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GENERIC NORM OF AN ALGEBRA*

Dedicated to Professor K. Shoda on his sixtieth birthday

By

Natuan JACOBSON

The notions of the rank or principal polynomial of an associative
algebra and the corresponding notions of trace and norm are classical.
These notions have been generalized recently by the author ([13,I]) to
apply to strictly power associative algebras, and we have renamed
these concepts the generic minimal polynomial, trace and norm, since
this terminology appears to be more in keeping with present day usage
in analogous situations. In our paper we investigated the groups of
linear transformations which preserve the norms in special central
simple Jordan algebras. This applies to central simple associative alge-
bras as a special case. In a later paper ([13, III]) we studied the norm
preserving groups of exceptional central simple Jordan algebras. The
groups obtained in this way are generalizations of the complex Lie group
E, and include certain geometrically defined subgroups of the collineation
groups of Cayley planes.

In this paper we shall give a systematic study of generic norms for
strictly power associative algebras. We shall first answer a question on
the multiplicative property of the generic norm which was left open in
our first paper: We shall prove that M{ab)=M{(a) M(b) holds if M(x) is
any irreducible factor of the generic norm N(x) which is normalized so
that M(1)=1, and q, b are contained in an associative subalgebra of the
given algebra. Assuming the base field is large enough we shall deter-
mine all the homogeneous polynomials @(x), x=>3>7 &;u;, & indeterminates,
(#;) a basis, which satisfy multiplicative properties in a strictly power
associative algebra. In particular, we shall show that if 2 is associative
simple and the base field is large enough then Q(ab)=@Q(a)Q(b) for all
a, b€ implies that @ is a power of the generic norm.

This result is well known for A=®, the algebra of #x#n matrices

* This research has been supported by the U.S. Air Force under grant SAR-G-AFOSR-
61-29.
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over ® and it includes a theorem on multiplicative polynomial functions
on fields which is due to Flanders ([9]). Our results are applicable also
to alternative algebras and will be used in a forthcoming paper by
Schafer ([19]) on forms of degree » which permit composition.

A second aspect of the norm theory deals with Jordan algebras. For
these we prove a Jordan multiplicative property: M({aba})= M(a)*M(b)
where {aba} =2(ba)a—ba’ and M(x) is any normalized irreducible factor
of the generic norm N(x). Again assuming &® is large enough we can
determine all homogeneous polynomials @(x) having this property. We
shall consider also the question as to how completely an algebra is
determined by its generic norm. In this connection we shall show that
under mild restrictions on ®, equivalence of generic norms for Jordan
algebras one of which is separable implies #-isotopy of the algebras
([15]). This implies that if A and B are associative algebras, B separ-
able simple, and ¥ and B have equivalent generic norms then 2 and
B are either isomorphic or anti-isomorphic. The Jordan multiplicative
property of the generic norm implies that this function is Lie invariant
under multiplications by elements of generic trace 0. This and a result
of Tits’ ([21]) permit us to extend to the characteristic p case a result
of [13,I] on the Lie algebra of linear transformations having N as Lie
invariant.

1. Generic minimum polynomial. We recall that a (not necessarily
associative) algebra 2 is called power associative if the subalgebras
generated by single elements are associative and A is strictly power
associative if 2, the algebra obtained by extending the base field ® of
A to the extension field Q Rlo=0X®sA) is power associative for every Q.
Throughout this paper we deal exclusively with algebras which are finite
dimensional over a field, are strictly power associative, and have identity
elements. Wherever the term “algebra” is used without modifiers in the
sequel, it will be understood that all of these conditions hold. ‘“Sub-
algebra” will mean subalgebra containing 1 and “homomorphism” will
mean algebra homomorphism in the usual sense such that 1—1.

Let A be an algebra and let («,,«,, ---, u,) be a basis for A over ®.
Let &,&,, -, &, be indeterminates and P=®(¢,, §,, ---, &,) the field of
rational expressions in the & with coefficients in ®. We form the algebra
A, and consider the element x=3&u; of the algebra. We call this a
generic element of the algebra 2 over ®. Let

(1) m,(N) = N —o (" o +(—1)70,(x)

be the minimum polynomial of x as element of the power associative
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algebra 2Ap. Then it can be shown that the o;(x) are polynomials in the
&s, that is, oy (x) € ®[§,&,, -+, E,] ([13, I]). Of particular interest are the
first and last coefficients which we denote also as o,(x)= T(x), o,,(x)=N(x).
The polynomial o,(x) is homogeneous of degree i in the &£s and m,(\) is
homogeneous of degree m in A and the &s. A change of basis from
(u;) to (v;) where v;=3] m;;u; gives a new generic element y=3 &v;=
V& mju;. It follows that m,(\), T(»), N(y) are obtained from m,(\),
T(x), N(x) respectively by substituting & —3>1&;u; in the latter poly-

nomials. In this sense m,(A), T(x), N(x) are determined by 2 over &.
Accordingly, we shall call these the generic minimum polynomial, generic
trace and gemeric norm of the algebra. The degree m of m,(\) in A (or
in A and the &’s) will be called the degree of the algebra.

Now let @ be an element of 2. We can write azéa,-u,- and
specialize & —a; in m,(\), T(x), N(x). This will give a polynomial
(2) my(A) = N —o(@\" "'+ - +(—1)"0,(a)

€ ®[A] and elements T(a), N(a) €®. These are respectively the generic
minimum polynomial, generic trace and gemeric norm of the element a. It
is easily seen that these objects are unchanged under a change of basis
for 2 (and hence of the generic element) and that m,(a)=0. Hence m,(\)
is divisible by the minimum polynomial u,(A) of a. It is clear also that
m,(\), T(a), N(a) are unchanged under extension of the base field: If
Q is an extension of ® and we identify ¥ with a subset of A, then
m,(\), T(a), N(a) are the same if ¢ is considered as an element of A or
as an element of W,. On the other hand, these objects may change if
A is replaced by a subalgebra ®B or the base field ® is changed. Con-
sequently, we shall sometimes require the more precise notations mz, y o(\),
Ty 0(@), Ny o(a) or m, y(\), Ty(a), Ny(a) for m,(\), T(a), N(a). We remark
also that if we consider the algebra p, P=®(&,, &, -+, £,) then m,(A)
is the generic minimum polynomial of the element x of this algebra.
A similar statement can be made for N(x), so N(x)=Nyy(x) and T(x)
= TQl P(x)
The following result is known

Theorem 1. Let N be a finite dimensional strictly power associative
algebra containing 1 and let m,(\), T(a), N(a) be the generic minimum
polynomial, trace and norm of a, p,(\) the minimum polynomial of a.
Then :

(i) T(xa)=aT(a), xed, T(a+b)=T(a)+ T(b)

(ii) N(aa)=a”N(a), N(ab)=N(a)N(b) if a, b are in a subalgebra
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D[ c]] generated by an element c.

(iii) NQAl—a)=m,\)

(iv) T@)=m, NQ1)=1

(v) every irreducible factor of m,(\) is a factor of p,(\)

(vi) mg,A)=m,\) if n is an isomorphism or anti-isomorphism of A
onto N =B, ‘

(vii) the coefficients of m,(\) are Lie invariant under derivation.

