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1. Introduction

Let Ln(q)=S2n+1/Zq be the (2n+l)-dimensional standard lens space mod q.
As defined in [10], we set

L2

q

n+1 = Ln(q),
( U ) LY = {[*o, - , * J e L ( ί ) | * . is real>0} .

By the several papers, we determined the i^O-groups KO(SJ(L%IL")) of the
suspensions of the stunted lens spaces L%jL" for the cases y = l (mod 2) [25],
q=2 [12], q=\ [20] and #=8 [21]. Moreover we determined the /-groups
J(Sj(L?m)) for the cases odd primes q [19], q=2 [18], j = 4 [20] and q=8 [21].
The purpose of this paper is to determine the i£O-groups KO(Sj(L%PIL2P)) and
/-groups J(SJ'(L?plL2p)) for odd primes p.

This paper is organized as follows. In section 2 we state the main theorems:
Theorem 2 gives a direct sum decomposition of KO{Sj(L2rqIIArq) ίorj = 0 (mod
2), Theorem 3 gives a direct sum decomposition of /(^(Z^^/L*^)) for j = 0
(mod 2) and n+j+ί =£0 (mod 4), Theorem 4 gives the structure of /(S^LfplLξp))
ίorj = 0 (mod 2) and n-\-j-\-\ = 0 (mod 4) and the necessary conditions for Lgp/Lζp
and Lξp^Lip* to be of the same stable homotopy type are given by Theorem 5
which is an application of Theorems 3 and 4. In section 3 we prepare some
lemmas and recall known results in [12], [19] and [25]. The proofs of Theo-
rem 2 and Theorem 3 are given in section 4. The proof of Theorem 4 is given
in section 5. In the final section we give the proof of Theorem 5.

The author would like to express her gratitude to Mr. Susumu Kδno for
helpful suggestions.

2. Statement of results

Let Vp{s) denote the exponent of the prime p in the prime power decom-
position of s, and xtl(s) the function defined on positive integers as follows (cf.
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[3]):

( 0 (/>=*= 2 and s=f=0 (mod (/>-l)))

ή (p φ 2 and ί = 0 (mod (p—l)))

(p = 2 and s=£θ (mod 2))

r) (ρ==2 and s==0(mod2)).

Let Z/ft denote the cyclic group ZjkZ of order k. For the case j = ί (mod 2),
the following result is known.

Theorem 1. Let q,j, m and n be non-negative integers with m>n, j=l
(mod 2) and J > 1 .

(1) ([20] and [25]) / / ? = 0 (mod 2), tfcn ra have

L^Ln

q)) « KO(Sί(RP(m)IRP(n)))

and

J(S*(L7m)) « f(S'(RP(m)IRP(n))).

(2) ([19] and [25]) 7/"?= 1 (mod 2), ίΛew ίt

, n ) ,

\KO(Si+m) (m=ί (mod 2))

k0 (m=0(mod2))

and

[ J{S»«>) {m=\{moά2))
Li /, m):==z \

KJ ' l θ (ifi = 0 ( m o d 2 ) ) .

REMARK. (1) The groups KO(Sj(RP(m)/RP(n))) and
are determined in [12] and [18] respectively.
(2) ^-groups of the spheres are well known (cf. [3]).

Theorem 2. Let j , m, n3 q and r be non-negative integers with m>n, j = 0
(mod 2), q=Ξl (mod 2), q>\ and r > 0 .
(1) If n-\-j+l^βO (mod 4), then we have

KO(SJ(Lm

2rQILn

2rq)) « Kb(S\L^ILir))®^(SJ(L^^L^^)).

(2) //j = 0 (mod 4) andn = 3 (mod 4) orj = 2 (mod 4) αrcrf w + j + l = 4 (mod 8),
then we have
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(3) Ifj = 2 (mod 4) and n+j+l = 0 (mod 8), then we have

where G denotes the kernel of the homomorphism

and ord G is equal to 2.

(4) KO(SW ψψl

where p runs over all prime divisors of q.

REMARK. The partial results for the case y = n = 0 of this theorem have
been obtained (cf. [10]).

Theorem 3 Let j , m, n, q and r be non-negative integers with m>n,j = 0
(mod 2), q=ί (mod 2), q>ί andr>0.
(1) If n-\-j-\-1^0 (mod 4), then we have

(2) J{S\LrniLW^
where p runs over all prime divisors of q.

REMARK. (1) In the cases r = l , 2 and 3, the groups J{Si{Lr

2rjL2r)) are
determined in [18], [20] and [21] respectively.
(2) For odd primes p, 7(5y(L?/LJ)) are determined in [19].
(3) The partial results for the case j=n=0 of this theorem have been obtain-
ed (cf. [10]).

For an integer n, A(n) denotes the group defined by

( Z/20Z/2 (n = 0 (mod 8))

(2.1) A(n) = Zβ (n = l or 7 (mod 8))

0 (otherwise).

As defined in [1], we denote by φ(m,n) the number of integers s with
n<s<m and s = 0, 1, 2 or 4 (mod 8). Set

(2.2) Φ{m,n) \
V \φ{m,n+\) (»=E3(mod4)).

In order to state next theorem, we set M=m((w+y+l)/2),

(2.3) a{j,m,n) = \φ{m'n) <'' = °}
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and

(2.4) b(j,m,n) =
(min{^O)+l,

where όo(w, »)==[«/2(/>-l)]-[(n+l)/2(/>-l)].

Theorem 4. Lei _/', ;», M be non-negative integers with m>n, and p be an odd
prime.
(1) Ifj=O (mod 4) and w=3 (mod 4), then we have

where ^=min{β(i, m,»), i»2(»+l)} and ip=τam{b{j, m, n), vp(n+ί), vp(M)}.
(2) Ifj=2 (mod 4) and n= 1 (mod 4) and m>n-\-2, Then we have

where ip=min {b(j,m,n), vp(n+l), vp{M)} and A(m+j—l) is the group defined
fry (2.1).

