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Abstract
New results pertaining to the invariant manifolds of stochastic partial differential equations are

presented. We prove the existence of local and global invariant manifolds for a non-autonomous
stochastic evolution equation. These manifolds are constituted by trajectories of the solutions
belonging to particular function spaces and the theory of Ornstein-Uhlenbeck process.

1. Introduction.

1. Introduction.
Consider the non-autonomous stochastic evolution equation

dx(t) =
[
A(t)x(t) + F

(
t, x(t)

)]
dt + x(t) dW(t),

where A(t) is in general an unbounded linear operator on a Banach space X for every
fixed t and x(t) dW(t) is a noise satisfies suitable conditions which will be established later,
F : R+ × X → R is a nonlinear function.

In recent years, for autonomous stochastic evolution equations, existence, uniqueness,
stability, invariant measures, invariant manifolds and other quantitative and qualitative prop-
erties of solutions to stochastic partial differential equations have been extensively investi-
gated by many authors. It is well known that these topics have been developed mainly by
semigroup approach.

In [9], the following nonlinear stochastic evolution equation is considered:

dx(t) =
[
Ax(t) + F

(
x(t)
)]

dt + x(t) dW(t),

where A is a generator of a C0−semigroup eAt satisfying an exponential dichotomy condi-
tion. The existence and smoothness of Lipschitz continuous stable and unstable manifolds
are proved by the Lyapunov-Perron’s method. Similar problems are investigate in [8], [10]
and [11]. Although many researchers paid attention to study the non-autonomous stochastic
evolution equations which have been widely used to describe abrupt changes such as shocks,
harvesting, and natural disasters, as far as we know there is very few attention paid to invari-
ant manifolds for such equations (see [6], [3], [4], [15], [16] and [17] for example).

Instead of using the smallness of Lipschitz constants in classical sense, the concept of
admissible spaces is used to construct the invariant manifolds for

dx(t) =
[
A(t)x(t) + F

(
t, x(t)

)]
dt,
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where A(t) is in general an unbounded linear operator on a Banach space X for every fixed
t and F

(
t, x(t)

)
is a nonlinear operator (see [13] and [14]). These invariant manifolds are

constituted by trajectories of the solutions belonging to admissible function spaces. How-
ever, to the best of our knowledge, the invariant manifolds problem for non-autonomous
stochastic system (1) has not been investigated yet. Motivated by this consideration, in
this paper we will study the existence of local and global invariant manifolds for a non-
autonomous stochastic evolution equation. Specifically, we study the invariant manifolds
for a non-autonomous stochastic evolution equation (1) under the assumption that the family
of operators (U(t, s))t≥s≥0 on a Banach space X associated with A(t) is said to be a (strongly
continuous, exponential bounded) evolution family and the nonlinear term F(t, x) is Lips-
chitz continuous. In fact, the results in this paper are motivated by the recent work of [8],
[9], [10], [11] and the invariant manifolds discussed in [13], [14]. The main tools used
in this paper are stochastic analysis techniques, theory of Ornstein-Uhlenbeck process and
characterization of the exponential dichotomy of evolution equations in particular spaces of
functions defined on the half-line. Note that the Lyapunov-Perron’s method which is fre-
quently used in [8], [9], [10], [11] can not be applied to (1). We will use the method to
construct invariant manifold in [13], [14], where the work is actually done for nonlinear op-
erators.

In Section 2, we recall some basic concepts and results for stochastic partial differential
equations, evolution family and random dynamical systems. The existence of local stable
manifold for (1) is proved in Section 3. In Section 4, we prove the existence of stable mani-
fold for (1).

2. Preliminaries.

2. Preliminaries.
In this section, we recall some basic background knowledge on stochastic non-autono-

mous partial differential equations, theory of Ornstein-Uhlenbeck process and characteriza-
tion of the exponential dichotomy of evolution equation.

2.1. Stochastic non-autonomous partial differential equations.
2.1. Stochastic non-autonomous partial differential equations. Denote by H an in-

finite dimensional separable Hilbert space with norm ‖ · ‖. Consider the stochastic non-
autonomous partial differential equation

dx(t) =
[
A(t)x(t) + F

(
t, x(t)

)]
dt + x(t) dW(t),(1)

where x ∈ H, W(t) is the standard R-valued Wiener process on a probability space (Ω,F,P),
furthermore, x(t) dW(t) is interpreted as a Stratonovich stochastic differential (see [9]), A(t)
is in general an unbounded linear operator on a Banach space X for every fixed t, F :
R+ × X → R is a nonlinear function.

In the case of unbounded A(t), we may use the evolution family
(U(t, s))t≥s≥0 arising in well-posed homogeneous Cauchy problems. Let us recall the defini-
tion of an evolution family (see [1]).

Definition 2.1. A family of operators (U(t, s))t≥s≥0 on a Banach space X associated with
A(t) is said to be a (strongly continuous, exponential bounded) evolution family on the half-
line if the following conditions hold:
(a) U(s, s) = I,U(t, s) = U(t, τ)U(τ, s) for t ≥ τ ≥ s ≥ 0.
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(b)the map (t, s)→ U(t, s)x is continuous for every x ∈ X.
(c)there are constants K, c ≥ 0 such that ‖U(t, s)‖ ≤ Kec(t−s) for t ≥ s ≥ 0.

We recall the notion of exponential dichotomy in the following definition.

Definition 2.2. An evolution family (U(t, s))t≥s≥0 on a Banach space X is said to have
exponential dichotomy if there are projections P(t), t ∈ R+, uniformly bounded and strongly
continuous in t, and constants M, δ > 0 such that
(a) U(t, s)P(s) = P(t)U(t, s) for all t ≥ s ≥ 0;
(b) the restriction U(t, s)| : ker P(s) → ker P(t) is an isomorphism for all t ≥ s ≥ 0 (and we
denote its inverse by U(s, t)| : ker P(t)→ ker P(s) ;
(c) ‖U(t, s)P(s)‖ ≤ Me−δ(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Me−δ(t−s) for all t ≥ s ≥ 0.

