note that the
oriented meridian curve of T(k) represents a generator o of H,(M; Z). We
specify the orientation of M compatible with the orientation of S°*— T'(k) induced
from that of S°. So, a generator . H,(M; Z) is specified.

DeriNiTION 2.2. The distinguished homology orientable handle M(a, ¢)
is called the distinguished homology orientable handle obtained from S* by the
elementary surgery along the knot kC S°.

By using the uniqueness of the meridian curve, the longitude curve and
the regular neighborhood, it is easily checked that the type of M(a, ¢) is uniquely
determined by the knot type £ of kC.S®. So we denote this type by e(4).

Thus, we have the following:

Lemma 2.3. There is a function e: K— €, (S* X S?).

For any two knot types 4,, 4,, one can construct a unique knot type 4,34,
well-known as the knot sum. 'T'wo knot types 4, 4, are cobordant if for a repre-
sentative knot £C .S*® of the knot sum 4,4 —#4, k bounds a locally flat 2-cell in the
4-cell B'. The set K modulo this knot cobordism relation forms an abelian
group C', called the knot cobordism group. (See Fox-Milnor [3] for details.) The

sum operation of C* is the usual knot sum operation.

Lemma 2.4. The function e: K—&.(S*XS?) induces a homomorphism
C*— Q(S* X S?) also denoted by e.

Proof. For two knot types 4, 4,, it is directly checked that e(4,4:4,) is a
circle union of e(4,) and e(4,) i.e. (4,4 £,)=e(4,) Oe(4,). [Note that for (K;C S*)e
4;, i=1, 2, the exterior of the knot sum (K,CS%)#(K,C.S?%) is the adjunction

p: X—X associated with the Hurewicz homomorphism can be constructed by using f/, we
may regard Fc X. Note that [F]€H,(X, 0X; Z) is a generator (See [7, Lemma 2.5].). By
using the isomorphism py: Hy(X, 0X; Z)~H,X,0X;Z) (See [7, Remark 2.4].), [Fle
Hy(X,0X; Z) is a generator i.e. a finite fundamental class (See [6].). Similarly, we can find
a surface F’C X with 0F’=w’ and such that [F’] is a finite fundamental class of X. The
boundary-isomorphism 8: Hy(X, 0X; Z)~ H,(0X; Z), then, implies that [@] and [@] are
equal up to sign. That is, with suitable orientations of ®, ®’, ® is homologous to @’ and
hence homotopic to @’ in X =S!XR!. Accordingly, ® is homotopic to @’ in X which
implies that @ is isotopic to @’ in 0X.]
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space of the exteriors of K;CS° along uniquely specified annuli on the
boundaries] Hence it suffices to show that if a knot type £ is cobordant to the
trivial knot type, then e(é)~0. According to Fox-Milnor [3], this knot type
4 can be realized as a local knot type of a piecewise linear 2-sphere S(£) in
S* with just one locally knotted point. Let N=N(S(4), S*) be the regular
neighborhood of S(£) in S*. Let W=S8*‘—Int N and M=0W. Notice that
Hy(0W; Z)=~Hy(S*; Z) by the Alex ander duality. By using the Mayer-
Vietoris sequence of the triple (S*; W, N), we obtain that H,(M; Z)~Z. Hence
M is a homology orientable handle. M may be a distinguished homology
orientable handle obtained from S° by the elementary surgery along a representa-
tive knot (kC S°)e4: M=M(a, ). [For N is obtained from a 4-cell by attach-
ing a 2-handle along a solid torus 7°'C S° representing 4. Using H,(M; Z)=Z
and the unique longitude curve of 7'C S°, M with suitably chosen a€H,(M; Z)
and (€ H (M ; Z) belongs to e(£#)]. Since W has the homology of a circle, it
follows from Milnor [11, Assertion 5] that the rational homology group
H«(W; Q) of any infinite cyclic cover W is finitely generated over Q. This
shows that the triad (W; M(a, ¢), ¢) gives an H-cobordism. Therefore
e(£)~0. This completes the proof.

Usually any knot type cobordant to the trivial knot type is called a slice
knot type.

In the proof of Lemma 2.4, we have also proved the following:

Corollary 2.5 (Kato [5]). If a knot type 4 is a slice knot type, then any
representative homology orientable handle of e(£) is embeddable to the 4-sphere S*.

