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Abstract
The Markov chain approximation of a one-dimensional symmetric diffusion is investigated

in this paper. Given an irreducible reflecting diffusion on a closed interval with scale function
s and speed measure m, the approximating Markov chains are constructed explicitly through
the trace of the Dirichlet form corresponding to the diffusion. One feature of our approach is
that it does not require uniform ellipticity on diffusion coefficient of the limit object or uniform
regularity on conductances of the approximative Markov chains, as imposed usually in the
previous related works.
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1. Introduction

1. Introduction
In this paper, let I ⊂ R be a closed interval with Radon measure m, for simplicity I =

[0, 1]. We are concerned with the discrete approximation of an irreducible m-symmetric
diffusion, or equivalently an irreducible, strongly local, regular Dirichlet form on L2(I) =
L2(I,m). An irreducible strongly local regular Dirichlet form on L2(I) can be represented by
the following Dirichlet form (E (s),F (s)) on L2(I),

F (s) =

{
u ∈ L2(I) : u � s, du

ds
∈ L2(I, ds)

}
,(1.1)

E (s)(u, v) =
1
2

∫
I

du
ds

dv
ds

ds, u, v ∈ F (s),

where s is a continuous and strictly increasing function on I, called a scale function on I,
u � s means that the function u is absolutely continuous with respect to s, and L2(I, ds) is
the space of square integrable functions with respect to ds on I.
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It is known from [8] that (1.1) is associated with a diffusion X on I, reflected at the
boundary, with scale function s and speed measure m. Actually a one dimensional locally
conservative (or no killing inside) irreducible diffusion is characterized by its scale function
and speed measure. Classic literatures on one dimensional diffusions are referred to [10]
[14]. See [9] for details about theory of Dirichlet forms.

Stochastic processes, especially diffusions, play an active role in financial and physical
models. How to simulate the stochastic processes by Markov chains is an important question
in practical applications. Therefore, for one-dimensional diffusions, in this paper we give
a natural way to construct the approximative Markov chains, that is , through traces of
(E (s),F (s)) on approximative lattices. Intuitively, traces of (E (s),F (s)) record the trajectory
information of X on the lattices. So it is direct and efficient to construct the Markov chains
through the trace method.

For diffusion processes on Rd, the classic results are Donsker’s invariance principle [6] for
Brownian motion and [15] for diffusion processes in non-divergence form. In [16], Stroock
and Zheng solve the problem for diffusions corresponding to uniformly elliptic operators in
divergence form via Markov chains with finite range and certain uniform regularity. In [1],
Bass and Kumagai extend the results in two ways: Markov chains with unbounded range
are allowed and the strong uniform regularity condition on conductances is weakened to
a uniform finite second moment condition. For both [16] [1], a crucial step is to obtain a
priori heat kernel estimate of the Markov chains to deduce tightness. In [3] [4], Burdzy and
Chen give the discrete approximation for reflecting Brownian motion in a general bounded
domain. They use a Dirichlet form based approach to obtain tightness. However, the novelty
of our result is that we do not impose conditions like above, precisely it differs from the
works above in the following aspects.

1. In former works, the diffusion coefficient of the limit object is assumed to be con-
tinuous and uniformly elliptic. In our setting, the infinitesimal generator is

1
2

d
dx

d
ds
,

and the diffusion coefficient is 1/s′, when s is smooth. The conditions above are
satisfied only when s′ is continuous, bounded away from 0 and above. We stress
here that we allow the discontinuity, degeneracy, singularity and even non-existence
of the diffusion coefficient.

2. In former works, the conductances of the approximative Markov chains are required
to satisfy certain uniform regularity, which does not necessarily hold for the con-
ductance constructed in our approach.

3. In former works, the conductances of the approximating Markov chains are required
L1

loc converging to the diffusion coefficient. Our conductances are pointwise conver-
gent and may not satisfy the L1

loc convergence.
We provide here a typical example to show the generality and power of the main result

(Theorem 2.1). Fix a strictly increasing and absolutely continuous function s on I satisfying

s′(x) = 0 or 1 a.e.