Here and below Q := I − P. If P(t) = I for t ∈ R, then (U(t, s))t≥s≥0 is exponentially
stable. We also denote by X0(t) := P(t) and X1(t) := Q(t) = I − P(t).

Definition 2.3. If U is a hyperbolic evolution family, then

Γ(t, s) :=
{

U(t, s)P(s) if t ≥ s, t, s ∈ R,
−UQ(t, s)Q(s) if t < s, t, s ∈ R,

is called Greens function corresponding to U and P(·).
Also Γ(t, s) satisfies the estimate

‖Γ(t, s)‖ ≤ Me−δ|t−s|(2)

for t � s ≥ 0.
From [16] and [17], we can conclude that (1) has a uniqueness mild solution which is

given by

Lemma 2.1. Suppose that W(t) is the standard R-valued Wiener process on a probability
space (Ω,F,P). If F is strongly measurable, adapted and assumed and locally Lipschitz
continuous on H

‖F(t, x) − F(t, y)‖ ≤ L‖x − y‖, L > 0,(3)

and

‖F(t, x)‖ ≤ C(1 + ‖x‖),(4)

then (1) has a unique solution which can be written as follows in a mild sense

x(t) = U(t, 0)x(0) +
∫ t

0
U(t, τ)F(τ, x(τ))dτ +

∫ t

0
U(t, τ)x(τ)dW.(5)

2.2. Conjugated random PDEs.
2.2. Conjugated random PDEs. Following [2], [8], [9] and [5], we also recall some

basic concepts in random dynamical systems. Let (Ω,F,P) be a probability space. A flow θ

of mappings {θt}t∈R is defined on the sample space Ω such that

θ : R ×Ω→ Ω, θ0 = id, θt1θt2 = θt1+t2 ,
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for t1, t2 ∈ R. We call (Ω,F,P,R, θ) a metric dynamical system if the flow θ is supposed to
be (B(R)

⊗
F,F)- measurable, where B(R) is the σ-algebra of Borel sets on the real line

R, in addition, the measure P is assumed to be ergodic with respect to {θt}t∈R.
Let W(t) be a two-sided Wiener process with trajectories in the space C0(R,R) of real

continuous functions defined on R, taking zero value at t = 0. This set is equipped with
the compact open topology. On this set we consider the measurable flow θ = {θt}t∈R, de-
fined by θtω = ω(· + t) − ω(t). The distribution of this process generates a measure on
B(C0(R,R)) which is called the Wiener measure. Note that this measure is ergodic with re-
spect to the above flow. We shall consider, instead of the whole C0(R,R), a {θt}t∈R-invariant
Ω ⊂ C0(R,R) of P measure one and the trace σ-algebra F of B(C0(R,R)) with respect to Ω.
A set Ω is called {θt}t∈R-invariant if θtΩ = Ω for t ∈ R. On F we consider the restriction of
the Wiener measure also denoted by P.

Consider the following linear stochastic differential equation

dz + zdt = dW.(6)

We call a solution of this equation as Ornstein-Uhlenbeck process. In [8], the following
result is proved.

Lemma 2.2. i) There exists a {θt}t∈R-invariant Ω ∈ B(C0(R,R)) of full measure with
sublinear growth:

lim
t→±∞

|ω(t)|
|t| = 0, ω ∈ Ω

of P-measure one.
ii) For ω ∈ Ω the random variable

z(ω) = −
∫ 0

−∞
eτω(τ)dτ

exists and generates a unique stationary solution of (6) given by

Ω × R 	 (ω, t)→ z(θtω) = −
∫ 0

−∞
eτθtω(τ)dτ = −

∫ 0

−∞
eτω(τ + t)dτ + ω(t)

The mapping t → z(θtω) is continuous.
iii) In particular, we have

lim
t→±∞

|z(θtω)|
|t| = 0, f or ω ∈ Ω.(7)

iv) In addition,

lim
t→±∞

∫ t
0 z(θτω)dτ

t
= 0, f or ω ∈ Ω.

Let us recall the following transformations

T (ω, x) = xe−z(ω)(8)

and its inverse transform

T−1(ω, x) = xez(ω)(9)
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for z ∈ H and ω ∈ Ω.
From Lemma 2.2 in [9], we may use the transformations (8) and (9) to convert (1) into a

random differential equation.

Lemma 2.3. Suppose that x is the solution of

dx(t)
dt
= A(t)x(t) + z(θtω)x(t) +G(t, θτω, x(t)))(10)

where G(t, ω, x(t))) = ez(ω)F(t, e−z(ω)x(t)) and z is the solution of (6), then for any x ∈ H

x̂(t, ω, ν0) := T−1(θtω, x(t, ω, T (ω, ν0)))(11)

is a solution to (1).

3. Local-stable manifolds.

3. Local-stable manifolds.
In this section we shall prove the existence of local-stable manifolds for solutions of (1).

We shall give some definitions. For the nonlinear term we need some locally Lipschitz
properties.

Definition 3.1. Let X be a Banach space and Bρ be the ball with radius ρ centered at the
origin in X, i.e., Bρ := { f ∈ B : ‖ f ‖ ≤ ρ}. A function f : [0,+∞) × X → R is said to have
(C, ρ) properties for some positive constants C, if (3) and (4) are satisfied for x ∈ Bρ and a.e.
t ∈ R+.

Fix some positive number δ0 < δ where δ is the constant defined in (2). We denote by

Lδ0 = { f ∈ L(R+) | ‖ f ‖δ0 = sup
t≥0
| f (t)|e−δ0t < ∞},

which is Banach space.
Recall a multifunction S = {S(ω)}ω∈Ω of nonempty closed sets S(ω), ω ∈ Ω, contained in

a complete separable metric space (H, dH) is called a random set (see [9]) if

ω→ inf
y∈S(ω)

dH(x, y)

is a random variable for any x ∈ H.
Next we give the definition of local-stable manifolds for the solutions to (1) (See [13]).

