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1. Introduction

Let M be an ^-dimensional closed minimally immersed hypersurface in
the unit sphere Sn + 1(l). If the square S of the length of the second fundamen-
tal form honM satisfies 0<5<fl , then 5 = 0 or S = n. In [3], S.S. Chern, M.
do Carmo and S. Kobayashi proved that the Clifford tori are the only minimal
hypersurfaces with S—n. C. K. Peng and C. L. Terng [6] studied the case S—
constant and shown, among other things, that if n=3 and 5 > 3 , then 5 > 6 .
The condition S=6 is also assumed in the examples of Cartan [1] and Hsiang
[4]. On the other hand, in Otsuki's examples of minimal hypersurface in 5n + 1(l)
(see [5]), H. D. Hu proved that there exist complete and non-compact minimal
hypersurfaces in 5M+1(1). Hence, it is interesting to study complete minimal
hypersurfaces in 5Λ+1(1). In [2], the author considered a compete minimally
immersed hypersurface M in 5Λ+1(1) with S= constant, and proved that if
0<5<τz, then 5 - 0 or S=n.

In this paper, we generalize the above theorem due to C. K. Peng and C. L.
Terng [6] to complete minimal hypersurfaces. That is, we obtain the following.

Theorem. Let M3 be a complete minimally immersed hypersuface in 54(1)
with S=constant. If S>3, then 5 > 6.

Corollary. Let M3 be a complete minimally immersed hypersurface in 54(1)
with S=constant. 7/*0<5<6, then S=0y S=3 or 5 = 6 .

Proof. According to Theorem and the result of the author [2], Corollary

is true obviously.

2. Preliminaries

Let M be an ^-dimensional immersed hypersurface in the n-\-\-dimensional
unit sphere 5n + 1(l). We choose a local field of orthonormal frames eXi •••, en+1

in Sn+1(ί) such that, restricted to M, the vectors el9 •••, en are tangent to M.
We use the following convention on the range of indices unless otherwise stated:



886 Q.M. CHENG

A, By C, ••• = 1 , 2, •••, J i+1, t>j, k, ••• = 1 , 2, •••, w. And we agree the repeated

indices under a summation sign without indication are summed over the re-

spective range. With respect to the frame field of SΛ+1(1) chosen above, let

(*>!, •••, ωn+ι be the dual frame. Then the structure equations of Sn+1(ί) are

given by

(2.1) dωA = — Σ cύABAωB9 ωAB+ωBA = 0 ,

(3.2) dωAB = — Σ ω^ cΛωCB+Ωχ5 >

( 2 3) Ω ^ = - Σ ^ 5 C D ωcΛωD.

Restricting these forms to M, we have the structure equations of the immersion.

(2.4) ω n + 1 = 0 .

(2.5) con+lti = Σ hu ωy, A<; = Ay, ,

(2.6) dtύii = — Σ (OijAcύj, cύij+cύji = 0 ,

(2.7) έfo>lV

T h e symmetric 2-form

(2.7) έfo>lV = — Σ ω t i f eΛω^+—- Σ

h = Σ Aίy ω, ωj

and the scalar

H=jΣA r t

are called the second fundamental form and the mean curvature of M respecti-

vely. If H=0, then M is said to be minimal.

Define hijk by

(2.8) Σ hijk ωk = dhij-Σl him ωmj-Σl hmj ωmi,

Exterior differentiating (2.5) and using structure equations, we obtain

ΈhijkωkΛωj = 0.

Thus we have

(2-9) hφ = hikj.

Similarly define hijkl by

(2.10) Σ hijkι ω, = dhijk—Σl hijm ωmk—Σ himh ωmj—Σ *«>* ω w ι ,

then,
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(2.Π) hijkι-hijlk = Σ him Rmjkl+J] hmjRmikl.

If the square S of length of h, i.e., S = Σ h]h is constant and M is mini-
mal, then the following formulas are well known (see [6]).