REMARK. In the case tn=n-\-ί9 Sj(Lq+1IL") is homeomorphic to the sphere
Moreover in the case m=n+2y we have the homotopy equivalences

Sj+»(LIP) (n: even).

Hence, /-groups J(Si(L2

nplL2p) are determined completely.

Finally we consider the application of the above results. A space X is
said to be stably homotopy equivalent to a space Y if there are non-negative
integers u and v such that the tt-fold suspension SUX of X is homotopy equivalent
to the z -fold suspension SVY of Y. In order to state next theorem, we set

(2.5) φ(m, n) = max{<p(m, »), φ(-n-2, -m-2)} ,

where Σ̂ is the function defined by (2.2).

Theorem 5. Let my n and t be non-negative integers with m>n-\-2i and
p be an odd prime. If Lfp/LZp is stably homotopy equivalent to Lζp^IΛp*', then

Γ <p(m-n-l, 0) (m<n+9 or max{*2(n+l), v2(m+\)} >φ(m-n-\y 1))

~~\φ(m> n)—1 (otherwise)

and

n, ή) ( n + l = 0 (mod 2pb(m>n)) or m-\-l = 0 (mod

ny n-\-2) (otherwise),
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where b(m>n)=[([ml2]-[(n+l)l2])l(p-ί)].

REMARK. Theorem 5 shows that the necessary conditions for q=2p coin-
cide with the product of those for q—2 and q=p (cf. [8] and [14]).

In order to state the final theorem, we prepare function a defined by

(w = 0 (mod 2) and k=l (mod 8)

(2.6) a(k, if) = or n= 1 (mod 2) and k == 0)

0 (otherwise).

Theorem 6. If k=m-2 [(n+l)/2]>2 and t=0

(mod 2nk,*)-«{k,n)pimp-in^ t h e n LfpjLZp and L?/#/LSJ# are of the same stable

homotopy type.

3. Preliminaries

In this section we recall known results and set up some lemmas needed
later.

We begin by setting some notation. Let α, (w, v) (1<&<8) be the integers
defined by

'(1) ai(μ,v) =

(2) a2(u, v) =

(3) a3(u,v) =

(5, * ( . , . ) -

(7) «7(«,,) =

(8) «8(W),) = ((2u-*-2)-(2u-v-2)) ( - 1 ) -
V ^ ^ / \ u v \ J

Then we have following lemma.

Lemma 3.2. PPie have the following equalities:
(1) αxίu+l, v) = α i(iι, ϋ+l)-2α 1 ( ι ι , ϋj+α^u, ι>-l),
(2) α2(w+l>») = ajίu, v-\)+2a2{u, v)-a2(u-l, v),
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(3) aju+l, v) = a3(u, v+ί)-2a3(u, v)+az(uy v-ί),

(4) aA{u+ί, v) = aA(u, v-ί)+2aA(u, v)-aA(u-ί, v)9

(5) a5(u+ί, v) = a5(u, v-ί)+a5(u-ί, v-ί),
(6) a6(u+ί, v) = a6(u, v—1)—a6(u+ί, ^+1),
(7) aΊ(u+ί, v) = aΊ{u} v—ί)+aΊ{u— 1, v—1),
(8) aB(u+ί, v) = aB(u3 v-ί)-a8(u+ί, v+ί).

Proof. By the definition (3.1), we have

2«

= «!(«, v— 1)—

u—v I \u—v—\

α 4 ( ^ i;)—α4(w— 1, v),

—v

Thus the equalities (1), (4), (6) and (7) are established.
By making use of the equalities

a2(uy v) = (X4(u+1, v+l)—aA(u—l, v

cc3(u, v) = a^u—ίy v—Vj—a^u—l, v+l),

<25(tt, v) = or7(

and α:8(w, v)=a6(u— l,v—l)+aβ(uy v+ί), (2), (3), (5) and (8) follows from (4),

(1), (7) and (6) respectively. q.e.d.

Lemma 3.3. In the polynomial ring Z[x], the following equalities hold, where
i denotes a positive integer.
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(1) Σί-i az{i, u) ΣS-i αi(«, ft) ** = **.
(2) Σί-i at(i, u) Σϊ-i««(«, ft) ** = **.
(3) Σί-i ««(*, «) Σί-i «5(«, *) «* = *'•
(4) Σί-i «β(*,«) Σί- i α7(«, ft) ** = «*•

Proof. (1) Since α 1(l,l)=α 2(l,l)=« 1(2,2)=α 2(2 )2)=l and -^(2,1)
=α2(2, 1)=4, the equality holds for I<^'<ί2. We argue by induction over i;
let us assume that i>.2 and the result is true for i and i— 1. Using Lemma
3.2 and the inductive hypothesis, we have

Σ ί i ί «i(*+l, «) Σ!-ι «x(«, *) ̂ *
= Σϊίl(α2(ί, M-l)+2«2(ί,u)-a2{i-\,«)) Σϊ-i «iK ft) **
= S i l l α2(ί. «- l) Σϊ-i«!(«, ft) **+2 Σί- i a#,«) Σί-i αi(«, ft) **

- Σ ΐ l l «2(ί-1,«) Σϊ- i «i(«, ft) ̂ *
= Σί-o«,(«,«) Σ*αl! «i(«+l, ft) *»+2*'-*'- 1