Let G := {x ∈ I : s′(x) = 1}. Then G is defined in the sense of almost everywhere and
it holds that m

(
G ∩ (a, b)

)
> 0, ∀(a, b) ⊂ R. Note that this is equivalent to that s is strictly
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increasing. Furthermore, assume that m(Gc) > 0. In fact, the typical example of Gc is a
generalized Cantor set. Therefore, (E (s),F (s)) in (1.1) is a proper regular Dirichlet subspace
(see [13]) of Brownian motion, which corresponds to the m-symmetric diffusion X with
singular diffusion coefficient. For n ≥ 1, the Dirichlet form (E n,F n) of the approximating
Markov chain Xn is constructed as follows:

E n(ϕ, ϕ) =
1
4

∑
x∼y

(
ϕ(x) − ϕ(y)

)2 1
|s(x) − s(y)| ,(1.2)

F n = {ϕ ∈ L2(In,mn) : E n(ϕ, ϕ) < ∞},
where x ∼ y means x and y are neighbored. In and mn are defined in §2. Clearly, the
conductance in (1.2) does not satisfy the uniform regularity condition (A1) in [1].

The idea to prove the approximation, borrowed from [12], is to prove Mosco convergence
and tightness. However in the proof of Mosco convergence, the dimension plays the key role
while the proof of tightness is relatively general.

The rest of the paper is organized as follows. In §2, we provide the construction of a
sequence of approximative Markov chains for the given diffusion corresponding to (1.1),
and then give the precise statement of the main weak convergence result (Theorem 2.1). In
what follows, the proof of Theorem 2.1 will be divided into two parts. In §3, we prove the
Mosco convergence of the associated Dirichlet forms of Xn. In §4, we complete the proof
of weak convergence by providing some tightness results.

Notations. The notation ‘:=’ is read as ‘to be defined as’. Given a domain D ⊂ R, the
families C(D),Cc(D), and C∞c (D) are those of all continuous functions on D, all continuous
functions on D with compact support and all smooth functions on D with compact support
respectively. The notation ‖ · ‖∞ means the supremum norm of a bounded function. En

x

(resp.En
ξ) and Pn

x (resp.Pn
ξ) means expectation and probability with respect to Xn with starting

point X0 = x (resp. initial distribution ξ). For t ≥ 0, λ > 0, T n
t and Gn

λ are the semigroup
and resolvent associated with Xn. Similar notations (Ex, Px,Eξ, Tt,Gλ) are understood in the
same way for X. Given T ⊂ R+, let

DDT := { f : T �→ D | f is right continuous having left limits}.

2. Main results

2. Main results
Now we will construct a sequence of Markov chains to approximate the diffusion process

X corresponding to (1.1). Take a partition of I: 0 = a1 < a2 < · · · < an+1 = 1, set In = {ai}ni=1
and Δi = ai+1 − ai, 1 ≤ i ≤ n. Let the sequence of partitions satisfy Δn := max

i
Δi → 0 as

n → ∞. Define point measure on In as mn({ai}) = m([ai, ai+1)), 1 ≤ i < n. It is known that
mn is a Radon smooth measure supported on In .

Denote the time-changed process of X with respect to mn by Xn. Then Xn is correspond-
ing to a mn- symmetric regular Dirichlet form (E n,F n) on L2(In,mn), that is, the traces of
(E (s),F (s)) on In. Precisely, let σn be the hitting time of In relative to X. The extended
Dirichlet space of F (s) is

F (s)
e :=

{
u : u � s, du

ds
∈ L2(I, ds)

}
.
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We consider the following orthogonal decomposition of the space (not necessarily Hilbert
space ) (F (s)

e ,E
(s)):

(2.1) F (s)
e = F (s)

e,I\In
⊕H (s)

In
,

where F (s)
e,I\In

= {u ∈ F (s)
e : u = 0 q.e. on In}. We know that for any u ∈ F (s)

e , HInu(x) =
Ex
(
u(Xσn)

)
gives the probabilistic expression of the orthogonal projection of u on the space

H (s)
In

and accordingly

H (s)
In
= {HInu : u ∈ F (s)

e }.
From [9, §6.2], we have

F n = {ϕ ∈ L2(In,mn) : ϕ = u mn-a.e. on In for some u ∈ F (s)
e },

E n(ϕ, ϕ) = E (s)(HInu,HInu), ϕ ∈ F n, ϕ = u mn-a.e. on In for some u ∈ F (s)
e .