In (iii) the left hand side is the generic norm of the element A1—a
contained in the algebra e, where ®(A) is the field of rational expres-
sions in the indeterminate A. The meaning of (vii) is that if o(x) € ®[§,,
&, -+, &,] is one of the coefficients of m,(A) as in (1) and D is a deriva-
tion in A over ® then the congruence oya-+ (aD)t)=0o;(a) (mod #°) holds
in ®[¢], ¢ an indeterminate. Parts (i)-(vi) of Th. 1 have been proved
in [13,I]. Part (vii) is due to Tits and will appear in [21].

It is useful to introduce the analogue of the adjoint of a matrix.
We define

(3) adja = o,,_(a)l—o, (aa+ - +(=1)""'a"".
Then adja € ®[a] and the relation
(4) a(adj a) = N(a)l

is equivalent to m,(a)=0.
Now assume the characteristic of ® is either 0 or a prime p_>m.
Then we set

(4) (a,a, ,a, = %[N(a1+a2+ o ta,)

— 2IN(@,+ - +di+ s ta,)+ 2IN(@ e +dit e

i<j

+ e +a,)— o (=17 N(a)]

where the A indicated omission of the term appearing directly below it.
Then (a,, a,, -+, @,,) is symmetric and multilinear and N(a)=(a, q, -+, a).
Hence
m,\) = N"—o (@' + - +(—1)"0,(a) = NA1—a)
=Al—a, M —a, -+, M —a).

If we differentiate this with respect to A (m—i7)-times and set A=0 we

obtain the formula
i

(m—i)! <—1)fo,-<a>=<—1>f”z.if<a‘, a1, 1),
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Hence we have
i

(4) oia) = (’:’) (@ -,a1,-,1)
In particular, T(a)=m(a, 1, ---,1).

2. Multiplicative properties of the generic norm. We shall now
show that the multiplicative property of N given in Th. 1 (iii) is valid
whenever a, b are contained in a associative subalgebra of 2[. This was
conjectured in [13, I]. We shall in fact prove a stronger result on factors
of N(x). In general, we denote elements of ®[&, &, ---, &,] as M(x),
Q(x), etc., where x is the generic element x=3)&u;. If M(x) is a factor
of N(x) in ®[§,, &,, ---, &,] then N(1)=1 implies that M(1)=-0. Hence
we can multiply M(x) by a suitable element of ® and obtain M(1)=1.
A polynomial having this property will be called normalized. Clearly
N(x) has a unique factorization in ®[&,§,, ---, £,] as a product of
normalized irreducible factors. We shall show that these normalized
irreducible factors are multiplicative on associative subalgebras of A.
For the present the base field ® is arbitrary.

Lemma 1. Let x be a generic element of N and let
(5) m,(\) = =\, 2) 7\, 1) - 7,0, X)
be the factorization of m,(\) into irreducible factors with leading coefficient
1innin ®[N, &, ,E ] Then
(6) N(x) = =0, x)7,0, x) --- 7,(0, x)
is a factorization of N(x) into irreducible factors in ®[&,,&,, -, &,]

Proof. We may assume %, =1 in the basis («,, #,, -, #,). Set
pd&,, &, -+, E)==,0,x). Then we have to show that every ¢;(¢,,&,, -, §,)
is irreducible. If this is not the case, we may assume that ¢,(§) =7(£)¢(§)
where these are polynomials of positive degrees in the &s. Then

¢1(>\'—§1, _—527 "ty ’En)
= 7](7\-_51, _-EZ) Tty —gn)é‘(k'_fu —Ezy ttty ‘En)
and, since m,(\)=N(Q\1—x), '
mx()\‘) = 7/0\‘—517 ’§2v Sty T n)é‘(k‘—gn ’Ezr R ’En)¢2()"—§l’
__EZ, tt, T n) o0 ¢r()‘——§1’ ’Ez, ttt —En) .

This is a factorization of m,(\) as a product of r+1 factors of positive
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degree in ®[A, &, +-,&,]. This contradicts the fact that (5) is a factori-
zation into irreducible factors.

Lemma 2. Let B be a subalgebra of N and let y=$n,-v,- be a

generic element of B, 7n’s indeterminates, x= > E;u; a generic element of

A If v;=>)pj;u; then we let m,\) and N(y) be the polynomials which

are obtained from m,(\) and N(x) by the substitutions &—2> n;p;;. Then
J

my(\) and m, g(\) have the same irreducible factors (except for multipli-
cities) in ®[N, 5., -+, n,] and N(y) and Ng(y) have the same irreducible
factors in ®[9,, -, 7,].

Proof. We extend the base field to A=®(9,, 7,, *-*, ,). Then m,(\)
and N(y) are respectively the generic minimum polynomial and norm of
the element y=>)7,v; of A,. Since m, x(\) is the minimum polynomial
of y, Th. 1 (v) shows that m, (\) and m,(A) have the same irreducible
factors in A[A]. Since these are polynomials in A and the 5’s with leading
coefficient of A equal 1, it follows that they have the same irreducible
factors in ®[X, 7, --+,#,]. By Lemma 1, the irreducible factors of Ng(y)
in ®[#,,n,, ---,n,] are associates of the polynomials #(0, y) where =(, )
is an irreducible factor of m, g(\). The proof of Lemma 1 shows also
that a similar statement can be made for N(y) and m,(A). It follows
that N(y) and Ng(y) have the same irreducible factors in ®[7#,, -+, #,].

Lemma 3. Let U be associative and let M(x) be a normalized irredu-
cible factor of N(x) in ®[&,,&,, -+, E,]. Then

(7) M(ab) = M(a) M(b)
for all a, be¥.

Proof. Since the product of multiplicative functions is multiplicative,
it suffices to prove (7) for ® algebraically closed. We take 1-1 representa-
tion a—A (1—1) of A by matrices in the NxXN matrix algebra ®,.
This can be taken in reduced form :

A,

A, *

(8) A= R H Ai€©n,"
.Ak

where a—A; are irreducible matrix representations. The generic element
x of A is represented by
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(9) X = .
'X,,

Now the generic norm in the matrix algebra ®, is the determinant.
Hence, if we identify 2 with its image in ®,, ¥ with X, then Lemma 2
implies that M(x) is an irreducible factor of det X=det X, det X,---det X,.
We shall now show that every det X; is irreducible in ®[&,, &,, ---, &, ]
Since ® is algebraically closed, Burnside’s theorem shows that we can
choose #n} elements a“® €9 such that the ;-th component matrices A{*
in (8) form a basis for the complete matrix algebra ®,.. We may assume
that the @Y% are part of a basis for U over ®. If we set all the &s
except those attached to the @“? equal O then X; becomes a generic
element of ®,;. It is well known that det X; is irreducible if X; is generic.
Hence det X; is irreducible for x generic in %A. It now follows that
M(x)=det X; for some i. Since a—A and the determinant are multipli-
cative, (7) is valid for all @, b in U.
We can now prove

Theorem 2. Let N be an algebra as in Th. 1 and let M(x) be a

normalized irreducible factor in ®[§,,&,,--+,&,] of the generic norm N(x).
Then
10) M(ab) = M(a) M(b)

holds if a and b are contained in an associative subalgebra B of U.

Proof. Let y=2rj 7;0; be a generic element of B. Then M(y) is a
1

factor of N(y) and so this is a product of normalized irreducible factors
of N(y). By Lemma 2, these are irreducible factors of Ng(y). Hence,
by Lemma 3, they are multiplicative for a, 6€®B. Hence (10) holds for
a, beB,

Evidently Th. 2 implies that if M(x) is a product of normalized
irreducible factors of N(x) then M(ab)=M(a) M(b) holds for a, b in any
associative subalgebra B. If U is alternative, any two elements generate
an associative subalgebra. Hence M(x) is multiplicative for all a, b in
an alternative algebra.