= Σί-o αj(«, u) Σ*:l(αi(«, ft+l)-2α1(tfJ ftj+α^n, ft-1)) xk+2xi~-xi-1

= Σί-o «2(ί, M) Σϊ^i αi(«, ft+1) «*-2 Σ ί - ! αj(*,«) Σϊ-i «i(«, ^ x"
+ΣΪ-0 «2(ί,«) Σ ϊ l l «I(", ft-1) «»+2«'-ίβ'-1

= Σί-i aji, u) Σ*- 2 αi(«, ft) xk~1-2xi+xi+ι+'ΣLo ce2(h «) «i(«, 0) *
+ 2 * ' - * ' - 1

= «'- 1-Σί-i «2(^ «) onfμ, l)+«'+ 1+Σί-o a2(i, u) a^u, 0) x-x*-1

o a2(i, u) («!(«+1, l)-αχ(M, 2)+2α1(Mί 1)) x
i ««(*» «-i) «i(«. i) *-°'"2 *
l(«i(*+1' «)+O2(i-l, u)-2a2{i,«))«!(«, 1) x-O'"2«
ΐ αi(*-l,«) αfi(«, 1) x-0'~2 x = «*+1.

This completes the induction.
The proof of (2) is similar to that of (1).
(3) Let β3(i, k) be the integer denned by

β3(i, ft) = Σί-» aft, v) ccs(u, k).

It suffices to prove

Since α s(ί,i)=α6(/,ί)=l and a5(k+l, k)=— αβ(Λ+l, k)=k+l9 (*) holds for
Λ ί < ^ + 1 . Assume that t>k+2>2. Then we have

h k) = Σΐ-ft αβ(i, II) α5(iι, A)
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^

-ιι) (i-u)l(u-k) (i-k))

= o.
This completes the proof of (3).
(4) Let βA(i, k) be the integer defined by

βt(i, k) = Σ ί - * αg(ί,«) α7(«, Λ).

It suffices to prove

«*

Since cr7(t, ι)=αβ(ί,i)=l and a7(k+l, k)=— a8(k+l, k)=k— 1, (**) holds for
. Assume that i>k+2>3. Then we have

1)) ft(ί_l,ft_l) = 0.
This completes the proof of (4). q.e.d.

In the rest of this section j denotes non-negative integer withy = 0 (mod 2).
Considering the (Z/q)-action on S2*+ 1xC given by

exp (2π\Z^ί/q) (s, u) = (z-exp (2π\/^Λ

for (z, u)^S2n+1xC, we have a complex line bundle
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Set

(3.4) σf = , t - l e ^ « + 1 ) .

We also denote by σq the restriction of σq to L\n. Considering the (ZI2q)-action
on S2n+1xR given by

exp (2πV^ϊβq) (*, u) = (s exp (2πy/ZZ\βq), -u)

for (#, tt)e£2|t+1X/?, we have a real line bundle

Set

(3.5) κu = vu-i

We also denote by «2, the restriction of κ2ί to Ll«.
For each integer n with <)<«<»!, we denote the inclusion map of L"t into

L" by i™, and the kernel of homomorphism

b ( ) = ι -3Li ax(h u) au(q) (j = 0 (mod 4))
M) 1 ^ ί - i a& u) au(q) (/ = 2 (mod 4))

by FOί,B(?). We set

(3.6) C/Oi..(ί) = Σ * Π. k\ψ> -1

Let α, (ί), 6, (?) and c,(g) (ί>0) be elements of KO(SJL^) defined by

(3.7)

where r: K-+KO denotes the real restriction and I: £(X)->K{S2X) is the Bott
periodicity isomorphism.

We define the function

(3.8) μq: Z-> Z

by setting μq(k) to be the remainder of k divided by q for every k&Z.

Lemma 3.9. The elements a^q), b{(q) and c{(q) satisfy following relations.

Σί-i a&, u) *.(?) U = 0 (mod 4))

J«-I Λ4(/, w) 4β(ί) (j = 2 (mod 4)).

(3)
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(4) ci(q)=ΣL.(u)

ί-iαsfc«)*.(ί) 0 ' s θ (mod 4))

3ί . i^ i , «)*.(?) O' = 2(mod4)).

... . . . f ΈLi <X6(i,u)cu(q) (j=0(mod4))
(6) OΛQ) = <
K } Λq) 1 Σ ί - i α8(ί, a) *„(?) (i = 2 (mod 4)).

, - , , , , K-Vι>(ϊ) (i = 0(mod4))

l-Λ f-n fω(?) 0 = 2 (mod 4)).

(8) For the Adams operation -ψ *, we have ψk{cii(q)) = kif2 aki(q).

Proof. (1), (3) and (4) are evident from the definition (3.7).
(2) Suppose that/~O (mod 4). It follows from the definition (3.7) that

we have

Σi-i αa(i, u) bu(q) = Σ i . i ot2(i, u) Σϊ-i a^u, k) ak(q) = a4(q)

by (1) of Lemma 3.3. The proof of the case j = 2 (mod 4) is similar by making
use of (2) of Lemma 3.3.

(5) Suppose thaty=O (mod 4). By (4) and (2) we have

- I ) ' " * Σί-i <Φ, u) bu(q)

= Σ ί . i Σ ί . . ( [ ) (-1)'"* alK tt) bu(q).

