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Abstract
We consider a viscoelastic wave equation with weak, strong damping and power nonlinearity.
We have already obtained a global solution and its decay rate in [8]. In this paper, we apply the
concavity method in order to show that the solution blows up in finite time under non-classic
constraint on g.

1. Introduction

One of the most important terms, from mathematical point of view, of equation to study
in this article is the viscoelasticity ( fot,u(t — s)Av(s) ds), which also includes weak (v;) and
strong damping (Av;). Real materials dissipate energy when subjected to deformation. These
environments are the seat of intrinsic dissipation phenomena which cause a decrease in en-
ergy and an exponential attenuation of the amplitude of the waves during their propagation.
We are interested in the modeling of this phenomenon by the introduction of semilinear
viscoelastic model, which is well suited to the description of a large class of dissipative phe-
nomena. It requires knowledge not only of current values of stresses and deformations but
also of past values, which are said to be memory materials. To begin with, we consider the
problem

(1) vy + av;, — O(x) (Av + wAv, — f ut — s)Av(s) ds) =ploP!
0

for x € R" and r > 0 with

v(x,0) = vp(x) for x e R”,
v;(x,0) = v1(x) forxeR",

where a € R, w > 0, p > 1, n > 3, the density function ®(x) > 0 for all x € R" and its
inverse (®(x))~! = 1/0(x) = 6(x) satisfies

2 2
" for 23613—”

2) 0eL'(R") with r .
n-—2

" 2n- qn + 2q
The novelty of our work lies primarily in the dispense with the use of the new condition
between the weights of weak and strong damping (7) taken in [8]. The constant A; being the
first eigenvalue of the operator —A. We also proposed an algebraic nonlinearity in sources
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662 T. Mivasita AND K. ZENNIR

which make the problem very interesting in the application point of view. In order to com-
pensate the lack of classical Poincare’s inequality in R”, we used the weighted function to
use the generalized Poincare’s one. The main contribution located in Theorem 2, where
we obtained sufficient conditions on the kernel (related with a convex function) and on the
nonlinearity to guarantee the nonexistence of solutions. Of course, this result completes our
study in [8] concerning the global existence in time.

We assume that the kernel function u € C'(R*,R*) satisfying

+00
3) I=1-a>0 for ;7=f u(s)ds,
0

where R* = {k | k > 0}. Furthermore we assume that there is a function & € C'(R*,R")
such that

4) W@ +Eu@) <0, EZ0)=0, Z(0)>0 and E"(£) =0

for any € > 0. Under the similar assumptions, many researchers have studied the problem

v — O(x) (Av + wAv, — ft,u(t — 5)Av(s) ds) =0.
0

They obtained the global existence, decay rate and blow-up of solution. For instance, see
[1, 3], where the question of the decay estimates of solutions for the linear problem were
discussed from different perspectives and angles. The Kirchhoff type problem

vy — O(x) (mo +my IVUI2 dx) Av + O(x) f u(t — s)Av(s)ds =0
0

R~

for my > 0 and m; > 0 is also investigated in [10, 11]. For (1), the global existence, decay
rate and blow-up of solutions are studied. The authors consider the ¢ = 0 case in [7], the
w=0,u=0casein [2],the a > 0, w = O case in [12] and the a = 1, 6§ = 1 case
with a bounded domain in [5], respectively. Recently, in [8], the authors give a simplified
computation of decay rate from the convexity. The aim of this paper is to prove that the
solution blows up in finite time under certain conditions. To introduce the theorem, we define
the function spaces H as the closure of C*(R") with respect to the norm ||v|;; = (v, v);{/2 for
the inner product

(v,w)y = f Vu-Vwdx
and Lg(R”) as that to the norm ||v]| L= (v, v)igz for
(v, w)Lg = fﬂ Bvw dx,
respectively. As mentioned in [9], we have
H = {ue LR | Vu e LA(R")").

For general g € [1, +00), LZ(R”) is the weighted L7 space under a weighted norm

1

q

loll 9 =(f 6 |v]? dx) :
er
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To distinguish the usual L? space from the weighted one, we denote the standard L7 norm

by
lloll, = (f lo]? dX) :

The main tool to obtain necessary estimates is a decreasing energy which is defined by

E@) = 5 o}, + 5 (1 - fo ls) ds) llf + 5 G 0.0) = —— bl

for (v,v;) € H X Lg(R”), where

(mou)(t) = fo p(t = ) lu(®) — u(s)l7, ds

for any u € H. We denote an eigenpair {(/lj, wj)}jeN CRXH of
-O(x)Aw; = Aw; forxeR"
for any j € N. Then according to [9],
O<Ay <A< <2; < T +o0

holds and {w j} is a complete orthonormal system in H. In this setting, we can establish a
local solution

ve Xy, =C([0,T,,); H) N C'([0, T,); Li(R™),

where T,,, > 0 is a maximal existing time of a local solution for the initial value vg. For the
proof, see [6, 7, 8, 12]. Then, we introduce the results of the existence of the global solution
and its convergence rate obtained in [8].

