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1. Introduction

Let M be an n-dimensional closed minimally immersed hypersurface in
the unit sphere S**(1). If the square S of the length of the second fundamen-
tal form % on M satisfies 0< S<n, then S=0 or S=#n. In[3], S.S. Chern, M.
do Carmo and S. Kobayashi proved that the Clifford tori are the only minimal
hypersurfaces with S=n. C. K. Peng and C. L. Terng [6] studied the case S=
constant and shown, among other things, that if #=3 and S>3, then S>6.
The condition S=6 is also assumed in the examples of Cartan [1] and Hsiang
[4]. On the other hand, in Otsuki’s examples of minimal hypersurface in S**}(1)
(see [5]), H. D. Hu proved that there exist complete and non-compact minimal
hypersurfaces in S**'(1). Hence, it is interesting to study complete minimal
hypersurfaces in S**!(1). In [2], the author considered a compete minimally
immersed hypersurface M in S**(1) with S=constant, and proved that if
0<S<n, then S=0 or S=n.

In this paper, we generalize the above theorem due to C. K. Peng and C. L.
Terng [6] to complete minimal hypersurfaces. That is, we obtain the following.

Theorem. Let M3 be a complete minimally immersed hypersuface in S*(1)
with S=constant. If S>3, then S>6.

Corollary. Let M® be a complete minimally immersed hypersurface in S*(1)
with S=constant. If 0<S<6, then S=0, S=3 or S=6.

Proof. According to Theorem and the result of the author [2], Corollary
is true obviously.

2. Preliminaries

Let M be an n-dimensional immersed hypersurface in the #-+1-dimensional
unit sphere S**}(1). We choose a local field of orthonormal frames ¢, -+, 54
in S**!(1) such that, restricted to M, the vectors ¢, -+, e, are tangent to M.
We use the following convention on the range of indices unless otherwise stated:
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A, B, C,-=1,2 -, nt1,4,j5,k -+=1,2,---,n. And we agree the repeated
indices under a summation sign without indication are summed over the re-
spective range. With respect to the frame field of S**(1) chosen above, let
w1, ***, @py; be the dual frame. Then the structure equations of S**!(1) are
given by

(2.1) doy = —3 05 Nop, 0505 =0,
(3.2 dwsp = —3 oscNocptQuz,
(23) Q5 = 2 5 Kaseo oAy
Restricting these forms to M, we have the structure equations of the immersion.
(2.4) gy =0.
(2.5) Op1,i = 2 hij @5 hi; = hj;
(2.6) do;; = —N 0;;\wj, 0;;+0; =0,
(2.7) do;; = —X3 m,‘k/\&)jk“{"% S RijuwiNoy.
The symmetric 2-form

h=3hij o 0;
and the scalar

H= 13,

are called the second fundamental form and the mean curvature of M respecti-
vely. If H=0, then M is said to be minimal.
Define £, by

(2.8) D iy 0p = dhi;—30 iy O — 20 By O

Exterior differentiating (2.5) and using structure equations, we obtain
1.2,; hijporNw; =0.

Thus we have

(2.9) hijp = hy; .

Similarly define 4, ;; by

(2.10) D or=dhijp— P Omp— 20 Bimp @j— 22 Boji i

then,
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(2.11) h,‘ju_h;ﬂk = E him ijlzl+2 hmj Rmikl .

If the square S of length of A, i.e., S=3 hZ;, is constant and M is mini-
mal, then the following formulas are well known (see [6]).
For any point p&M, we can choose a frame field ¢, -, e, so that h;;=

2.12) SR = S(S—n),

(2.13) SR = S(S—n) (S—2n—3)+3(A—2B).
where A=33 hijx A}, B = 33 hiju M\

(2.14) L= Rjii— R = M=) (LA ) .
Let f,=S1A7. Then we have

(2.15) 8, = 2[nS—28*+ Sf—f3l,

(2.16) Afy = 3[(n—S8) fs+2 33 K N -

When n=3, we have

Lemma 1 (see [6]). (1) fy=constant if and only if M has constant principal
curvature; (2) —/S3/6< f;<\/S%/6 and equality is reached if and only if two of
the principal curvature are equal.

Lemma 2 (see [7]). Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below. Let f be a C*-function which is bounded from
above on M. Then there exists a sequence {p,} such that

(217)  lim f(pn) = sup f, im |[Vf(pa)ll = 0, lim sup Af(pn)<0

3. Proof of Theorem

At first, we show the following two propositions.

Proposition 1. Let M be a complete minimal hypersurface in S*(1) with
S=constant. If inf fy-sup f,=0, and S>3, then S>6.

Proof. Because of inf fyesup f;=0, we have inf f;=0 or sup f,=0. If
inf fy=sup f;=0, namely, f; vanishes identically, then it follows from Lemma
1 (1) that M has constant principal curvature. Thus Proposition 1 is true. (cf.
[6: Corollary 1])

Next we will only consider the case f;= constant. Without loss of general-
ity, we can suppose sup f;=0. According to the Gauss’ equation and the as-
sumption that S is constnat, we see that the Ricci curvature of M is bounded
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from below. Hence we can apply Lemma 2 to f; and we have a sequence {pa}
in M such that

(3.1) lim fy(pa) = sup =0, Lim [IVfi(pm)ll = 0.
(3.2) lim sup Afy(pa)<0.

