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0. Introduction

In 1985, A. Casson defined an invariant λ for oriented integral homology 3-
spheres by using representations from their fundamental group into SU{2) [1]. It
was extended to an invariant for rational homology 3-spheres by K. Walker [11]. In
1993, C. Lescop [9] gave a formula to calculate this invariant for rational homology
3-spheres when they are presented by framed links and showed that it naturally
extends to an invariant for all 3-manifolds.

Let L be a link in S3 and let Σ£ be its n-fold cyclic branched cover. Define
λn(L) = λ(Σ£). Then λn becomes an invariant of links. For doubles of knots, torus
knots and iterated torus knots, A. Davidow (see [3], [4]) calculated Casson's integer
invariant for n-fold branched covers, when Σ •£• is an integral homology sphere. For
any links, D. Mullins [10] have succeeded in calculating Casson-Walker's rational
valued invariant for 2-fold branched covers, when Y?L is a rational homology sphere.

In this paper, using C. Lescop's formula and the result of D. Mullins, we will
calculate the Casson-Walker invariant for branched cyclic covers of S 3 branched
over the m-twisted double of a knot. We will show the following theorem and
corollary.

Theorem 3.1. Let K be a knot in S3 and DmK its m-twisted double. Then
λn(DmK) is determined by d/dtVo^Ki—^) and m where d/dtVo^Ki—^) is the
derivative of the Jones polynomial of DmK at t = — 1.

Corollary 3.2. λn(DmK) is determined by aχ(K) and m where aχ(K) is the
coefficient of z2 of the Con way polynomial of K.

1. Preliminaries

DEFINITION 1.1. The Conway polynomial VL(^) of an oriented link L is de-
fined by

1. Vu(z) = 1, where U is an unknot,
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2. VL+(z) - VL- (z) = ~zVLo(z), where L+, L~, L° are oriented links identical
except within a ball where they are as shown in Figure 1.

It is well known that the Conway polynomial is of the form

aλ{L)z2

This defines the coefficients aι{L) of VL(Z).

Let K be a knot in S3 and Dmiί its m-twisted double. It is easy to see that
VDmK(z) = 1 - mz2. Thus αi(Dmif) = - m and ai(DmK) = 0 for i > 2.

DEFINITION 1.2. The Jones polynomial VL(£) of an oriented link L is defined
by

l Vu(t) = 1, where J7 is an unknot,
2. £~1VL+(£) - tVL-(t) = ψl2 - ί"1/2)Vto(t), where L+, L~, L° are oriented

links identical except within a ball where they are as shown in Figure 1.

Let WL be a Seifert matrix for an oriented link L.

DEFINITION 1.3. The signature σ(L) of L is defined as

σ(L) = signature(WL + WjΓ).

DEFINITIONS 1.4. Let C = {(Ki,μi),..., (Kn,μn)} be a framed link in S3,
where each component Kι is oriented and μι gives integer framing. The manifold
obtained by surgery on C is denoted by χ(C). Let L denote the underlying link of
C. Let Uj be the linking number lk{K^ Kj) of Ki and Kj if i φ j and μ; if z = j .

• The linking matrix of C is defined by

E{C) = {lij)l<i,j<n.

The sign of £, denoted by sign(C), is equal to (—
the number of negative eigen values of E(C).
Restriction of a framed link.

where b-(C) denotes
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If / is a subset of N = {1,..., n}, then £/ (resp. Lj) denotes the framed link
obtained by C (resp. the link obtained by L) by forgetting the components
whose subscripts do not belong to /.

• The circular linking of £/, denoted by Lkc(Cj), is defined by

Lkc{Cj)=
\kel

where σj denotes the set of cyclic permutations of /.
• The 0-linking of £/.

Let 0b(£j) be defined by

Lkc(CK)lig(1)lg{1)g{2) • • • lg(t(I\K)-l)g(t(I\K))lg(t(I\K))j-

(Sj\κ denotes the set of one to one maps from {1,..., )J(/ \ K)} to / \ K.)
This sum can be seen as the sum of the linking numbers of £/ with respect
to the edes of one of the graphs in Figure 2 for all combinatorial ways of
constructing such graphs.

g(#I\K-\)

Fig. 2.