It suffices to prove

Since we have

Σί-. ( [ ) (-1)'"* cc^k, u) = Σί-.( * ) (-l)'-

= Σί:5(βi ) (-1)'—ί(2(«+»/(2«+;)) ( )

= (2(ί!)/((*-tf)! (2M)!)) Σ j g (I-T") (_ 1)'—'(2«+>— 1)—(«+j

_ ί 0 (i > 2w)
= l2 (ί=2β)

by [22, Lemma 3.7], (*) holds for i>2u. Since we have
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and

Σ *"" ( * t ! ) ί-1)""^1 "Λ*,*) = -(u+1) cc2(u, u)+aju+l, u)

= -(u+ί)+2u+ί + ϊ = u+ί = cc5(u+l, u),

(*) holds for u<i<u-\-1. In particular, (*) holds for u=ί. We argue by induc-
tion over i—u and u\ let us assume that i>u-\-l>3 and the result is true for
{iyu—\) and (i— 1, w—1). Using Lemma 3.2 and the inductive hypothesis,
we have

= Σl-ί f " 1 ) (-l)'-*+1 «i(A, «)+2Σί=ί-i f " 1 ) (-1))'"*

( - 1 ) ' " * <*2{k, u-

= α 5(ί,«—l)+α s(ι—1, M—1) = α 5(z+l, M) .

This completes the induction.
Suppose that _/ = 2 (mod 4). By (4) and (2) we have

= Σi-i ( ^ ) (-I)'"* Σϊ-i ctAk, u) h{q)
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= Σί-i Σί-

It suffices to prove

(**) ΈL

Since we have

_ ί 0 (* > 2M)

U ( ί = 2 ι t - l )

by [22, Lemma 3.7], (**) holds for t>2u—1. Since we have

and

TΆtl ( W + X ) ( - I ) - " aA(k, u) = ~(w+l) ajμ, u)+<φ+l, u)

= -{u+\)+2u = u-\ = cc7(u+h u),

(**) holds for u<i<u-\-l. In particular, (**) holds for u=\. The rest of
the proof is similar to that for the case j = 2 (mod 4).

(6) Suppose that/ = 0 (mod 4). It follows from (5) that we have

Σί-i «β(i, u) cu(q) = Σί-i «β(i, u) Σ!-i «5(«, *) bk(q) = *i(

by (3) of Lemma 3.3. The proof of the case j=2 (mod 4) is similar by making
use of (4) of Lemma 3.3.

(7) is obtained by the properties ^ | = 1 and rof=r, where t: K-+K denotes
the complex conjugation.

(8) is immediately obtained by [1] and [4]. q.e.d.

Now we prepare some notations. Set

(1) A(d, u, i) = ΣΪSft-l)*"-1-* i2"^1) cc2(d+k-u+l, i).

(3.io) (2) β.tl = ( - i

(3) B(d, u, i) = ΣΪ151 β«.k a^d+k-u+ί, i).



J-GROUPS OF LENS SPACES 593

Then we have the following lemma.

Lemma 3.11. Let ube a positive integer. Then we have
(1) A{d, u, i) = αβ(2rf+l, d+i-u+l).
(2) βUti = 0 (i>2uori<0).

(3) βu,2u-l-i = βu.i

(4) β..i+1-β.j = <Φ, u-i-1).
(5) B(d,u,i) = A(d,u,i).

Proof. (1) If M = 1 , then we have

A(d, u, i) = Σί.o(-l)1-* ( * ) a2(d+k, i)

= a2(d+l,i)-a2(d>i)

( (
\d+l-iJ \d-\-

\d+l-i/\ d-i
= a5(2d+\,d+i).

This implies (1) for the case «=1. If «+l>l> then we have

A(d, u+ί, i) = Σ2S1 ( - l ) " 1 ^ 1 ) a2(d+k-u, i)

-2ΣΪ151 (-1)* (?U~l) a2(d+k~u+l, O

(a2(d+k-u, i)-2a2(d+k-u+l, i)

+a2(d+k-u+2, ί))

^ - « + l , «-l) = Λ(d, u, i-ί)

Thus (1) is proved by the induction with respect to u.
(2) is evident from the definition (3.10) (2).
(3) Suppose 0 < i < 2M— 1. Then we have

βu.i βu,2u-l-i

ω 1 ) U (-1)" ( 2 M - 1 ) - 2 Σ ^ ' - 2 (-1)'
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\ v / \ v /

(4) Suppose — l<i<2u—ϊ. Then we have

= α j ( « , t t — ί — 1 ) .

(5) BK «, 0 - Σf.ό1 /3β>i α4(rf+ft-«+1, ί)
= Σϊllί1 A.*(

= Σlϋo1 βu,k{aA{d+k-u+2, i+\)-at(d+k-u+ί, ί+1))
- Σ ί " - - 2 i ySκ,*+i(

= ΣΪI-Ί (-

-α4(</+Λ-

= Σί'-Ϊ1 (-1)*+1 (2U~1) (aάd+k-u+2, i+l)-at(d+k~u+ί, ί+1))

= Σ*2 -lί1(-l)*+1(2l'~1) (a^d+k-u+2, i+l)-a4(d+k-u+l, ί+1))

(a4(d+k-u+2, i+l)-a4(d+k-u, ί

+ A - « + l , ί)

= 4̂(</, u, ί). q.e.d.

Lemma 3.12. Let q>3 be an odd integer and d—(q—l)/2. Then we have

W ? ) = - Σ i - i ocs(q, d+i) *,+._,(?),

where u is a positive integer.

Proof. Supposey = 0 (mod 4). Then by Lemma 3.9, we have
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««-*(?) = «ι(ϊ) (0<i<q) •

IfO<u<d+l, then we have

0 = Σί -Vί-l)*-1

- M + l , *)

- « + l , ί) *,

= Σ ί i : ccs(2d+l, d+i-u
If u>d-\-ί, then we have

0 = Σ*"^- .- i (- l ) 2 "- 1 -*( 2 M ~ 1 ) aM.u+1(q)

-«+i, 0)

= ΈtZί-1 -A(-d-l, u, i) δ( (<?)+Σi:ΐ A(d, u, i) b
= Σ ? ^ " 1 -a5(-2d-l, -d+i-u) &,

Supposey=2 (mod 4). Then by Lemma 3.9, we have

If 0 < M < d + l , then we have

O = Σ Ϊ I o 1 βu.k ad+k-H+1(q)
= Σll-o1 fiuA^-i-"*1 a^d+k-u+l, i) i,(ϊ))
= Σ ί i ϊ ί Σ ϊ l ϊ 1 βu,k cc4(d+k-u+l, ί)) 6,(?)