We shall show next that the multiplicative properties given in Ths.
1 and 2 are characteristic of products of normalized irreducible factors
of N(x). The precise result we can prove is the following

Theorem 3. Let N be a strictly power associative finite dimensional
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algebra with an identity. Let x=i Eu; be a generic element of N and
1

Q(x) a non-zero homogeneous polynomial of degree q in ®[E,E,, -, &,]
Let |®| be the cardinal number of ®, m the degree of N. Assume either
one of the following two sets of conditions :

() Q(ab) =Q(a)Q(b) for all a and bed[a], ]d)|>qm
B) Q(ab)=Q(a)Qb) for all a, b and |®|>q.

Then Q(x) is a produbt of mnormalized irreducible factors of the gemeric
norm N(x) of 2.

Proof. Assume (@) and introduce additional indeterminates 7,, 7,,
e Ot Y=t x+ s+ a"eUg, Q=DE,, -, E,, 70, 0, 7,m), and
consider the polynomial F(x, y)=Q(x)Q(y)—Q(xy). This is a polynomial
of degree at most gm in the &s and ¢ in the #’s. The usual proof of
the theorem on specialization of non-zero polynomials with coefficients in
an infinite field shows that if F is a non-zero polynomial with coefficients
in a field ® and ® contains more elements than the maximum degree
of F in any of the indeterminates then values can be chosen for the
indeterminates in ® so that F==0 for these values. Since (@) implies
that F(x, y)=0 for all x=a, y=>b and |®| >gm we see that F(x, y)=0 in
®L&, -, €, m, -, 7,] Now consider the relation (4) for the generic
element x: x(adjx)=N(x)1. We have adjx=0,, ,(x)—0,, (x)x+ - +
(—1)"'x™" and the o,(x) are polynomials in the &s. Since F(x, y)=0
we have on specializing 7, =0,,_,(x), 7,= —o0,,_,(x), etc. that F(x, adj x)=0.
Thus we have the relation

(11) Q(x)Q(adj x) = Q(x adj x)
= QN(x1)
= Q)N(x)”.

The multiplicative property and the assumption that @(x)==0 imply that
Q()=1. Also Q(adj x) e ®[E,, ---, £,]1; hence (11) shows that Q(x) is a
factor of N(x)? in ®[&,, ---,&,]. Since Q(x) is normalized (Q(1)=1) it
follows that Q(x) is a product of normalized irreducible factors of N(x).
A similar argument applies to (8). Here we use indeterminates &, -,
E,, 71, -+, 1, and the elements x=>"&u;, y=>"nu; of g, Q=D (&,, -+,
&, 7, ,n,). We consider the polynomial F(x, y)=Q(x)Q(y)—Q(xy)
which is of degree ¢ in the &s and #’s. Assumption (8) implies F(x, y)=0.
The rest of the argument is a repetition of that used in («).

We consider next the special case of Th. 3 in which U is simple
alternative. Then U is either associative or is a Cayley algebra. If A
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is associative, then Dieudonné ([8]) has proved that m,(\) is irreducible.
Hence, by Lemma 1, N(x) is irreducible in ®[&,,§,, ---,&,]. Dieudonné’s
argument is also applicable in the alternative case. (We shall consider
this more fully for Jordan algebras in §4.) Theorem 3 and irreducibility
of N(x) have the following

Corollary. Let U be a finite dimensional simple alternative algebra
and Q(x), x=> &u;, a homogeneous polynomial of degree q such that
Q(ab)=Q(a)Q(b) for all a,beN. Assume |®| >q. Then Q(x) is a power
of the generic norm N(x). :

3. Generic norms for Jordan algebras. In the remainder of this
paper we restrict our attention to Jordan algebras. We recall that this
class of algebras is defined by the identities :

12) ab = ba, (a’b)a = a’(ba),

and it is assumed that the characteristic is #4=2. We shall assume also
that every algebra is finite dimensional and has an identity element. If
2 is an associative algebra over a field of characteristic =2 than A
defines a Jordan algebra 2* whose vector space is the same as that of

A and whose multiplication is ab:%(aberbxa) in terms of the given

associative multiplication x in 2. Such algebras and their subalgebras
are called special Jordan algebra. The associative algebra 2 and the
Jordan algebra 2+ have the same power structure, that is, the associative
power a”* concides with the Jordan power @*. Hence it is clear that U
and A" have the same generic minimum polynomials, norms and traces.
Hence it is clear that the generic norm theory for Jordan algebras has
direct application to associative algebras of characteristic =}=2. These
remarks apply also to alternative algebras of characteristic =2 since it
is true also that if 9 is alternative then 2" is a Jordan algebra.

In any Jordan algebra 2 one has the important ternary composition

13) {abc} = (ab)c+ (bc)a—(ac)b .

This satisfies a number of identities, the most noteworthy being
{aub} = {bua} ,

{{{auat ublua} = {{aualui{bua}} ,

(15) {a{b{aca}bla} = {{aba}c{aba}} .

(14)

These are easily checked in special Jordan algebras since {abc} =

—é— (@axbxc+cxbxa) in terms of the associative multiplication X.
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Their validity for arbitrary Jordan algebras then follows from a general
principle due to I. G. MacDonald to the effect that any identity in three
variables which is of degree at most one in one of these will hold for
all Jordan algebras if it holds for all special Jordan algebras ([18] or
[14].

Identities (14) have the following significance. If we fix # we can
consider {aub} as a wu-product @,b of @« and b. Then (14) states that
this u-product satisfies the defining identities for Jordan algebras. If «
is regular in A in the sense that # has an inverse v in ®[«] then the
algebra (¥, #) with the multiplication @,b= {aub} has the identity element
v. (See [15] for this and the other results stated here without proof.)
The Jordan algebra (U, #) is called the wu-isotope of 2. The relation
between (U, #) and A is a symmetric one. If A is an associative algebra
the u-isotope (A", #) of the Jordan algebra 2" is isomorphic to A*+. To
see this we define the multiplication ax,b=axuxbd in . This gives
another associative algebra 2, and the mapping y—w (w=wu"") is an
isomorphism of 2 onto 2,. Also it is clear that the wu-isotope (', u)
is the special Jordan algebra ;. Hence y—yv is an isomorphism of
A+ onto A =(AU*, ). We recall also that isotopic algebras are not always
isomorphic.

If we denote the mapping y—ya in ¥ as R, and the mapping
y—{aya} as U, then (13) gives the relation U,=2R2—R,. Also the
identity (15) can be written in operator form as

(15/) UanUa = U(aba) .

We now take up the theory of the generic norm of Jordan algebras.
In [13, I] we verified by case considerations that the generic norm N(x)
of a central simple Jordan algebra satisfies the Jordan multiplicative
property N({aba})=N(a)’N(b). We shall now prove the following general
result.

Theorem 4. If U is a Jordan algebra and M(x) is a normalized
irreducible factor in ®[&,, &,, ---, &,] of the gemeric norm N(x), then

(16) M({aba}) = M(a)’M(b)
for all a,be.

Proof. Let ®B be the subalgebra generated by ¢ and 4. By a theorem
of Shirshov-Cohn ([20] or [14] and [7]), ®B is special so B can be re-
garded also as a subalgebra of a special Jordan algebra &+, & associative.

