<table>
<thead>
<tr>
<th>Title</th>
<th>A theorem on lattices of a complex solvable Lie group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sakane, Yusuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(1) P.201–P.206</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8298</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8298</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A THEOREM ON LATTICES OF A COMPLEX
SOLVABLE LIE GROUP

YUSUKE SAKANE*)

(Received February 4, 1976)

1. Introduction

A discrete subgroup \(\Gamma \) of a Lie group \(G \) is called a lattice of \(G \) if the homogeneous space \(G/\Gamma \) is of finite volume. It is known that any lattice \(\Gamma \) of a solvable Lie group \(G \) is uniform, i.e., such that \(G/\Gamma \) is compact. In this note we shall prove the following theorem.

Theorem. Let \(G \) be a connected complex solvable Lie group and \(\Gamma \) be a lattice of \(G \). Suppose that \(\Gamma \) is nilpotent. Then \(G \) is nilpotent.

It is known that Theorem is not true in general for real solvable Lie group ([1] Chapter 3, Example 4).

2. Proof of Theorem

First we note that our theorem will be valid in general if it is proved for the case where \(G \) is simply connected. In fact, let \(\tilde{G} \) be the universal covering group with the projection \(\pi: \tilde{G} \rightarrow G \). Then \(\Gamma = \pi^{-1}(\Gamma) \) is a lattice in \(\tilde{G} \) and it is nilpotent, since the kernel of \(\pi \) is contained in the center of \(\Gamma \). Thus \(\tilde{G} \) is nilpotent by Theorem for the case where the complex solvable Lie group is simply connected, and so is \(G \).

From now on assume that \(G \) is simply connected. Let \(\mathfrak{g} \) be the Lie algebra of \(G \) and \(I \) the canonical complex structure. We denote by \(\mathfrak{n} \) the maximal nilpotent ideal of \(\mathfrak{g} \) regarded as real Lie algebra. Since \(\mathfrak{n} \) is given by \(\{X \in \mathfrak{g} \mid \text{ad}(X) \text{ is nilpotent}\} \), \(\mathfrak{n} \) is invariant by \(I \), so that \(\mathfrak{n} \) is a complex subalgebra of \(\mathfrak{g} \). Let \(\mathfrak{g}^k \) denote \(\mathfrak{g} \cap \mathfrak{g}^k \) where we put \(\mathfrak{g}^1 = \mathfrak{g} \). Then \(\{\mathfrak{g}^k\} \) is a descending sequence of ideals. Put \(\mathfrak{g}^\infty = \inf \mathfrak{g}^k \). It is obvious that \(\mathfrak{g}^\infty \) equals \(\mathfrak{g}^m \) for some \(m \) and is a complex subalgebra. We thus have a sequence of ideals:

\[\mathfrak{g} \supset \mathfrak{n} \supset [\mathfrak{g}, \mathfrak{g}] \supset \mathfrak{g}^\infty. \]

*) Partially supported by Yukawa Foundation.
Let \(g^c \) denote the complexification of \(g \). Then \(g^c = g^+ + g^- \) (direct sum), where \(g^- = \{ X \in g^c | IX = \pm \sqrt{-1}X \} \). By Theorem of Lie, we can take a basis \(\{ X_1, \ldots, X_n \} \) of the complex solvable Lie algebra \(g^+ \) such that

1) \(\{ X_{r+1}, \ldots, X_n \} \) is a basis of \((g^-)^+ \)

2) \(\{ X_{r+1}, \ldots, X_n \} \) is a basis of \([g^+, g^+] \)

3) \(\{ X_{s+1}, \ldots, X_n \} \) is a basis of \(n^+ \), where \(n^+ = \{ X \in n^c | IX = \sqrt{-1}X \} \), \(n^c \)

being the complex subalgebra spanned by \(n \).

4) the subspaces \(g_\beta^+ (\beta = 1, \ldots, n) \) spanned by \(\{ X_\beta, \ldots, X_n \} \)

are ideals of \(g^c \).

Put \(Y_j = \frac{1}{2} (X_j + \bar{X}_j) \) for \(j = 1, \ldots, n \). Then \(IY_j = \frac{-1}{2} (X_j - \bar{X}_j) \) and \(\{ Y_1, IY_1, \ldots, Y_n, IY_n \} \) is a basis of \(g \) (over \(R \)). Moreover, if \(g_{2j-1} \) (resp. \(g_{2j} \)) denotes the real vector space spanned by \(\{ Y_j, IY_j, \ldots, Y_n, IY_n \} \) (resp. \(\{ IY_j, Y_{j+1}, IY_{j+1}, \ldots, Y_n, IY_n \} \)). Then \(g_\beta \) \((\beta = 1, \ldots, 2n) \) are subalgebras of \(g \) and \(g_{2r+1} \) is contained in \(g_\beta \) as an ideal. Since \(G \) is simply connected, it follows that every element \(g \in G \) can be written in one and only one way in the form

\[
g = (\exp t_1 Y_1) (\exp t_2 Y_2) \cdots (\exp s_1 IY_1) \cdots (\exp s_n IY_n),
\]

where \(t_1 = t_1(g), s_j = s_j(g) \) \((j = 1, \ldots, n) \) are real numbers (cf. [2]). Since \([IY_j, Y_j] = 0 \) for \(j = 1, \ldots, n \).