Definition 3.2. A random set S(ω) ⊂ R+ × X is said to be a local-stable manifold of Lδ0

class for the solutions of (1) if for every t ∈ R+ the phase space X splits into a direct sum
X = X0(t)

⊕
X1(t) such that inft inf{‖x0 + x1‖} > 0 for x j ∈ Xj(t), ‖x j‖ = 1, j = 0, 1 and if

there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz continuous mappings

gt : Bρ0 ∩ X0(t)→ Bρ1 ∩ X1(t)

with Lipschitz constants independent of t such that
i) S(ω) = {(t, x + gt(x, ω)) ∈ R+ × (X0(t)

⊕
X1(t)) | t ∈ R+, x ∈ Bρ0 ∩ X0(t)};

ii) Denote by St(ω) := {x + gt(x, ω) : (t, x + gt(x, ω)) ∈ S(ω)}. Then St(ω) is homeomorphic
to Bρ0 ∩ X0(t):={x ∈ X0(t) : ‖x‖ ≤ ρ0} for all t ≥ 0.
iii) to each x0 ∈ St0 (ω) there corresponds one and only one solution x(t) of (1) on [t0,+∞)
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satisfying conditions x(t0) = x0 and the function

y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to the ball with radius ρ in Lδ0 (i.e., the ball Bρ := {g ∈ Lδ0 : ‖g‖Lδ0 ≤ ρ}.
Following [14], for each t0 ≥ 0 the space X0(t0) = P(t0)X can be characterized as

X0(t0) = {x ∈ X : the function y(t) =

⎧⎪⎪⎨⎪⎪⎩
U(t, t0)x for t ≥ t0
0 for t < t0

belongs to B},

where B is a Banach space. Concretely, for Lδ0 , we have that

X0(t0) =
{
x ∈ X : sup

t∈[0,∞)
‖U(t, t0)x‖ < ∞

}
.

The following lemma gives the solution of (10), which belongs to Lδ0 .

Lemma 3.1. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, η > 0. Let
F : R+ × Bρ → X belong to class (C, ρ). Let x(t) be a solution of (1) such that for fixed t0 the
function

y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to Bρ := {g ∈ Lδ0 : ‖g‖Lδ0 ≤ ρ}. Then, for t ≥ t0, x(t) can be written in the form

x(t) = U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ,(12)

where Γ(t, τ) is the Greens function defined by equality (2).

Proof. Denote

w(t) =
∫ ∞

t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ(13)

for t ≥ t0 and w(t) = 0 for t < t0. Using (2) and (4) we obtain

‖w(t)‖
≤ M

∫ ∞
t0

e−δ|t−τ|+δ0τe−δ0τ(‖z(θτω)‖‖x‖
+C‖e−z(θτω)‖(1 + ‖ez(θτω)‖‖x‖))dτ
≤ MC1,ω

∫ ∞
t0

e−δ|t−τ|+δ0τdτ,

where

C1,ω = sup
τ≥t0

(‖z(θτω)‖e−δ0τρ) +C(sup
τ≥t0

(‖e−z(θτω)‖e−δ0τ) + ρ).(14)

Using the decomposition
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∫ ∞
t0

e−δ|t−τ|+δ0τdτ =
∫ t

t0
e−δ(t−τ)+δ0τdτ +

∫ ∞
t

e−δ(τ−t)+δ0τdτ

yields

‖w(t)‖ ≤ 2δMC1,ωeδ0t

δ2 − δ2
0

.

Thus,

‖w(t)‖δ0 ≤
2δMC1,ω

δ2 − δ2
0

.

It is straightforward to verify that w(·) satisfies the equation

w(t) = U(t, t0)w0 +

∫ t

t0
U(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ,

for t ≥ t0.
Since x(t) is a solution of (10) we obtain that

x(t) − w(t) = U(t, t0)(x(t0) − w(t0)) = y(t) − w(t)

for t ≥ t0. Denote by υ0 = w(t0) − x(t0), since y(t) and w(t) are in Lδ0 , we can conclude that
υ0 ∈ X0(t0). The conclusion follows from the equality x(t) = U(t, t0)υ0 + w(t). �

In order to compare solutions on the manifolds, we should recall the cone inequality
theorem.(See p.7-8 of [13])
A closed subset  of a Banach space X is called a cone if it has the following properties:
(i) x0 ∈  implies λx0 ∈  for all λ ≥ 0;
(ii) x1, x2 ∈  implies x1 + x2 ∈ ;
(iii) ±x0 ∈  implies x0 = 0.
Fix a cone  in a Banach space X, for x, y ∈ X we will use the notation x ≤ y if x − y ∈ .
If the cone  is invariant under a linear operator A, then it is easy to see that A preserves the
inequality, i.e.,x ≤ y implies Ax ≤ Ay.
The following cone inequality theorem which can be found in Theorem I.9.3 in [7] will be
used later as a lemma.

Lemma 3.2. Let  be a cone given in a Banach space X such that  is invariant under
a bounded linear operator A having spectral radius rA < 1. If a vector x ∈ X satisfies the
inequality

x ≤ Ax + η

for some given η ∈ X, then it also satisfies the estimate x ≤ y, where y ∈ X is the solution of
the equation y = Ay + η.

Now we may construct the structure of certain solutions of (10) in the following theorem.