= Σ ί i ϊ «5(2^+l, d+i-u+1) bt{q)
= Σ ί i : α5(2^+l, d+i-u+1) b{{q).

If M>ί/+1, then we have

0 = Σϊ i ί^ ί- i βu.k ad+k-u+ι(q)
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rff * - aJt-d+k-u, i) b{(q))

-</+ft-«,

== Σizί-'-Bi-d-l, u, ί) : ϊ *(<*,«, 0

Thus we have

0 = Έttl as(2d+l, d+i-u

This completes the proof of lemma 3.12. q.e.d.

Lemma 3.13. Let p be an oddprime, d={p—\)j2, u=sd+j (ί<,j <,d) and
i>0. Then we have

bu+i(P)=(-pγbί+1(p)

modulo the subgroup

<iP'+1 bί+i{P), '",P" I>MP),PS bj+1+i(p), -,p bd+i(p)}> .

Proof. We choose inductively integers BUιk(u'ϊ> 1 and 1 <,k^d) such that

with

0 (π

(—pγ (modp!+1) (A=j)

0 (mod/) (k>j),

and

If l^u^d+ί, we put

Ό

-a5(p,d+k) (ί<k<d and u = d+ϊ).

It follows from Lemma 3.12 that BUtk{\-ζk<d) satisfy (*) (ί<u<d+l). As-
sume that «Ξ></+1 and £B j A(l<A^ί/) have been chosen to satisfy the condition
(*). Put Bu+ιΛ=Bu>d 5 Λ U and δ a + u = 5 , , ί - 1 + 5 M Bi+Uk{2^k^d). Then we
have

Σί-2 B..*-i **+,
Σί-2 B..*-l , W

.<ί Bi+Uk) bk+((p)
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and

0 (n

{~p)r (mod/>'+1) (k=l)

0 (mod/) (k>l)9

where #+l=iγf-|-/(l<*/ί£ί/). The lemma is a direct consequence of the con-
dition (*). q.e.d.

The part (1) of the following proposition is obtained by making use of
Lemmas 3.9 and 3.13.

Proposition 3.14. (1) Let p be an odd prime. Then the group KO(SJ

(L2

p

ίm/2^/Llίn^)) is isomorphic to VOίιm/2χ2in/2](p), which is isomorphic to the direct
sum of cyclic groups of order ρbo(m+j-^'ό-bo(n+J-4i'J) generated by pbo< n+'-4i'J)+1 b{{p)
(l<Ξί<](^>—1)/2), where b0 is the function defined in (2.4).

(2) ([12]) Assume that) = 0 (mod 4) and w * 3 (mod 4). Then the group KO(SJ

(US I Li)) is isomorphic to VOL,n(
2)> and

»+4'4><:1(2)> 0 * = 4 ( m o d 8 ) ) .

REMARK. The partial result for the casey=w=0 of Proposition 3.14. (1)
has been obtained in [13].

We define the function h(q, k) by setting

(3.15) h(q,k) =

where J(r(σq)) is the image of r(<rq)&KO(Lq) by the

/-homomorphism / : KO{L\) -> J(Lk

q).

REMARK. The function h(q, k) have been determined completely by K.
Fujii (cf. [9], [11] and [10]).

We recall the following lemma from [17] for the proof of Theorems 5 and 6.

Lemma 3.16. Suppose that k=2 [m/2]+ί—2 [(w+l)/2]>3, N=0 (mod
2%, *)) andN>m+l. Then the S-dual of Lm

q\L\ is L%-*-2IL%-m-2.

From [6, Propositions (2.6) and (2.9)] and Lemma 3.16, we have

(3.17) (1) If k=m-2[(n+l)l2]>2 and f=0 (mod 2h(q,k)\ then Lm

q\Ln

q and
Lq***^"** are of the same stable homotopy type.
(2) // k=m-2[(n+\)l2]>2 and n+l = 0 (mod 2h(q,k))3 then t==0 (mod 2h
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{q, k)) if and only if L*jLn

q and L™+tILn

q*
f have the same stable homotopy type,

(3) // l=2[m/2]-n>2 and t==0 (mod 2%, I)), then Lm

q\Ln

q and Lm

q^\Ln

q^ are
of the same stable homotopy type.
(4) // / = 2 W 2 ] - « > 2 and rc+l==0 (mod 2h{q,l)), then t=0 (mod 2h(q,l))
if and only if L^jLn

q and Lq

n+tjL"'*~t have the same stable homotopy type.

From [17] we have the following.
(3.18) Suppose that q = 0 (mod 2) and m>n+2. Then v2(t)>[\og2 2{m—n—\)]
if L^jLn

q and L^'/L^*' are of the same stable homotopy type.

Proposition 3.19 ([18]). Suppose thatj = O (mod 4).
(1) If n3β3 (mod 4), then we have

J(S'(RP(m)/RP(n))) «

where a(j, m, n) is the integer defined by (2.3).
(2) Ifn = 3 (mod 4), then we have

J(Sj(RP(m)IRP(n)))

where a{jy m, n) is the integer defined by (2.3) and

i2 = min {a(j, m, n), v2(n+\)} .