Let y=> n;v; be a generic element of B, Then we know that N(y)
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and Ng(y) have the same irreducible factors in ®[#,, »,, -+, 7, ] (Lemma
2). Since M(x) is a factor of N(x), M(y) is a factor of N(y). Hence
M(y) is a product of normalized irreducible factors of Ng(y) so it is
enough to prove (16) for these factors. Now we can pass to the Jordan
algebra & which contains ®B as a subalgebra. Let N* denote the generic
norm for this algebra. Then the irreducible factors of Ng(y) coincide
with those of N*(y). Let N*(»)=P,(»)P,y) --- P(y) be the factorization
of N*(y) into normalized irreducible factors in ®[#,, 7,, ---, 7,]. Then
(16) will follow if we can prove Pj{aba})=Pa)*Pyb), 1<i<k, a, be®.
This will follow by specialization if P;({aya})=P;(a)’P{y) holds for y=
2Vn;0; €CL, A=®(y,, ,, -+, 7,) and @ in B. Now N*(y) is the generic
norm in the associative algebra €, and {aye} =axyXa in terms of the
associative multiplication. Hence, by Th. 2, N*({aya})=N*(a)’N*(¥).
We now fix @ and consider the subalgebra ®[a] generated by a.
We may assume also that ® is infinite and we shall apply some results
from the theory of algebraic groups. Let G be the group of units of
the polynomial algebra ®[a]. Since G is defined by N*(c)==0, G is an
open subset of ®[«] in the Zariski topology. Hence it suffices to prove
P({cyc}) =Py(c)’P(y) for all c€G. If c€G we let R, denote the mul-
tiplication z—zc in ®[a]. The image R(G) is a group of linear trans-
formations in ®[a] and ¢— R, is an isomorphism. Since the set of right
multiplications in the commutative associative algebra ®[a] can be
characterized as the set of linear transformations which commute with
all these multiplications, it is clear that R(G) is an algebraic group of
linear transformation in the space ®[«]. Since c— R, is a polynomial
mapping and G is an open subset of ®[a], R(G) is an irreducible
algebraic group. If we express {cyc} in terms of the associative mul-
tiplication in €, we see that {c,{c,yc.}c.} = {(c.c.)y(c.c,)} for c¢;€G and
{c{cyc}c} =y for c€G. Hence if we write y =>)7jv,={cyc} then

73=217;z7: where the matrix y(c)=(v;,) is non-singular and c—v(c) is
1

a group homomorphism of G (or R(G)). Also it is clear that the mapping
R.—>v(c) is a polynomial mapping. The mapping y— 3y = {cyc} can be
extended to an automorphism A(c) in ®[#,, 7., -+, 7,1 and vy(c)— A(c) is
an isomorphism, so ¢—A(c) and R,—A(c) are homomorphisms. If c€G,
N*({cyc}) =N*(c)’N*(y) and N*(y)=P(y)P(y)--- Py). Hence P(y)*“=
p:Py(y) where i—14 is a permutation 7z(c) of 1,2, ---,k and p; is a non-
zero element of ®. It is clear that ¢—7(c) is a homomorphism of G
into a finite group so the kernel H is a subgroup of finite index in G
and R(H) is a subgroup of finite index in R(G). If ce€H, P({cyc})=
p:P(y), 1<i<k, and since Py(1l)=1 and P;({clc})=Pi(c®)=Pi(c)’, by Th,
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2, we have p;=P;(c)’. Hence P,({cyc})=Pic)’Pi(y), 1<i¢<k, holds for
all ce H. Conversely, these conditions insure that c€ H. Now these
conditions show that H is an algebraic subset of G. Hence R(H) is an
algebraic subgroup of R(G). Since R(G) is irreducible and R(H) is of
finite index in R(G) we must have R(G)=R(H) ([6], p. 86). Then G=H
and P;({cyc})=Py(c)’P,(») holds for all ¢ in G. This completes the proof.

We observe that if M(x) satisfies (16) then so does —M(x). Hence
any product of normalized irreducible factors of N(x) or the negative of
such a product satisfies (16). On the other hand, we have ’

Theorem 5. Let Q(x) be a non-zero homogeneous polynomial of degree
g in ®[E,E, -, &, such that Q({aba})=Q(a)’Q®) for all a, b in the
Jordan algebra U. Assume |®| >q*. Then Q(x) is either a product of
normalized irvreducible factors of the generic norm N(x) of U or the negative
of such a product.

Proof. If we take a=b=1 in the assumed relation we obtain Q(1)
=Q()’. Also taking e=1 gives Q(b)=Q(1)’Q(b). Since we can choose
b so that Q(b)+40 we see that Q(1)==0 and Q(1)’==+1. If we replace @
by —@, if necessary, then we may assume Q(1)=1. Set x=3)&u,,
y=>'n;u;, where the &s and 7»’s are indeterminates and consider the
polynomial F(x, y)=Q({xyx})—Q(x)’Q(y) in ®[&,, -, &,, n., -+, 7,]. This
is of degree ¢ in the &'s and of degree ¢ in the 7’s. Moreover, F(a, b)=0
for all a, b€?. Since |[®| >4¢° this implies that F(x, y)=0. Specialize
y=adj x. Then we obtain Q({x(adj x)x})=Q(x)*Q(adj x). Since {x(adj x)x}
=N(x)x this gives

N@x)Q(x) = Q(x)*Q(adj x) .

Hence N(x)?=Q(x)Q(adj x) which shows that @(x) is a product of irredu-
cible factors of N(x). Since @Q(1)=1 these can be taken to be normalized.

We shall now consider a Jordan multiplicative function which has
been introduced by M. Koecher ([17]). We define K(e)=det U, and,
for the generic x=2>&u; in e, .. ¢,, We define K(x)=det U, where
U,=2R:2—R,>. Clearly, the entries of the matrix of U, relative to the
basis (u,, #,, --+, u,) are homogeneous quadratic polynomials in the &s.
Hence K(x) is a homogeneous polynomial of degree 2z in the &s. By
(15) and the multiplicative property of determinants, we have K({aba})
=K(a)’K(b). Also K(1)=1 since U,=1. Hence we can apply Th. 5 to
conclude that K(x) is a product of irreducible factors occuring in N(x).
However, we can obtain a better result in another way. We recall that
an element ¢ is regular (has an inverse) if and only if the operator U,
has an inverse ([15]). Also, since m,(») and the minimum polynomial
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u.(A) have the same irreducible factors and « is regular if and only if
pa(\) is not divisible by A it is clear that a is regular if and only if
N(a)==0. Since U, is regular if and only if K(a)=det U,==0 it is clear
that we have the following situation: N(«)=0 if and only if K(a)=0.
This is valid also in 2, where Q is the algebraic closure of ®. Hence,
by the Hilbert Nullstellensatz we have

Theorem 6. The polynomials N(x) and K(x)=det U, have the same
irreducible factors (not counting multiplicities).

We remark that this result permits the use of K(x) in place of N*
in the first part of the proof of Th.4. We remark also that if ® is the
field of real numbers or the field of complex numbers then the second
part of the proof of Th. 4 can be replaced by a classical argument using
the connectedness of the group G used in the proof.

4. Generic norm of a simple Jordan algebra. We now give a list
of “standard” simple Jordan algebras over a field ® together with their
generic norms. If & is algebraically closed then any simple Jordan
algebra will be isomorphic to one of the algebras of our list.

A(m)=®;,, ®,, the associative algebra of m xm matrices over .
The generic norm of ¢ €®;, is N(a)=det a.

B(m), the subalgebra of ®,, of symmetric matrices. Here N(a)=det a.