For any point p^M, we can choose a frame field e1} •••, en so that hi}=
λ, δij.

(2.12) Σ3A?y*

(2.13) Σ /*?,*, = S(5-n) (S-2w-

where A=Σ1 h]jk λf, B.= Σ A?/* λ, λ, .

(2.14) *,., = A w - A y w = (λ t.-λ ; ) (1+λ, λ,).

Let fM=Σ λj1. Then we have

(2.15) Σ ίfy - 2[nS-2S2+Sf4-β\,

(2.16) Δ/3 - 3 [(n-5)/ 3 +2 Σ A?y* λJ .

When n=3y we have

L e m m a 1 (see [6]). (1) f3=constant if and only if M has constant principal
curvature; (2) — \ΛS^/6</3<\/53/6 β W J equality is reached if and only if two of
the principal curvature are equal.

L e m m a 2 {see [7]). Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below. Let f he a C2-function which is bounded from
above on M. Then there exists a sequence {pm} such that

(2.17) lim f(pm) = sup/, lim \\Vf(pM)\\ = 0, lim sup Af(pm)<0

3. Proof of Theorem

At first, we show the following two propositions.

Proposition 1. Let M be a complete minimal hypersurface in S\\) with
S= constant. If inff3 sup / 3 = 0 , and *Sf>3, then S^β.

Proof. Because of inf/3 suρ / 3 = 0 , we have inf / 3 = 0 or sup / 3 = 0 . If
inf / 3=sup / 3 = 0 , namely,/3 vanishes identically, then it follows from Lemma
1 (1) that M has constant principal curvature. Thus Proposition 1 is true. (cf.
[6: Corollary 1])

Next we will only consider the case/3Φ constant. Without loss of general-
ity, we can suppose sup / 3 = 0 . According to the Gauss' equation and the as-
sumption that S is constnat, we see that the Ricci curvature of M is bounded
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from below. Hence we can apply Lemma 2 to /3 and we have a sequence {pm}
in M such that

(3.1) lim/3(A,) = sup/3 = 0, Km||V/a(f.)|| = 0.

(3.2) limsupΔ/3(/y)<0.

Since λ, , hijk and hijkl are bounded because of (2.12) and (2.13), we may assume
that

(3.3) lim \(pM) = λϊ

(3.4) lim hijk{pm) = h°ijk,

(3.5) lim hijkι(pn) = h°iJkι,

by taking a subsequence of ipm} if necessary. Hence

(3,6)

λ;3+λi3+λ;3 = o,

that is,

(3.7) λ°i = - V5/2, X°2 = 0 and λ5 =

Here we assume
By differentiating Σ Af f = 0 and 2 A?/=*S= constant, we obtain

(3.8) Σ ^ = 0,

(3.9) Σ A ω λ 1 = 0.

(3.3) and (3.4) imply

(3.10) Έh°iik = 0,

(3.H) Σ%; t t λ; = o.

According to (3.1), we have lim ||V/3l|( ί̂>»)=0. Since

we obtain

lim ||V/,||(ί.) = lim [ Σ ( Σ hιa \ff\V1iPm) = 0 .

Thus, by (3.3), (3.4) and the above fact, we get
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(3.12) Σ*ϊι»λ;*=0, for any k.

Because λ are distinct, (3.10), (3.13) and (3.12) yield

(3.13) h]ik = 0 , for any i and k.

On the other hand,

3(A-2B) = Σ A?y*[λ?+λJ+λ2—2λ,. λ y-2λ |. λ*-2λ, λ j

+3 Σ A ϊ , ^ - ^ , λA)-3 Σ hhi λ?.

