

Title	The Specific Locus of Prophage $\phi 80$ on the K12 Chromosome
Author(s)	Matsushiro, Aizo
Citation	Biken's journal : journal of the Research Institute for Microbial Diseases. 1961, 4(2), p. 139-140
Version Type	VoR
URL	https://doi.org/10.18910/83064
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

The Specific Locus of Prophage $\phi 80$ on the K12 Chromosome

Among the numerous temperate phages isolated by Jacob (1955)¹⁾, all the UV-inducible prophages (82, λ , 434, 381, 21, 424, 466) were linearly arranged on the Gal-R segment of the Hayes Hfr strain²⁾. On the other hand, none of the non-inducible prophages was located on the Gal-R segment but rather on other regions.

A study was made of whether the UV-inducible prophage $\phi 80$ is located on the Gal-R segment of the K-12 chromosome. The genetic behaviour of the lysogenic character in cross experiments with $F^+(\phi 80)^-$ and $F^-(\phi 80)^+$ was first studied. In the cross experiment illustrated in Table 1, it was found that the $\phi 80$ -lysogenic character segregates among recombinants. $\phi 80$ prophage is weakly linked to Lac being located on the M (Methionine) marker side. This result suggests that the prophage $\phi 80$ is also usually found on the Gal-R segment where are the loci of Jacob's UV-inducible prophages.

Table 1. The Segregation of Characters (Lac and ly for ϕ 80) in the Recombinant between W3637 (F⁺T⁺L⁺M⁻Lac⁺, ϕ 80⁻, λ ⁻, S^s ϕ 80°)×Y70 (F⁻T⁻L⁻B₁⁻M⁺, Lac⁻, ϕ 80°, λ ⁻, S^r, ϕ 80°) on Minimal Agar Plates Supplemented by Streptomycin.

COMMAND AND AND THE STATE OF TH	Lac (∲80)+	Lac⁺(∲80)†	$Lac^+(\phi 80)^-$	Lac -(φ80)-
number	194	29	68	9
%	64.7	9.7	22.7	3.0

To test whether the prophage $\phi 80$ -locus is on the Gal-R segment of the K12 chromosome corresponding to the λ -locus, the following cross experiments (Table 2) were made on minimal agar plates containing galactose (1%) as the sole carbon source. In the Table, values represents the percentage of (ly)- and (ly)+ in the total gal+ recombinants. It also shows the grade of linkage of the prophage $\phi 80$ -locus to the gal marker. Therefore, the $\phi 80$ prophage occupies a specific site which is distinct from the site of the prophage λ . It may be located near to the prophage 381 or 21 isolated by Jacob.

Table 2. The Grade of Linked Transfer of (ly) with Gal* from the Hayes Hfr Strain to F* Bacteria

	Hfr (ly) $^- imes3102~(\hat{\lambda})^-$ (Gal $_2^+$ B $_1^-\hat{\lambda}^{ m r}$) (Gal $_2^-\hat{\lambda}^{ m r}$)	Hfr (ly) $^ \times$ 3102 (ϕ 80) $^+$ (Gal $_2$ $^+$ θ 80 $^+$) (Gal $_2$ $^ \phi$ 80 $^+$)
(ly)-	24	91
(ly)-	76	9

It has been reported that clusters of genes, including tryp (Pardee *et al.*, 1959)³), were located round this prophage locus. Therefore the linkage between the tryp- and $\phi 80$ -loci had to be checked.

As shown in Table 3, it seems that the tryp- and $\phi 80$ -loci are so closely linked that the segregation of two loci are not observed.

gal* S ^r B ₁ * recombinants					crossing over value %
(∳80)⁺		(φ 80) ⁻			
ryp⁺	tryp-	tryp*	tryp-	total	
0	284	28	0	312	

Table 3. The Grade of Linked Transfer of (ly) and Tryp with Gal on the Cross of Hayes Hfr (ly) (Gal , tryp , Ss, B1) × F 4627 (ϕ 80) (Gal , tryp , Sr, B1)

In strains of $E.\ coli\ K12$ the relationship between closely linked loci is traceable by joint transduction (or co-transduction) of Pl kc (Lennox, 1955,⁴⁾ Jacob, 1956). The possibility that the transfer of lysogeny and nonlysogeny is accompanied by tryp-transduction by Pl kc was tested as follows:

- 1) (ly)- $tryp^+$ —— $\times (\phi 80)^+$ $tryp^-/\lambda/\phi 80$
- 2) $(\phi 80)^+ tryp^+ \times (1y)^- tryp^- /\lambda/\phi 80$

Joint transduction was not observed. This result is not yet understood.

Nevertheless, these cross experiments clearly show that the tryp gene cluster and the $\phi 80$ prophage locus are closely linked. Therefore if the specific transduction of gal-genes is mainly due to the close linkage between λ and the gal-locus, the transduction of the tryp marker mediated by the $\phi 80$ phage should be also expected.

REFERENCES

- 1) Jacob, F. (1955). Transduction of lysogeny in Escherichia coli. Virology 1, 207-220.
- 2) Jacob, F. and Wollman, E. L. (1956). In *Chemical Basis of Heredity* (edited by W. D. McElroy and B. Glass), pp. 468-498. The Johns Hopkins Press, Baltimore.
- Pardee, A. B., Jacob, F. and Monod, J. (1959). The genetic control and cytoplasmic expression of "inducibility" in the synthesis of β-galactosidase by E. coli. J. Mol. Biol. 1, 165-178.
- 4) Lennox, E. (1955). Transduction of linked characters of the host by bacteriophage P1. Virology 1, 190-206.

AIZO MATSUSHIRO

Department of Parasitology, The Research Institute for Microbial Diseases, Osaka University, Osaka Received on April 17, 1961