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Abstract
New results pertaining to the invariant manifolds of stochastic partial differential equations are
presented. We prove the existence of local and global invariant manifolds for a non-autonomous
stochastic evolution equation. These manifolds are constituted by trajectories of the solutions
belonging to particular function spaces and the theory of Ornstein-Uhlenbeck process.

1. Introduction.
Consider the non-autonomous stochastic evolution equation
dx(t) = [A@O)x(t) + F(t, x(1))] dt + x(¢) dW(2),

where A(f) is in general an unbounded linear operator on a Banach space X for every
fixed ¢ and x(r) dW(¢) is a noise satisfies suitable conditions which will be established later,
F : R, X X — R s a nonlinear function.

In recent years, for autonomous stochastic evolution equations, existence, uniqueness,
stability, invariant measures, invariant manifolds and other quantitative and qualitative prop-
erties of solutions to stochastic partial differential equations have been extensively investi-
gated by many authors. It is well known that these topics have been developed mainly by
semigroup approach.

In [9], the following nonlinear stochastic evolution equation is considered:

dx(t) = [Ax(t) + F(x(2))] dt + x(t) dW(¢),

where A is a generator of a Cy—semigroup e’ satisfying an exponential dichotomy condi-
tion. The existence and smoothness of Lipschitz continuous stable and unstable manifolds
are proved by the Lyapunov-Perron’s method. Similar problems are investigate in [8], [10]
and [11]. Although many researchers paid attention to study the non-autonomous stochastic
evolution equations which have been widely used to describe abrupt changes such as shocks,
harvesting, and natural disasters, as far as we know there is very few attention paid to invari-
ant manifolds for such equations (see [6], [3], [4], [15], [16] and [17] for example).

Instead of using the smallness of Lipschitz constants in classical sense, the concept of
admissible spaces is used to construct the invariant manifolds for

dx(t) = [AO)x(®) + F(t, x(1))] dt,
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where A(?) is in general an unbounded linear operator on a Banach space X for every fixed
t and F (¢, x(1)) is a nonlinear operator (see [13] and [14]). These invariant manifolds are
constituted by trajectories of the solutions belonging to admissible function spaces. How-
ever, to the best of our knowledge, the invariant manifolds problem for non-autonomous
stochastic system (1) has not been investigated yet. Motivated by this consideration, in
this paper we will study the existence of local and global invariant manifolds for a non-
autonomous stochastic evolution equation. Specifically, we study the invariant manifolds
for a non-autonomous stochastic evolution equation (1) under the assumption that the family
of operators (U(t, 5))>s>0 On a Banach space X associated with A(¢) is said to be a (strongly
continuous, exponential bounded) evolution family and the nonlinear term F(z, x) is Lips-
chitz continuous. In fact, the results in this paper are motivated by the recent work of [8],
[9], [10], [11] and the invariant manifolds discussed in [13], [14]. The main tools used
in this paper are stochastic analysis techniques, theory of Ornstein-Uhlenbeck process and
characterization of the exponential dichotomy of evolution equations in particular spaces of
functions defined on the half-line. Note that the Lyapunov-Perron’s method which is fre-
quently used in [8], [9], [10], [11] can not be applied to (1). We will use the method to
construct invariant manifold in [13], [14], where the work is actually done for nonlinear op-
erators.

In Section 2, we recall some basic concepts and results for stochastic partial differential
equations, evolution family and random dynamical systems. The existence of local stable
manifold for (1) is proved in Section 3. In Section 4, we prove the existence of stable mani-
fold for (1).

2. Preliminaries.

In this section, we recall some basic background knowledge on stochastic non-autono-
mous partial differential equations, theory of Ornstein-Uhlenbeck process and characteriza-
tion of the exponential dichotomy of evolution equation.