Definition 1. The functions v is said to be a weak solution to (1) on [0, T'] if it satisfies
ve L*[0,T); H), v, € L*([0, T); L;(R™)), v, € L*([0,T); H'),

5 f vt,:,bdx+af v dx

!
=— f \Y (v + wu, — f u(t — s)(s) ds) NOMXWY)dx + f vlolP! wdx
n O ]Rn
for all test function ¥ € H for almost all r € [0,T], v(x,0) = vy in H and v,(x,0) = v in

Lg(R”), where H’ denotes the dual space of H.
Theorem 1 (Theorem 2 in [8] ). Let

+2
" and n > 3.

6) I<p<

Under the assumptions (2), (3) and (4), suppose that
(7) a+jw>0.

For sufficiently small (vy,v,) € H X Lg(R”), (1) admits a unique global solution u in the



664 T. Mivasita AND K. ZENNIR

space
ve X = C([0,+00); H) N C'([0, +o0); LA(R™)).
Furthermore, there exists ty > 0 depending only on u, a, w, n and E'(0) such that
0 < E(r) < E(tp) exp [— ft # ds]
w 1= [y u(p)dp
holds for all t > t,.
The main theorem in this paper is concerned with the blow-up.

Theorem 2. Under the assumptions (2), (3), (6) and (7), suppose that u’(t) < 0 holds for
anyt > 0. Let (vg,v1) € H X Lg(R"). If either of the following conditions is satisfied, then
the local solution blows up in finite time in H.

(i) EW0)<0, p’l-1>0.

pr-1
(p> = 1)1
where Ay and Eq are positive constants depending only on n, p, 8 and u to be defined in
Section 3.

(i) 0<EQ) < Eo,  llwoll e > Ao,

This paper is composed of 3 sections. In section 2, we introduce several important facts
such as embedding inequalities, decreasing energy, inner product and ODE theory. In section
3, we prove that the solution blows up in finite time under the conditions in Theorem 2.

2. Preliminaries

First, we introduce Sobolev embedding inequalities.

Lemma 1 (Lemma 2.2 in [2]). Let 6 satisfy (2). Then there is a positive constant Cs > 0
which depends only on n and 0 such that

lloll 22 < Cs llvlly
and
llollg < Collvllz
forv e H, where
1
C,=Csll0lly and s=2n/(2n—qgn+2q)
for1 <q<2n/(n-2).

Next we define the inner product and the corresponding norm by

(v,w)*za)f Vv-dex+af Ovwdx and ||v]|, = A/ (v, v),
R’l n

for any v, w € H, respectively.
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Third, we introduce the energy function which plays an important role in obtaining the
estimates.

Lemma 2. For a local solution v(t) € XTUO of (1),

1 1 ! 1 1
E(®) = 3 i, + 5 (1 - fo p(s) ds) ol + 5 (o v) - P ol

LZ-H
is a decreasing energy for (1).

Proof. We have
d 1 1,
ZE® = = lloll: = S ol + 5@ 0 v)

forall 0 <t < T, and

2 1 1
®) E() = E(ti) - f (Ilvzlli + SH(S) lloll3, — 5(#' ° v)) ds

forall0 <t <t <T,,. m|

Finally, we introduce the following lemma, which leads the local solution to the blow-up:
Lemma 3 ([4]). Let G(t) € C2(RY), G(t) > 0 and G'(t) > 0 for t € R*. If
([G'OF -1 -a)G"OGE) <0
holds for some a € (0, 1), then G(t) blowsup ast - T < (1 — a) G(0)/ (aG’(0)).

3. Blow-up
First, we prepare several lemmas. Next, we show that the local solution blows up in finite

time. For the sake of the proof, we define

©) G®) = loll;, + fo (I ds + (To = ) llogll2 + BTy + 1)?,

where T, T and S are the positive constants to be chosen later. We define positive constants
Ao and Ej by

ptl

O e i (s
=|—- an = s
" =\(Cp)? T2+ D \(Cpi1)?

respectively, where C,, is a constant defined in Lemma 1. Let
y=28-2(p+1)EQ).

Lemma 4. If (//(1) < 0 holds for any t > 0, a local solution v(r) € Xr, of (1) satisfies

. 1 1 !
I 2 <p+1){—E(0>+5||vt||25+—(1— fo u(s)ds)uvn%,

Lg+l 2
4 1 1
. f (nv,(s)ni " Ems)nv(s)u;) ds + Ewow}
0

forallt €[0,T,).
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Proof. The conclusion follows from the definition of E(¢) and (8). |

Lemma 5. A local solution v(t) € XTUO of (1) satisfies

2f f u(t — s)Vo(s) - Vo(t)dxds = —(p+ 1) (uov) () + 2+l f u(s)ds ||v(t)||%{
0 Jro p+1l Jo

forallt€[0,T,).