Then, the 0-linking of £/, denoted by 0(£/), is defined by

(θb(d) ifJ/>2

θ{CI)=lθb(CI)-2lij if I = {i,j}

(θb(£I) + 2 if/ = {<}.

The modified linking matrix E(£N\i;I) is defined by
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with

ί
!« +

kei

We state C. Lescop's formula for the Casson-Walker invariant.

Proposition 1.5 ([9]). Let C and χ(C) be as above. Then the Casson-Walker

invariant λ of χ(C) is given by

= sιgn(C) 2^ det(E(CN\j; J^a^Lj) + ^
{J\Jφψ,JCN} V

where the determinant of an empty matrix equals to one.

REMARK 1.6. We follow C. Lescop's normalization of the Casson-Walker in-

variant. If λ^ denotes the Walker invariant as described in [11],

m ) _ tJhψΆκ{M).

Finally, we state the result of D. Mullins for two-fold branched covers.

Proposition 1.7 ([10]). Let L be a link in S3. Suppose the two-fold branched

cover of L, T?L, is a rational homology sphere. Then

\ m iσ{L) dλ/ ( u + \τ σ ( L )

Note that if L is a knot, then Έ2

L is a rational homology sphere.

2. Surgery description of cyclic branched covers

Let DmK be the m-twisted double of a knot K in S3. If we introduce one

surgery curve C which have the framing 1 for the crossing that must be changed

to obtain an unknot, we may arrive at a surgery description of DmK as shown in

Figure 3, where DmK is an unknot corresponding to DmK in other version of S 3 .

Applying an isotopy to S3, we can exchange the position of DmK with that of

C (see Figure 4).
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DmK DmK
Fig. 3.

DmK

Fig. 4.

Let Tr>mK denote the tangle which is obtained by cutting C (at two points) by
a spanning 2-disk for D^K as in Figure 5.

Note that TD^K has two arcs. By joining n-copies of TDmκ cyclically, we
obtain an n-component link 2̂>mAΓ = {Kii > Kn} as in Figure 6.

Then the n-fold cyclic branched cover of S 3 branched over DmK, Σ p m Λ : , is
obtained by a surgery on the link L'Ί)rnK. Note that lk(Kι,K2) = lk(K2,Kz) =
• = lk(Kn, K\) and the framing of the component Ki is equal to —2lk(Kχ, K2) + 1
if n > 3 and is equal to -lk(Kλ,K2) + 1 if n = 2.
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tangle TDmK

Fig. 5.

Lemma 2.1.

lk(KuK2) =
—m ifn > 3

-2m ifn = 2.

Proof. Consider the crossing of D^K that must be changed to obtain an
unknot. From the skein relation of the Conway polynomial, we get aι(DmK) =
—ao(K°) where K° is the 2-component link obtained by splicing the crossing of
DmK. On the other hand, -ao(K°) is equal to the linking number of the com-
ponents of K° (see [5]). But this is equal to lk(Kι,K2) if n > 3 and is equal to
l/2lk(Ki, K2) ifn = 2. Noting that aι(DmK) = -m, we get the conclusion. •

Then from Lemma 2.1, we can express the framing in terms of the twisting num-
ber m. Each K{ has the framing 1 + 2m. Thus C^mK = {(#1,1 + 2m),..., (AΓn, 1 +
2m)} is a framed link for Σ p m K .
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Fig. 6.

3. Calculation of Xn

In this section, we will prove Theorem 3.1 and Corollary 3.2 and give a formula
for λn.

Theorem 3.1. Let K be a knot in S3 and D^K its m-twisted double. Then
λn(DmK) is determined by d/dtVDmκ(—l) and m where d/dίV^^—1) is the
derivative of the Jones polynomial of DmK att— — 1.

Corollary 3.2. λn(DmK) is determined by aχ(K) and m where aχ{K) is the
coefficient of z2 of the Conway polynomial of K.