C(m), the subalgebra of @3, of symplectic symmetric matrices. These
are defined by the condition ¢~'a’g=a where &’ is the transpose of ¢ and

q=<_01 (1)’”> The condition on @ is equivalent to (ga)’=—qga. The

m

generic norm is N(a) is the Pfaffian Pf(qa).
D, the Jordan algebra of a non-degenerate symmetric bilinear form
(a, b) of maximal Witt index in a vector space M over ® with dim I >1.
Here D=®1 @M and multiplication is defined by (al+a)(Bl+b)=(aB+
(a,0))1+(ab+Ba) for a,B in @, a,b in M. We have N(«l +a)=a*—(a, a).
E, the exceptional (non-special) Jordan algebra of 3x 3 hermitian
matrices over a split Cayley algebra C. These have the form
a, a,
@am a=\|a a, a

a, a, &y

where the g; €C, a; is the conjugate of «;, and the «; €®. The generic
norm is

(18) N(a) = aax,a,+ T((a,a,)a,) —a,N(a,) —a,N(a,) —a,N(a,)
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where 7 and N are the generic trace and norm in C: 7T(c)=c+c,
N(c)=cc=cc.

Lemma 1. The generic norm of any ome of the standard simple
algebras listed above is irveducible. For every o € ® there exists an element
v in the algebra whose generic minimum polynomial is N '(A—«).

Proof. It is well known that the determinant of a generic matrix
and of a generic symmetric matrix are irreducible ([5], pp. 176-177).
The irreducibility for the generic norm for the algebras C(m) is proved
in [10]. (We remark that this is equivalent to the irreducibility of the
Pfaffian of a generic skew symmetric matrix.) Also it is well known
that a non-degenerate quadratic form in more than two variables is
irreducible ([5], p. 137). Hence the first statement holds for the algebras
A—D. 1t is clear from (17) that a suitable specialization of the generic
element of the exceptional Jordan algebra E gives a generic element of
the algebra B(3). Moreover, N as defined in E reduces to the determinant
of the symmetric matrix. Since the latter is irreducible, it follows that
N(x) is irreducible for x generic in E. To prove the second statement
we take v to be the matrix with single entry « in the (1, 1)-position for
A(m), B(m) or E. In D there exist non-zero orthogonal idempotents e,
and ¢, such that e¢,+e¢,=1. We take v=ae,. If b is any »nXn matrix

then v=<g [9>EC(m). Take b in v to be the matrix « in the (1, 1)-

position with O’s elsewhere. It is easy to check that the generic minimum
polynomial of v is A" (A —a).

Lemma 2. Let U be a central simple Jordan algebra over ®. Then
there exists a finite dimensional separable extension field A of ® such that
N, is a standard simple algebra.

Proof. If 2 is of degree two then 2 is the Jordan algebra of a
non-degenerate symmetric bilinear form in W over ® with dim 9% >1.
A suitable extension field of the form A=®(\/«,, Va,, =+, Va,) will
make the extension of (@, b)) to W, have maximal Witt index. Since
the characteristic is not two it is clear that A is separable. Then 2, is
an algebra D of our list. If 2 is special and not of degree two, it is
known that either 2 has the form &" where € is central simple associative
or U is the subalgebra of J-symmetric elements of a simple associative
algebra € with an involution J where € is either central or J is of second
kind and the center of € is a quadratic extension of ® ([16]). If A=E,
& central simple associative then & has a finite dimensional separable
splitting field A. Then €,=A, and Ei=A; so A, is an algebra A of
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our list. If 2 is the Jordan algebra of J/-symmetric elements in a central
simple Jordan algebra € and A is a splitting field for & then A, is either
an algebra C or it is an algebra of y-symmetric matrices of A,, where
v is a diagonal matrix and y-symmetry means v 'a’y=a. If we take a
suitable extension A(\«a,, Va,, -**,Va,) We may replace v by 1 and
obtain an algebra B. Since A can be taken finite dimensional separable
it is clear the result holds in this case. If U is the set of J-symmetric
elements of & with involution of second kind and center A a quadratic
extension of ® then 2, is of the form &*, & central simple over A.
The result then follows from an earlier case. It remains to consider the
central simple exceptional Jordan algebras. Such an algebra is either a
division algebra or it is reduced ([2]). In the first case, the base field
has to be infinite: It is known also that if ¢ and b are elements of A
whose coordinates do not satisfy a certain finite set of algebraic equa-
tions then the subalgebra B generated by « and b is nine-dimensional
central simple ([3]). Also since B is generated by two elements it is
special. It follows that 2 contains a nine-dimensional special central
simple subalgebra B. Hence a suitable finite dimensional separable ex-
tension field A of ® produces a non-trivial idempotent in B,, so in A,.
Then A, is reduced. Finally, assume U is reduced. Then U is the set
of 3x 3 y-hermitian Cayley matrices for some Cayley algebra C. If the
Cayley algebra is split then we may take y=1 and obtain the algebra
E ([3]). Otherwise, a suitable quadratic extension A of ® will make C,
split. Then 2, is the algebra E. This completes the proof.
We can now prove

Theorem 7. The generic norm of any simple Jordan algebra U over
@ is irreducible.

Proof. Let I' be the center of U, so 1" is a field. We consider first
the case in which I' is purely inseparable of exponent p°, p the character-
istic, and % is standard over I. Let (v,=1, v,, ---, v,) be a basis for 2 over
I, (vi=1,9, -+, 74 a basis for I' over ®. Then (y;v;) is a basis for A
over ® and if {;; are indeterminates then z=31{;;v;v; is a generic ele-
ment of A over ®. Let x=3>1§&;v; be a generic element of A over I, 7, (\)
its minimum polynomial (in W, ..¢,). Then z is a root of m,(A) which
is obtained from 7,(\) by the replacements §;—~>218:;7:. The coefficients

of m,(\) are polynomials in the ¢{’s with coefficients in I By Lemma 1,
m,(\) is irreducible in I'[A, &, -+, §,]. Now the specialization ¢;;=0 for
¢ >1 converts z to 2'=>&;;v; and m,(\) to m,(\) which is obtained
from m,(\) by the replacement &;,—¢;;. Hence m,/(\) and, a fortiori,
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m,(\) is irreducible in I'(A, {;;]. Since I' is of exponent p° over @,
m,\)?°e ®[N, &;;]. Let ¢ be the smallest exponent such that m,(\)?€
®[A, &;;]. Then m,(2)=0 implies m,(z)?=0. Hence m,(\)? is divisible in
@[, ¢;;] by the minimum polynomial i,(\) of z over ®(&;;). Since m,(\)
is irreducible in I'(A, £;;] and ¢ is minimal it follows that m,(\)=m,(\)7.
Since I' is of exponent p° over & we can choose @€' such that the
minimum polynomial of « over ® is M*°—a?’. By Lemma 1, there exists
a v €A whose generic minimum polynomial #2,(A) in 2 over I' is A" '(A —a).
Then the generic minimum polynomial of » in A over ® is A !X —a)’.
Hence a?€® and since A?°—a?° is the minimum polynomial of @ over
®, ¢>p°. Hence m,(\)=m,(\)?°. If k(\) is a factor of m,(\) in ®[X, &;;]
of positive degree then k(\)=m,(\) € @[\, {;;]. Hence r=¢g=p° and
k(A)=m,(\). Thus m,(\) is irreducible and hence N(z) is irreducible in
®[¢;;]. Next assume I' is purely inseparable over @, 2 arbitrary over
I By Lemma 2, there exists a separable extension A of I' such that
ARA is standard. Since A is a separable extension of the purely
inseparable extension I' of ®, A=E®4l" where E is separable over ®.
Then A=ERA has A as center and this algebra is standard over A.
Also A is purely inseparable over the base field E. Hence, by the result
just proved, the generic norm of Ay over E is irreducible. Consequently
the generic norm of 2 over ® is irreducible. Next let 2 be any algebra
over a field I' which is finite dimensional separable over ® and suppose
the generic norm of 9 over I' is irreducible. We claim that the generic
norm of 2 over ® is irreducible. We use the bases and notations z, x,
m,(\), m,(\) of the first part of this proof. Thus z is a generic element
of A over ®, x a generic element of A over I, m,(A) is the minimum
polynomial of x and m_,()\) is obtained from m,()\) by specialization. Then
m,(\) €[\, &;;] and m,(2)=0. Let Q be the normal closure of I' over
® and let s,=1, s,, -+, s; be the distinct isomorphisms of I' over ® into
O over ®. Then if 0 is a primitive element of I' over ®, the minimum

