|

) <

The University of Osaka
Institutional Knowledge Archive

Prediction of Fatigue Crack Path by Finite

Title Element Method

Fukuda, Shuichi; Miyamoto, Hiroshi; Kujirai,

Author (s) Yoichi et al.

Citation |Transactions of JWRI. 1977, 6(1), p. 47-54

Version Type|VoR

URL https://doi.org/10.18910/8310

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Prediction of Fatigue Crack Path by Finite Element Method!

Shuichi FUKUDA*, Hiroshi MIYAMOTO**, Yoichi KUJIRAT*** and Koji SUMIKAWA***

Abstract

An attempt is made to predict the fatigue crack path in combined mode I and mode I1, using the finite element method,
with the purpose of serving for an optimum design of a structure against fatigue failures. Most crack analyses up to now
have treated the problem of a straight extending crack. But cracks found in structures more or less deviate or extend in
a zigzag manner due to the mixed mode stress state produced, for example, by neighbouring flaws or combined mode loadings.
Especially in a high cycle fatigue where crack growth rate is quite slow, the change in stress state caused by the deviation
of a crack affect the succeeding crack path and crack growth rate. Therefore, the prediction of a crack path is important
from the standpoint of fatigue life evaluation as well. The adoption of the finite element method enabled the successive
pursuit of deflecting crack extension. The predicted fatigue crack path emanating from an oblique crack agrees well with

the experimental result.

1. Introduction

This paper describes the attempt to predict the
fatigue crack path in combined mode I and mode II,
using the finite element method, with the purpose of
serving for an optimum design of a structure against
fatigue failures. Most crack analyses up to now have
treated the problem of a straight extending crack.
But the majority of cracks found in structures are
known to be in the mixed mode stress states, such as
K:—Kir or Kr—K;11. This is due to such facts as (1)
other cracks or flaws are present in the neighbourhood,
(2) the loading itself is a combined loading such as
tension-shear, and (3) the stress at the point of interest
is in mixed mode stress state due to the structural con-
figuration although loading itself is uni-axial. There-
fore, cracks in structures more or less deviate or
extend in a zigzag manner.

The change in stress state caused by the deviation of
a crack affects the succeeding crack path and con-
sequently crack growth rate. This effect is especially
predominant in a high cycle fatigue where crack
growth rate is quite slow. This implies that the pre-
diction of a crack path is important from the stand-
point of fatigue life evaluation as well.

If we adopt the finite element method for analysis,
we cam pursue successively each stage of deflecting
crack extension. This paper analyzed fatigue cracks
emanating from an oblique crack as one example of
fatigue cracks in K;—K:; mixed mode, using finite
element method and attempted to predict its crack
path on the basis of linear fracture mechanics. The

predicted crack path agreed quite well with the ex-

perimental crack path. -

Nomenclature
2¢c=actual crack length, 2a=projected crack length,
ogo=stress amplitude, 2W=plate width, T=plate
thickness, F=Young’s modulus, y=Poisson’s ratio,
f=direction of crack extension, K:,K;;,K;;;=stress
intensity factor for mode I, mode II and mode III
respectively, X=symmetric axis of a test specimen
in the horizontal direction, Y=symmetric axis of a
test specimen in the vertical direction, x,y=crack
tip coordinates parallel to X and Y. x’,y'=coordi-
nates which rotate the x-y coordinates by the angle 0.

2. Crack Path in Combined Mode I and Mode II

Considerable number of works are available on the
crack path in mixed mode?-?-¥.¢.9  But all of these
works are about the branching crack immediately
after initiation from the initial crack. There is, to the
best of the authors’ knowledge, no investigation which
made the successive pursuit of the deflecting crack
path on a computer. If we introduce the finite element
method into the analysis, it is possible to pursue suc-
cessively the deflecting crack path if (1) the condition
for a fatigue crack to grow, (2) the condition as to the
direction of crack extension and (3) the condition as
to the increment of crack extension are given. As it
seems that the condition (1) in mixed mode has not
yet been made fully clear by the experiments, we con-
centrated our chief attention on the crack path predic-
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tion and adopted the following Erdogan and Sih’s
criterion, i.e., maximum stress criterion for condition

).

K; sind+Kir (3 cos6—1)=0 )
where ¢ is taken as shown in Fig. 1.
ys
-
X
a=a - a,
€= ¢«

Fig. 1 Coordinates at the crack tip

The difficulty arises as to condition (3). In actual
material, the amount of crack growth extension is
expected to be determined by such metallurgical fac-
tors as the size of crystal grains or the orientation of
crystals. But in this analysis, isotropicity and homo-
geneity are assumed, so that the crack once started
does not stop. Since the condition (1) has not been
made fully clear either as previously mentioned, the
crack is extended to the direction determined by
Erdogan and Sih’s condition after an arbitrarily chosen
increment of crack extension.

