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Abstract

The Markov chain approximation of a one-dimensional symmetric diffusion is investigated
in this paper. Given an irreducible reflecting diffusion on a closed interval with scale function
s and speed measure m, the approximating Markov chains are constructed explicitly through
the trace of the Dirichlet form corresponding to the diffusion. One feature of our approach is
that it does not require uniform ellipticity on diffusion coefficient of the limit object or uniform
regularity on conductances of the approximative Markov chains, as imposed usually in the
previous related works.
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1. Introduction

In this paper, let / C R be a closed interval with Radon measure m, for simplicity / =
[0,1]. We are concerned with the discrete approximation of an irreducible m-symmetric
diffusion, or equivalently an irreducible, strongly local, regular Dirichlet form on L*(I) =
L*(I,m). An irreducible strongly local regular Dirichlet form on L?(I) can be represented by
the following Dirichlet form (&, .#®)) on L*(I),

d
(1.1) F = {u el*)():u<s, d—“ e L, ds)},
S
1 (dud
ES(u,v) = 3 ) d—:d—:ds, u,ve FS,

where s is a continuous and strictly increasing function on /, called a scale function on 1,
u < s means that the function u is absolutely continuous with respect to s, and L*(1, ds) is
the space of square integrable functions with respect to ds on /.
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It is known from [8] that (1.1) is associated with a diffusion X on I, reflected at the
boundary, with scale function s and speed measure m. Actually a one dimensional locally
conservative (or no killing inside) irreducible diffusion is characterized by its scale function
and speed measure. Classic literatures on one dimensional diffusions are referred to [10]
[14]. See [9] for details about theory of Dirichlet forms.

Stochastic processes, especially diffusions, play an active role in financial and physical
models. How to simulate the stochastic processes by Markov chains is an important question
in practical applications. Therefore, for one-dimensional diffusions, in this paper we give
a natural way to construct the approximative Markov chains, that is , through traces of
(&S, F ) on approximative lattices. Intuitively, traces of (§®),.7 ) record the trajectory
information of X on the lattices. So it is direct and efficient to construct the Markov chains
through the trace method.

For diffusion processes on R, the classic results are Donsker’s invariance principle [6] for
Brownian motion and [15] for diffusion processes in non-divergence form. In [16], Stroock
and Zheng solve the problem for diffusions corresponding to uniformly elliptic operators in
divergence form via Markov chains with finite range and certain uniform regularity. In [1],
Bass and Kumagai extend the results in two ways: Markov chains with unbounded range
are allowed and the strong uniform regularity condition on conductances is weakened to
a uniform finite second moment condition. For both [16] [1], a crucial step is to obtain a
priori heat kernel estimate of the Markov chains to deduce tightness. In [3] [4], Burdzy and
Chen give the discrete approximation for reflecting Brownian motion in a general bounded
domain. They use a Dirichlet form based approach to obtain tightness. However, the novelty
of our result is that we do not impose conditions like above, precisely it differs from the
works above in the following aspects.

1. In former works, the diffusion coefficient of the limit object is assumed to be con-
tinuous and uniformly elliptic. In our setting, the infinitesimal generator is

1d d

2dxds’
and the diffusion coefficient is 1/s’, when s is smooth. The conditions above are
satisfied only when s’ is continuous, bounded away from 0 and above. We stress
here that we allow the discontinuity, degeneracy, singularity and even non-existence
of the diffusion coefficient.

2. In former works, the conductances of the approximative Markov chains are required
to satisfy certain uniform regularity, which does not necessarily hold for the con-
ductance constructed in our approach.

3. In former works, the conductances of the approximating Markov chains are required
L}oc converging to the diffusion coefficient. Our conductances are pointwise conver-
gent and may not satisfy the L}OC convergence.

We provide here a typical example to show the generality and power of the main result
(Theorem 2.1). Fix a strictly increasing and absolutely continuous function s on / satisfying

s'(x)=0or1ae.