!
polynomial of & over ® is g(\)= II (A—&°). Consider the polynomial
! b=t
IIm,(A)%. This is invariant under every automorphism of the Galois
r=1

group of Q over ®. Hence it belongs to ®[A, {;;]. Let II'm,(\)* be a
product of the conjugates #,(A)°r of least degree having coefficients in ®
and having the factor m,(A). Then II'm,(2)°*=0, so II'm,(\) is divisible
by m_,(A). On the other hand, since #€T, the generic minimum poly-
nomial #m,(A)=MA—0)" and so II'my(\)e=II'"(A—8%)". Since this poly-
nomial has coefficients in ® and has € as a root it is divisible by a
power of the separable irreducible polynomial g(A). This implies that
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Ir'= IiIlrﬁz(k)sk ) IiIlr%Z(X)sk is the product of the conjugates m,(A)’+ of
leastk(_iegree havingkacoefﬁcients in ® and divisible by #,\). This implies
that IiIle(x)sk is irreducible in ®[A, &;;]. Since it is divisible by m,(\)
we s;;a that mz(k)zinI1 m,(\)°r is irreducible. Hence N(z) is irreducible

in ®[¢;;]. We can now complete the proof. Let 2 be simple with center
I' and let E be the maximal separable subfield of I' over ®. Then I is
purely inseparable over E. Hence the generic norm of 2 over E is
irreducible. Since E is separable over ® the result we have just proved
shows that the generic norm of U over @ is irreducible.

A number of other results are implicit in the foregoing proof. We
state these without explicit proofs: (1) If % is a purely inseparable
field over ® of exponent p° then the generic norm N(a)=a?‘, acA. (2)
If %A is a separable field over ® the generic norm coincides with the
usual norm #ny,0(@). (3) If A is simple with center I' then Npo(Ny (@)
=Ny o(@). (4) If A is arbitrary and the generic norm of A over I' is
irreducible and I' is finite dimensional separable over ® then Npo(Ny (@)
=Ny o(a).

The following two results are immediate consequences of Ths. 5, 6
and 7.

Corollary 1. Let U be a simple Jordan algebra over ® and let Q(x)
be a non-zero homogeneous polynomial of degree q in ®[&,,&,, -, &,] such
that Q({aba})=Q(a)’Q®b) for all a, b in N. Assume |®| >q". Then
Q(x)= = N(x)*.

Corollary 2. Let 9l be a simple Jordan algebra. Then the degree m
of A is a divisor of 2n, n=dim N and K(x)=det U,=N(x)"".

5. Separable Jordan algebras. A Jordan algebra is said to be
separable if it is a direct sum of simple algebras which have separable
centers. An equivalent condition is that 2, is semi-simple (has no non-
zero solvable ideals) for every extension field Q of the base field. The
main tool for studying separable Jordan algebras is the following criterion.

Theorem 8. A Jordan algebra is separable if and only if the trace
bilinear form (a, b)=T(ab) is non-degenerate.

Proof. We note first that (a, b) is associative :
19) (ab, ¢) = (a, bc)
This is equivalent to T(A(a, b, c))=0 for A(a,b,c))=(ab)c—a(bc)=b[R,,R.].
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Now D, .=[R,, R.] is a derivation in 2 and 7(6D)=0 follows from Th.
1 (vii) for every derivation D. Hence (19) is valid. This relation implies
that the radical A+ of (e, b) is an ideal. If R is the radical (maximal
solvable ideal) of the algebra then 2”"=0 for every z€®R. Then T(2)=0
and since R is an ideal, (2, @)=0 for all «. Hence RZA+. Hence non-
degeneracy of (@, b) implies R=0. Also, since non-degeneracy of («, b)
is invariant under extension of the base field, g is semi-simple for every
extension of ®. Coversely, assume 2 is semi-simple for Q the algebraic
closure of ®. Then Ug=A, PA,P --- DU, where the U; are ideals. It
is easily seen that if ¢€%y and a=a,+a,+ -+ +a,, a;€¥; then T (a)=
T(a)+ -+ + Tw(ay), T; the generic trace in ;. Also it is known that
the trace bilinear form on the simple 9; is non-degenerate ([13, I]).
Hence (a, b) is non-degenerate.*

For base fields ® of characteristic 0 or p_>m, the degree of A, we
have defined (a,, ,, -, a,,) by (4), that is, by linearizing the generic norm
N(a). Following Schafer, we shall say that N(x) is non-degenerate on
A if (b, a,, -, a,)=0 for all ;€A implies b6=0. We shall show that
this is also a condition for separability of 2. We require first

Theorem 9. The generic norm of a Jordan algebrva N is Lie invariant
under the multiplication R,, a€ U, if and only if the generic trace T(a)=0.

Proof. This will be a consequence of

(20) N +tab)=N(b)+N®)T(a)t (mod#).

We have

(21) N({A +ta)b(A +ta)} = N1 +ta)’N(b)

by Th. 4. Also N(1+ta)=1+¢tT(a) (mod?*) follows from N(Al—a)=
A" — T(@)N" '+ ---. Hence we have N(1+ta)’=1+2T(a)t (mod #*). Next
we have

{@+ta)b(1—ta)} = 2(b(1+ta))(1+ta)— b1 +ta)
=b+2bat (mod ).

Hence, by (21),
N(b+2bat) = (1+2T(@)t)N(b) (mod?).

Replacing a by %a gives (20).

* It is possible to prove this in another way which does not make use of the structure
theory. We shall give such a proof in a forthcoming paper on Cartan subalgebras of Jordan
algebras.
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We can now prove

Theorem 10. Let A be a Jordan algebra of characteristic 0 or p_>m
the degree of N. Then W is separable if and only if the generic norm
N(x) is non-degenerate.

Proof. We can linearize the relation (20) to obtain

(22) (alb’ a,, --',dm)+(dl,(lzb, a;, "')am)
e +(a17 Ayy >y A1y dmb)
= T(b)(al, /223 (lm) .