3. Finite Element Analysis Using Quadratic Shape
Function

3.1 6 Node 12 Degree of Freedom Triangular Ele-
ment

In the ordinary finite element analyses, constant
stress elements are used. In the case of constant stress
elements, the stress is constant and does not change
within an element so that the difficulty arises as to
which point should be selected as the stress represen-
tative point of the element. Some researchers recom-
mend to take the center of gravity of the element for
the stress representative point and others recommend
to adopt the nodal stress which is obtained by averag-
ing the stresses of all the elements related to its
node as the stress at node point. No matter which
method might be used in the analysis, extreme fine
meshing is required to analyze the stress field at the
tip of a deflecting crack with accuracy if constant
stress elements are used. Especially to obtain K; or
K:; which represents the stress singularity, it is neces-
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sary to divide the elements into extreme fine meshes
at the crack tip. This means that if constant stress
elements are to be used in the crack path analysis, re-
meshing is required after a certain amount of crack
extension. Consequently, a considerable amount of
computational effort is necessary. As coarser meshing
is possible without the loss of accuracy with increas-
ing degree of shape functions”, 6 node 12 degree of
freedom triangular element derived from a complete
quadratic polynomial function which was developed
by Veubeke® and Argyris® was used in this analysis.
Since this 6 node 12 degree of freedom element as shown
in Fig. 2 has the shape function of the following com-

Fig. 2 6 node 12 degree of freedom triangular element

plete quadratic polynomial form,
u=a+asx+asyfasx?+asxy+asy’
v=ar+asx—+apy+axitanxy+aiy?
stress and strain change linearly within an element:
i.e., the stress at an arbitrary point within an element
can be calculated. But as the shape function is of
quadratic form, the continuity of stress and strain
between elements does not hold, so that the nodal
stresses differ from element to element. In the following
computation, the stress obtained by averaging all the
nodal stresses of the elements related to its node is
used as ‘nodal stress’.

)

3.2 Application to 45° Oblique Crack

Iida and Kobayashi'® studied experimentally fatigue
crack growth from a central oblique crack in com-
bined mode in a 7075-T6 aluminum alloy sheet. The
solid line in Fig. 3 shows the K; and K;; of the experi-
ment at each stage of crack extension calculated by
the finite element method using constant stress ele-
ments and a step solution (zooming solution) technique.
The plots of crack paths themselves are not presented
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CALCULATION

EXPERIMENT BY IIDA AND KOBAYASHI
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Fig. 3 Relation of K7 and Krr against half crack length a
(45° oblique crack)

in their paper. Therefore, in order to examine whether
it is possible to predict the crack path with coarser
division if the quadratic shape function is used, crack
path simulation is conducted and the X; and K;;
values are calculated at each stage of crack extension
and are compared with those values experimentally
obtained. The mesh division around the crack at stage
0 is shown in Fig. 4. The dotted line in Fig. 3 shows

STAGE 0

ELEMENT 100

NODE 216

(45° OBLIQUE CRACK)

Fig. 4 Mesh division around crack

the simulation result. It is observed from the figure
that although the K; and K;; of the initial crack be-
fore propagation can be obtained accurately using a
coarse mesh division if the quadratic shape function
is adopted, sharp differences arise in the K, and K,
values after propagation. So, even if the shape func-
tion is quadratic, the crack tip region must be divided
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into fine meshes repeatedly after every extension of a
crack in order to obtain the accurate crack path and
the reduction of computational efforts is not as much
as expected. Therefore, as will be mentioned in the
next chapter, further attempt is made in this investi-
gation to extend the newly proposed Murakami’s
method to the quadratic shape function. Murakami’s
method determines K in a simplified manner using
constant stress elements.