In the following we claim that

E n(ϕ, ϕ) =
1
2

∑
x,y∈In

(
ϕ(x) − ϕ(y)

)2Cn
x,y,(2.2)

F n = {ϕ ∈ L2(In,mn) : E n(ϕ, ϕ) < ∞},
where Cn : In × In �→ R+, is the conductivity function, satisfying Cn

x,y = Cn
y,x and Cn

x,x = 0
for x, y ∈ In. And

(2.3) Cn
x,y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2|s(x) − s(y)| if x and y are neighbored;

0 otherwise.

In fact, fix ϕ ∈ L2(In,mn), ϕ = u mn-a.e. on In for some u ∈ F (s)
e . If x ∈ [ai, ai+1] for

some 1 ≤ i ≤ n − 1. From the continuity of the trajectories of X, it follows that

Xσn = ai or ai+1, Px-a.s.

Hence,

HInu(x) = ϕ(ai) · Px(Xσn = ai) + ϕ(ai+1) · Px(Xσn = ai+1)

= ϕ(ai)
s(ai+1) − s(x)
s(ai+1) − s(ai)

+ ϕ(ai+1)
s(x) − s(ai)
s(ai+1) − s(ai)

= ϕ(ai) +
ϕ(ai+1) − ϕ(ai)
s(ai+1) − s(ai)

(
s(x) − s(ai)

)
.

If x ∈ [an, an+1], HInu(x) = ϕ(an). So we get HInu � s. And

dHInu
ds

(x) =
ϕ(ai+1) − ϕ(ai)
s(ai+1) − s(ai)

, x ∈ (ai, ai+1), 1 ≤ i ≤ n − 1.

In this way

E n(ϕ, ϕ) = E (s)(HInu,HInu) =
1
2

∫
I

(dHInu
ds

)2
ds
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=
1
2

n∑
i=1

∫ ai+1

ai

(dHInu
ds

)2
ds =

1
2

n−1∑
i=1

(
ϕ(ai+1) − ϕ(ai)

)2
s(ai+1) − s(ai)

.

So (2.2) is hold. (2.2) is associated with the Markov chain Xn that stays at a state x for
an exponential length of time with parameter λn(x) :=

∑
z�x

Cn
x,z/m

n(x) and then jumps to the

neighbor y with probability Cn
x,y/
( ∑

z∈In

Cn
x,z
)
.

Theorem 2.1. The continuous-time Markov chains {(Xn, Pn
mn

); n ≥ 1} on In associated
with Dirichlet form (2.2) in which conductances are set by (2.3) converges weakly to (X, Pm)
associated with (1.1) on DI[0,∞) equipped with the Skorohod topology.

The proof is provided in the following sections.

3. Mosco convergence

3. Mosco convergence
We shall prove the Mosco convergence. The generalized version of Mosco convergence

from the appendix of [5] is included here for handy reference. Refer to [11] for more details
about Mosco convergence.

For n ≥ 1, (n, 〈·, ·〉n) and (, 〈·, ·〉) are Hilbert spaces with the corresponding norms
‖ · ‖n and ‖ · ‖. Suppose that (n,(n)) and ( ,()) are densely defined closed symmetric
bilinear forms on n and , respectively. We extend the definitions of n(u, u) to every
u ∈ n by defining 

n(u, u) = ∞ for u ∈ n\(n). Similar extension is done for  as well.
We assume throughout this section that for each n ≥ 1, there is a bounded linear operator

En : n →  such that πn is a left inverse of En, that is

(3.1) 〈πn f , fn〉n = 〈 f , En fn〉 and πnEn fn = fn for every f ∈ , fn ∈ n.