Let G := {x € I : s’(x) = 1}. Then G is defined in the sense of almost everywhere and
it holds that m(G N (a, b)) > 0,V(a,b) C R. Note that this is equivalent to that s is strictly
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increasing. Furthermore, assume that m(G“) > 0. In fact, the typical example of G° is a
generalized Cantor set. Therefore, (&,.%®))in (1.1) is a proper regular Dirichlet subspace
(see [13]) of Brownian motion, which corresponds to the m-symmetric diffusion X with
singular diffusion coefficient. For n > 1, the Dirichlet form (&, .%#") of the approximating
Markov chain X" is constructed as follows:

1
(1.2) E'pp) =7 D ()~ ¢y)’

x~y

1
s(x) = s’

F" ={p € L*(L,my,) : (g, p) < o},

where x ~ y means x and y are neighbored. [, and m, are defined in §2. Clearly, the
conductance in (1.2) does not satisfy the uniform regularity condition (A1) in [1].

The idea to prove the approximation, borrowed from [12], is to prove Mosco convergence
and tightness. However in the proof of Mosco convergence, the dimension plays the key role
while the proof of tightness is relatively general.

The rest of the paper is organized as follows. In §2, we provide the construction of a
sequence of approximative Markov chains for the given diffusion corresponding to (1.1),
and then give the precise statement of the main weak convergence result (Theorem 2.1). In
what follows, the proof of Theorem 2.1 will be divided into two parts. In §3, we prove the
Mosco convergence of the associated Dirichlet forms of X”. In §4, we complete the proof
of weak convergence by providing some tightness results.

Nortarions. The notation ‘:=" is read as ‘to be defined as’. Given a domain D C R, the
families C(D), C.(D), and C°(D) are those of all continuous functions on D, all continuous
functions on D with compact support and all smooth functions on D with compact support
respectively. The notation || - || means the supremum norm of a bounded function. E?
(resp.E;) and P (resp.Pg) means expectation and probability with respect to X" with starting
point Xy = x (resp. initial distribution £). For 7 > 0,4 > 0, 77" and G'] are the semigroup
and resolvent associated with X". Similar notations (E,, P,, E¢, T;, G,) are understood in the
same way for X. Given T C R*, let

DpT :={f : T v D] f is right continuous having left limits}.

2. Main results

Now we will construct a sequence of Markov chains to approximate the diffusion process
X corresponding to (1.1). Take a partition of /: 0 = a; < ay <--- < apy = 1,set ], = {a;}?,
and A; = a;41 —a;, 1 <1 < n. Let the sequence of partitions satisfy A" := maxA; — 0 as
n — co. Define point measure on I, as m,({a;}) = m([a;, a;+1)),1 <i < n. It ils known that
m, is a Radon smooth measure supported on /,, .

Denote the time-changed process of X with respect to m, by X". Then X" is correspond-
ing to a m,- symmetric regular Dirichlet form (&",.#") on L*(I,, m,), that is, the traces of
(&S, F©®) on I,. Precisely, let o, be the hitting time of I, relative to X. The extended
Dirichlet space of .7 is
FO .= {u ‘U< s, % e L, ds)}.

e
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We consider the following orthogonal decomposition of the space (not necessarily Hilbert
space ) (Z), £©):

(21) <gfe(s) _ 0“(5) %(s)

e\,

where .% fésl)\l ={ue.Z® :u=0qe onl,). Weknow that for any u € .Z°, H, u(x) =

E,(u(X,,)) gives the probabilistic expression of the orthogonal projection of u on the space
%’;(15) and accordingly

,%”(S) {Hyu:ue F5).
From [9, §6.2], we have
F" =g e L*(I,,m,) : ¢ = umy-a.e. on I, for some u € .Z."},
E"(p, @) = é"(s)(HI"u, Hpu), ¢€.%" ¢=umy-ae.onl, forsomeu € f(s)
In the following we claim that

(2.2) E"p ) = Z (e(x) — e)’Ct,

xyel
F" =g € L*(I,,my) : &"(p,¢) < o},
where C" : I, X I, — R7, is the conductivity function, satisfying C, = C; , and C}, = 0
for x,y € I,. And
1