Proposition 3.20 ([19]). Let p be an odd prime, and suppose that j =
(mod 2).
(1) If n = 0 (mod Ί)y then we have

J(Sj(L2

p

[m<2]ILn

p)

where b(j, m, n) is the integer defined by (2.4).
(2) Ifn = ί (mod 2), then we have

where b(j, m, n) is the integer defined by (2.4) and

ip = min {b(j, m, n), pjn+l), m((n+j+ί)/2)} .

4. Proof of Theorems 2 and 3

We denote the projection map of LJ5- (resp. L2

q

[m/2]) into Z,£ff by π 2 (resp. πq).
Then we have

Lemma 4.1. Let j be a positive integer with j = 2 (mod 4). Then we have

(1) The induced homomorphism (πq)
1: Kδ(SjL^q)->KO(SjL2

q

[m/2]) is an epimor-

phism.
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(2) The induced homomorphism (π2)
1: κ6{SiL^q)->KO{SiL2r) is an epimorphism.

(3) If tn-{-j+1^0 (mod 4), the induced homomorphism

(τr 2 ) ! :

is an isomorphism.

Proof. (1) In the commutative diagram

A Jj/2 A Jj/2

r is an epimorphism [19, Lemma 3.1] and I^2 is an isomorphism. There exist
an element σ ^ G ί f i ^ ) which maps to a generator σq^ίζ(L2

q

ίm/2i) by πqtC.
This implies that π9tC is an epimorphism. Thus, (πq)

1 is an epimorphism.
This completes the proof of (1).

(3) If m-\-j+l = 5, 6 or 7 (mod 8), then we have

KO(Sj+1L?rq) fi* KO(SS+lL?r) tt 0 .

= 2 (mod 8), then in the commutative diagram

) e κδ(Sm+>) fo?^H b

κb(Sm+ί+1) e κb(sm+i)
degg=q and both (ρm-2

m)1 are isomorphisms [25, Remark of (3.3)]. Since q=ί
(mod 2), £ ! is an isomorphism. Hence (π2)

[ is an isomorphism.
Next consider the commutative diagram

-Z-U KO{Si+1L%) ^ -

where the rows are exact and

(m=0(mod2))
deg g = ,

BS 'q {m=\ (mod 2)).

[ = 1 (mod 8), then we have KO{Si+ιL^-1)«KO{Si+iL^))^Z

and KOiS^L^^KbiS^L^^Zβ. Hence both (ρm-Γ)1 are epimor-



600 A. TAMAMURA

phisms. Since KO(Sm+j+1)^ZI2y gι and both {pm-Γ)x are isomorphisms. Thus
(π2)

1 is an isomorphism.

If tn+j+1 = 3 (mod 8), then in the above diagram we have KO(SM+J+1)e*

0. Hence upper (ίm-™)x is a monomorphism. By the proof in the case tn+j+

1=2 (mod 8), (πί)1 is an isomorphism. Hence (π2)
1 is a monomorphism. Since

ordKO(SJ+1L2rq) = ordKO(Si+1L2

nr))=2y (π2)
1 is an isomorphism. This com-

pletes the proof of (3).
(2) We consider the commutative diagram

) KO

i(π2)
r—+ KO(SjL?r) ->

in which the rows are exact ([5] and [7, (12.2)]), where c: KO(X)-+R(X) is the
complexification and δ is the homomorphism defined by the exterior product

with the generator of KO^1).

If tn+j+l3= 1, 2 and 3 (mod 8), then KΌ(Si+11%)) is a free group and ord

KO(SS L2r) is finite. Hence δ is a zero-map. Since lower rl~x and πί*c are
epimorphisms, (τr2)

! is also an epimorphism.
If 01+7+1 = 1, 2 or 3 (mod 8), then (πί*1)1 is an isomorphism by (3), πί*c

is an epimorphism and πJ

2*c is a monomorphism. Thus (τr2)
! is an epimor-

phism from 4-lemma. This completes the proof of (2). q.e.d.

Now we define the homomorphism

fx: KO(SjL?rq) -> KO(S'L?) θ

Lemma 4.2. Lei / 6e a positive integer with j=2 (mod 4). Then fι is an
isomorphism.

Proof. By [25, Theorems 1 and 2]

ord

(4.3) ord

and

(4.4) ord KfyS'Lj) = 2*<-+Λ+1(2 -1)K-+ίV«i,

where Λ: ^-» ίΓis the function defined by

(s=l(mod8))

*(*) = (ίΞθor2(mod8))

. 0 (otherwise).
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Hence, we have

(4.5) ord KOiS'Lp,) = ord (KOiS^) © KO(S}L2^)).

By Lemma 4.1, (π2Y and (π ,)1 are epimorphisms. For each element (x, y) e

L?r)®KO(SjL2^), there exist elements υ and w^KO(Si ί £ f ) such
that (;r2)' (»;)=* and (π,)1 (w)=y. Now we put h(m+j)+1+(r— 1) [(m+2)/4]=ί
and [(ί»+2)/4]=ί for the sake of simplicity. Since 2s is relatively prime to q',
we can choose integers a and b such that

(4.6) a2>+bqf = 1 .

Set z=bq* v+a2' zv. Then by (4.3), (4.4) and (4.6) we have

= (bq'(π2y (v)+a2'(π2y (to), bq'(π,y (v)+a2°(πgy (to))
= ( ( l - O (π2y (v), (l-bq<) (πty («))

= (*.y)

Thus/! is an epimorphism. By (4.5),/i is an isomorphism. q.e.d.