Moreover we assume that πn :  → n satisfies the following two conditions

(3.2) sup
n≥1
‖πn‖ < ∞ and lim

n→∞ ‖πn f ‖n = ‖ f ‖ for every f ∈ .

Let ‖En‖ denote the operator norm. Note that 〈En fn, Engn〉 = 〈 fn, gn〉n for every fn, gn ∈
n, n ≥ 1 and so clearly

(3.3) ‖En‖ = 1 and ‖En fn‖ = ‖ fn‖n for every fn ∈ n, n ≥ 1.

Definition. Under the above setting, we say that n is Mosco-convergent to  in the
generalized sense if the following two conditions are satisfied.

(a) If vn ∈ n, u ∈  and Envn → u weakly in , then

lim inf
n→∞ 

n(vn, vn) ≥ (u, u).

(b) For every u ∈ , there exists un ∈ n such that Enun → u strongly in  and

lim sup
n→∞


n(un, un) ≤ (u, u).

In our case, since the state space of Xn is In while X has I as its state space, we need to
define the transforms between the functions on In and I. First, if v is defined on In , let Env
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be the extension of v to I defined by

Env(x) := v(ai), x ∈ [ai, ai+1), 1 ≤ i ≤ n.

Besides, if u ∈ L2(I),

πnu(x) :=
1

mn({ai})
∫ ai+1

ai

u(z)m(dz), x = ai, 1 ≤ i ≤ n

If u ∈ C(I), define Rnu to be the restriction of u to In, i.e.

Rnu(x) := u(x), x ∈ In.

It is easy to check that En and πn defined above satisfy the condition of (3.1) and (3.2). Let
L2(In,mn) and L2(I) correspond to n and  respectively. Notations such as inner product
and norm keep the same. It is clear that for u, v ∈ C(I), it holds that

(3.4) lim
n→∞ 〈πnu, πnv〉n = lim

n→∞ 〈πnu,Rnv〉n = lim
n→∞ 〈Rnu,Rnv〉n .

Theorem 3.1. Let (E n,F n) and (E (s),F (s)) be the Dirichlet forms in (1.1) and (2.2).
Then E n converges to E (s) in the generalized sense of Mosco.

Proof. First, let us check Definition (a). Let ϕn ∈ L2(In), ϕ ∈ L2(I), and Enϕn weakly
converge to ϕ in L2(I). Suppose lim inf

n→∞ E n(ϕn, ϕn) < ∞ and ϕn ∈ F n without loss of
generality.

For each ϕn, there exists un ∈ F (s)
e , such that ϕn = un mn-a.e. on In and E n(ϕn, ϕn) =

E (s)(HInun,HInun). We now prove that HInun also converges weakly to ϕ in L2(I). Since

lim inf
n→∞ E (s)(HInun,HInun) < ∞, there exists a subsequence (still denoted by)

{dHInun

ds

}

bounded by a finite constant M in L2(I). For x ∈ [ai, ai+1], 1 ≤ i ≤ n, we have

HInun(x) − Enϕn(x) =
∫ x

ai

dHInun

ds
ds.

It follows that

|HInun(x) − Enϕn(x)| ≤
∫ x

ai

∣∣∣∣∣dHInun

ds

∣∣∣∣∣ds

≤ (s(x) − s(ai)
)1/2( ∫ x

ai

∣∣∣∣∣dHInun

ds

∣∣∣∣∣
2
ds
)1/2

≤ M
(
s(x) − s(ai)

)1/2
.

Since s is uniformly continuous on I, for any ε > 0, there exists N large such that |s(x) −
s(y)| < ε whenever |x − y| < ΔN . Then for every φ ∈ L2(I), n ≥ N, we get∣∣∣∣∣

∫
I
φ(x)
(
HInun(x) − Enϕn(x)

)
m(dx)

∣∣∣∣∣
≤

n∑
i=1

∫ ai+1

ai

∣∣∣φ(x)
(
HInun(x) − Enϕn(x)

)∣∣∣m(dx)

≤ M
n∑

i=1

∫ ai+1

ai

|φ(x)|(s(x) − s(ai)
)1/2m(dx)
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≤ ε1/2M
∫

I
|φ(x)|m(dx) ≤ ε1/2M

√
m(I)‖φ‖.