We recall also that 7T(a)=m(a, 1, ---,1) (4). Suppose first that N is
degenerate : there exists a z==0 such that (z, a,, -, @,,)=0 for all a; in
A. Taking a,= - =a,,=1 gives T(2)=0. Taking a,=a, a,= - =a,,=1,
b=z in (22) gives T(az)=0. Hence (a, 2)=0 for all ¢ and the trace form
(a, b) is degenerate. Conversely, assume there exists a z==0 such that
(2, @)=0 for all . Then the radical A+ of the trace form is ==0. We

have (2,1, ---,1)=0 and suppose we have already proved that (z, a,, ---,
a., 1, ---,1)=0 for all @; €A, zeY+. Since A+ is an ideal we have
(2ap.ss @y, 5 Ay, 1, -+, 1)=0 for all ¢;. Then (22) and the symmetry of
(a,,a,, - ,a m) 1mp1y that (2,a,, -+, ap,,1,---,1)=0. Hence (z, a,, -, a,,

=0 for all ¢; €, z€ AL and N(x) is degenerate. The result now follows
from Th. 8.

6. Norm equivalence. Two algebras ¥ and B are called norm
equivalent if there exists a 1-1 linear mapping a¢—a’ of 2 onto B such
that N(a")=pN(a) for all a€ U, where p is a non-zero element of ®. Let
A be Jordan, # a regular element of A. We denote the generic norm in
the isotope (U, #) of A by N™(a). The identity mapping is a norm
equivalence of 2 and (2, #) since we have the following

Lemma. N®(a)=Nw)N(a), ac.

Proof. We may assume the base field is algebraically closed. Then
u has a square root v in 2. To see this we decompose ®[u]=B,PHB,P
.. @B, where B; is an ideal of the form B;=de;+N;, ¢; the identity of
B, and N; a nil ideal. Then u=31b;, where b;=a,(¢;—4z,), «;=4=0, z,€ N;.
The power series expansion for (1—4)»)’1* is

22k—2)!

¥ _
Q- =1- zk'(k o

which has integer coefficients. Since z; is nilpotent
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_ 2(2k—2)! ,
v; = C(iiF (6;-2%&)

is defined and satisfies v¥?=58;. Hence v’=u for u=>v;. Hence N({vav})
=N@w)N(a). We have

(23) {vav}” — T ({vav}) {vav}” '+ --- +(—=1)"N({vav}) = 0.

The subalgebra generated by » and « is special, so it may be considered
as a subalgebra of an algebra & where € is associative. We have

{vav} =vxaxwv in terms of the associative multiplication in € and powers
are the same in € and G*. Hence

{vav}* = vxaxuxax--xXaxv, kas.

If we use this in (23) and multiply the resulting relation left and right
by v' we obtain

(24) axuxax-xa—T({vav})axux---xa
+ o +(=1D)"N({vav})u = 0.
Using {aub} =%(a Xuxb+bxuxa) we can prove by induction that the
k-th power of a in (¥, u) is
(25) a¥* = axuxax--xa, kas.
Hence (24) can be written as
(26) a™*— T ({vav})a™ **+ -+« +(—1)"N({vav})u™ = 0.
Since 7' is the identity for (2, #) this is a polynomial equation for a
in (2, ). Moreover, the same argument shows that we have
27 12— T ({vxv}x™ 0% + - +(—=1)"N({vxo})u™ =0

for x generic. Since the relation between 2 and (U, #) is a symmetric
one it is clear that this is the minimum polynomial of x in (2, #). Hence
N®(x)=N({vxv})=N(u)N(x). Specialization gives the required relation
N®(a)=Nw)N(a).

In dealing with norm equivalence it is natural to assume that the
degrees of the algebras are the same. We do this in the following

Theorem 11. Assume ® of characteristic ==3 and |®|>m=deg A
=deg®B. Assume also that B is a separable Jordan algebra. Then the
Jordan algebras W and B are norm equivalent if and only if N is isomorphic
to a u-isotope of B.
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Proof. The condition is clearly sufficient in view of the preceding
lemma. Conversely, suppose 7 is a 1-1 linear mapping of U onto B such
that N(a")=pN(a), ac?. Let v=1". Then we have N(v)=pNA)=p==0,
so u=v"" exists in B. We can form the u-isotope (B, #) whose identity
is ». We have N“(a@")=N(u)N(a")=p 'pN(a)=N(a) and 1" =v the identity
of (B, u). We observe next that the radical of a Jordan algebra and
any isotope coincide. This is clear since the radical is a nilpotent ideal.
It follows that if an algebra is semi-simple or separable then any isotope
is respectively semi-simple or separable. In particular, we see that (B, u)
is separable. Hence if we change our notation we can reduce the proof
to showing that if 5 is a 1-1 linear mapping of U onto B such that
N(@")=a, ac W and 1" is the identity of B then # is an isomorphism.
The proof of this is identical with the proof of the special case B=U
central simple treated in Th. 4 of [13, I]. We therefore omit the re-
mainder of the argument.

We recall that if 2 and B are simple associative algebras then 2+=B"
if and only if 2 and B are either isomorphic or anti-isomorphic ([4] or
[11]). We recall also that 2 and 2" have the same generic norms and
that any isotope of 2" is isomorphic to A*. These facts together with
Th. 11 imply the following

Theorem 12. Let W and B be separable simple associative algebras of
the same degree over a field ® of characteristic ==2, 3 such that |®|>m
=deg . Then N and B are norm equivalent if and only if they are either
isomorphic ov anti-isomorphic.

ReEMARk (added in proof). As has been shown by Landherr (Hamburg
Abhandlungen, vol. 11 (1934), p. 53), it is easy to establish the existence
of two associative central division algebras 2 and B of degree three over
the rational field (or over an algebraic number field) which are neither
isomorphic nor anti-isomorphic but 2, and B, are either isomorphic or
anti-isomorphic for A the field of real numbers or any p-acid field, p=
2,3,5, ... Let N, and N, denote the generic norms of ? and ® respectively.
Then Theorem 12 implies that N, and N, are homogeneous cubic forms
in nine variables which are not rationally equivalent, but which are
equivalent in the strict sense obtained by taking p=1 in our definition
in the real field and in every p-adic field.

7. The Lie algebra £(, N). In this section we assume that
|®| >m=degA. Let QL N) denote the set of linear transformations A
in 9 having N as Lie invariant, that is, N(a+(e¢A)t)=N(a) (mod ¢*). If
x is generic, we have N(x+(xA)t)=N(x)+ N, (%)t +N,(x)t"+ --- where the
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N;(x) are of degree<m. Since A€ ¥, N) we have N,(@)=0 for allac
and since |®|_>m this implies that N,(x)=0. Hence the extension of A
to A, where Q is an extension field of ® has N as Lie invariant also.

Assume for the moment that @ is infinite and let 3() be the algebra
of polynomial functions on . These can be defined intrinsically as the
elements of the algebra of mappings of 2 into ® generated by the linear
mappings. The latter constitute the conjugate space 2* of 2 and PB(A)
is isomorphic to the algebra of polynomials ®[&,, &,, -, &,], & indeter-
minates, #=dim 2. Then if A is a linear transformation in 2 over &,
the transpose * has a unique extension to a derivation D, in PB®L).
If ¢ is an indeterminate any polynomial function @ on U has a unique
extension to Weys. If A is a linear transformation in 2 we have
@pla+(aA)t)=p(a)+p.(a)t +p,(a)t’+ -+ and we obtain a mapping @ — @, in
PBRL). One checks that this is a derivation in (). If A is linear then
@ (@) =p(aA), so p,=p(aA)=pA*, A* the transpose of A. Thus the deriva-
tion @ — @, coincides with D, on A*. Consequently, @ —, is D, on ().