Theorem 3.1. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, δ > 0. Let
F : R+ × Bρ → X belong to class (C, ρ). If
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2δMC1,ω

δ2 − δ2
0

< min
{

1,
ρ

2

}
and

2δ(ML +Cz,ω)
δ2 − δ2

0

< 1,

where C1,ω is defined in (14) and Cz,ω = supτ≥t0 (‖z(θτω)‖e−δ0τ), then for r = ρ
2M and t0 ≥ 0

there corresponds to each υ0 ∈ Br ∩X0(t0) one and only one solution x(t) of (10) on [t0,+∞)
satisfying the conditions that P0x(t0) = υ0 and the the function

y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to the ball Bρ in Lδ0 . Moreover, the following estimate is valid for any two solutions
x1(t) and x2(t) be two solutions of (10) corresponding to different values υ1, υ2 ∈ Br ∩ X0(t0)

‖x1(t) − x2(t)‖ ≤ Cμe−μ(t−t0)‖υ1 − υ2‖(15)

for t ≥ t0, where μ < δ, 2(δ−μ)ML
(δ−μ)2−δ2

0
< 1 and Cμ =

M
1− 2(δ−μ)ML

(δ−μ)2−δ20

.

Proof. We shall show that the following transformation T defined by

(T x)(t) =

⎧⎪⎪⎨⎪⎪⎩
U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ for t ≥ t0

0 for t < t0

acts fromBρ intoBρ and is a contraction for υ0 ∈ Br∩X0(t0). Note that ‖F(t, x)‖ ≤ C(1+‖x‖)
for x(·) ∈ Bρ, therefore, putting

y(t) =

⎧⎪⎪⎨⎪⎪⎩
U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ for t ≥ t0

0 for t < t0

by proof of Lemma 3.1, we have

‖y(t)‖ ≤ Me−δ(t−t0)‖υ0‖ + 2δMC1,ωeδ0t

δ2 − δ2
0

where C1,ω is defined in (14).
Thus,

‖y(t)‖Lδ0 ≤ M‖υ0‖Lδ0 +
2δMC1,ω

δ2 − δ2
0

.

Now the fact ‖υ0‖Lδ0 ≤ ρ
2M and 2δMC1,ω

δ2−δ2
0
< ρ

2 yields ‖y(t)‖Lδ0 ≤ ρ.
Therefore, the transformation T acts from Bρ into Bρ. We now estimate

‖(T x)(t) − (Tw)(t)‖
≤
∫ ∞

t0
‖Γ(t, τ)‖(‖G(τ, θτω, x(τ)) −G(τ, θτω, w(τ))‖

+‖z(θτω)‖‖x(τ) − w(τ)‖)dτ
≤ (ML +Cz,ω)

∫ ∞
t0

e−δ|t−τ|‖x(·) − w(·)‖dτ.

Therefore,
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‖(T x)(t) − (Tw)(t)‖Lδ0 ≤
2δ(ML +Cz,ω)

δ2 − δ2
0

‖x(·) − w(·)‖Lδ0 .

It follows from assumptions that 2δ(ML+Cz,ω)
δ2−δ2

0
< 1. Hence, T : Bρ into Bρ is a contraction.

Thus, there exists a unique x ∈ Bρ such that T x = x.
By Lemma 3.1 we know that x(t) is the unique solution in Bρ of (10) for t ≥ t0.
Denote by x1(t) and x2(t) be two solutions of (10) corresponding to different values

υ1, υ2 ∈ Br ∩ X0(t0). Then,

x1(t) − x2(t)

= U(t, t0)(υ1 − υ2)

+

∫ ∞
t0
Γ(t, τ)(G(τ, θτω, x1(τ)) −G(τ, θτω, x2(τ))

+z(θτω)(x1(τ) − x2(τ)))dτ,

for t ≥ t0. It follows that,

‖x1(t) − x2(t)‖
≤ Me−δ(t−t0)‖υ1 − υ2‖
+(ML +Cz,ω)

∫ ∞
t0

e−δ|t−τ|‖x1(τ) − x2(τ)‖dτ,

for t ≥ t0.
Denote by ψ(t) = ‖x1(t) − x2(t)‖, then ess supt≥t0 ψ(t) < ∞ and

ψ(t) ≤ Me−δ(t−t0)‖υ1 − υ2‖ + (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|ψ(τ)dτ,(16)

for t ≥ t0. We will apply the cone inequality theorem to Banach space Lδ0 [t0,∞) which is
the space of real-valued functions defined and essentially bounded on [t0,∞) with the cone
 being the set of all (a.e.) nonnegative functions. Consider the linear operator A defined
for x ∈ Lδ0 [t0,∞) by

(Ax)(t) = (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|x(τ)dτ.

Then,

sup
t≥t0

(Ax)(t)

≤ (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|+δ0τe−δ0τx(τ)dτ

≤ (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|+δ0τdτ · ‖x‖δ0

≤ 2δ(ML +Cz,ω)
δ2 − δ2

0

‖x‖δ0 .

Thus, we have proved that A is a bounded linear operator with ‖A‖ < 1, leaving the cone 

invariant. We may rewrite the inequality (16) as
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ψ ≤ Aψ + η(t) for η(t) = Me−δ(t−t0)‖υ1 − υ2‖.
Hence, by cone inequality Lemma 3.2, we obtain that ψ ≤ ϕ, where ϕ is a solution of the
equation ϕ = Aϕ + η which can be rewritten as

ϕ(t) = Me−δ(t−t0)‖υ1 − υ2‖ + (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|ϕ(τ)dτ,(17)

for t ≥ t0.
In order to estimate ϕ, we set φ(t) = eμ(t−t0)ϕ(t) for μ < δ and 2(δ−μ)(ML+Cz,ω))

(δ−μ)2−δ2
0

< 1. By (17),
we have

φ(t) = Me−(δ−μ)(t−t0)‖υ1 − υ2‖ + (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|+μ(t−τ)φ(τ)dτ,(18)

for t ≥ t0. Consider the linear operator D defined for x ∈ Lδ0 [t0,∞) by

(Dx)(t) = (ML +Cz,ω)
∫ ∞

t0
e−δ|t−τ|+μ(t−τ)x(τ)dτ.