2.1. Stochastic non-autonomous partial differential equations. Denote by H an in-
finite dimensional separable Hilbert space with norm || - ||. Consider the stochastic non-
autonomous partial differential equation

(1) dx(t) = [A@®)x(t) + F(t, x(1))] dt + x(t) dW(2),

where x € H, W(t) is the standard R-valued Wiener process on a probability space (€2, §, P),
furthermore, x(#) dW(¢) is interpreted as a Stratonovich stochastic differential (see [9]), A(?)
is in general an unbounded linear operator on a Banach space X for every fixed ¢, F :
R, X X — R is a nonlinear function.

In the case of unbounded A(¢), we may use the evolution family
(U(t, $))=s50 arising in well-posed homogeneous Cauchy problems. Let us recall the defini-
tion of an evolution family (see [1]).

DermiTion 2.1. A family of operators (U(t, §))ss>0 on a Banach space X associated with
A(t) is said to be a (strongly continuous, exponential bounded) evolution family on the half-
line if the following conditions hold:

@ U(s,s)=1LUts) =Ut,nU(t,s)fort >7>5>0.
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(b)the map (¢, s) — U(t, s)x is continuous for every x € X.
(c)there are constants K, ¢ > 0 such that ||U(, s)|| < Ke*“™® fort > s > 0.

We recall the notion of exponential dichotomy in the following definition.

DermiTion 2.2. An evolution family (U(t, 5));>5-0 on a Banach space X is said to have
exponential dichotomy if there are projections P(), t € R, uniformly bounded and strongly
continuous in ¢, and constants M, 6 > 0 such that
(a) U(t, s)P(s) = P(OU(t, s) forall t > s > 0;

(b) the restriction U(t, 5), : ker P(s) — ker P() is an isomorphism for all 7 > s > 0 (and we
denote its inverse by U(s, 1), : ker P(t) — ker P(s) ;
(©) |U(t, $)P(s)]| < Me 9 and ||Ug(s, ) Q)| < Me™°"9 forall t > s > 0.

Here and below Q := I — P. If P(t) = I for t € R, then (U(t, 5))>5>0 1S exponentially
stable. We also denote by X(¢) := P(¢) and X;(¢) := Q(¢) = I — P(2).
DeriniTion 2.3, If U is a hyperbolic evolution family, then

Ul(t, s)P(s) ift>s,1,5s €R,

Heo)= { ~Ug(t:)Q(s) if 1< st seR,

is called Greens function corresponding to U and P(-).

Also I'(z, s) satisfies the estimate
(2) TG, )l < Me™

fort# s >0.
From [16] and [17], we can conclude that (1) has a uniqueness mild solution which is
given by

Lemma 2.1. Suppose that W(t) is the standard R-valued Wiener process on a probability
space (Q,F,P). If F is strongly measurable, adapted and assumed and locally Lipschitz
continuous on H

) F (2, x) = Ft,ll < Lllx—yll, L >0,
and
4 IF (2, 0l < C(1 + ||x[]),

then (1) has a unique solution which can be written as follows in a mild sense

5 x(t) = U(t,0)x(0) + f U, t)F(t, x(1))dt + f U(t, t)x(t)dW.
0 0

2.2. Conjugated random PDEs. Following [2], [8], [9] and [5], we also recall some
basic concepts in random dynamical systems. Let (€2, §, P) be a probability space. A flow 6
of mappings {6,},cr is defined on the sample space € such that

0 . RXQ - Q, 00 = ld, 01‘]0[2 = 9[|+lz’
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for 1,1, € R. We call (Q, &, P, R, 6) a metric dynamical system if the flow 8 is supposed to
be (BR) ® &, &)- measurable, where B(R) is the o-algebra of Borel sets on the real line
R, in addition, the measure P is assumed to be ergodic with respect to {6, };cr.

Let W(¢) be a two-sided Wiener process with trajectories in the space Cy(R,R) of real
continuous functions defined on R, taking zero value at t+ = 0. This set is equipped with
the compact open topology. On this set we consider the measurable flow 6 = {0,},cr, de-
fined by ,w = w(- + ) — w(?). The distribution of this process generates a measure on
B(Cp(R, R)) which is called the Wiener measure. Note that this measure is ergodic with re-
spect to the above flow. We shall consider, instead of the whole Cy(R, R), a {6,};cr-invariant
Q c Cy(R,R) of P measure one and the trace o-algebra & of B(Cp(R, R)) with respect to Q.
A set Q is called {0, };cg-invariant if 6,QQ = Q for t € R. On § we consider the restriction of
the Wiener measure also denoted by P.

