

Title	The Specific Locus of Prophage ϕ 80 on the K12 Chromosome
Author(s)	Matsushiro, Aizo
Citation	Biken's journal : journal of the Research Institute for Microbial Diseases. 1961, 4(2), p. 139-140
Version Type	VoR
URL	https://doi.org/10.18910/83064
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

The Specific Locus of Prophage $\phi 80$ on the K12 Chromosome

Among the numerous temperate phages isolated by Jacob (1955)¹⁾, all the UV-inducible prophages (82, λ , 434, 381, 21, 424, 466) were linearly arranged on the Gal-R segment of the Hayes *Hfr* strain²⁾. On the other hand, none of the non-inducible prophages was located on the Gal-R segment but rather on other regions.

A study was made of whether the UV-inducible prophage $\phi 80$ is located on the Gal-R segment of the K-12 chromosome. The genetic behaviour of the lysogenic character in cross experiments with $F^+(\phi 80)^-$ and $F^-(\phi 80)^+$ was first studied. In the cross experiment illustrated in Table 1, it was found that the $\phi 80$ -lysogenic character segregates among recombinants. $\phi 80$ prophage is weakly linked to Lac being located on the M (Methionine) marker side. This result suggests that the prophage $\phi 80$ is also usually found on the Gal-R segment where are the loci of Jacob's UV-inducible prophages.

Table 1. The Segregation of Characters (Lac and ly for $\phi 80$) in the Recombinant between W3637 ($F^+T^+L^+M^+Lac^+$, $\phi 80^-$, λ^- , $S^s\phi 80^r$) \times Y70 ($F^-T^-B_1^-M^-, Lac^-, \phi 80^+$, $\lambda^-, S^r, \phi 80^r$) on Minimal Agar Plates Supplemented by Streptomycin.

	Lac ⁻ ($\phi 80$) ⁻	Lac ⁺ ($\phi 80$) ⁻	Lac ⁺ ($\phi 80$) ⁺	Lac ⁻ ($\phi 80$) ⁺
number	194	29	68	9
%	64.7	9.7	22.7	3.0

To test whether the prophage $\phi 80$ -locus is on the Gal-R segment of the K12 chromosome corresponding to the λ -locus, the following cross experiments (Table 2) were made on minimal agar plates containing galactose (1%) as the sole carbon source. In the Table, values represents the percentage of (ly)⁻ and (ly)⁺ in the total *gal*⁺ recombinants. It also shows the grade of linkage of the prophage $\phi 80$ -locus to the *gal* marker. Therefore, the $\phi 80$ prophage occupies a specific site which is distinct from the site of the prophage λ . It may be located near to the prophage 381 or 21 isolated by Jacob.

Table 2. The Grade of Linked Transfer of (ly)⁻ with *Gal*⁺ from the Hayes *Hfr* Strain to *F*⁻ Bacteria

	Hfr (ly) ⁻ \times 3102 (λ) ⁻ ($Gal_2^+B_1^-\lambda^r$) ($Gal_2^-\lambda^r$)	Hfr (ly) ⁻ \times 3102 ($\phi 80$) ⁺ ($Gal_2^+B_1^-\phi 80^r$) ($Gal_2^-\phi 80^r$)
(ly) ⁻	24	91
(ly) ⁺	76	9

It has been reported that clusters of genes, including *tryp* (Pardee *et al.*, 1959³), were located round this prophage locus. Therefore the linkage between the *tryp*- and ϕ 80-loci had to be checked.

As shown in Table 3, it seems that the *tryp*- and ϕ 80-loci are so closely linked that the segregation of two loci are not observed.

Table 3. The Grade of Linked Transfer of (ly)⁻ and Tryp⁺ with Gal⁺ on the Cross of Hayes Hfr (ly)⁻(Gal⁺, tryp⁺, S⁺, B₁⁻) \times F⁻4627 (ϕ 80)⁺(Gal⁻, tryp⁻, S⁺, B₁⁺)

gal ⁺ S ⁺ B ₁ ⁺ recombinants				total	crossing over value %		
(ϕ 80) ⁺		(ϕ 80) ⁻					
tryp ⁺	tryp ⁻	tryp ⁺	tryp ⁻				
0 (0%)	284 (91%)	28 (9%)	0 (0%)	312 (100%)	0		

In strains of *E. coli* K12 the relationship between closely linked loci is traceable by joint transduction (or co-transduction) of P1 kc (Lennox, 1955,⁴) Jacob, 1956). The possibility that the transfer of lysogeny and nonlysogeny is accompanied by *tryp*-transduction by P1 kc was tested as follows:

- 1) (ly)⁻ *tryp*⁺ —— \times (ϕ 80)⁺ *tryp*⁻ / λ / ϕ 80
- 2) (ϕ 80)⁺ *tryp*⁺ —— \times (ly)⁻ *tryp*⁻ / λ / ϕ 80

Joint transduction was not observed. This result is not yet understood.

Nevertheless, these cross experiments clearly show that the *tryp* gene cluster and the ϕ 80 prophage locus are closely linked. Therefore if the specific transduction of *gal*-genes is mainly due to the close linkage between λ and the *gal*-locus, the transduction of the *tryp* marker mediated by the ϕ 80 phage should be also expected.

REFERENCES

- 1) Jacob, F. (1955). Transduction of lysogeny in *Escherichia coli*. *Virology* **1**, 207-220.
- 2) Jacob, F. and Wollman, E. L. (1956). In *Chemical Basis of Heredity* (edited by W. D. McElroy and B. Glass), pp. 468-498. The Johns Hopkins Press, Baltimore.
- 3) Pardee, A. B., Jacob, F. and Monod, J. (1959). The genetic control and cytoplasmic expression of "inducibility" in the synthesis of β -galactosidase by *E. coli*. *J. Mol. Biol.* **1**, 165-178.
- 4) Lennox, E. (1955). Transduction of linked characters of the host by bacteriophage P1. *Virology* **1**, 190-206.

AIZO MATSUSHIRO

Department of Parasitology,
The Research Institute for Microbial Diseases,
Osaka University, Osaka
Received on April 17, 1961