Then,

sup
t≥t0

(Dx)(t)

≤ (ML +Cz,ω)
∫ ∞

t0
e−(δ−μ)|t−τ|x(τ)dτ

≤ (ML +Cz,ω)
∫ ∞

t0
e−(δ−μ)|t−τ|+δ0τdτ · ‖x‖δ0

≤ 2(δ − μ)(ML +Cz,ω)
(δ − μ)2 − δ2

0

‖x‖δ0 .

Thus, we have proved that D is a bounded linear operator with ‖D‖ < 1. Then (18) can be
rewritten as

φ = Dφ + η(t) for η(t) = Me−(δ−μ)(t−t0)‖υ1 − υ2‖.
Thus, φ = (I−D)−1η uniquely solves the equation φ = Dφ+ η(t) in Lδ0 [t0,∞). Furthermore,

‖φ‖δ0

= ‖(I − D)−1η‖δ0

≤ ‖(I − D)−1‖‖η‖δ0

≤ M
1 − ‖D‖‖υ1 − υ2‖

≤ M

1 − 2(δ−μ)(ML+Cz,ω)
(δ−μ)2−δ2

0

‖υ1 − υ2‖ := Cμ‖υ1 − υ2‖,

which yields

φ(t) ≤ Cμ‖υ1 − υ2‖
for t ≥ t0. Hence ϕ(t) = e−μ(t−t0)φ(t) ≤ e−μ(t−t0)Cμ‖υ1 − υ2‖. Recall the definition of ψ(t) =
‖x1(t) − x2(t)‖ ≤ ϕ(t), we get the conclusion
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‖x1(t) − x2(t)‖ ≤ e−μ(t−t0)Cμ‖υ1 − υ2‖
for t ≥ t0. �

We now prove our result on local stable manifold.

Theorem 3.2. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, δ > 0. Let
F : R+ × Bρ → X belong to class (C, ρ). If

2δMC1,ω

δ2 − δ2
0

< min
{

1,
ρ

2

}
and

2δ(ML +Cz,ω)
δ2 − δ2

0

< 1,

where C1,ω is defined in (14) and Cz,ω is defined in Theorem 3.1, then there exists a local-
stable manifold S(ω) of Lδ0 class for the solutions of (10). Moreover, every two solutions
x1(t) and x2(t) on the manifold S(ω) attract each other exponentially in the sense that there
exist positive constants μ and Cμ independent of t0 ≥ 0 such that

‖x1(t) − x2(t)‖ ≤ Cμe−μ(t−t0)‖P(t0)υ1(t0) − P(t0)υ2(t0)‖.(19)

Proof. Since the evolution family (U(t, s))t≥s≥0 have exponential dichotomy, we know
that for each t ≥ 0 there are projections P(t), t ∈ R+, uniformly bounded and strongly
continuous in t, such that the phase space X splits into the direct sum X = X0(t)⊕X1(t), where
X0(t) = P(t)X and X1(t) = kerP(t). Furthermore, we can conclude that inft inf{‖x0+ x1‖} > 0
for x j ∈ Xj(t), ‖x j‖ = 1, j = 0, 1 from supt≥0 ‖P(t)‖ < ∞. We should construct the family
of Lipschitz continuous mapping (gt)t≥0 which satisfied the conditions of Definition 3.1.
Defined

gt0 (y, ω) =
∫ ∞

t0
(Γ(t0, τ)G(τ, θτω, x(τ)) + z(θτω)x(τ))dτ,

where y ∈ Br ∩ X0(t0) with r = ρ
2M , x is the solution in Bρ of (10) on [t0,∞) which satisfies

P(t0)(x0) = y and x(t) = 0, t < t0. We can conclude by definition of Green’s function that
gt0 (y, ω) ∈ X1(t0). Since

‖gt0 (y)‖
≤
∫ ∞

t0
‖Γ(t0, τ)‖(‖G(τ, θτω, x(τ))‖ + ‖z(θτω)‖‖x‖)dτ

≤ MC1,ω

∫ ∞
t0

e−δ|t−τ|+δ0τdτ

≤ 2δMC1,ω

δ2 − δ2
0

<
ρ

2

where C1,ω is defined in (14). Hence gt0 (y, ω) is a mapping from Br ∩ X0(t0) to Bρ ∩ X1(t0) .
For y1 and y2 belonging to Br ∩ X0(t0) we have

‖gt0 (y1, ω) − gt0 (y2, ω)‖
≤
∫ ∞

0
‖Γ(t0, τ)‖(‖G(τ, θτω, x1(τ)) −G(τ, θτω, x2(τ))‖

+‖z(θτω)‖‖x1(τ) − x2(τ)‖)dτ
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≤ (ML +Cz,ω)
∫ ∞

0
e−δ|t0−τ|+δ0τ‖x1(·) − x2(·)‖δ0dτ ·

≤ 2δ(ML +Cz,ω)
δ2 − δ2

0

‖x1(·) − x2(·)‖δ0 .

Since xi(·) is the unique solution in Bρ of (10) on [t0,∞) satisfying P(t0)xi(t0) = yi, i = 1, 2,,
respectively, we have that

‖x1(t) − x2(t)‖
≤ ‖U(t, t0)‖‖y1 − y2‖
+

∫ ∞
t0
‖Γ(t, τ)‖(‖G(τ, θτω, x1(τ)) −G(τ, θτω, x2(τ))‖

+‖z(θτω)‖‖x1(τ) − x2(τ)‖)dτ
≤ M‖y1 − y2‖ +

∫ ∞
0

e−δ|t−τ|+δ0τdτ · (ML +Cz,ω)‖x1(·) − x2(·)‖δ0

≤ M‖y1 − y2‖ + 2δ(ML +Cz,ω)
δ2 − δ2

0

‖x1(·) − x2(·)‖δ0 .