Since ε is arbitrary, we deduce that HInun → ϕ weakly in L2(I). Therefore lim inf
n→∞ ‖HInun‖E (s)

1

< ∞. Then there exists a subsequence, still denoted by {HInun} E (s)
1 -weakly converging to a

unique v ∈ F (s).
For each g ∈ L2(I), we have

E (s)
1 (G1g,HInun) = 〈g,HInun〉.

By letting n→ ∞, it follows E (s)
1 (G1g, v) = 〈g, v〉 = 〈g, ϕ〉. Hence v = ϕ, m-a.e. Besides, for

f ∈ F (s), E (s)( f ,HInun) = E (s)
1 ( f ,HInun) − 〈 f ,HInun〉. From the fact that HInun → ϕ weakly

in L2(I) and F (s), it follows
dHInun

ds
→ dϕ

ds
weakly in L2(I, ds). Therefore,

lim inf
n→∞ E n(ϕn, ϕn) = lim inf

n→∞ E (s)(HInun,HInun) = lim inf
n→∞

1
2

∫
I

(dHInun

ds

)2
ds

≥ 1
2

∫
I

(dϕ
ds

)2
ds = E (s)(ϕ, ϕ).

Next, let us verify Definition (b). Suppose u ∈ F (s) without loss of generality. Then
u � s. Define vn := Rnu. It is obvious that Envn → u strongly in L2(I). Besides,

lim sup
n→∞


n(vn, vn) = lim sup

n→∞


(s)(HInu,HInu) ≤ E (s)(u, u).

The last inequality follows from (2.1). �

Let {T n
t , t ≥ 0} and {Gn

λ, λ > 0} be the strongly continuous symmetric contraction semi-
group and the resolvent associated with (E n,n). Similarly, the semigroup and resolvent
associated with (E (s),F s) will be denoted by {Tt, t ≥ 1} and {Gλ, λ > 0} respectively. The
following equivalence theorem is referred from [5].

Theorem 3.2. Under the above setting, the followings are equivalent.

(a) E n is Mosco-convergent to E in the generalized sense;
(b) EnT n

t πn → Tt strongly in  and the convergence is uniform in any finite interval of
t > 0;

(c) EnGn
λπn → Gλ strongly in  for every λ > 0.

A main corollary of Mosco convergence is the following convergence of resolvent.

Corollary 3.3. For u ∈ Cc(I), it holds that

lim
n
‖RnGλu −Gn

λπnu‖E n
1
= 0.

Note that ‖ · ‖E1 denotes the E1-norm and Gλu ∈ F (s) and ‖Gλu‖∞ ≤ λ−1‖u‖∞, so that
Gλu ∈ C(I), RnGλu is well defined.

Proof. It follows from the relation between E n and its resolvent Gn
λ that

E n(RnGλu −Gn
λπnu,RnGλu −Gn

λπnu)

= E n(RnGλu,RnGλu) − 2〈RnGλu, πnu − λGn
λπnu〉n + 〈Gn

λπnu, πnu − λGn
λπnu〉n
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It is obvious from Theorem 3.1 that E n(RnGλu,RnGλu) → E (s)(Gλu,Gλu). By (3.4),(3.1),
(3.2), (3.3) and Theorem 3.2, two inner products above have the same limit 〈Gλu, u−λGλu〉.
Hence

lim
n

E n(RnGλu −Gn
λπnu,RnGλu −Gn

λπnu)

= E (s)(Gλu,Gλu) − 〈Gλu, u − λGλu〉
= E (s)

λ (Gλu,Gλu) − 〈Gλu, u〉 = 0.