A Seifert matrix A (with sign —1) is an integral square matrix with
det(A—A’)=+41. (A4’ is the transpose of A.) Two Seifert matrices 4,, 4, are
said to be cobordant if the block sum 4, — A, is congruent (over Z) to a matrix

of the form <O B) (B, C, D are square matrices of the same size.) The set of
CcD

Seifert matrices modulo this cobordism relation forms an abelian group G_,
called the matrix cobordism group. (See Levine [9] for details. Note that only
Seifert matrices with sign —1 are considered here.) In [10] Levine calculated
that G_ is isomorphic to the direst sum > 5.1 Zi+ > 7.1(Z/22) + > 7-1(Z[AZ)'.
For a while we would like to spare time for describing familiar algebraic
invariants of a polygonal oriented 1-sphere in a piecewise linear oriented homo-
logy 3-sphere, called a homological knot. The arguments may proceed in the
same way as the usual knot theory. Let 2CS® be a homological knot. k2 bounds
an oriented connected surface F, called a Seifert surface for k, by using a notion
of the transverse regularity. We define a pairing 0: H(F; Z)QH(F; Z)—~Z
such that 8(a®B)=L(a, i+(B)), where L denotes the homological linking number
in S° and i4(B) denotes the translate of the cycle B off F in the positive normal
direction. With a basis for H,(F; Z), 0 represents an integral square matrix 4,
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called a Seifert matrix for k C S° associated with surface F. Using a formula
0(a®RB)—0(BRa)=a-B, where a-B is the intersection number, we obtain
det(A—A’)=+1. (See for example Levine [8].) So, 4 is in fact a Seifert matrix.
The integral polynomial A(¢)=det(tA—A’) is called the Alexander polynomial of
kcS®. Let X=>8°—Int T(k) for the regular neighborhood 7'(k) of k& in S* and
X be the infinite cyclic cover of X associated with the Hurewicz homomorphism
7 (X)— H\(X; Z). We choose an orientation of X induced by that of X and a
generator ¢ of the covering transformation group of X associated with a generator
a of H,(X; Z) with linking number L(a, k)=-+1. By using the Mayer-Vietoris
sequence, the matrix 24— A4’ is a relation matrix of H,(X; Z) as a Z[t]-module.
The Seifert surface F induces a generaotr p of H,(X, 0X; Z) (=Z), called a finite
fundametnal class of X. (See Kawauchi [6, Theorem 2.3] and also Erle [1].) By
Kawauchi [6, Theorem 2.3] (See also Milnor [11, p 127].) there is a duality
Nwp: HY(X; Q)~H,_, (X, 0X; Q) for all ¢, since Hy(X; Q) is finitely generated
over Q. Hence using a canonical isomorphism H'(X, 0X; OQ)~H'(X; Q), the
cup product H'(X, 0X; Q)x H'(X, 0X; O)— H*X, 8X; Q) is a non-singular
skew-symmetric bilinear form. Define a symmetric bilinear form

<, >t HY(X, 80X; Q)x H(X, 8X; Q) — H*(X, 0X; Q) rL'LHO(X; 0)=0

by the equality {x, y>=(xU#y) N p-+(y Utx)N p. This bilinear form is isometric
on ¢: {tx, ty>=<,x, y> and non-singular.

DeFINITION 2.6. The pair ({, >, ¢) is called the quadratic form of the
homological knot 2k S®. (See Erle [1] and Milnor [11].)

The signature of k— S° is the signature of this form {, >.

The following proposition is essentially proved by Erle [1].

Proposition 2.7. Let A be any Seifert matrix for a homological knot kC S*
associated with a Seifert surface. A is S-equivalent to a non-singular Seifert
matrix Ay such that, with a suitable basis for H'(X, 0X; Q), the linear isomor-
phism t: H'(X, 8X; Q)— H'(X, 0X; Q) and the form { , >: HY(X, 8X; Q) x
H'(X, 8X; Q)— Q represent the matrices A Ay and A+ A, respectively. (In
fact, Erle [1] proved this proposition for any usual knot kcS® Without
difficulty, Erle’s proof may be applied for homological knot k= S®. See Trotter
[13] for a concept of S-equivalences.)

By Proposition 2.7, the signature of kCS® is equal to the signature
o(Ayx+AL)=0c(4+4).

Let me€,(S'x 8% and M(«a, )em. We choose a polygonal oriented
simple closed curve o in M(e, ¢) representing « and let T(w) be the regular neigh-
borhood of win M(a, ¢). Also we choose polygonal oriented simple closed curves
k and / in 0T () intersecting in a single point such that & is oriented so as to be
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L(k, w)=-1 and bounds a 2-cell in 7(w) and such that / is homologous to w in
T(w). (Note that in any case the choice of / is not unique.) Let (s, 5,)€S* X S*
and define a piecewise-linear homeomorphism A: S* X .S'—07T(w) such that
h(s,xS")=k and A(S'xs,)=Il Let S’=M(a, )—Int T(w)U,B*xS*. It is
easy to see that S° is a homology 3-sphere. (Notice that & is homologous to 0
in M(a, ))—Int T(w).) The orientation of S* is chosen so as to coincide with
that of M(a, ¢)—Int T(w). Thus, we obtain a homological knot kcS® from
M(a, o) ( , although the homeomorphism type of the pair (S°, &) is never uniquely
determined by the type of M(«, ¢)).

DEFINITION 2.8. A Seifert matrix for the homological knot A S® associated
with a Seifert surface is called a Seifert matrix for M(ct, <) (or the type m).

Accordingly if A is a Seifert matrix for a knot type 4, then A is also a
Seifert matrix for the type e(4).

DrrFINITION 2.9. The Alexander polynomial A(t)=det(tA—A’) of kCS*
is called the Alexander polynomial of M(c, ¢) (or the type m).

