

Title	Receptor for Phage ϕ 80 on Escherichia coli K12
Author(s)	Matsushiro, Aizo; Hasegawa, Noriyoshi
Citation	Biken's journal : journal of the Research Institute for Microbial Diseases. 1961, 4(2), p. 137-138
Version Type	VoR
URL	https://doi.org/10.18910/83063
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Receptor for Phage $\phi 80$ on *Escherichia coli* K12

Phage $\phi 80$ showed very strange behavior towards various derivatives of *Escherichia coli* K12. The results obtained are summarized in Table 1.

Table 1. The Behavior of K12 Strains for Phage $\phi 80$

"Sensitive"	"Resistant"
K12 wild (F ⁻ , prototroph, λ^+ , S ^s)	C600 (F ⁺ , TLB ₁ ⁻ , Lac ⁻ , λ^- , S ^r , T ^r _{1,5})
58-161 (F ⁺ , M ⁻ , λ^+ , S ^s)	W1177 (F ⁻ , TLB ₁ ⁻ , Lac ⁻ , λ^+ , S ^r , T ^r _{1,5})
W-3100 (F ⁻ , prototroph, λ^+ , S ^s)	W678 (F ⁻ , TLB ₁ ⁻ , Lac ⁻ , λ^+ , S ^r , T ^r _{1,5})
W-3110 (F ⁻ , prototroph, λ^- , S ^s)	P678 (F ⁻ , TLB ₁ ⁻ , Lac ⁻ , λ^- , S ^r , A ₂ ^r , T ^r _{1,5})
Hfr H (Hfr, B ₁ ⁻ , λ^- , S ^s)	112-12 (F ⁻ , C ⁻ , H ⁻ , λ^- , S ^s , T ^r _{1,5})
Y70 S (F ⁻ , TLB ₁ ⁻ , Lac ⁻ , λ^+ , S ^s)	

F: compatibility factor. M, T, L, B₁, C, H: auxotrophic markers for methionine, threonine, leucine, thiamine, cysteine, histidine. Lac: fermentation of lactose. S, A₂, T_{1,5}: resistance to streptomycin, azide, phage T₁ and T₅. λ^+ : lysogenic for phage λ .

First this phage attacks K12 independently of λ and the F factor. Second, strains carrying T^r_{1,5} marker are mostly resistant to phage $\phi 80$.

Strains 58-161 F⁺ and W-1177 F⁻ were used in Lederberg's classical cross experiments. The former is originally sensitive to $\phi 80$ but the latter is resistant. Strain 58-161 is an auxotrophic mutant; F⁺, M⁻, T⁺, L⁺, B₁⁺, Lac⁺, S^s, T^s_{1,5}, $\phi 80^s$. Strain W-1177 is a complementary auxotrophic mutant; F⁻, M⁺, T⁻, L⁻, B₁⁻, Lac⁻, S^r, T^r_{1,5}, $\phi 80^r$. An attempt to determine the gene locus controlling the receptor for this phage was made by cross experiments on these strains. Recombinants were selected on synthetic media supplemented with 100 μ g/ml of

Table 2. The Segregation of Non-selective Characters (Lac and T_{1,5}) in Recombinants between 58-161 \times W-1177

Parents	Recombinants			
	Lac ⁻ $\phi 80^r$	Lac ⁺ $\phi 80^s$	Lac ⁻ $\phi 80^r$	Lac ⁻ $\phi 80^s$
58-161/F ⁺ \times W-1177/F ⁻ (TLB ₁ ⁺ , M ⁻) (TLB ₁ ⁻ , M ⁺)				
Lac ⁺ $\phi 80^r$ \times Lac ⁻ $\phi 80^s$	67 (37.8%)	5 (2.8%)	52 (29.3%)	53 (29.9%)
Lac ⁻ $\phi 80^s$ \times Lac ⁻ $\phi 80^r$	2 (2.0%)	37 (37.0%)	31 (31.0%)	30 (30.0%)

streptomycin. From the data shown in Table 2, the genetic factor seems to be located between Lac and T-L. The locus controlling the T_{1,5}-receptor is also probably located here.

From these results it seems that these two loci (T^{r/s}_{1,5} and $\phi 80^{r/s}$) are closely

linked to each other or are even identical.

To study this an investigation was made of whether the $T^s_{1,5} \rightarrow T^r_{1,5}$ mutation followed by a $\phi 80^s \rightarrow \phi 80^r$ mutation. $T^s_{1,5}$ strains were all sensitive to $\phi 80$, but $T^r_{1,5}$ mutants selected from these $T^s_{1,5}$ strains were all also resistant to $\phi 80$. The $\phi 80^s \rightarrow \phi 80^r$ mutation was followed, as might have been expected, by a $T^s_{1,5} \rightarrow T^r_{1,5}$ mutation (Table 3).

Table 3. The Cross-resistance Interrelationship between $\phi 80$ and T_1, T_5

	K12	K12/ $\phi 80$	K12/ $T_{1,5}$	K12/ T_1 - $tryp$
$\phi 80$	+	—	—	—
T_1	+	—	—	—
T_5	+	—	—	+

+: sensitive, -: resistance

Recently Yanofsky *et al.* (1959)¹⁾ have described T^r_1 $tryp^{**}$ mutants, which are rare among T^r_1 isolates in strain K12. All the ten T^r_1 $tryp^-$ mutants isolated by Yura (Virus Institute, Kyoto Univ.) and the author were also resistant to phage $\phi 80$. Though these $tryp$ deletion mutants were found to carry the various $tryp$ region deletion (Yura, personal communication), all were resistant to T_1 as well as $\phi 80$ but were sensitive to T_5 .

T_1 $tryp$ is independent region upon $T_{1,5}$ marker on the K12 chromosome. However, from the fact that all the variety of T^r_1 strains are always also the $\phi 80^r$ strain, it is clear that the T_1 phage receptor gene is not only the same as the receptor gene for $\phi 80$ phage but also the receptor site on the cellular surface for both phages is common. This receptor site may be controlled by two different genes in the $T_{1,5}$ and T_1 $tryp$ regions.

Finally it is very interesting that one of the genes controlling the adsorption of this phage is closely linked with the $tryp$ region, because the $tryp$ locus is itself also closely linked to this $\phi 80$ prophage locus on the K-12 chromosome, as will be described elsewhere.

REFERENCE

1) Yanofsky, C. and Lennox, E. S. (1959). Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in *Escherichia coli*. *Virology* **8**, 425-447.

AIZO MATSUSIRO
NORIYOSHI HASEGAWA

Department of parasitology,
The Research Institute for Microbial Diseases,
Osaka University, Osaka
Received on April 17, 1961

** $tryp$: auxotrophic marker for tryptophan.