We have the homomorphisms

/,: KfyS'I*,) — KOi&Llr) © fy

/,: KO(Si+1L*2rt) -> KO(Si+1Ln

2r) ©

and

/: 2£O(S> (£?t/L J f)) - KO(S'(I£m,)) ©

defined similarly as /j. In the following commutative diagram

h KO{Si+ιI£) θ ^

L κb{S'(LϊlIΪ)) θ

- ^ KO(S'L^r) 0

the columns are exact.
If y = 2 (mod 4), M + i + 1 ^ 0 (mod 4) and wi^n+3, then/ 1 ( / 2 and /3 are

isomorphisms by Lemmas 4.1 and 4.2. From 4-lemma, / is an epimorphism.
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By [25, Theorems 1 and 2]

ord

= ord

T h u s / is an isomorphism. This completes the proof for the case j = 2 (mod
4) of the part (1) of Theorem 2. The corresponding proof for the casej=0
(mod 4) is quite similar to that of the above case.

Combining the part (1) and [25, Theorem 2], we obtain the parts (2) and
(3) of Theorem 2.

The proof of the part (4) of Theorem 2 is similar to that of the part (1).
Since the isomorphisms of the parts (1) and (4) of Theorem 2 are ijr-maps,

Theorem 3 is an easy consequence of Theorem 2.

5. Proof of Theorem 4

Assume thaty = 0 (mod 4) and n=3 (mod 4). It follows from [25] and
Theorem 2 that we have the commutative diagram

0 - VOiιn+1(2)φVOiίmm,n+ί(ρ) i Kb(S'{Lξ,IIA,)) & KO(S'+'+1) - 0

(5.i) ii i n
0 -

in which the rows are exact. For each / prime to p (resp. 2), Np(i) (resp. ΛΓ2(/))
denote the integer chosen to satisfy the property

(5.2) iNp(i) = 1 (modpm) (resp. iN2(ί) = 1 (mod 2m)).

As defined in [19], let w be the remainder of j/2 divided by p—l and set v=p—

( v\ . . . i ί l\

* 11 — •*• / "^*A(^ }/ a n d (_•/("P)-—— ^/( "P) — ^Lji i i * ) I — •*•}
z j \ % j

Np(iPJ/2)Nvcv(p) {\<l<p—\). In order to state the next lemma, we set

2<»-1)/2 Cχ(2) (n+j+1=4 (mod 8))

2(»-3)/2 Ci(2) (n+j+1 ΞΞ 0 (mod 8)).

((—py cv(P) (n+j+1=4 (mod 8) and / = v)

(-py CiiP) (n+j+1 = 4 (mod 8) and / Φ v)

Np(2)(-p)scϋ(p) (w+y+l = 0(mod8) and I = v)
Np(2)(-p)sCι(P) (w+i+l=0(mod8) and / Φ v),

(5.3)

(2) up=\

where s=[nβ(p—l)] and /=(«+l)/2—ί(p—1).
According to Lemmas 3.9, 3.13 and 3.14, we have the following lemma.

Lemma 5.4. Ifj=0 (mod 4) and n=3 (mod 4), then ̂ (S^Lί^Li,)) has
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an element x, which satisfies the following conditions:

(1) f2(x) generates the group KO(Si+n+1)ί

(2) Ux)=(u2ίup).

In the diagram (5.1), since KO(SJ+n+1) is isomorphic to Z> we have a direct
decomposition

where Z {x} means the infinite cyclic group generated by x.
For the Adams operation, we have the following lemma.

Lemma 5.5. Ifj = O (mod 4) and n = 3 (mod 4), then ίhe Adams operation
is given as follows.

where b2eVO'm.n+i(2)> *>

10 (kmO(modp) and (»+;+l)/2*0 (mod (p—1)))

_(((#-+/«*_l)+(_;/2) (k*-ι-l))lp) (pup)

(kmθ(modp) and (n+j+l)β=0 (mod (p-ί)))

(mod UOiίm/2χn+ι(p)) and

(k=0 (mod 2))
2 ' -((k^n+i+1^-kJ/2)l2) (2B,) (AΞ 1 (mod 2)).

Proof. We necessarily have

ψk(x) = ax+Mbz, bf)

for some integer a and an element

(b2, bp)<EVOL,n+l(2)®VOhm/21,n+l(p) •

By using the ψ -map /2, we see that a=k(a+i+1)β. Under f3,fι(b2, bp) maps (b2, bp)
and x maps into/3(x), and by above Lemma we see that

*»(«„ ut) = k^+W{u2, up)+(b2, bp).

It follows from [18, Lemma 2.3] and [19, Lemma 2.13] that

(Λ=l(mod2))
and

ί y /

1
ί ^ y ) / «, ( n + ; + l ) / 2 * 0 (mod (j>-l))

' 1 (1+072) (I-**" 1))", (»+;+l)/2sO(modO>-l))



604 A. TAMAMURA

(mod UOίimμxn-n) (kφO (modp)). Therefore,

_ ί _#•+'+»>/* Ui (k Ξ 0 (mod 2))
2 = {(#72_£(»+m)/2) ̂  ( ^ Ξ i ( m o d 2 ))

and

((n+j+1)/2*0 (mod (p-1))

I M# ( ( » + ; + l ) / 2 s θ (mod (p-1))

(mod ί7O^M/23,B+i(ί)) (k^βO (modp)). q.e.d.

We now recall some definition in [3], set Y=KO(SJ(L?P/Ln

2p)) and let /
be a function which assigns to each integer k a non-negative integer f(k).
Given such a function/, we define Yf to be the subgroup of Y generated by

that is

Then the kernel of the homomorphism / " : Y-+J"(Y) coincides with f] Yfy

where the intersection runs over all functions/.
Suppose that/satisfies

(5.6) /(&)>m+max {vp(xa{{n-\rj-\-\)j2))\ p is a prime divisor of k} for every
k(=Z.