This definition coincides with that of Kawauchi [7, Definition 1.3], be-
cause the matrix 24— A’ is a relation matrix of H,(M(e, ¢); Z) by the canonical
isomorphism H,(X; Z)~ H(M(ct, ¢); Z). Here X denotes the infinite cyclic
cover of X=M(a, ¢)—Int T(w) with the uniquely specified generator ¢ of the
covering transformation group and with the associated orientation. M(a, ¢)
denotes the infinite cyclic cover of M(a, ¢) such that the covering projection
M{(at, t)— M(a, ¢) is an extension of the covering projection X—X. M(a, )
has an orientation compatible with that of X. The generator of the covering
transformation group of M(a, ¢) is an extension of ¢: X— X, also denoted by ¢.
Note that the finite fundamental class p=H,(X, 0X; Z) determined by a Seifert
surface specifies a unique generator of H,(M(a, ¢); Z), also denoted by u by the
canonical isomorphism H,(X, 0X; Z)~H,(M(«a, «); Z). This peH,(M(a, ¢); Z)
is called the finite fundamental class of M(ct, ¢). By using the canonical isomor-
phisms H{(X, 8X;0)~H:(M(e, ¢); O), i=1, 2, the bilinear form
<, > HY(X, 0X; Q)xH' (X, 0X; Q)— O passes to the form
(,): H(M(a, ¢); Q)x H(M(ct, ¢); Q)—Q defined by the equality (x, y)=
(xUty)N p+(y Utx) N p for all x, y in H*(M(e, 1); Q).

DEriNITION 2.10.  The pair (( , ), t) is called the quadratic form of M(a, ¢)
(or the type m).

The signature of M(«a, ¢) (or the type m), denoted by o(M(a, ¢)) (or o(m)) is
the signature of the homological knot k=S, So, the signature of M(a, ¢)
coincides with the signature of the bilinear form ( , ). Easily o(M(e, ¢))=
o(M(—a, ¢)) and o(M(at, —¢))=—0o(M(a, ¢)).

From Proposition 2.7, the following is immediately obtained:
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Lemma 2.11. Let A be a Seifert matrix for M(a, /). A is S-equivalent to
a non-singular Seifert matrix Ay such that, with a suitable basis for H*(M(et, ¢); Q),
the linear isomorphism t: H'(M(e, ¢); Q)—>H'(M(a, ©); Q) and the form
(,): H(M(a, ©); Q)x H(M(«t, 1); Q)— Q represent the matrices Al ™Ay and
A+ Ak, respectively.

Note that by Lemma 2.11 o(M(a, ¢))=0c(4Ax+AL)=c(4+4").

For the quadratic form (( , ), ) of the type m of M(a, ¢), if H(M(et, ¢); Q)
contains a half-dimensional vector subspace V' with ¢/ =171 and such that
(%, ¥)=0 for all x,y in V, then the quadratic form ((, ), #) is said to be null-
cobordant (See Levine [10].).

The following theorem is a basically important result.

Theorem 2.12. If m~O, then the quadratic form ((,), t) of m is null-
cobordant.

Proof. Since m~0, for M(a,¢)Em there exists an H-cobrodism
(W, M(a, ), ¢). Hence for some o= H(W; Z) with o | M(at, ) e H'(M(at, ¢); Z)
dual to a, the infinite cyclic cover W, associated with @ has a finitely generated
rational homology group Hy«(W,; Q). Note that by Kawauchi [6, Theorem 2.3],
the Poincaré dualities N7m: H*¥(W,: Q)~ H,_«(W,, M(a, <); Q) and Na:
H*(W,, M(a, ); Q)~H,_«(W,; 0) hold, where @& H(W,, M(a, :); Z) is a
finite fundamental class determined from g by the boundary-isomorphism
0: H(W,, M(a, ¢); Z)~H,(M(a, 1); Z).

Now we consider the following commutative (up to sign) diagram:

* . s ~
— H'(Wy; Q) —> H'(M(a, o); Q) —> H'(W,, M(et, 1); Q) —>
Nz Nu . Nz
- 0 _ "%
- 2(W¢’ M(a, ¢); Q) — H(M(e, ¢); Q) —> Hl(WfP; Q)— .
Here the top and bottom sequences are exact and the vertical homomor-

phisms are isomorphisms.

For all ue HY(W,,; ), suppose (i*(x), y)=0. This situation is equivalent
to 8(t—t7)y=0 i.e. (t—t " )yeImd*, because (*u, y)=[t*(u)N (t—t"" )] N p=
[uUd(t—t")y]Nm. Using (t—¢t)Imi*CIms* and the isomorphism™*’ z—¢7*:
H'(M(a, o); Q)~H'(M(a, 1); Q), (t—t")ycImi* is equivalent to y<Imi*.
Thus we showed that the orthogonal complement of Imz* is Im¢* itself. In

particular, dimg Im i*:% dimgy H(M(a, ¢); Q). Since ¢ Imi*C Im*, the quad-

*) To prove this isomorphism, it suffices to check that the characteristic polynomial A’(¢) of
t: HY(M(a, ©); Q)—HY(M(a, ¢); Q) satisfies A(=1)=%0, because t—¢~1=¢"1(t—1)(¢+1). For
the Alexander polynomial A(t) of M(a, ), A(t) equals to A(t) up to units of Q[t]: A'(t)=
A(t). (See [7, Lemma 2.6].) Since A(+1)=+0, the result follows.
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ratic form ((, ), £) is null-cobordant. This completes the proof.
Lemma 2.13. There is a homomorphism +r: Q(S* X S*)— G _.