Proof. By Young inequality, we have

2f f u(t — s)Vo(s) - Vo(t) dxds
0 Jrr

= 2f f u(t —s) (Vo(s) — Vo(1)) - Vo(t) dx ds + 2f f u(t—s)Vo(t) - Vo(t) dx ds
0 Jr» 0 Jrr

2 —21(; u(t = 5) llo(s) = vl lOlly, ds + 2f0 p(t = 5) llo@)ll7, ds

= —2f0 V(P + Du(t = 5) [lo(s) = v@)llz ey lo@®llz ds + 2f0 pu(t = 9) (i3, ds

p+1

1 t
> —(P+1)(/100)(t)+(2——)f,u(S)IIv(t)IIH ds
p+1]Jo

= —(p+ Do)+

2p+1 (7 )

L [ s ds oo

for all ¢ € [0, T,,), which completes the proof. m|

Lemma 6 (Lemma 5 in [8]). Assume that 0 < E(0) < Ey.

(@) If llvoll, 1 < Ao, then a local solution v(r) € XTUO of (1) satisfies |[v()||,»n1 < Ao for all
(4 0

t€[0,T,).

(1) If llvollp+1 > Ao, then a local solution v(r) € Xr, of (1) satisfies |[v(®)l|;+1 > Ao for all
0 0

t€[0,T,).

Proof of Theorem 2. We have
(10) G'(0 =2fGWM+Mm%mm+mamn
!
= 2f Ovv; dx + 2f (v,v), ds+2B(Ty +1)
R 0

and

G’ (t)

Il
\S)

1

3

(60,2 + 6vv, + abov, + WV - Vvt) dx +2p

3

91),2 dx + 2f v (Ovy + abv; — wAY;) dx + 26
= 2| @ldx-2 | |Vof* dx+ 2f OloP! dx + 2B

R R
+2f fp(t—s)Vv(s)-Vv(t)dsa’x
»Jo



Brow-Up FOrR A NONLINEAR WAVE EqQuATION 667

by (1). Lemmas 4 and 5 imply that

2 !
2 2 p 2
G0 > y+<p+3>||v,||L5+{<p—1)—p+1foms)ds}uvu,,

(10 2+ fo (IR ds + (p+ 1) fo () (IR, ds

2 £
pl-1 2 f 2

3 ds.
bil llellz, + (p + 3) ; o ()l ds

> 7+ P+l +

The proof of case (i). We take T, > 0 so large that

f uovr dx -+ BT, > —— ool
n p - 1
holds. Then we have
(12) G'(0) = 2(f Ouov; dx +ﬁT1) >0
and choose T > 0 sufficiently large by
s 2(Ioll+ ool +573)

0= Pt .
(P=DGO)  (p-1)(f, vov1 dx+BT)
Owing to E(0) < Oandy =26 —-2(p + 1) E(0), we can take 8 as

Y
0 —,
<h< p+3
which yields
t
(13) G'(t) > (p+3B+ P+l +(p+3) f o) ds > 0
g 0

by (11) and p*l > 1. Then we have G(r) > 0 and G’(¢) > 0 for all ¢ € [0, T) by (12) and
(13). Owing to (9), (10) and (13), for any &, 7 € R, we have

G// 1
GE + G (ngn + pT(g)rf > llév + i}, + fo v+ nuills ds + BUT + D&+ 7} 20

forany &, 7 € Rand r € [0, T)). Hence we have

4
(G'(1))* - mG"(r)G(t) <0

for any ¢ € [0, Ty). Noting that

4 -1 -
=1-2 and  0<Z27— <1,
p+3 p+3 p+3
we can apply Lemma 3 to conclude that
4G(0)
G(t) > +o0 as t>T < ————
(p-1DG(0)

for some T € (0, Ty). By (9), we have either ||v(t)||L§ — +ooor |[v(?)]|, = +ocast — T. In
both cases, ||v]|l;; — +oo follows by Lemma 1 and the definition of the inner product (v, w),.
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The proof of case (ii). First of all, we take Ty and 7' in the same way as case (i). Next,
since we have

prl—1

(p* =11

2 2 prl
! A I 1\ 2Ap+1
||v||%,z(—||v||ml) >( 0 ) :_( Z)P _2Ape D),
Cpwr =0 Cper) — I\(Cpe) (-

by Lemmas 1, 6 and the definition of 4y and Ey. By (11), we have

2(pP1-1)
(p—-1l

Eo - E(0>) +(p+3) ol + (p +3) fo loi()I ds.

0<EW©) < Ey < Ey,

we obtain

v

G"(1) 28-2(p+ DEQO)+(p+3) ||sz|§§ ————Eo+(p+ 3)f oI ds

pl—1

(p* =Dl

28+ 2(p+ 1)(

Hence we take 8 as
2 _
(p* - Dl
reach (13) and follow the proof of the case (i), which completes the proof of the case (ii).
O

0<,8<2( o—E<0>),
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