In the following calculation we put (n-\-j-\-\)β=u and

Un+1= VOL.n + l(2)®VOkm/2Xn+l(p)

for the sake of simplicity.
Now we consider the case ( M + J + 1 ) / 2 Ξ O (mod (p— 1)). From Lemma

5.5, we have

(mod/1(t7.+1))

i\Γ2(w/2W
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By virtue of [3, Theorem (2.7) and Lemma (2.12), we have

i )U

Therefore,

Γ/ = </i(^+i) U

where «=(»+;+1)/2,

M 2 = (m(M)/2v2(«)+2) iV2(«/2v2<«)) (»

Since this is true for every function / which satisfies (5.6), we have

/"(Y) « YKMU.+ι) U

Therefore,

where M0=m((n+j+l)l2), X1=Mox-M2u2-Mpupy X2==2a^'m'n>u2 and Λ:3=
^*(y.«.n) Upm

we set

z2 = min {a(j, tn, /•),

and

ip = min {*(;, m, n), ^ ( n + 1 ) , ^ ( m ( ( n + y

Since z/2(M2)=:z/2(wH-l) and z/ ί(M i ))=z; i >(n+l), the greatest common divisor of

2«('.«.«) and M2p
b(^i'm'n)~iρ is equal to 21'*, and the greatest common divisor of

pb(j,m,n) a n ( j ^ 2β(y w'n)-'2 is equal to ^>^. Choose integers ely e2, e3 and e4 with

and

e4 Mp 2a0^,n)-i2 = = ^ ^ #

For the sake of simplicity, we put a=a(jym>ή) and b=b{jymyή) in the fol-

lowing calculation. Set

= \ e2p
h~ip -ex e2Mpjp

ip

\ ^42
Λ- |2 e4M2IZi* —e3

then we have
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( Mox—M2U2—Mpup

pbup I \

and det A=l. This implies that

J"(Y) « Z/m(

Thus the proof of (1) for the case (n+j+l)β = 0 (mod (p—l)) is completed by
[24].

We now turn to the case tt=(w+_/'+l)/2^0 (mod (/>—1)). Then we have

(mod/1(ί/»+i)). Hence

Therefore,

ly X2, X3}>

where M0=m((n+j+l)β)9 X^M0 x-M2 u2y X2=2a«>m'n) u2 and X9=pHί-"- > up.
We set

i2 = min {a(j, m, n), z/2(w+l)> .

Since p2(M2)=v2(
n+1) the greatest common divisor of 2a^'m'n) and M 2 is equal

to 2f2. Choose integers ̂ x and e2 with

Set

B = \ e2 -ex 0

0 0 1

then we have

M0x—M2u2\

TU2

\ P*up } \ p b u p

and det B= — 1. This implies that

J"(Y)
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Thus the proof of (1) is completed by [24].

Now we turn to the case j=2 (mod 4) and Λ = 1 (mod 4). In the corres-

ponding diagram of (5.1), KO(SJ(L2p/L2p)) has an element x, which satisfies

the following conditions:

i) f2(x) generates the group KO(Si+n+1)y

ii) the 2-component oίf3(x) is equal to 0.

Since the Adams operations are given by ψk=k—2 [kβ] on the 2-component of

KO(Sj(L?PIL%))y the rest of the proof of (2) is similar to that of (1).

6. Proofs of Theorems 5 and 6

In this section we state proofs of Theorems 5 and 6.

Proof of Theorem 5. Suppose that the spaces Lζp/Llp and Lίf/Lip*
are of the same stable homotopy type with m>n-\-2. Then there exists a homo-
topy equivalence

/: S'{LStIIΛt) - S'-WIIAV),

which induces an isomorphism

(6.1)

We can assume that v2(j)>:max {3, φ(m,ή)}. By (3.18), ί = 0 (mod 4). It
follows from Proposition 3.19, Theorem 3 and Theorem 4, that we have

min {v2(j)+l, <p(mf ή)} = min {v2 (j-t)+l, φ(my n)} .

Thus we have

(6.2)

If m>n+9 and v2{n-\-\)><p(m—n— 1, 0)— 1, then we have the following
from Theorem 4:

and

J(S'(Lζ,IL'tt))

where

k2 = min iφ{m, n+ί), v2(n+t+l)} ,

kp = min {b(j-t, m+t, n+t), vt(n+t+l), vt

i2 = min {φ(m, w+1), v2(n+l)}
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and

ip = min {b{j, m, n), vp(n+l), vp{m{\

By the isomorphism (6.1), we have k2=>i2. This implies that we have v2{n+t+l)
>φ(m, n+l) if i/2(n+l)>^)(m, n + l ) and v2(n+t+l)=φ(m} n + l ) — 1 if ^2(n-
=φ(m, n+l)— 1. Since v2{n+l)+\>φ(m—n— 1, 0)=φ(m, n+l), we have

(6.3) Ifm>n+9 and v?{n-\-\)>φ{m—n—\} 0)—1,

On the other hand, we can assume that

j = 0 (mod 2jpc<[w/2^-

and jl2=p—2—[(n+ί)/2] (mod (^—1)). It follows from Proposition 3.20,
Theorem 3 and Theorem 4, that we have

min {pt(j-

= min {

This implies

(6.4) ^(t)>

In the case n+l=0 (mod ZfW-n-w^WV-W), we assume that

; = 0 (mod ZfW-to-w+VPMV-W)

and w+y+1=0 (mod 2 (p— 1)). It follows from Theorem 4 that we have

min {vp(n+t+ί), [(

= min

= min

This implies

(6.5) If n+l = 0 (mod 2fWmto-u*+1W<*-ιn), we have

>-1)] .

Combining (6.2), (6.3), (6.4), (6.5), Lemma 3.16 and (3.18), we obtain
Theorem 5.
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Proof of Theorem 6. According to [10], we have

h(2ρ9 k) =

Then Theorem 6 follows from (3.17).
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