Denote by β = 2δ(ML+Cz,ω)
δ2−δ2

0
< 1, we obtain that

‖x1(t) − x2(t)‖δ0 ≤
M

1 − β‖y1 − y2‖.

Hence we have proven that gt0 is Lipschitz continuous with Lipschitz constant independent
of t0,

‖gt0 (y1, ω) − gt0 (y2, ω)‖ ≤ Mβ

2(1 − β)
‖y1 − y2‖.

Denote by ρ0 := r = ρ
2M and ρ1 := ρ/2 we obtain that the family of mappings (gt)t≥0

(gt : Bρ0 ∩ X0(t) → Bρ1 ∩ X1(t)) are Lipschitz continuous with the Lipschitz constant Mβ
2(1−β)

independent of t.
Define the transformation Zy := y+ gt0 (y, ω) for all y ∈ Br ∩ X0(t0), applying the Implicit

Function Theorem for Lipschitz continuous mapping (see [12]), we have that, if Lipschitz
constant Mβ

2(1−β) of gt0 satisfies Mβ
2(1−β) < 1 , then Z is a homeomorphism. Put S(ω) =

{
(t, x +

gt(x, ω)) ∈ R+×(X0(t)
⊕

X1(t))
∣∣∣ t ∈ R+, x ∈ Br∩X0(t)

}
, then for each t0 ≥ 0 we have proven

that St0(ω) = {(x + gt0 (x, ω)) : (t0, x + gt0 (x, ω)) ∈ S(ω)} is homeomorphic to Br ∩ X0(t0).
Therefore, the condition (ii) in Definition 3.2 follows. The condition (iii) of Definition 3.2
now follows from Theorem 3.1. Finally, the inequality (19) follows from inequality (15) in
Theorem 3.1. �

Theorem 3.3. Let S(ω) = {(t, x+gt(x, ω)) ∈ R+× (X0(t)
⊕

X1(t))|t ∈ R+, x ∈ Bρ0 ∩X0(t)}
be the local-stable manifold S(ω) of Lδ0 class for the solutions of (10), which is obtained in
Theorem 3.2. Then Ŝ(ω) :=

{
(t, x̂ + gt(x̂)) ∈ R+ × (X0(t)

⊕
X1(t))

∣∣∣ t ∈ R+, x ∈ Bρ0 ∩ X0(t)
}

is a local-stable manifold of Lδ0 class for the solutions of (5).

Proof. Let x(t, ω, ν0) be the solution of (10) and x̂(t, ω, ν0) be the solution of (5). From
Lemma 2.3
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x̂(t, ω, Ŝ) = T−1(θtω, x(t, T (ω, Ŝ))) = T−1(θtω, x(t, ω, S)) ⊂ T−1(θtω, S(θtω)) = Ŝ(θtω).

Thus, Ŝ is an invariant set. Notice that

Ŝ(ω)

= T (ω, S(ω))

= {ν0 = T−1(ω, x + gt(x, ω))) | x ∈ Bρ0 ∩ X0(t)}
= {ν0 = ez(θτω)(x + gt(x, ω))) | x ∈ Bρ0 ∩ X0(t)}
= {ν0 = (x + gt(e−z(θτω)x, ω))) | x ∈ Bρ0 ∩ X0(t)}

which implies that Ŝ(ω) is a Lipschitz stable manifold. �

4. Global stable manifolds.

4. Global stable manifolds.
The existence of invariant (global) manifolds will be proved in this section. As in the pre-

vious section, for the linear part we need the fact that the evolution family has an exponential
dichotomy. Then, we impose some kind of global Lipschitz properties on the nonlinear term
F(t, x). Precisely, we have the following definition.

Definition 4.1. Let X be a Banach space. A function f : [0,+∞)× X → R is said to have
Lipschitz properties for some positive constants C, if (3) and (4) are satisfied for x ∈ X and
a.e. t ∈ R+.

The definition of stable manifolds for the solutions to (1) is as follows.(See [13])

Definition 4.2. A random set S(ω) ⊂ R+ × X is said to be a stable manifold for the solu-
tions of (1) if for every t ∈ R+ the phase space X splits into a direct sum X = X0(t)

⊕
X1(t)

such that inft inf{‖x0 + x1‖} > 0 for x j ∈ Xj(t), ‖x j‖ = 1, j = 0, 1 and if there exist a family
of Lipschitz continuous mappings

gt : X0(t)→ X1(t)

with Lipschitz constants independent of t ∈ R+ such that
i) S(ω) = {(t, x + gt(x, ω)) ∈ R+ × (X0(t)

⊕
X1(t))|t ∈ R+, x ∈ X0(t)};

ii) Denote by St(ω) := {x + gt(x, ω) : (t, x + gt(x)) ∈ S}. Then St(ω) is homeomorphic to
X0(t) for all t ≥ 0.
iii) to each x0 ∈ St0 (ω) there corresponds one and only one solution x(t) of (1) on [t0,+∞)
satisfying conditions x(t0) = x0 and the function

y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to Lδ0 .
iv) S(ω) is invariant under (1) in the sense that, if x(·) is a solution of (1) with x(t0) = x0 ∈
St0 (ω) then x(s) ∈ Ss(ω) for all s ≥ t0.

The following lemma gives the form of solution of (10), which belongs to Lδ0 .
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Lemma 4.1. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, δ > 0. Let
F : R+ × Bρ → X satisfy Lipschitz properties (3) and (4). Let x(t) be a solution of (1) such
that for fixed t0 the function

y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to Lδ0 . Then, for t ≥ t0, x(t) can be written in the form

x(t) = U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ,(20)

where Γ(t, τ) is the Green’s function defined by equality (2).