(2.3) Ch, =1 2s(0) = sl
0 otherwise.

if x and y are neighbored;

In fact, fix ¢ € L2(I,,my),¢ = umy-a.c. onl, for some u € Z. If x € [a;,a;41] for
some 1 < i <n - 1. From the continuity of the trajectories of X, it follows that
Xy, =a;oraj, Pyas.
Hence,
Hi,u(x) = ¢(a;) - Pr(Xy, = ai) + p(ain1) - Po(Xo, = ais1)
s(aj+1) — s(x s(x) — s(a;
= ¢l S((a:ll)) - S((Cli)) + ¢lai) S(CEH)I) - (S(Zi)

o elain) — e(ai) i
= (a;) + S —s@) (s(x) = s(a)).

If x € [ap, ans1], Hu(x) = ¢(a,). So we get Hju < s. And
dHpu,  g(air1) — ¢(a;)

- 9 is i 91S S _1
ds 7 S sty FE@mamh s
In this way
dH;u
" O (H,u, H ( ’)
" (@, ) = &V (Hyu, Hyu) = 2]; o) ds
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dH, u 153 (@(ain) — o(ar))’
) Z f ) ; s(aiv1) — s(a;)

So (2.2) is hold. (2.2) is associated with the Markov chain X" that stays at a state x for
an exponential length of time with parameter A"(x) := } C%_/m"(x) and then jumps to the
FEX

neighbor y with probability C% , /( Zg Cr).

Theorem 2.1. The continuous-time Markov chains {(X", P}, );n > 1} on I, associated
with Dirichlet form (2.2) in which conductances are set by (2.3) converges weakly to (X, P,,)
associated with (1.1) on D;[0, o) equipped with the Skorohod topology.

The proof is provided in the following sections.

3. Mosco convergence

We shall prove the Mosco convergence. The generalized version of Mosco convergence
from the appendix of [5] is included here for handy reference. Refer to [11] for more details
about Mosco convergence.

Forn > 1, (H,,{:,-),) and (H,(:,-)) are Hilbert spaces with the corresponding norms
|-l and || - ||. Suppose that (£, D(E™)) and (€, D(E)) are densely defined closed symmetric
bilinear forms on H,, and H, respectively. We extend the definitions of £"(u, u) to every
u € H, by defining £"(u, u) = oo for u € H,\D(E"). Similar extension is done for £ as well.

We assume throughout this section that for each n > 1, there is a bounded linear operator
E, : H, — H such that 7, is a left inverse of E,,, that is

3.1 (o f, fudy = <S> Enty) and myE, f, = f, forevery f € H, f,, € H,.
Moreover we assume that &, : H — H, satisfies the following two conditions

3.2) sup ||m,|l < oo and  lim |7, fll, = ||fll forevery feH.

n>1

Let ||E,|| denote the operator norm. Note that (E, f,, E,gn) = {fn, gn), for every f,,g, €
H,,n > 1 and so clearly

(3.3) IE.l=1 and [E,full = lIfull, forevery f, € Hy,n>1.

Dermition. Under the above setting, we say that £" is Mosco-convergent to £ in the
generalized sense if the following two conditions are satisfied.

(a) Ifv, € H,,u € H and E,v, — u weakly in H, then
liminf £"(v,,v,) > E(u, u).
n—oo

(b) For every u € H, there exists u, € H,, such that E,u,, — u strongly in H and

lim sup E"(uy, u,) < E(u, u).

n—oo

In our case, since the state space of X" is I, while X has [ as its state space, we need to
define the transforms between the functions on /,, and /. First, if v is defined on I, , let E,,v
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be the extension of v to / defined by
E,v(x) :=v(a;), x € [a;,a;41),1 <i<n.

Besides, if u € L*(I),
1 i+
mu(x) ;= ——— f u(z)m(dz), x=a;,1 <i<n
m,({a;}) a;

If u € C(I), define R,u to be the restriction of u to I,,, i.e.
R,u(x) == u(x), xe€l,.