Proof of Theorem 3.1 and Corollary 3.2

The case of n — 2 follows from Proposition 1.7 and the fact that \Hι(Σ2

DrnK; Z)|
= |1 - 4a1(DτnK)\ = |1 + 4ra|. So, assume that n > 3. We use Proposition 1.5 and
the surgery description of Σ ^ m K . Let C^^K = {(ifi, l + 2ra),..., {Kn, l + 2m)} be
the surgery description for Σ ^ ^ as in section 2. The linking matrix is determined
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1 + 2m —m

—m 1 + 2m —m

—m

\ —m

—m 1 + 2m —m

—m 1 + 2m

Then 8ign(ClmK), det(E((£n

DrnK)NV; J)), det(£;((£2)m X)N V)), θ((ClmK)j),

m i < :)) and signature{E(Crl)rnK)) are also determined by m. So we want to
know whether or not αi((£2)mκW c a n ̂ e expressed in terms of the original data
ofDmtf.

To do this we introduce the following notations and proposition. For given
tangles A and B, the tangle A + B is defined as in Figure 7. Also, there are two
operations that associate knots and links to a given tangle A. These are denoted
N(A) and D(A) as in Figure 7.

B
- > •

N(A)

Fig. 7.

Proposition 3.3 ([2], [7]). Let A and B be tangles. Then

Let T'DmK be the tangle which is obtained from TDmK by splitting two arcs of
^x as in Figure 8.
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g
ιDmK Tr

Fig. 8.
DMK

Since the Conway polynomial of a split link is zero, we only consider the case
JtJ-i

that (Ln

DrnK)j is not split. Then [Ln

DrrιK)j = N(TDmK + + TDrnK +Tf

DmK) if

J φ N and (L2)mχ)iv = N(TDrnK H H- TDrnκ)- Then it follows from Proposition

3.3 that

(1) ),(*) = -l

if JφN

if J = N.

(Note that D(T'DrnK) is a split link and N(TDrnK) is an unknot.)

Hence

n(n - l)ao(D(TDmK))n-2

ai(D(TD7nK))

if J^ΛΓ

if J = N.

Note that DmK, DmK{= unknot) and D(TDmκ) are related by single crossing

changes as indicated in Figure 9.

J V XT& 1
DmK ZCT(=unknot)

Fig. 9.

Then from the skein relation of the Conway polynomial, we get

(3) ao{D(TDmK)) =-ai(DmK) = m
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and

(4) ai(D(TDrnK)) = -a2{DmK) = 0.

(Recall that VDτnK(z) = 1 - mz2.)
Thus only Q>i{N(T'D κ)) has not been expressed in terms of the original data of

DmK yet. To do this, we will caluculate \2(DmK) in two ways using Proposition
1.5 and Proposition 1.7.

The two-fold branched cover Σ2

DrnK is presented by the surgery description
C2

DrnK = {(Ku 1 + 2m), (K2i 1 + 2m)}" Note that lk(K1,K2) = -2m. The linking
matrix is

) ί 1 + 2 m ~2m V
The eigen values of E(C2

DmK) are 1 and 1 + Am. So,

det(S(£^ m K )) = l + 4m,

sign(C2

DrnK) = sign(det(E(£2

DrnK))) = sz#n(l + 4m),

and

signature(E(C2

DrnK)) = 1 + sign(l + 4m).

Moreover we.get

and

f 1 + 2m if it J = 1

Note that from (2)

ai((L2Dmκ){j}) = αi(UΓi) = ̂ ( T ^ ) ) (j = 1,2)

and from (2) and (4)

αi((£i>mκ){i,2}) = ̂ ( { K i , ^ } ) = -2a2(DmK) = 0.

By considering all graphs appearing in Figure 2, we get
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Then according to Proposition 1.5, we get

\2{DmK) = sign(l +4m) ^(N\T'DmK)) -

4m)(l + signjl + 4m))
8 /

On the other hand, from Proposition 1.7, we get

(6) \2{DmK) = - ^VDmK(l)
12 at

(Note that ^ ( Σ ^ ; Z)| = | det(E(C2

DmK))\ = sign(l + 4m)(1 + 4m).)
Using (5), (6) and the fact that σ{DrnK) = 0 if m > 0 and σ{DrnK) = -2 if

m < 0, we can express aι{N(Tr

DrnK)) in terms of m and d/dtVDrnK{—\) as follows;

(7) ax{N{T'DmK)) = -JLiLvD m K-(-l) + i m ( m - 1).