4. Extension of Murakami’s Method to Quadratic
Shape Function

4.1 Murakami’s Method and its Extension

Murakami'? recently proposed the simplified method
of determining K with high accuracy using the con-
ventional constant stress elements. His method, in
essence, is based on the fact that the stress value of
the crack tip element contains the stress when there
is no crack and he obtained highly accurate K value
by making corrections for this effect. As the procedure
of the crack path determination involves re-division-
ing, there is a contradictory demand that the division
be as coarse as possible and that K be determined
with high accuracy because the accuracies of the K;
and K;; values affect the accuracy of the direction 6
of crack extension!®. Murakami’s method can con-
tain the maximum error in K within 6 %, whatever the
element division may be. Therefore, the authors ex-
tended Murakamis’ method to the quadratic shape
function in order to use the coarser division and to
reduce the computational effort. Figure 5 shows the
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Fig. 5 Correction factors for extended Murakami’s method
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correction factors ¢.,7. for the quadratic shape func-
tion obtained by solving the same problems as Mura-
kami did'. The only requirement ih applying Mura-
kami’s method is to divide the crack tip region in the
same manner as shown in Fig. 5. Therefore, when the
crack path can be roughly estimated beforehand, the
enormous reduction of efforts is possible if elements
are divided in the same manner in the expected direc-
tion of crack extension because the simulation can be
carried out by mere rotation of coordinates at the
crack tip at each stage of crack extension.

4.2 Analysis of 45° Obliqgue Crack Using Extended
Murakami’s Method

Figure 6 shows the result of the re-analysis of the
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Fig. 6 Relation of Kr and K;s against half crack length a
(45° oblique crack)

STAGE 0

ELEMENT 190

NODE 456

(45° OBLIQUE CRACK)

Fig. 7 Mesh division around crack
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same 45° oblique crack case as analyzed in 3.2, using
the extended Murakami’s method. The mesh division
around the crack at stage O is shown in Fig. 7. As can
be seen from Fig. 6, the K values obtained are quite
accurate, although these K values are obtained using
almost the same size element as the one at the crack
tip at stage O as in Fig. 7. But Fig. 6 indicates only
the relation and accuracy of K against the projected
crack length a. As previously mentioned, there is no
experimental data to be compared with the numerically
obtained crack path such as shown in Fig. 8. The

\4
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0 2245 4597 6502 8407 103 1222 1412 X
in mm

Fig. 8 Predicted crack path from 45° oblique crack

test was conducted, therefore, in which a 60° oblique
crack was introduced into a commercial-grade anti-
corrosion aluminum alloy sheet and the experimentally
obtained crack path was compared with the numeri-
cally obtained path, as will be mentioned in the next
chapter.

5. Crack Path Analysis of 60° Oblique Crack
5.1 Experiment

The geometry and the dimensions of a 60° oblique
crack test specimen used for obtaining a crack path
experimentally are shown in Fig. 9. An initial crack
was introduced by wire-cutting. The material is com-
mercial-grade anti-corrosion aluminum alloy sheet
(equivalent to 3003-1/4 H). Tension-tension load with
the load range of 3.30 kg/mm? was applied at 60 Hz.
The 135 mm part as shown in Fig. 9 is the specimen
length at testing and both ends are used for chucking.

5.2 Simulation

The crack path is simulated by the extended Mura-
kami’s method using coarse mesh (I) and fine mesh
(II) to examine the effect of mesh divisioning. The
conventional analysis using the quadratic shape func-
tion as described in 3.2 (hereafter called “direct
method”) was also carried out for comparison. Fig-
ure 10 and Fig. 11 show the mesh division around the
crack of the division (I) of the extended Murakami’s
method at stage 0 and at stage 2 respectively. Figure
12 and Fig. 13 show the mesh division around the
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T 2.0 nm
E = 7000 kg/mm?
v=0.33

in mm

60

Fig. 9 Geometry and size of the specimen used for experiment

STAGE 0

ELEMENT 176

NODE 385

(60° OBLIQUE CRACK)

Fig. 10 Mesh division at stage 0 for extended Murakami’s
method (division I---coarse mesh)
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STAGE 2

ELEMENT 190

NODE 418

( 60° OBLIQUE CRACK )
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Fig. 11 Mesh division at stage 2 for extended Murakami’s
method (division I---coarse mesh)

STAGE 0

ELEMENT 248

NODE 532

( 60° OBLIQUE CRACK )

Fig. 12 Mesh division at stage 0 for extended Murakami’s
method (division II---fine mesh)

STAGE 2
ELEMENT 248

NODE 548

( 60° OBLIQUE CRACK )

Fig. 13 Mesh division at stage 2 for extended Murakami’s
method (division II---fine mesh)
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crack of the division (II) at stage O and at stage 2
respectively. To facilitate the comparison, elements
of the same size and configuration as used in the ex-
tended Murakami’s method was also used at the crack
tip in the direct method, and the stress value at the
‘mid-side’ node as pointed by an arrow in Fig. 14 was

Fig. 14 ‘Midside’ node used for obtaining K in conventional
analysis

used in calculating K by the direct method. In the
extended Murakami’s method, the nodal stress value
at the crack tip was used for obtaining K.