It is easy to check that E,, and r, defined above satisfy the condition of (3.1) and (3.2). Let
L*(1,,m,) and L*(I) correspond to M, and H respectively. Notations such as inner product
and norm keep the same. It is clear that for u, v € C(I), it holds that

(3.4) lim (m,u, 7,0y, = lim (m,u, R,v), = lim (R,u, R,v), .
n—oo n—o0 n—oo

Theorem 3.1. Let (&, F") and (&S, F®) be the Dirichlet forms in (1.1) and (2.2).
Then &" converges to &' in the generalized sense of Mosco.

Proof. First, let us check Definition (a). Let ¢, € L*(I,),¢ € L*(I), and E,¢, weakly
converge to ¢ in L*(I). Suppose linl) glf E™(@n, pn) < o0 and ¢, € F" without loss of
generality. ’

For each ¢,, there exists u, € ﬂ}“), such that ¢, = u, m,-a.e. on I, and &"(¢,, ¢,) =
é"(“)(Hhun,HInun). We now prove that H; u, also converges weakly to ¢ in L*(I). Since

d
liminf & (H;,u,, Hj,u,) < oo, there exists a subsequence (still denoted by) { d]”u"}
n—oo S

bounded by a finite constant M in L*(I). For x € [a;,ai+1], 1 < i < n, we have

* dH]nl/tn

ds.
ds S

H],,”n(x) - E,pu(x) = f

It follows that

|H1,,un(x) - E,p,(x)| < f

s(q@—smm”%fw

< M(s(x) — s(an)'"*.

dH[n U

ds

dH]n uy

2 \1/2
as|
ds S

Since s is uniformly continuous on /, for any € > 0, there exists N large such that [s(x) —
s(y)| < & whenever |x — y| < AV. Then for every ¢ € L>(I),n > N, we get

|£wmmﬁm—m%mmu@

stwwmmwmramemw
=1 Y4

<oy [ iowis0 - st@) i)
i=1 Ydi
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< sl/sz|¢(x)|m(dx) < &' 2MymD)ig.
1

Since & is arbitrary, we deduce that H; u, — ¢ weakly in LZ(I). Therefore lim inf ||H;, u,|| o
n—oo 1

< oo. Then there exists a subsequence, still denoted by {H, u,} é?l(s)—weakly converging to a
unique v € F,
For each g € L*(I), we have

@@I(S)(Glg, HI,lun) = <g, Hl,lun>-

By letting n — oo, it follows @“’l(s)(Glg, v) = {g,v) = {g, p). Hence v = ¢, m-a.e. Besides, for

feFO, EOF, Hyuy) = EX(f, Hyuy) — {f, Hj,u). From the fact that Hj,u, — ¢ weakly

dH; u, d .
@4y, Un - ay weakly in L*(I,ds). Therefore,

in L*(I) and .Z ¥, it follows A

1 ((dH;u,\?
liminf & (@, @) = liminf & (H; u,, H; u,) = liminf §f ( o )ds
n—oo n—oo ;

n—oo ds
1 ((de\? ,
>~ [ (5£) ds = €9(g, 9).
_2f,(ds) s 32

Next, let us verify Definition (b). Suppose u € .#® without loss of generality. Then
u < s. Define v, := R,u. It is obvious that E,v, — u strongly in L*(I). Besides,

lim sup " (v, v,) = lim sup EX(Hy u, Hy u) < £ (u, u).

n—o00 n—00

The last inequality follows from (2.1). O

Let {T},t > 0} and {G"}, 4 > 0} be the strongly continuous symmetric contraction semi-
group and the resolvent associated with (&, F"). Similarly, the semigroup and resolvent
associated with (&®,.%%) will be denoted by {T;,t > 1} and {G,, A > 0} respectively. The
following equivalence theorem is referred from [5].

Theorem 3.2. Under the above setting, the followings are equivalent.

(a) & is Mosco-convergent to & in the generalized sense;

(b) E, T'r, — T, strongly in H and the convergence is uniform in any finite interval of
t>0;

(¢) E G ity — G, strongly in H for every A > 0.