\[
g = \exp (t_1 Y_1 + s_1 IY_1) \cdots \exp (t_n Y_n + s_n IY_n).
\]

Thus we get a biholomorphic map \(\Phi: G \to \mathbb{C}^n \) defined by

\[
\Phi(g) = (t_1(s_1(g)), \ldots, t_n(s_n(g))).
\]

Let \(\{ 2C^\pm_{ij} \} \) be the structure constants of the Lie algebra \(g^+ \) with respect to the basis \(\{ X_1, \ldots, X_n \} \). Then we may regard \(\{ C^\pm_{ij} \} \) as the structure constants of the complex Lie algebra \(g \) with respect to the basis \(\{ Y_1, \ldots, Y_n \} \).

Note that, for \(i = \text{s} + 1, \ldots, n \),

\[
ad(X_i) = \begin{pmatrix}
& s & r-s & l-r & n-l \\
0 & 0 & 0 & 0 & \end{pmatrix}
s
\]

where \(A_i = \begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix} \) and \(B_i = \begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix} \)
and, for \(i=1, \ldots, s\),

\[
ad(X_i) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & A_i & 0 \\ * & * & * & B_i \end{pmatrix}
\]

where

\[
A_i = \begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix} \quad \text{and} \quad B_i = \begin{pmatrix} 2C_{i+1}^1 & \cdots & 0 \\ * & 2C_{i+n}^1 \end{pmatrix}.
\]

In the following, decomposition of a matrix in sixteen blocks is always taken in sizes as indicated above.

We note that \((C_{ij}^1, \ldots, C_{ij}^n) = (0, \ldots, 0)\) for any \(j=l+1, \ldots, n\), by the definition of \(g^m\).

Since \(\text{Ad}(g) = (\exp(\gamma(g)\text{ad}(Y)) \cdots (\exp(z_s(g)\text{ad}(Y))\),

\[
\text{Ad}(g)(Y_1, \ldots, Y_n) = (Y_1, \ldots, Y_n) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ B_1 & B_2 & B_3 & 0 \\ B_4 & B_5 & B_6 & B_7 \end{pmatrix}
\]

where

\[
B_3 = \begin{pmatrix} 0 & 0 \\ \star & 0 \end{pmatrix}, \quad B_7 = \begin{pmatrix} \exp\left(\sum_{j=1}^s C_{ij}^1 z_j(g)\right) & \cdots & 0 \\ \star & \exp\left(\sum_{j=1}^s C_{ij}^n z_j(g)\right) \end{pmatrix}.
\]

Consider \(g\) as a real Lie algebra and let \(l(g)\) denote the number of eigenvalues different from 1 of \(\text{Ad}(g): g \rightarrow g\) for \(g \in G\). Define \(\text{rank } G = \sup_{g \in b} l(g)\). An element \(g \in G\) is called regular if \(l(g) = \text{rank } G\). Then it is easy to see that \(g \in G\) is regular if and only if \(\exp\left(\sum_{j=1}^s C_{ij}^k z_j(g)\right) \neq 1\) for all \(k=l+1, \ldots, n\).

Lemma 1. Let \(\Gamma\) be a lattice of a simply connected complex solvable Lie group \(G\). Then \(\Gamma\) contains a regular element of \(G\).

Proof. If we denote by \(N\) the connected maximal normal nilpotent Lie group of \(G\), \(N \cap \Gamma\) is a lattice of \(N\) by a theorem of Mostow ([3], [4]). Let \(\pi: G \rightarrow G/N\) be the projection. Then \(\pi(\Gamma)\) is a lattice of \(G/N\) and \((G/N)/\pi(\Gamma)\) is a complex torus. By the definition of \(\Phi: G \rightarrow \mathbb{C}^s\), it is obvious that \(G/N\) is biholomorphic to \(\mathbb{C}^s\) by \(\pi(g) \mapsto (z_1(g), \ldots, z_s(g)) \in \mathbb{C}^s\). We identify \(G/N\) with \(\mathbb{R}^{2s}\) by
\(\pi(g) = (\Re z_i(g), \Im z_i(g), \cdots, \Re z_s(g), \Im z_s(g)) \).