Thus in the case of ^£)mK' a ^ t^ r ms appering in Proposition 1.5 are expressed
in terms of the original data d/dtV£>mκ(—l) of DmK and m. This completes the
proof of Theorem 3.1.

To prove Collorary 3.2, note that N(T'DrnK) is isotopic to K$(—K). Since the
Conway polynomial is multiplicative under connected sum, we have

(8) θΊ{N{T'DmK)) = aλ(K$(-K)) = 2ai(K).

This proves Corollary 3.2.

REMARK 3.4. From equations (7) and (8), we can get a relation between the
Conway polynomial of K and the Jones polynomial of DmK as follows;

Id 1
2αi \K) = ——-—Vom K (—1) + —τγι(jγι — 1)

24 dbt 6

or equivalently

—VD K(—1) — —4Saι(K) + 4?n2 — 4m.
at m

A formula for λ n

Note that the linking matrix E(£J,m A :) can be diagonalized to the following
matrix;

En(DmK)
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/ I
1 - 2m (cos ̂  - l) 0

1 - 2ra (cos ̂ f - 1)

o
Then

sign{Cn

DrnK) = sign(det(En(DmK))) =
1 n: odd

sign(l -f Am) n: even.

Let J be a subset of N = {1,... ,n} such that (LrpmK)j is not split. We only
consider such J since cίι((L^)mK)j) = 0 and Q((L1£,rnK)j) = 0 if (£2>mχ)j *s split-

Then from (2), (3), (4) and (7) we get

if ft J = n.

Let Aj(DmK) be the j x j matrix

1 4- 77i — m

—m 1 + 2ra —77i
o

0
—77i 1 + 2m —m

—m 1 H- 77

and Bj( be the j x j matrix

( 1 + 2m -m

—m 1 + 2τπ — m
o

{ o
— m 1 -f 2771 —771

—771 1 + 2771 I

Then

- J)) =
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and

άet(E((Cn

DrnK)N\j)) =

By considering all graphs appearing in Figure 2, we can calculate

as follows;

f 4m2 + 4m + 3 if tf J = 1

2m(3m2 + 2m + 1) if tf J = 2

6m4 if ft J = 3, JtiV = 3

2m4 if U J = 3, tJiV > 3

0 if 4 < fl J < n - 1

t 2 n ( - m ) n ( 2 + m) if J( J = n.

0((Cn

DτnK)j) =

Then λ n (D m K) can be expressed as a combination of m and

as in the following theorem.

Theorem 3.5. Let K be a knot in S3 and D^K its m-twisted double. Then

Xn(DmK) = Sn(m)n [ φ(DmK) ^ m ^ 1 d e t ^ - ^ m ) )

det(En(m))signature(En(m))

with

Sn(m) =
1 n: orfrf or n: even, m > 0

—1 , 7Π < 0,

the j x j matrix

Aj(m) =

( 1 4- m —m

—m 1 + 2m —77i
o

0
— 771 1 + 2 m —771

— 771 1 + 771 J
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the j x j matrix

Bj(m) =

( 1 + 2m -m

—m 1 + 2m —m
o

o —m 1 + 2m —m

2ra

φ(DmK) = -±^VDrnK{-l) + l-m{m - 1),

' 4m2 + 4m + 3 if j = 1

2m(3m2 + 2ra + 1) //j = 2

6m4 ifj = 3,n = 3

2m4 z/j = 3, n > 3

(,2(-m)n(2 + m) if j = n,

the n x n diagonal matrix

En(m)

(\

I-2m (cos f̂ - 1)
o

1 - 2m (cos 2 ^ -

0 1 - 2m (cos 2 ( n ; 1 ) 7 r - l )

REMARK 3.6. In case of m = 0 (untwisted double), the n-fold cyclic branched

cover Σ p o K is an integral homology sphere. J. Hoste [6] has caluculated λn(D0K)

in terms of a\{K) as follows;

λn(D0K) = 2na1(K).

Note that φ(DmK) = 2a\(K). Therefore Theorem 3.5 is a generalization of this

formula.

On the other hand, Xn(D0K) is expressed in terms of djάWΌQκ[—1) as follows;
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