5.3 Results and Discussion

Figure 15 shows the crack paths obtained from

solid line authors' experiment
o extended Murakami's method
( division I --- coarse mesh )
° extended Murakami's method
50 ( division II --- fine mesh )
x conventional method
using quadratic shape function

.
— \*\
Sa —~~—. ———— g
T ——
25 Il -
0 2.50 4.375 6.250 8925 10.0 11.875 x

Fig. 15 Crack Path from 60° oblique crack

experiments and simulations. It should be noted that
no matter what element subdivision is used, the ex-
tended Murakami’s method predicts a crack path
quite well as can be seen easily comparing the results
of O and @, i.e., the results of coarse mesh division
and fine mesh division. This implies that a macroscopic
crack path thus predicted is comparatively insensitive
to the crack growth increment chosen. It is also ob-
served that an accurate crack path cannot be predicted
by the direct method, i.e., by the conventional analysis
using quadratic shape function, unless the crack tip
region is divided into finer meshes. In the direct method
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analysis, the predicted crack path differs from the
actual one at the early stage of crack extension. But
as the crack extends longer, the predicted crack path
comes to run parallel with the actual one. This is con-
sidered due to the fact that as the crack length in-
creases, the relative size of the crack tip element
decreases in comparison with the crack length so that
accuracy increases.

Figure 16 shows the relationship of the K; and K;;
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authors‘’s experiment
X extended Murakami's method
( division I --- coarse mesh )
L] extended Murakami's method
( division II --- fine mesh )
a conventional method

using quadratic shape function

Fig. 16 Relation of K7 and Kr against half crack length a
(60° oblique crack)

against the projected half crack length a. The result ob-
tained by the extended Murakami’s method naturally
agrees well with that of the experiment. But as can be
expected, the K; value obtained by the direct method
differs greatly. Although experimental works which
studied fatigue crack growth in K;—K;; mixed mode
are quite few, Ilida and Kobayashi'®, and Kitagawa
and Susuki® found that the linear relationship be-
tween the crack growth rate da/dN expressed in terms
of the projected crack length ¢, and the K; of the
mixed mode is in parallel with that of da/dN—K; in
mode I, and that the difference between these crack
growth rates is 109/ at the highest. Therefore, although
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the condition for a fatigue crack to grow in mixed
mode is at present not fully clear, these experimental
results indicate that if the crack path is accurately
predicted and the relationship between @ and X; can
" be precisely calculated based on the predicted crack
path, then an engineering optimum design against
fatigue failures can be carried out. It is apparent,
therefore, that the conventional analysis which can
not easily evaluate the precise relationship between
a and K; is not suitable for studying the behavior of
fatigue crack growth in combined mode.

This technique can be applied in a straightforward
manner to such problems as those of deciding the
optimum location for the staggered rivet holes or bolt
holes in an airplane to prevent fatigue failures.

In the case of weldments, the assumption of
homogeneity does not hold any more because material
properties change by welding heat input so that the
straightforward application of this technique is not
possible. But if the fatigue tests are conducted using
specimens with material properties corresponding to
each region such as weld metal, HAZ, or base metal
which can be obtained by welding thermal cycle tests,
and once the relationship between fatigue crack growth
rate and stress intensity factor can be established for
each region, it is considered possible to incorporate in-
homogeneity into the analysis at least from the stand-
point of design. Another important problem in welding
is the problem of residual stress. But now as welding
residual stresses can be evaluated by the thermal elasto-
plastic finite element method, the K value in the residual
stress field can be obtained. In this manner, therefore,
it is considered possible to apply the present technique
to the optimum design of weldments against fatigue
failures based on fracture mechanics. Further, to cite a
practical example, this technique could be applied to
such problems as the determination of, for example,
optimum root gap or optimum leg length of a fillet
joint with a root gap from the standpoint of preven-
tion of fatigue failures.

6. Summary and Conclusions

The prediction of fatigue crack path in the com-
bined mode by the finite element method was at-
tempted, with the purpose of serving for an optimum
design of structures against fatigue failures and the
fatigue crack path emanating from an oblique initial
crack was successfully predicted.

The following conlcusions are obtained;

(1) The fatigue crack path from an oblique crack in
combined mode is successfully simulated by the
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finite element method.

(2) In the crack path prediction in combined mode,
the reduction of computational efforts by the
introduction of higher shape function is not so
great as in other cases.

(3) Extension of Murakami’s method to the quad-

ratic shape function brings about the considerable
amount of reduction of computational efforts in
the crack path prediction without the loss of ac-
curacy.
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