Hence

(3.14) lim3(A-2B){pm)

+3 Σ A:?*(λi2-4λ; λί)-3

= 2S Σ Aiy* (by (3.13) and (3.6))

= 252(5-3) (by (2.12));

(3.15) Σ *foι >3 Σ Alo+Σ # , , ,

where tij=hijij—hjiJi=(\i—Xj) ( l + λ , λy). From (3.2) and (3.5), we get

(3.16) Σ AίJ« > 3 Σ (AJ,, i-fijβf+j Σ fij,

where ίty=A;y.y-A}ιy, =(λ;—λj) (1+λ λj). (3.7) implies

(3.17) Σt'i

2

J = S2

Accordingly,

(3.18) 5(5-3) (5-9)+25 2(5-3)

Σ

(3.19)

{t\-t\)f+[K
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here we make use of t\2=f2Z——\fSβ Differentiating Σ h]j=S, we obtain

Σ^V//^7+Σ/ify/ = 0, for / = 1,2,3,

which implies

Σ L \ _|_ >ΓΊ L2 Λ fΛ 1. 7 1 O *1
n>ii\\ Λ * | | " ? 1 **ί// " > 1UΓ I 1 , Lty J .

i i.J

Hence

(3.20) Σ * ; , n λ ; + Σ « ? / = 0, for / = 1,2,3.

We substitute (3.7) into (3.20). Then

VSβ[hnU-hl3U]= Σ «?/, for / = 1, 2, 3.

In particular, we have

V~Sβ [h°m2-ho

m2] = Σ Aβ,52.

Hence

(3.21) 1̂212

J 5(5-3)+5/2],

since we use Σ A;?2=2A;i3=— 5(5-3) by (3.13).

By means of (3.18), (3.19) and (3.21), we get

35(S-3)2>-| [4- 5(5-3)+4l 2+4 S(S*-4S+6).
o 3 2 4

Namely,

5(5-6) (195-42)>0.

It is clear that if 5>3, then 5>6. We complete the proof of Proposition 1.

Proposition 2. Let M be a complete minimal hypersurface in 54(1) with
S=constant. 7/inf/3 sup/3Φθ and 5>3, then S>6.

Proof. If fs=constant, then it follows from Lemma 1 (1) that M has con-
stant principal curvature. Thus Proposition 2 is valid obviously (cf. [6: Corol-
lary 1]). If/3=t= constant, then we can prove that there exists a point p^M
such that/3(^)=0 because of inf/3 sup/3#=0.

(1) If inf /3 suρ/3<0, then, from the continuation of/3, we have that there
exists a point p&M such that fz(p)=0.
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(2) If inf/3 sup/3>0, then inf/3 and suρ/3 have the same sign, we shall
prove that this does not occur. In fact, without loss of generality, we can as-
sume suρ/3<0. Lemma 1 (2) yields

(3.22) -v / 5 5 /6<sup/ 3 <0

(3.23) lim/3(£w) = sup/3, lim | |V/3(^)| | = 0,

(3.24) l i m β u p Δ / ^ . ) < 0 ,

(3.25) lim λ, (/>Λ) = λ ϊ ,

(3-26) lim hijk{pm) = h]jk,

(3.27) λ ί+λί+λ; = 0,

(3.28)

(3.29) x

(3.22), (3.27), (3.28) and (3.29) imply that X°u Xl and X°3 are distinct. By the
same proof as in Proposition 1, we can obtain

(3.30) h]ik = 0 , for any i and k.

On the other hand, from

Δ/3 = 3 [(3-5)/,+2 Σ hhk λ j ,

(3.23), (3.24), (3.25) and (3.26) yield

(3.31) 3[(3-5) 8up/,+2ΣA;5»λ;]<0.

= ίΣ jAί5»(λi+λy+λ;) (by (3.13))

= 0

Hence

( 3 - S ) s u p / 3 < 0 .

Because of S>2 and sup/3<0, we know that this is impossible. Hence there
exists a point peM such that/3(/>)=0.

Next by the same proof as in [6], we know that Proposition 2 is valid.

Proof of Theorem. From Propositions 1 and 2, Theorem is obvious.
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