Proof. Denote

w(t) =
∫ ∞

t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ(21)

for t ≥ t0 and w(t) = 0 for t < t0. Using the proof of Lemma 3.1 we obtain

‖w(t)‖δ0

≤ M
∫ ∞

t0
e−δ|t−τ|+δ0τe−δ0τ(‖z(θτω)‖‖x‖ +C(‖e−z(θτω)‖ + ‖x‖))dτ

≤ 2δMC2,ω

δ2 − δ2
0

,

where

C2,ω = sup
τ≥t0

e−δ0τ(‖z(θτω)‖‖x‖ +C(‖e−z(θτω)‖ + ‖x‖)).(22)

It is straightforward to verify that w(·) satisfies the equation

w(t) = U(t, t0)w0 +

∫ t

t0
U(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ,

for t ≥ t0.
Since x(t) is a solution of (10) we obtain that

x(t) − w(t) = U(t, t0)(x(t0) − w(t0)) = y(t) − w(t)

for t ≥ t0. Denote by υ0 = w(t0) − x(t0), since y(t) and w(t) are in Lδ0 , we can conclude that
υ0 ∈ X0(t0). The conclusion follows from the equality x(t) = U(t, t0)υ0 + w(t). �

Theorem 4.1. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, δ > 0. Let
F : R+ × Bρ → X satisfy Lipschitz properties (3) and (4), then there corresponds to each
υ0 ∈ X0(t0) one and only one solution x(t) of (1) on [t0,+∞) satisfying the conditions that
P0x(t0) = υ0 and the the function
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y(t) =

⎧⎪⎪⎨⎪⎪⎩
x(t) for t ≥ t0
0 for t < t0

belongs to Lδ0 . Moreover, the following estimate is valid for any two solutions x1(t) and x2(t)
be two solutions of (10) corresponding to different values υ1, υ2 ∈ X0(t0)

‖x1(t) − x2(t)‖ ≤ Cμe−μ(t−t0)‖υ1 − υ2‖.(23)

for t ≥ t0, where μ < δ, 2(δ−μ)(ML+Cz,ω)
(δ−μ)2−δ2

0
< 1 and Cμ =

M
1− 2(δ−μ)(ML+Cz,ω)

(δ−μ)2−δ20

.

Proof. We shall show that the following transformation T defined by

(T x)(t) =

⎧⎪⎪⎨⎪⎪⎩
U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ for t ≥ t0

0 for t < t0

acts from X into X is a contraction for υ0 ∈ X0(t0). Note that ‖F(t, x)‖ ≤ C(1 + ‖x‖) for
x(·) ∈ X, therefore, putting

y(t) =

⎧⎪⎪⎨⎪⎪⎩
U(t, t0)υ0 +

∫ ∞
t0
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ for t ≥ t0

0 for t < t0.

Using the proof of Lemma 3.1 we obtain

‖y(t)‖
≤ Me−δ(t−t0)‖ν0‖
+M
∫ ∞

t0
e−δ|t−τ|+δ0τe−δ0τ(‖z(θτω)‖‖x(τ)‖ +C(‖e−z(θτω)‖ + ‖x(τ)‖))dτ

thus

‖y(t)‖δ0 ≤ M‖ν0‖δ0 +
2δMC2,ω

δ2 − δ2
0

where C2,ω is defined in (22).
Therefore, the transformation T acts Lδ0 into Lδ0 . We now estimate

‖(T x)(t) − (Tw)(t)‖
≤
∫ ∞

0
‖Γ(t, τ)‖(‖G(τ, θτω, x(τ)) −G(τ, θτω, w(τ))‖

+‖z(θτω)‖‖x(τ) − w(τ)‖)dτ

≤ (ML +Cz,ω)
∫ ∞

0
e−δ|t−τ|+δ0τe−δ0τ‖x(τ) − w(τ)‖dτ.

Therefore,

‖(T x)(t) − (Tw)(t)‖δ0 ≤
2δ(ML +Cz,ω)

δ2 − δ2
0

‖x(·) − w(·)‖δ0 .

It follows from assumptions that 2δ(ML+Cz,ω)
δ2−δ2

0
< 1. Hence, T acts Lδ0 into Lδ0 is a contraction.

Thus, there exists a unique x ∈ Lδ0 such that T x = x.
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By Lemma 4.1 we know that x(t) is the unique solution of (10) for t ≥ t0.
Finally, the last inequality can now be proved by the same way as the proof of inequality

in Theorem 3.1. �

We now prove our result on global stable manifold.

Theorem 4.2. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))t≥0 and dichotomy constants M, δ > 0. Let
F : R+ × Bρ → X satisfy Lipschitz properties (3) and (4).

2δMC2,ω

δ2 − δ2
0

< min
{

1,
ρ

2

}
and

2δ(ML +Cz,ω)
δ2 − δ2

0

< 1,

where C2,ω is defined in (22) and Cz,ω is defined in Theorem 3.1, then there exists a global
stable manifold S(ω) of Lδ0 class for the solutions of (10). Moreover, every two solutions
x1(t) and x2(t) on the manifold S(ω) attract each other exponentially in the sense that there
exist positive constants μ and Cμ independent of t0 ≥ 0 such that

‖x1(t) − x2(t)‖ ≤ Cμe−μ(t−t0)‖P(t0)υ1(t0) − P(t0)υ2(t0)‖.
Proof. Since the evolution family (U(t, s))t≥s≥0 have exponential dichotomy, we know

that for each t ≥ 0 there are projections P(t), t ∈ R+, uniformly bounded and strongly
continuous in t, such that the phase space X splits into the direct sum X = X0(t)⊕X1(t), where
X0(t) = P(t)X and X1(t) = kerP(t). Furthermore, we can conclude that inft inf{‖x0+ x1‖} > 0
for x j ∈ Xj(t), ‖x j‖ = 1, j = 0, 1 from supt≥0 ‖P(t)‖ < ∞. We should construct the family of
Lipschitz continuous mapping (gt)t≥0 which satisfied the conditions of Definition 4.2. Define

gt0 (y, ω) =
∫ ∞

t0
(Γ(t0, τ)G(τ, θτω, x(τ)) + z(θτω)x(τ))dτ,

where y ∈ X0(t0), x is the solution of (10) on [t0,∞) which satisfies P(t0)(x0) = y and
x(t) = 0, t < t0 (note that the existence and uniqueness of x(t) is obtained in Theorem 4.1).
For y1 and y2 belonging to X0(t0) we have