Since \;, &, and A, are bounded because of (2.12) and (2.13), we may assume
that

(33) lim 0(pa) = M
(3.4) 3‘1:2 hij(Pm) = Bijp s
(3.5) }ul_l’g hijui(Pm) = Bijua s

by taking a subsequence of {p,} if necessary. Hence
(3,6) AP = S,

MNP =0,
that is,

3.7) AM=—v52,2=0 and r;=+/8/2.

Here we assume A, <A, <,
By differentiating 33 4;;=0 and 3} h%;=S=constant, we obtain

(3.8) Sthu=0,
(3.9) St han=0.
(3.3) and (3.4) imply

(3.10) S K. =0,
(3.11) STk =0.

According to (3.1), we have il_)rg IV fall(pm)=0. Since
VAl = [ (S b MY,
we obtain
lim (19 £41(pw) = lim [ (52 hua MY/ () = 0.
Thus, by (3.3), (3.4) and the above fact, we get
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(3.12) S ki Ai*=0, for any k.

Because A are distinct, (3.10), (3.13) and (3.12) yield

(3.13) h;w =0, foranyiand k.
On the other hand,

3(A—2B) = 33 BN =20 A ;=20 M —20 0]
=, 23 FaZ (M) — O r )]

ik
+3 % BN —An M) —3 2D R A .

Hence
(3.14) lim 3(A—2B) (pn)
= 23, BARZ OV AR — (iR
ik

+3 § RO —i A)—3 3D ik A2
= 2S 33 k% (by (3.13) and (3.6))
= 28%(S—3) (by(2.12));
(3.15) D hiim=>3 ;%;: B+ R
' 3
>3 % (hijii_tii/2)2+'4’_‘ > t,
where t,-,-=h,-,-,-,-——hj,-j,-=(7\,,-—7\.,-) (1+)“ 7\.,-). From (3.2) and (3.5), we get

(3.16) Db >3 5 (B tiil2P -+ S5,
where £;;=h;;;;—hj; ;=i —N\j) (1428 Aj). (3.7) implies
(3.17) Dt = 8"—45°16S.
Accordingly,

(3.18) S(S—3) (S—9)+28%S—-3)

>3 53 (hiy— 2P+ (S'—4S+65).
(19) 2 (b2
2 2[(Ainz—t12/2)" + (Hzss— 33/ 2)7]
= Dot = (F3—t )+ P — i (Gt
> [h;212+h;323]2 ’
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here we make use of f;,=#;;,=-—+/5/2. Differentiating 3} h;=S, we obtain

,Ej hiju b+ 2; B =0, for 1=1,2,3,

which implies

$ i N+ 'Z}'. K =0, for 1=1,2,3.
Hence
(3.20) B ni+S kE =0, for 1=1,2,3.

We substitute (3.7) into (3.20). Then
V' S/2[Myn—hzsu]= 2, k%, for 1=1,2,3.

In particular, we have

V' S/2 [h;m_h;m] =21 h;z}z .
Hence
(3.21) My2e—hags = yypy—Hiss

= h;m—hgszz—t;s = \/7/3[2 h;§2+S/2]

— VST S(S-3)+S/2],

since we use 3] h;§,=2h;§3=_;_ S(S—3) by (3.13).
By means of (3.18), (3.19) and (3.21), we get
61 S, 3
_3ps 8L gs—3)4+ Sp1 3 s(s2—45+6).
35(5-37> S 11 S5+ 5743 s(5*-45+6)

Namely,
S(S—6) (195—42)>0.
It is clear that if S>3, then S>6. We complete the proof of Proposition 1.

Proposition 2. Let M be a complete minimal hypersurface in S*(1) with
S=constant. If inf f;-sup f33=0 and S>3, then S>6.

Proof. If f,=constant, then it follows from Lemma 1 (1) that M has con-
stant principal curvature. Thus Proposition 2 is valid obviously (cf. [6: Corol-
lary 1]). If fy==constant, then we can prove that there exists a point peM
such that f(p)=0 because of inf f;+ sup f;=+0.

(1) Ifinf f;- sup £3<<0, then, from the continuation of f;, we have that there
exists a point p& M such that f,(p)=0.
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(2) Ifinf f;- sup f;>0, then inf f; and sup f; have the same sign, we shall
prove that this does not occur. In fact, without loss of generality, we can as-
sume sup f3<0. Lemma 1 (2) yields

(3.22) —V/§%6<sup f,<<0 ;

(3.23) lim fy(pm) = sup 3, lim |[Vfx(2a)ll =0,
(3.24) lim sup Afy(pn)<0,

(3.25) lim A(pw) = Ai

(3.26) Lim B;ju(pm) = e »

(3.27) AN =0,

(3.28) M HN? = S,

(3.29) MBS NS = sup f;.

(3.22), (3.27), (3.28) and (3.29) imply that A;, A2 and A; are distinct. By the
same proof as in Proposition 1, we can obtain

(3.30) hiix =0, foranyiand k.
On the other hand, from

Afy=3[3—S)fi+2Z i N],
(3.23), (3.24), (3.25) and (3.26) yield

(3.31) 3[(3—S) sup fo-+2 2 K% Ai1<0.
K h:'ffk g
= 3V BN N
=3 FRGEAHM)  (by (3.13)
itk

=0 (by M+r3+2s=0).
Hence
(3—S) sup £;<0.

Because of S>3 and sup f;<<0, we know that this is impossible. Hence there
exists a point p& M such that f;(p)=0.
Next by the same proof as in [6], we know that Proposition 2 is valid.

Proof of Theorem. From Propositions 1 and 2, Theorem is obvious.
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