Proof. Letme&€,(S*Xx S?) and 4 a Seifert matrix for m. We define \[m]=
[4]. To prove the well-definedness, first we shall show that if m~0, then 4
is null-cobordant. By Lemma 2.11, 4 is S-equivalent to a non-singular Seifert
matrix Ay such that ¢ represents A% *4, and the form ( , ) represents A4+ A%.
Since by Thoerem 2.13 the quadratic form ((, ), #) is null-cobordant, there
exists a symplectic basis e,, e,, -, e,, e¥, e¥, -+, X of H (M(a, ¢); Q): (e;, €;)=
(e¥, e¥)=0, (e;, €¥)=3;; such that the vector subspace V spanned by e, ¢,, ‘- ¢,
is invariant under ¢. (See for example Milnor-Husemoller [12, p 13].) Then there
is a non-singular rational matrix P such that the matrix P7'45 'A4P is of the

form (Q R) (, since tV'=V), where Q, R, S are rational square matrices of the
(O

1
: , (O 1 04
same size, and such that P’'(4y+A4L)P= 10) I=| . .
Y
Using the equality P’A.P=[P’/(As+AL)P(E+P AL A« P)7) (E is the
unit matrix.), it is not difficult to see that the matrix P’A4P is of the form

(O B>. (B, C, D are rational square matrices of the same size.) [Note that
CD

det(E4+P7*A44"AxP) %0, since the Alexander polynomial A(#) satisfies
A(—1)=%0.] Then by Levine [9, Lemma 8] A is null-cobordant. Since A4 is
S-equivalent to Ay, it follows that A4 is cobordant to A4. Hence 4 is null-
cobordant. Let m,, m,c€,(S*x S*). Notice that if 4,, 4, are Seifert matrices
for m,, m,, respectively, then the block sum 4,4, is a Seifert matirx for a
circle union m,Om,. [To see this, let M(a;, ¢;,)Em, =1, 2, and consider
homological knots k;c S? obtained from M(q;, ¢;), i=1, 2. Then one can verify
that the homological knot sum (k,CS})4:(k,CS3), defined to be analogous to
the usual knot sum, is a homological knot obtained from some circle union
M(at;, ¢,)OM,(et,, t;). Now the desired result easily follows.] If m,~m,, then
m,O—m,~0. Hence the block sum 4, — 4, is null-cobordant, since 4, — 4,
is a Seifert matrix for m,O—m,. Thus, [m,]=[m,] implies [4,]=[4,]; that is,
\r[m]=1[A4] is well-defined. Further, + is a homomorphism, since for any
my, m, € (S % S?%)

Y([m]+[m]) = [m,Om,]
= [4,94,]
= [4.]+[4.]
= Y[m,]+y[m,] .
This completes the proof.
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2.14. Proof of Theorem 2.1. Levine [9] defined the homolorphism
¢: C*'— G_ sending any knot cobordism class to the matrix cobordism class
of the corresponding Seifert matices. By Lemma 2.4, the homomorphism
e: C'—>Q(S*x 8% is obtained and by Lemma 2.13, the homomorphism
Jr: Q(S*x 8*)— G_ is obtained. From construction, we have {Jre=¢. Since ¢
is onto (See for example Levine [9].), 4 is onto. This proves Theorem 2.1.

Here are four corollaries to Theorem 2.1.

Corollarly 2.15. The H-cobordism group Q(S*x S?) has the free part of
infinite rank.

This follows from the facts that G_ has the free part of infinite rank and
that the homomorphism +)r is onto.

The reduced Alexander polynomial A(t) of a type me€. (S'x S?) is the
integral polynomial obtained from the Alexander polynomial A4(t) of m by can-
celling the factors of the type f(£)f(z7").

Corollary 2.16. 1If m~\0, then the Alexander polynomial A(t) splits as follows:
A(t)= f(t)f(t™*) for some integral polynomial f(t) and the signature o(m)is 0. More
generally, if m,~m,, then the reduced Alexander polynomils A(t), A,(t) are the
same polynomial (up to +t'): A,(t)=/1,(¢) and the signatures o(m,), o(m,) are equal:
o(m,)=o(m,).

Corollary 2.17. For any [£]1= C", the equalities o[£]=0o([e(#£)]) and A[é](t):
/I[e(é)](t) hold.

Corollary 2.18. For any me€ . (S*x S?), the signature o(m) is even. For
any integer 1, there exists me &, (S* X S?) with o(m)=21.