A main corollary of Mosco convergence is the following convergence of resolvent.
Corollary 3.3. Foru € C.(I), it holds that

lim ||R,Gu — Gymyullgr = 0.
n

Note that || - || denotes the & -norm and Gu € F© and ||Gaulle < A7 !|ulle, so that
Guu e C(), R,G u is well defined.
Proof. It follows from the relation between & and its resolvent G} that
E"(R,Gu — Gmuu, R,Gu — Gmyu)
= &"(R,Gu, R,G 1) — 2R, G au, myu — AG  mt,u), + (G \mtuu, mpu — AG'\ muu),
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It is obvious from Theorem 3.1 that &"(R,Gu, R,Gu) — & (G, u, G, u). By (3.4),(3.1),
(3.2), (3.3) and Theorem 3.2, two inner products above have the same limit (G u, u — AG  u).
Hence

lim &"(R,G .u — G'ympu, R,G .u — Gymmyu)
= &G u, Gu) — (G, u — AG u)
= E(Gau, Gau) — (G, uy = 0

Similarly, we can deduce that ||R,Gu — G'\m,ull, — 0. m]

4. Proof of Theorem 2.1

In this section, we complete the proof of weak convergence by providing some tightness
results. The idea of it is due to [12].

Proof of Theorem 2.1. We complete the proof of the main theorem according to the
following steps.

Step 1. First, we show that for every A > 0,7 > 0 and u € C.(I), it holds that

4.1) lim supEm[ sup |Ghm,u(X)) —RnG/lu(Xt")” =

n—oo t€[0,T]

Fix A, T > 0. Given &€ > 0, let
D" = {x € I;|Gimuu(x) — R,Gu(x)| > &}, opr = inf{t > 0; X} € D"}.
The left side in (4.1) is less than the sum of

M, :=limsupE,, [ sup |Gﬂ7rnu(X,”) - RnG/lu(Xf)|;(7Dn > T]

n—oo 1€[0,T]

and

M, :=limsupE,,

n—oo

sup |G/l7r,,u(Xf) —R,,G,lu(X,")|;o-Dn < T],
1€[0,T]

It is obvious that M < . As for M,, if we set p}),l(-) := E"[e™7?"], we have
(4.2) Py, [opn < T] < €1, phda < e Nm(D - bl
< e'cCap"(D")'? < e ce™V||Gimyu(x) = RyG ()l

by the definition of the capacity (see [9, §2.1]), where ¢ = Vm([). Therefore
2|zl

M, < limsup P, [op <T] =0

n—o0

by Corollary 3.3. Since ¢ is arbitrary, (4.1) follows.
Step 2. Let f € C.(I). We next prove that for any 7" > 0,& > 0, there exist 4o > 0 and
u e Co(I)N.Z® such that

(4.3) limsupE,,,

n—oo

sup [ (X)) - AOG';Onnu(X;’)” <e.
1€[0,T]

Fix f € C.(I),T,& > 0. Since & is regular, there exists u € C.(I) N .Z¥, such that
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(4.4) sup | f(x) — u(x)| < -
xel
Denote
F" = {x € I} |R,(u — AGu)(x)| > =}, o' = inf{t > 0; X]' € F"}.
Let

Np = limsupEmn[ sup |Rn(u - /lGﬂu)(Xf)|;aFn > T]

n—oo t€[0,T]

and

N> :=1lim sup]Em"[ sup |R,,(u - /lG,lu)(X,")|;0'Fn < T].
1€[0.T]

It is obvious that Ny < g As for N,, in a similar way of (4.2), we have
(4.5) P, [0pn < T] < 2€" e ||Ry(u = AG ) ()| 7.
Therefore,

(4.6) N, < 2||ullo limsup Py, [0 < T

4.7 < 4e” ce™V|ullo lim sup ||R, (u — AG u)(X)l|
(4.8) < 4e” e lulleol(u — AG )W)l go)5

where the last inequality follows from the proof of Mosco convergence. For u € .7, we

3
know that AGu — uin & l(s)—norm by [9, Lemma 1.3.3]. Then choose Ay such that N, < Zg
It follows that
(4.9) lim sup Ey,, [ sup |Ry(u - /loGﬂou)(X”)']

n—oo te[0,T]
Therefore, by (4.1)(4.4)(4.9), (4.3) holds.