We can verify that D,y.z=Ds+Dy, D,o=aD,, Diyp1=[Ds, D.]
where [XY ]=XY—YX for linear transformations X, Y. Also D,=0
implies A*=0 and A=0. Hence A— D, is an anti-isomorphism of the
Lie algebra of linear transformations in 2 into the Lie algebra of deri-
vations in PB(A). If the base field is of characteristic p==0 we have
D,»=D,? which means that A— D, is an isomorphism for restricted Lie
algebras. If @ is any element of PB(A) the set of derivations of P(A)
mapping ¢ into O is a subalgebra of the derivation algebra of ()
which is restricted if the characteristic is p==0. Hence the set 2%, @)
of linear transformations A of A such that @D,=0 is a subalgebra,
restricted for characteristic p, of the Lie algebra of linear transformations
in A. If we recall that @(a+(aA)t)=p(a)+(pDy)(a)t+ --- we see that
LA, ) is the set of linear transformations having @ as Lie invariant in
the earlier sense (@(a+ (aA)t)=p(a) (mod £%)).

Now consider the algebra 2 again where we assume only that
|®|>m. We have seen that if A€ 2, N) then the linear extension A
of A to g€y, N). If we take Q infinite and use the results just
indicated we see that (2, N) is a Lie algebra of linear transformations
in ¥ which is restricted if the characteristic is p==0.

Now assume the characteristic is either 0 or p_>m and let (a,, a,,
-+, a,,) be the symmetric multilinear form obtained from the norm form
as before. Then N(a)=(a, a, ---, a). Consequently,

N(a+ (@A)t = (a+(aA)t, a+(aA), ---, a+(aA)t)
= N(a) +m(aA, a, ---, @)t (mod %)
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which implies that A€, N) if and only if (¢4, a, ---, a)=0. If we
linearize this relation we see that A€ &R, N) if and only if
(28) (a1A7 ayy am)+(a1, a2A7 Ay, o, am)+

ot +(a1y Ayy vy Qv amA) =0 .

We have seen that ¥(2, N) contains the Lie algebra of derivations
D) (Th. 1, (vii)). Also if U is Jordan then LA, N) contains R®l) the
set of multiplications R, where b is in the subspace 2 of elements of
generic trace 0 (Th. 9). If D is a derivation then 1D=0 and if b€
then 1R,=b. Hence D) R(A")=0. Hence for Jordan algebras we have

(29) A, N) DDA +RA), DEA)NRA) = 0.

We shall now consider the situation for 2 a separable Jordan algebra
and we prove first the following

Lemma. Let U be a separable Jordan algebra over a field ® of
characteristic ==3 containing more than m elements, m the degree of AU.
Then a linear transformation A in W over ® is a derivation if and only
if A€, N) and 1A=0.

Proof. We have seen that any derivation satisfies the indicated
conditions. Conversely, assume A satisfies the conditions. We write
m,A)=A"—c (@N""'+ -+ +(—1)"0,(a). Then for p€ ® we have

N(pl—a) = m,(p)=p" —o(@)p" "+ -+ +(—=1)"0,(a) .
Since 1A=0 and N is Lie invariant for A, we have
N(pl—(a+(aA)t) = N((p1—a)—((p1—a)A)?)
= N(pl—a) (mod?¢’),
which gives
P —o(@)p” 7+ e+ (—1)" 0, (a)
=p"—o(a+(@A)p" "+ - +(—1)"o,(a+(aA)) (mod?),
or
Low(a+(ad)t)—o(a)]p™ '+ -« +(—1)"[ou(a+(aA))—0,(a)]
=0 (mod?).

If we choose m distinct values of p in (30), we see, by a Vandermonde
determinant argument, that o;(a+(e¢A)t)=o;(a) (mod £*), which shows that
every o;(a) is Lie invariant under A, We have shown in [13, 1], p. 186
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that 7(a*) and T(a,) are expressible as polynomials in the o; with coeffi-
cients in ® if U is central simple. Since a separable algebra becomes a
direct sum of central simple algebras on extending the base field to its
algebraic closure this result is valid in the present situation also. It
follows that 7T(¢*) and 7T(¢°) are Lie invariant under A. Since the
characteristic is =+2, 3 a linearization such as we applied to obtain (28)
shows that if (@, b)=T(ab) and (a, b, ¢)= T((ab)c)= T(a(bc)) then

(30) (aA, b)+(a, bA) =0
(a4, b, ¢c)+(a, bA, ¢)+(a, b, cA) =0

for all a, b, cc . The first of these gives
((@ab)A, ¢)+(ab, cA) = 0

and the second gives, on noting that (a, b, ¢)=(ab, ¢),
((@aA)b, ¢) +(a(bA), ¢)+(ab, cA) = 0.

Hence
((@ab)A—(aA)b—a(bA), c) = 0.

Since (@, b) is non-degenerate this implies that (ab)A=(aA)b+a(bA) which
is the condition that A is a derivation.
We can now prove

Theorem 13. If U is a separable Jordan algebrva over a field of
characteristic ==3 which has more than m elements where m is the degree
of U, then

(31) QL N) = RA) D D) .

Proof. We know that ¥(2, N) contains R(’) and D) and the sum
of the latter two spaces is direct. Now let A€ 2®, N). Then N1+ (1A)?)
=1 (mod #) and the relation m,(A\)=N(\1—a) implies that N(1+(1A))=1
+T(1A) (mod#*). Hence a=1A satisfies T(a)=0 so a€ W’ and R,e RQ).
Set B=A—R,. Thisisin 2(A4, N) and satisfies 1B=0. Hence B & DN).
Thus A=R,+B& (W)+DR) and (31) holds.

We know that (ab, ¢)=(a, bc) or (aR,, ¢)=(a, cR,) which shows that
R, is symmetric (coincides with its adjoint) relative to (a, b). On the
other hand, the Lie invariance of 7(a’) relative to derivations show that
(aD, b)+(a, bD)=0 for D any derivation. This shows that D is skew
relative to (4, b). The decomposition (21) of ¥(2, N) is therefore the
unique decomposition of LRI, N) as direct sum of the spaces of symmetric
and skew elements relative to (a, b). Hence we have the following
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characterization of multiplications by elements of generic trace O and of
derivations.

Corollary. Under the same hypothesis as tn Th. 13 we have: A
linear transformation A in U has the form A=R,, acW if and only if
A has N as Lie invariant and A is symmetric relative to (a, b). A linear
transformation A in U is a derivation if and only if A has N as Lie
invariant and A is skew relative to (a, b).

If the characteristic is 0 it is known that D) coincides with the
set Y(A) of inner derivations, that is, the set of derivation of the form
x— > A(a;, %, b)), Ala;, x, b;)=(a;x)b;—a;(xb;). ([12]). It is clear from
the decomposition A=®1 PA’ that we may take the a; and b; to satisfy
T(a;)=0, T(b;)=0. Since x—A(a, x,b)=x[R,R,] and [[R,R,JR.1=Raws c,o>
it follows from Th. 13 that €[, N) is the Lie algebra of linear trans-
formations generated by the R,, a€?l, if ® is of characteristic 0. If
the characteristic is p this need not be the case. For example, let A=,
where p|m. It is easy to see that J() consists of the mappings x— [x&]
where T(b)=0. On the other hand, if ¢ is any element of ®; then
x—[xa] is a derivation and if 7(e¢)==0 then this cannot have the form
x—[xb] with T(b)=0. Using the known results on the derivations of
central simple algebras ([16]) and the structure of classical Lie algebras
it is easy to sort out the cases in which D)= ).
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