2.19. Addendum. Re-examination of the Seifert matrices. Let m &
€. (S*x S8?) and M(a, t)m. A Seifert matrix for M(a, ¢) (or m) may be also
defined as follows: Let f: M(a, ()—>S* be a piecewise-linear map with
f«: H(M(at, ¢); Z)~H,(S*; Z) and such that for some point 0 S*, F=f"*(0) is
a closed orientable connected surface (See Kawauchi [6, Corollary 1.3].). Using
that [Fle H,(M(«, ¢); Z) is a generator, we may orient F so that [F]=¢@Nq,
where o€ H'(M(a, ¢); Z) is a dual element of ac H,(M(a, ¢); Z). Let M* be
the oriented manifold (with orientation induced by that of M(«, ¢)) obtained
from M(a, ¢) by splitting along F. Let 0M*=F UF’. Here the component of
OM* with orientation coinciding with that of Fis identified with F. F’denotes
the copy of F but with the oposite orientation. Let ¢/: F—F’'CcOM*CM¥* be
the natural injection. If acH(F; Z), let a’H,(M(«, ¢), M(ct, ¢)—F; Z) be
the image of a under the composite
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-1

., 5
H(F; Z)—%> H(M*; Z)—> H(M(a, ) F; Z)— H,(M(a, ), M(a, )F; Z).

By using a duality vy: H(M(a, ¢), M(ct, 0)—F; Z)y~H'(F; Z), relating a slant
product, where U is the Thom class of M(a, ¢) corresponding to the fundamental
class ¢, define a pairing

0’: H(F; ZYQH(F; Z)— Z

by the equality #(a®b)=7,(a’)NbEH(F; Z)=Z.
It is checked that with a basis for H,(F; Z) ¢’ represents a Seifert matrix for
M(et, ¢). The formula 6’(a®b)—6(b®@a)=a-b is also obtained.

3. Elements of Q(S'x S?) of order zero and two and the H-cobord-
ism group Q(S* X, S°) of homology non-orientable handles

A general problem of bringing about a better understanding of H-cobor-
dism between the types of distinguished homology orientable handles seems
still difficult, but a partial answer is presented here.

Theorem 3.1. If a representative homology orientable handle M(a, ¢) of
a type me€ (S x S?) is embeddable in a homology 4-sphere S*, then m~0.

Proof. Assume M(a, )cS‘. Then M(a, ¢) separates S* into two mani-
folds, say, W,, W, and, by easy computation of the homology, one of W,, W,
has the homology of a circle, say, Hu(W,; Z)~ Hy(S*; Z). Then the triad
(W,, M(a, ¢), $) gives an H-cobordism. This completes the proof of Theorem
3.1.

Here are a few examples, whose somewhat analogous properties were also
noticed by Kato [5, Theorems 5.1 and 5.5] in higher dimensions.

ExampLes 3.2. First we consider a (suitably oriented) trefoil 3,. (See
fiugre 5.)

figure 5.
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Using that o(e(3,))=0(3,)=+2=0 or that A(f)=t*—2¢+1 is irreducible,
e(3,)0. Hence by Theorem 3.1, ¢(3,) is not embeddable to the 4-sphere S*.
Note that e(3,) is locally-flatly embeddable to the 5-sphere S°, since according
to Hirsch [4] every compact orientable 3-manifold is locally-flatly embeddable
to S°.

On the other hand, consider the stevedore’s knot 6,. (See figure 6.)

0,

figure 6.

Since this knot is a slice knot, by Corollary 2.5, e(6,) is embeddable to S*.
Similar arguments also apply for the granny knot 3,43, and the square
knot 3,4 —3%¥. (See figure 7.)

—_—
3,43, 3,4 —3F

figure 7.

In fact, ¢(3,#3,) is not embeddable to S*, although e(3,3 —3%F) is em-
beddable to S*, since o(e(3,43,))=25(3,)=+44=+0 and 3,3 —3%¥ is a slice knot.
Next we would like to discuss order-two-elements of Q(S*x S?%). To do
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this, we shall introduce the H-cobordism group of homology non-orientable
handles.

A homology non-orientable handle M is a compact 3-manifold having the
homology of the non-orientable handle S*x.S*: Hy(M; Z)~H(S'x.S%; Z),
and is said to be distinguished if a generator aH,(M; Z) is specified. If a
homology non-orientable handle M is distinguished, then the notation M(«)
will be used. Two distinguished homology non-orientable handles M,(«,),
M,(a,) have the same type if there is a piecewise-linear homeomorphism
h: M(a)—> M,(a,) such that Ay(a,)=a, The type of M(a) is the class of
distinguished homology non-orientable handles with the same type as M(«).
The set of the types is denoted by € (S x ,S?).

In €,(S*x,S?) an H-cobordism relation is defined as an analogy of Defini-
tion 1.1.