Similarly, we can deduce that ‖RnGλu −Gn
λπnu‖n → 0. �

4. Proof of Theorem 2.1

4. Proof of Theorem 2.1
In this section, we complete the proof of weak convergence by providing some tightness

results. The idea of it is due to [12].
Proof of Theorem 2.1. We complete the proof of the main theorem according to the

following steps.
Step 1. First, we show that for every λ > 0, T > 0 and u ∈ Cc(I), it holds that

(4.1) lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Gn
λπnu(Xn

t ) − RnGλu(Xn
t )
∣∣∣] = 0.

Fix λ, T > 0. Given ε > 0, let

Dn = {x ∈ In;
∣∣∣Gn
λπnu(x) − RnGλu(x)

∣∣∣ > ε}, σDn = inf{t > 0; Xn
t ∈ Dn}.

The left side in (4.1) is less than the sum of

M1 := lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Gn
λπnu(Xn

t ) − RnGλu(Xn
t )
∣∣∣;σDn > T

]

and

M2 := lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Gn
λπnu(Xn

t ) − RnGλu(Xn
t )
∣∣∣;σDn ≤ T

]
.

It is obvious that M1 ≤ ε. As for M2, if we set p1
Dn(·) := En·

[
e−σDn ], we have

Pmn

[
σDn ≤ T

] ≤ eT 〈1, p1
Dn〉n ≤ eT

√
m(I) · ‖p1

Dn‖n(4.2)

≤ eT cCapn(Dn)1/2 ≤ eT cε−1‖Gn
λπnu(x) − RnGλu(x)‖E n

1
.

by the definition of the capacity (see [9, §2.1]), where c =
√

m(I). Therefore

M2 ≤ 2‖u‖∞
λ

lim sup
n→∞

Pmn

[
σDn ≤ T

]
= 0

by Corollary 3.3. Since ε is arbitrary, (4.1) follows.
Step 2. Let f ∈ Cc(I). We next prove that for any T > 0, ε > 0, there exist λ0 > 0 and

u ∈ Cc(I) ∩F (s), such that

(4.3) lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣ f (Xn
t ) − λ0Gn

λ0
πnu(Xn

t )
∣∣∣] < ε.

Fix f ∈ Cc(I),T, ε > 0. Since E (s) is regular, there exists u ∈ Cc(I) ∩F (s), such that
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(4.4) sup
x∈I
| f (x) − u(x)| < ε

4
.

Denote

Fn = {x ∈ In;
∣∣∣Rn(u − λGλu)(x)

∣∣∣ > ε
2
}, σFn = inf{t > 0; Xn

t ∈ Fn}.
Let

N1 := lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Rn(u − λGλu)(Xn
t )
∣∣∣;σFn > T

]

and

N2 := lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Rn(u − λGλu)(Xn
t )
∣∣∣;σFn ≤ T

]
.

It is obvious that N1 ≤ ε2. As for N2, in a similar way of (4.2), we have

Pmn

[
σFn ≤ T ] ≤ 2eT cε−1‖Rn(u − λGλu)(x)‖E n

1
.(4.5)

Therefore,

N2 ≤ 2‖u‖∞ lim sup
n→∞

Pmn

[
σFn ≤ T

]
(4.6)

≤ 4eT cε−1‖u‖∞ lim sup
n→∞

‖Rn(u − λGλu)(x)‖E n
1

(4.7)

≤ 4eT cε−1‖u‖∞‖(u − λGλu)(x)‖E (s)
1
,(4.8)

where the last inequality follows from the proof of Mosco convergence. For u ∈ F (s), we

know that λGλu→ u in E (s)
1 -norm by [9, Lemma 1.3.3]. Then choose λ0 such that N2 <

3ε
4
.

It follows that

(4.9) lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣Rn(u − λ0Gλ0u)(Xn
t )
∣∣∣] < 3

4
ε.

Therefore, by (4.1)(4.4)(4.9), (4.3) holds.
Step 3. In this step, we will demonstrate that for any finite m ≥ 1 and { f1, ..., fm} ⊂

Cc(I), {( f1, ..., fm)(Xn)}n≥1 under the condition that Xn takes mn as initial distribution forms a
tight family on DRm[0,∞).