Step 3. In this step, we will demonstrate that for any finite m > 1 and {fi, ..., fiu} C
C.(D,{(f1,..-s f)(X™)}u>1 under the condition that X" takes m,, as initial distribution forms a
tight family on Dg» [0, o0).

It suffices to consider m = 1 and f := f; for the sake of brevity. Fix &, T > 0, apply Step 2
to these f, &, T and choose u, Ay accordingly. Set Y}' := /lOGﬁoﬂ,,u(X;’) such that (4.3) holds.
Set Z}! := /lo(/loGﬁoﬂnu — mau)(X7).

From Fukushima’s decomposition of X" with respect to /lOGjozrnu (see [9, Theorem

5.2.2]), one can find that
!
te- Y] - f Zids
0

is a martingale relative to the filtration of X". Besides, (4.3) yields that

limsupE,,,

n—oo

sup |f(X”) - Y"|] <e.
1€[0,T]

Furthermore, it follows that
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limsupE,,

n—oo

sup 17| < 2ol < co.
t€[0,T]

Therefore, [7, Theorem 3.9.4,Remark 3.9.5(b)] yields the conclusion.

Step 4. Since C.(I) strongly separates points in /(for the definition of strong separation,
see [7, §3.4,(4.7)]; for the proof of this fact, see [2]), by [7, Corollary 3.9.2], it only remains
to show that for any finite m > 1 and {f, ..., f,} < C.(1), (f1, ..., fm)(X") weakly converge to
(f1s - f)(X) with X,, and X having m, and m as their initial distribution respectively. To
this end, take g1 € C,(R™) and set h; := g1 o (f1, ..., fu) € Cp(I). Given any 11, ...,1, > 0, by
the contraction of semigroup and uniform continuity of 4;(x), we have

lim E,, [A1(X})] = lim fE,,Tt'fRnhl(x)m(dx) = lim fE,,Tt”ln,,hl(x)m(dx),
n—oo n—oo J; n—oo Jr

which converge to E, [41(X;,)] by Theorem 3.2. In fact, the last equality is deduced from the
following reasons. Since £(x) is uniformly continuous on /, for any & > 0, there exists N
large such that for any n > N, |R,h(x) — m,hi1(x)| < &,Vx € I,. Therefore, for n > N, by the
contraction of semigroup,

’fEnT,'f(Rnhl(x) — m,h (xX)m(dx)| < em(I).
I

Since ¢ is arbitrary, the last equality holds.
Inductively (see [12] for more details), we conclude that

nh—>n;10 Em,, [hl(XZ) T hp(thp)] = Em[hl(th) T hp(Xt,,)]'

Combined with the tightness of {(f, ..., fi)(X")}»>1 We deduce the result. O

Remark. Our proof of tightness results is relatively general. So we conclude a useful
result. Given a bounded domain D c R? and a sequence of subsets D, ¢ D,n > 1. Radon
measure m and m, are on D and D, respectively with m, weakly converging to m on D.
For n > 1, X" is the stochastic process on D,, corresponding to the regular Dirichlet form
(&, F") on L*(D,,m,). X is the stochastic process on D corresponding to the regular
Dirichlet form (&,.%) on L*(D,m). Use the setting of the generalized version of Mosco
convergence in §4. H := L*(D,m) and H,, := L*(D,,m,). If the following two conditions
are satisfied:

(a) Ifv, € H,,u € H and E,v, — u weakly in H, then
liminf &" (v, v,) = & (u, u).
n—oo

(b) Forevery u € H, limsup &"(m,u, m,u) < &(u, u).

n—oo

Then (X", P}, ) converges weakly to (X, P,,) on Dp[0, o) equipped with the Skorohod topol-
ogy.
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