DerFINITION 3.3. Two types m,, m, in € (S*x .S?) are H-cobordant and
denoted by m,~m, if for M (a,)=m,, M,(a,)Em, there exists a pair (W, @),
where W is a compact connected 4-manifold with dW=M,(a,)+ M,(c,) (disjoint
union) and pe H(W; Z) whose restrictions @ | My(a;) € H(M(e;); Z) are dual
to a;, =1, 2, such that the infinite cyclic cover W, associated with @ is orientable
and has a finitely generated rational homology group Hy(W,; Q). [Note that
any infinite cyclic cover M(«) is always orientable (See Kawauchi [7].).]

Let m,, m,e€.(S*x,S?) and My(a,)Em, M,(a,)=m,. Choose polygonal
oriented simple closed curves w,C M(a,), w,CM,(c,) which represent «,, a,
respectively. It is not difficult to see that the regular neighborhoods T'(w,)C
My(at,) of w, and T(w,)C M,(a,) of w, are both peicewise-linearly homeomorphic
to the solid Kliein bottle S*x ,B?. Note that there exists closed connected
orientable surfaces F,C My(a,), F,C M,(«,) transversally intersecting w,, w,, in
single points, respectively.

Consider two piecewise-linear embeddings

By S'x,B*X0 — M(at,)
hy: S'x.B*x1— Ma,)

such that there exist points s S', beInt B® with £,(S*'X.bX0)= o,

hy(sX . B* X 0)C F,, h,(S*X b X 1)=0w, and k(s X .B*X 1)C F, and such that », and

w, are homologous in the adjunction space M,(«t,) U 4,S* X, B*X [0, 1] U M (ex,).
As an analogy of Definition 1.4, we may have Definition 3.4.

DreriNiTION 3.4. The homology non-orientable handle

M) OMi(a)) = My(ao) U s, S*X . B*X [0, 11U 5, My(a;)—S* x . Int B*X [0, 1]
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distinguished naturally is called a circle union of M(«a,) and M,(ar,). The type
of My(ct,)OM,(ct,) is denoted by m,Om,.

It is not difficult to check that for two circle unions m,Om,, m,O'm,,
myOm,~m,O’m,. Further, we can prove that m,~m, if and only if m,Om,~0
as an analogy of Lemma 1.7, where 0 is the type of S*x.S? [Note that
S*%,S*a) has the same type as S'X.S*%(—«a).] As a result, the set
Q(S*% ,8*)=€ ,(S* X ,S?)/~forms an abelian group under the sum [m,]+[m,]=
[m,Om,], called the H-cobordism group of homology non-orientable handles. Every
non-zero element of Q(S*'X.S?) has order 2, since m~m implies mOm~1
The zero element of Q(S" X ,S?) is the H-cobordism class containing the type
0of S*x, 8%

Theorem 3.5. Q(S'X,S?) is the direct sum of infinite copies of the cyclic
group of order 2.

To prove Theorem 3.5, the Alexander polynomial seems to be usefull.

The Alexander polynomial A(t) of me € (S* X, S?) is the integral polynomial
which is a generator of the smallest principal ideal containing the ideal as-
sociated with a relation matrix of H,(M(«a); Z)as a Z[t]-module (See Kawauchi
[7] for details.). Here, M(a) denotes the infinite cyclic cover of M(a)Em
and ¢ denotes a generator of the covering transformation group of M(«a),
related to the generator a=H,(M(a); Z). A(t) is the complete invariant of
M(a) or the type m up to units+¢° & Z(t)- A(t) satisfies the properties that A(t) =
A(—t*) and 4|(1)|=1; and, conversely, any integral polynomial with these
properties is the Alexander polynomial of some me€ (S*x,S%). (See [7].)
For characteristic polynomial A’(#) of the linear isomorphism ¢: H,(M{(ct); Q)—
H,(M(ct); Q) we have A(f)=A'(t), that is, A(2), A'(t) are equal up to units
qg* =0t

The following is an analogous result to Corollary 2.16.

Lemma 3.6. Letme€ (S'X,S?). If m~0, then the Alexander polynomial
A(t) of m has a type of f(t)f(—t7") for some integral polynomial f(t).

Before showing Lemma 3.6 we shall show Theorem 3.5.

3.7. Proof of Theorem 3.5. Consider for example the irreducible integral
polynomials A,(t)=nt’4t—n, n=1,2,3,..-. These 4,(t) are realized as the
Alexander polynomials of some m,e €, (S*x.S?), n=1, 2, 3,---. Then it is easy
to see that m,, m,, m;, -+ represent a set of linearly independent elements of
Q(S*x,S?%. [Notice that if 4,(t), A,(t) are the Alexander polynomials of m,,
m,, respectively, then the product A4,(t)4,(¢) is the Alxeander polynomial of
any circle union m(Om,.] This completes the proof.
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3.8. Proof of Lemma 3.6. Since m~0, for M(a)Em there exists a pair
(W, ¢), where W is a compact connected 4-manifold with 9W=M(c) and
e H\(W; Z) with ¢|M(a)eH(M(«); Z) dual to «, such that the infinite
cyclic cover W, is orientable and has a finitely generated rational homology