It suffices to consider m = 1 and f := f1 for the sake of brevity. Fix ε, T > 0, apply Step 2
to these f , ε, T and choose u, λ0 accordingly. Set Yn

t := λ0Gn
λ0
πnu(Xn

t ) such that (4.3) holds.
Set Zn

t := λ0(λ0Gn
λ0
πnu − πnu)(Xn

t ).
From Fukushima’s decomposition of Xn with respect to λ0Gn

λ0
πnu (see [9, Theorem

5.2.2]), one can find that

t �→ Yn
t −
∫ t

0
Zn

s ds

is a martingale relative to the filtration of Xn. Besides, (4.3) yields that

lim sup
n→∞

Emn

[
sup

t∈[0,T ]

∣∣∣ f (Xn
t ) − Yn

t

∣∣∣] < ε.
Furthermore, it follows that
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lim sup
n→∞

Emn

[
sup

t∈[0,T ]
|Zn

t |
]
≤ 2λ0‖u‖∞ < ∞.

Therefore, [7, Theorem 3.9.4,Remark 3.9.5(b)] yields the conclusion.
Step 4. Since Cc(I) strongly separates points in I(for the definition of strong separation,

see [7, §3.4,(4.7)]; for the proof of this fact, see [2]), by [7, Corollary 3.9.2], it only remains
to show that for any finite m ≥ 1 and { f1, ..., fm} ⊂ Cc(I), ( f1, ..., fm)(Xn) weakly converge to
( f1, ..., fm)(X) with Xn and X having mn and m as their initial distribution respectively. To
this end, take g1 ∈ Cb(Rm) and set h1 := g1 ◦ ( f1, ..., fm) ∈ Cb(I). Given any t1, ..., tp > 0, by
the contraction of semigroup and uniform continuity of h1(x), we have

lim
n→∞Emn

[
h1(Xn

t1 )
]
= lim

n→∞

∫
I

EnT n
t1Rnh1(x)m(dx) = lim

n→∞

∫
I

EnT n
t1πnh1(x)m(dx),

which converge to Em
[
h1(Xt1 )

]
by Theorem 3.2. In fact, the last equality is deduced from the

following reasons. Since h1(x) is uniformly continuous on I, for any ε > 0, there exists N
large such that for any n > N, |Rnh1(x) − πnh1(x)| < ε, ∀x ∈ In. Therefore, for n ≥ N, by the
contraction of semigroup,∣∣∣∣∣

∫
I

EnT n
t1
(
Rnh1(x) − πnh1(x)

)
m(dx)

∣∣∣∣∣ ≤ εm(I).

Since ε is arbitrary, the last equality holds.
Inductively (see [12] for more details), we conclude that

lim
n→∞Emn

[
h1(Xn

t1 ) · · · hp(Xn
tp

)
]
= Em

[
h1(Xt1 ) · · · hp(Xtp)

]
.

Combined with the tightness of {( f1, ..., fm)(Xn)}n≥1 we deduce the result. �

Remark. Our proof of tightness results is relatively general. So we conclude a useful
result. Given a bounded domain D ⊂ Rd and a sequence of subsets Dn ⊂ D, n ≥ 1. Radon
measure m and mn are on D and Dn respectively with mn weakly converging to m on D.
For n ≥ 1, Xn is the stochastic process on Dn corresponding to the regular Dirichlet form
(E n,F n) on L2(Dn,mn). X is the stochastic process on D corresponding to the regular
Dirichlet form (E ,F ) on L2(D,m). Use the setting of the generalized version of Mosco
convergence in §4.  := L2(D,m) and n := L2(Dn,mn). If the following two conditions
are satisfied:

(a) If vn ∈ n, u ∈  and Envn → u weakly in , then

lim inf
n→∞ E n(vn, vn) ≥ E (u, u).

(b) For every u ∈ , lim sup
n→∞

E n(πnu, πnu) ≤ E (u, u).

Then (Xn, Pn
mn

) converges weakly to (X, Pm) on DD[0,∞) equipped with the Skorohod topol-
ogy.
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