Consider the real subspaces \(H_k \) of codimension 1 defined by

\[
H_k = \left\{ (x_1, y_1, \cdots, x_n, y_n) \in \mathbb{R}^{2n} \mid \sum_{j=1}^s (\Re (C^*_j) x_j - \Im (C^*_j) y_j) = 0 \right\}
\]

for \(k=l+1, \cdots, n \). Since \(\pi(\Gamma) \) is a lattice of \(\mathbb{R}^{2n} \), there are infinitely many different real subspaces of codimension 1 which are generated by \(2s-1 \) lattice points of \(\pi(\Gamma) \). Hence, there exists a point \(\gamma \in \Gamma \) such that \(\pi(\gamma) \in H_k \) for \(k=l+1, \cdots, n \). Then \(|\exp(\sum_{j=1}^s C_j^* z_j(\gamma))| \neq 1 \) for all \(k=l+1, \cdots, n \) and \(\gamma \in \Gamma \) is a regular element of \(G \).

Lemma 2. (Mostow) Let \(G \) be a simply connected solvable Lie group and \(\Gamma \) a uniform subgroup of \(G \) containing a regular element. Let \(G^0 \) denote the connected Lie subgroup of \(G \) corresponding to \(\Gamma^0 \). Then \(G^0 \cap \Gamma \) is uniform in \(G^0 \).

Proof. See [3] Lemma 5.

Proof of Theorem. Suppose that \(G \) is not nilpotent. Then \(G^0 \neq \{e\} \).

Since \(G^0 \) is a simply connected nilpotent Lie group, \(G^0 \cap \Gamma = \{e\} \) by Lemma 2. Since \(\Gamma \) is nilpotent, \(G^0 \cap \Gamma \) contains a non-trivial element of the center \(C \) of \(\Gamma \). Choose an element \(\gamma \neq e \) of \(G^0 \cap \Gamma \cap C \). We can write \(\gamma \) uniquely as

\[
\gamma = (\exp z_{l+1} Y_{l+1}) \cdots (\exp z_n Y_n)
\]

where \((z_{l+1}, \cdots, z_n) \in \mathbb{C}^{n-l} \).

Note that \(\text{ad}(Y_j) \) is represented by the basis \(\{Y_1, \cdots, Y_n\} \) as follows:

\[
\text{ad}(Y_j) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
A_j & B_j & C_j & D_j
\end{bmatrix}
\]

for \(j=l+1, \cdots, n \),

where

\[
A_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
C_{j1} & \cdots & C_{js} \\
\vdots & \cdots & \vdots \\
C_{js} & \cdots & C_{js}
\end{bmatrix} < j-l,
\]

\[
B_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
0 & \cdots & * \\
\cdots & \cdots & *
\end{bmatrix} < j-l,
\]

\[
C_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
C_{j1} & \cdots & C_{js} \\
\vdots & \cdots & \vdots \\
C_{js} & \cdots & C_{js}
\end{bmatrix} < j-l,
\]

\[
D_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
0 & \cdots & * \\
\cdots & \cdots & *
\end{bmatrix} < j-l.
\]
Fix a $j=l+1, \cdots, n$ and put $\delta_j=(\exp x_j Y_j)\cdots(\exp x_n Y_n)$. Then $Ad(\delta_j)=(\exp x_1 ad(Y_j))\cdots(\exp x_n ad(Y_n))$ is written as follows:

\[Ad(\delta_j) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ P_j & Q_j & R_j & S_j \end{pmatrix} \]

where

\[P_j = C_{j1} x_j \cdots C_{jn} x_j <j-l, \quad Q_j = 0 \cdots 0 <j-l, \]

\[R_j = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ * & \cdots & * \end{pmatrix} <j-l \quad \text{and} \quad S_j = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & * & 0 \end{pmatrix} <j-l. \]

We claim that if $y_0 \delta_j = \delta_j y_0$ for a regular element $y_0 \in \Gamma$, then $x_j = 0$. Put

\[Ad(y_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ B_1 & B_2 & B_3 & 0 \\ B_4 & B_5 & B_6 & B_7 \end{pmatrix}. \]

Since $Ad(y_0) Ad(\delta_j) = Ad(\delta_j) Ad(y_0)$, we get

\[B_4 + B_7 P_j = P_j + R_j B_1 + S_j B_4 \in M_{n-l,d}(C). \]
Consider the \((j-l, k)\)-component of both hands of (3), by (1) we get
\[
\exp \left(\sum_{i=1}^s C_{ij} z_i(\gamma_0) \right) C_{jk} z_j = C_{jk} z_j
\]
for \(k=1, \cdots, s\). Since \(\gamma_0\) is a regular element of \(G\), \(\exp (\sum C_{ij} z_j(\gamma_0)) \neq 1\) and \(C_{jk} z_j = 0\) for \(k=1, \cdots, s\). Thus \(z_j = 0\), since \((C_{ij}, \cdots, C_{ij}) \neq (0, \cdots, 0)\).

Now, starting with \(j=l+1\), we get \(z_j = 0\) successively for all \(j=l+1, \cdots, n\). This contradicts our assumption \(\gamma \neq e\). Hence, \(G\) is nilpotent, and this proves our Theorem.

Remark. The special case of our Theorem has been proved in a stronger form in the section 2 of [5].

Osaka University

References