*
group Hy(W,; O). Then from the exact sequence H(W,; Q)1—>H M (a); Q)

—8> H*W,, M(ct); Q) we obtain the short exact sequence 0—Im 7*—H(M(a); Q)
—Im §—0. Then we have A(t)==B(t)C(t), where B(¢), C(t) are the character-
istic poylnomials of #: Im *—Im¢*, #: Im 6 —Im §, respectively. Since the
square

H\(M(e); Q) HW,, M(); Q)

%lﬂu ’%Jn/—‘

H(M(ct); Q) —"* _y H(W,; 0)

is commutative, we obtain the Poincaré dual isomorphism N7: Im d~Im i,
where p€ H,(M(a); Z) and € H(W,, M(c); Z) are the finite fundamental classes
such that 7z is mapped to x by the boundary isomorphism 8: Hy(W,, M(«a); Z)~
H,(M(ct); Z) (=Z). (See Kawauchi [6, Theorem 2.3].) Notice that tz=—7.
Using the identity Im 7¥*=Hom(Im 7., Q) and the equality (tu) N m=—t"(# N B),
the Poincaré dual isomorphism N7: Im §~Im 7y gives the equalityC(—¢™') =
B(#). This proves Lemma 3.6.

Lemma 3.9. This is a well-defined function
T: € (8'%,8%) — €, (S'xS?)
induced by the 2-fold orientation covering.

Proof. Let m=>€,(S'x,S?) and M(a)em. Consider the infinite cyclic
covering p: M(a)— M(«) associated with the Hurewicz homomorphism. Let ¢
be the generator of the covering transformation group of M(a) related to a.
The 2-fold covering 7/: M’— M(«a) from the orbits space M’'=M(«a)/t* to M(cx)
induced by the projection p: M(ct)— M(ex) is the 2-fold orientation covering,
since M(«) is orientable.

We must prove that M’ is a homology orientable handle. Let p’: M(ct)—M’

=1
be the natural projection. The short exact sequence 0— Cy(M(a))—> Cy(M(at))
-LC#(M’)—>O of simplicial chain Z[t’]-modules induces the following exact
sequence
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H,(M(a);Z)—p—;k* H(M’; )*H(M(a) Z2)—0
Z

of Z[t*]-modules, where H,(M’; Z) and H,(M(a); Z) are regarded as trivial
Z[t’]-modules. Let &: Z[t’] — Z be the augmentation homomorphism such that
E(t*)=1. By taking a tensor product, we obtain an exact sequence

H(M(a); Z)R.Z P81 H(M’ 2)®. Z—>H(M(a) 2)Q.Z— 0.

H (M’ Z) Z
Sublemma 3.9.1. H,(M(a); Z)®.Z=0.

By assuming this sublemma, we obtain that H,(M’; Z)~Z. By the Poincaré
duality, M’ is a homology orientable handle. Let o’ H (M’; Z) be a generator
determined by « under the 2-fold orientation covering 7: M’— M(c). Let
(€ H(M’; Z) be any generator. The distinguished homology orientable handles
M'(a’, ¢), M'(a’, —¢) have the same type, because ¢ of M(cr) induces a homeo-
morphism ¢': M’— M’ with ti(a’)=a’ and ti(¢)=—:. This type is denoted
by 7(m). Thus the function 7: € (S*x,8%)— € (S'X S?) is obtained. This
completes the proof.

3.10. Proof of Sublemma 3.9.1. Note that there exists a presentation

square matrix S(f) of H,(M(c); Z) as a Z[t]-module i.e. Z[t]*—> ()Z[t]zg
H (M(ct); Z)— 0 is exact for some integer g>0. [To see this, let F € M(a) be
a closed orientable connected 2-sided surface in M(«) intersecting a simple
closed curve representing ¢ in a single ponit, and M * be the manifold obtained
from M(a) by splitting along F. Since M* is orientable, we have an isomor-
phism H,(M*; Z)~H(F; Z). Let i,i,: F>F, UF,=0M*C M* be two
natural identifications. With suitable bases of H(F; Z), H(M*; Z), i,x, i,%:
H(F; Z)—-H,(M*; Z) represent square integral matrices S, S, respectlvely
By applying the Mayer-Vietoris sequence, we obtain an exact sequence

H(F; Z)Q 21~ H(M*; Z)® 2] — H(W(a); Z) 0,

where 74(x)=ti«(x)—i,«(x). Thus, we can obtain an exact sequence

S(t) _
Z[1]8 =2 Z[1PF — H(M(@): Z) — 0,

where S(#)=tS,—S,.] By taking a tensor product, we obtain an exact sequence

[]z,,,|® 250 )Z[ﬂ%lane H(M(at); Z)®:Z = 0.