‖gt0 (y1, ω) − gt0 (y2, ω)‖
≤
∫ ∞

0
‖Γ(t0, τ)‖(‖G(τ, θτω, x1(τ)) −G(τ, θτω, x2(τ))‖

+‖z(θτω)‖‖x1(τ) − x2(τ)‖)dτ
≤ (ML +Cz,ω)

∫ ∞
0

e−δ|t−τ|+δ0τe−δ0τ‖x1(τ) − x2(τ)‖dτ

≤ 2δ(ML +Cz,ω)
δ2 − δ2

0

‖x1(τ) − x2(τ)‖δ0 .

Since xi(·) is the unique solution of (10) in Lδ0 on [t0,∞) satisfying P(t0)xi(t0) = yi, i = 1, 2,
respectively, we have that

‖x1(t) − x2(t)‖
≤ ‖U(t, t0)‖‖y1 − y2‖ +∫ ∞

t0
‖Γ(t, τ)‖(‖G(τ, θτω, x1(τ)) −G(τ, θτω, x2(τ))‖
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+‖z(θτω)‖‖x1(τ) − x2(τ)‖)dτ
≤ M‖y1 − y2‖ + (ML +Cz,ω)

∫ ∞
0

e−δ|t−τ|+δ0τe−δ0τ‖x1(τ) − x2(τ)‖dτ

≤ M‖y1 − y2‖ + 2δ(ML +Cz,ω)
δ2 − δ2

0

‖x1(τ) − x2(τ)‖δ0 .

Denote by β = 2δ(ML+Cz,ω)
δ2−δ2

0
< 1, we obtain that

‖x1(t) − x2(t)‖δ0 ≤
M

1 − β‖y1 − y2‖.

Hence we have proven that gt0 is Lipschitz continuous with Lipschitz constant independent
of t0,

‖gt0 (y1, ω) − gt0 (y2, ω)‖ ≤ Mβ

2(1 − β)
‖y1 − y2‖.

Thus, we have obtained that the family of mappings (gt)t≥0 are Lipschitz continuous with
the Lipschitz constant Mβ

2(1−β) independent of t.
Define the transformation Zy := y + gt0 (y, ω) for all y ∈ X0(t0), applying the Implicit

Function Theorem for Lipschitz continuous mapping (see [12]), we have that, if Lipschitz
constant Mβ

2(1−β) of gt0 satisfies Mβ
2(1−β) < 1, then Z is a homeomorphism. Put S(ω) =

{
(t, x +

gt(x, ω)) ∈ R+ × (X0(t)
⊕

X1(t))
∣∣∣ t ∈ R+, x ∈ X0(t)

}
, then for each t0 ≥ 0 we have proven

that St0(ω) = {(x + gt0 (x, ω)) : (t0, x + gt0 (x, ω)) ∈ S} is homeomorphic to X0(t0). Therefore,
the condition (ii) in Definition 4.2 follows. The condition (iii) of Definition 4.2. now follows
from Theorem 4.1. We should prove that the condition (iv) of Definition 4.2 is satisfied. By
Lemma 4.1 we have that, for s ≥ t0 the solution u(s) can be rewritten in the form

x(s) = U(s, t0)υ0 +

∫ ∞
t0
Γ(s, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ))dτ,

for some υ0 ∈ X0(t0) = P(t0)X where Γ(t, τ) is the Greens function defined by equality (2).
Denote by

W(s) := U(s, t0)υ0 +

∫ s

t0
Γ(s, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ,

we obtain that W(s) ∈ P(s)X and

x(s) = W(s) +
∫ ∞

s
Γ(s, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ.(24)

For t ≥ s, by (12), straightforward computation yields

x(t) = U(t, s)W(s) +
∫ ∞

s
Γ(t, τ)(z(θτω)x(τ) +G(τ, θτω, x(τ)))dτ.(25)

Thus, combing (24) and (25) with definition of gt we obtain that x(s) = W(s) + gsW(s)
yielding that x(s) ∈ Ss(ω) for all s ≥ t0. Finally, the last inequality follows from the last
inequality in Theorem 4.1. �

Theorem 4.3. Let S(ω) =
{
(t, x + gt(x, ω)) ∈ R+ × (X0(t)

⊕
X1(t))

∣∣∣ t ∈ R+, x ∈ X0(t)
}

be the global stable manifold S(ω) of Lδ0 class for the solutions of (10), which is obtained
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in Theorem 4.2. Then the manifold Ŝ(ω) := {(t, x̂ + gt(x̂, ω)) ∈ R+ × (X0(t)
⊕

X1(t)) | t ∈
R+, x ∈ X0(t)} is a global stable manifold of Lδ0 class for the solutions of (5).

Proof. Let x(t, ω, ν0) be the solution of (10) and x̂(t, ω, ν0) be the solution of (5). From
Lemma 2.3,

x̂(t, ω, Ŝ) = T−1(θtω, x(t, T (ω, Ŝ))) = T−1(θtω, x(t, ω, S)) ⊂ T−1(θtω, S(θtω)) = Ŝ(θtω).

Thus, Ŝ is an invariant set. Notice that

Ŝ(ω)

= T (ω, S(ω))

= {ν0 = T−1(ω, x + gt(x, ω))) | x ∈ X0(t)}
= {ν0 = ez(θτω)(x + gt(x, ω))) | x ∈ X0(t)}
= {ν0 = (x + gt(e−z(θτω)x, ω))) | x ∈ X0(t)}

which implies that Ŝ(ω) is a Lipschitz stable manifold. �
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