ZlE=0r¢  [21/(@E-11¢
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We shall show that A%(¢#)=det S°(¢) is a unit in the quotient ring Z[t]/(#*—1).
Note that A(t)=det S(2) is the Alexander polynomial of M(«). So, A(?) satisfies
A(t)=A(—t") and |A(1)|=1. We can write ¢t *A(t)=21;-_;a;t’, a,;=(—1)’a_;
(s>0). Then " A%t)=A(1) and A°(t)=¢""A(1) is a unit in Z[t]/(£*—1),
where 7(s)=0 if s is even, 1 if s is odd. This implies that the homomorphism
S(8): Z[t]*R.Z— Z[t]*®.Z is an isomorphism. Therefore H,(M(ct); Z)R.Z
=0. This proves Sublemma 3.9.1.

Lemma 3.11.  The function 7: € (S*x ,S*)— € (S* X S?) carries the Alex-
ander polynomial A(t) of any me& (S X ,S?) to the Alexander polynomial A"(t)
of T(m)e € (S* X S?) such that A"(t*) =A(t)A(—1).

Proof. Let M(a)em. With a basis for H,(M(a); Q), t: H(M(a); Q)—
H,(M(a); Q) represents a matrix B. Then A(t)=det(tE—B). For the linear
isomorphism #'=#: H(M(a); Q)— H,(M(«t); Q) representing B?, we have
A"(¢')=det(E—B?). Hence,

A'(#")=det(PE—B’)
= det (tE— B)det(tE+B)
=A)A(—1) .

This completes the proof.

The reduced Alexander polynomial A(t) of me€ (S'x,S?) is the integral
polynomial obtained from the Alexander polynomial A4(¢) of m by cancelling the
factors of the type f(£)f(—t7").

Theorem 3.12.  The function 7: € (S* X ,S*) =€, (S* X S?) induces a homo-
morphism 7*: Q(S* X . S*) =T, Q(S* X S?) carrying the reduced Alexander poly-
nomial A(t) to the reduced Alexander polynomial A™(t) such that A"(#*)= A(t)A(—1),
where T, is the subgroup of Q(S* X S?) consisting of elements of order 2.

Proof. For m,, m,e€ (S*x.S?), the equality 7(m,Om,)=T(m,)O7(m,) is
easily obtained. For me€ (S*x,S?), assume m~0. Then for M(«)Em there
exists an H-cobordism (W, M(a), S'x,S?). The 2-fold orientation cover
(W', M, S*x S?) of (W, M(at), S*x ,.S?) gives an H-cobordism. So, 7(m)~0.
Therefore 7* is a homomorphism to 7,. The remainder follows from Corollary
2.16 and Lemmas 3.6 and 3.11. This completes the proof.

Corollary 3.13. T, is infinitely generated.

Proof. Consider for example m,=& (S x,S?%) with Alexander polynomial
A,(t)=nt’+t—n,n=1,2,3, -+, as in 3.7. Then the Alexander polynomial of
the 2-fold orientation cover 7(m,) is A,(t)=n’*t*—(2n’+1)t+n*. Since for
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n=1, 2, 3,--- these Alexander polynomials A4,(¢) are irreducible and mutually
distinct, the set {(m,), 7(m,), 7(m,), ---} gives a linearly independent subset of

T,, which completes the proof.
One may ask whether the subgroup 7'} of order-2-elements of the Fox-

Milnor’s knot cobordism group C* is infinitely generated.
As a matter of fact, 7'} is also infinitely generated, although it seems to be

difficult to set up a general argument.

Claim. 7'} s infinitely generated.

In fact, consider the knot k,C.S® with the numbers of crossings 2n, 2n,
illustrated in figure 8. In the case n=1, this knot %, is called the figure eight
knot: k,=4, (See figure §8.).

4

figure 8”. figure 8.

One can easily shown® that each knot k,C.S° is -amphicheiral**> by an
analogy of the method which is used for showing that the figure eight knot is
-amphicheiral. Since the Alexander polynomial of k,CS®is 4,(8)=n"t—
(2n*+1)t+n’, which is irreducible, it follows that 7'} is infinitely generated.

One can also derive the conclusion of Corollary 3.13 by using these knots.

In concluding this paper, the author would like to propose a few questions
and one interesting conjecture.

Question. Is Im 7*=T,?

* See, for example, S. Kinoshita and T. Yajima: On the graphs of knots, Osaka Math. J. 9

(1957), 155-163.
*#) An oriented knot kC .S? is said to be -amphicheiral, if —kC.S?® and —kC —S? belong to the

same knot type. (See Fox [2, pl 143] for details.)
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This question seems closely related to a question due to Fox and Milnor:
Is an element of order 2 of C* necessarily determined by a -amphicheiral knot?

One may also ask whether 7 is injective, although the author expects
a negative answer.

The following conjecture seems to be justified by Lemma 3.11.

Conjecture. The Alexander polynomial A(t) of a -amphicheiral knot neces-
sarily satisfies A(t*)= f(t)f(—t) for some integral polynomial f(t) with f(t)=f(—t").

One can easily checked that any -amphicheiral knot in the Alexander and
Briggs knot table satisfies this assertion.
For example, the Alexander polynomial of the knot 8,, which is known to
be -amphicheiral is 4(¢)=¢'—7£*+13t*—7t+1. Then,
A=+ =3 —t+1)(¢' —t*—3*+14-1) .
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