Consider the following linear stochastic differential equation

(6) dz + zdt = dW.

We call a solution of this equation as Ornstein-Uhlenbeck process. In [8], the following
result is proved.

Lemma 2.2. i) There exists a {6,};cr-invariant Q € B(Cy(R,R)) of full measure with
sublinear growth:

lim M:0,(1)69

f—+00 |[|

of P-measure one.
ii) For w € Q the random variable

0
2(w) = — f e'w(t)dr

(s+]

exists and generates a unique stationary solution of (6) given by

0 0
QAXR 3 (w,1) = z2(6w) = —f e 0,w(t)dr = —f e'w(T + Hdt + w(t)

—00 [ee]

The mapping t — z(6,w) is continuous.
iii) In particular, we have

|2(6rw)|

t—+00 |[|

(7) =0, forweQ.

iv) In addition,

) fot z2(6 w)dT
lim — =0, forweQ.

t—+o00

Let us recall the following transformations
(8) T(w, x) = xe
and its inverse transform

9) T Y w, x) = x&&@
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forz € H and w € Q.
From Lemma 2.2 in [9], we may use the transformations (8) and (9) to convert (1) into a
random differential equation.

Lemma 2.3. Suppose that x is the solution of

dx(1)
dt

where G(t, w, x(1))) = e F(t, e ““)x(t)) and 7 is the solution of (6), then for any x € H

(10)

= A()x(t) + z(6,w)x(t) + G(t, 0w, x(1)))

(11) x(t, w,vp) := T_I(H,w, x(t, w, T(w, vp)))

is a solution to (1).

3. Local-stable manifolds.

In this section we shall prove the existence of local-stable manifolds for solutions of (1).
We shall give some definitions. For the nonlinear term we need some locally Lipschitz
properties.

DeriniTion 3.1. Let X be a Banach space and B, be the ball with radius p centered at the
originin X, i.e., B, := {f € B : ||fll < p}. A function f : [0, +o0) X X — R is said to have
(C, p) properties for some positive constants C, if (3) and (4) are satisfied for x € B, and a.e.
teR,.

Fix some positive number ¢y < ¢ where ¢ is the constant defined in (2). We denote by
Ls, ={f € LRI flls, = SU(I)) |f(D)]e™®" < oo},
1>

which is Banach space.
Recall a multifunction S = {S(w)},ecq of nonempty closed sets S(w), w € Q, contained in
a complete separable metric space (H, dy) is called a random set (see [9]) if

inf dy(x,
w_)yé?(w) (X, y)

is a random variable for any x € H.
Next we give the definition of local-stable manifolds for the solutions to (1) (See [13]).

DeriniTiON 3.2. A random set S(w) € Ry X X is said to be a local-stable manifold of Ls,
class for the solutions of (1) if for every € R, the phase space X splits into a direct sum
X = Xo(t) @Xl(t) such that inf; inf{||xo + x{|[} > O for x; € X;(?),[lx;|| = 1, j = 0,1 and if
there exist positive constants p, pg, o1 and a family of Lipschitz continuous mappings

g: : By, N Xo(t) = B, N X1(1)

with Lipschitz constants independent of ¢ such that

D) S(w) = {(1, x + g/(x, w)) € Ry X (Xo(1) P X1(1)) |1 € Ry, x € By, N Xo(D)};

ii) Denote by S¢(w) := {x + g:(x, w) : (¢, x + g,(x, w)) € S(w)}. Then S¢(w) is homeomorphic
to B,, N Xo(1):={x € Xo(1) : |Ix]| < po} forall > 0.

iii) to each xg € S, (w) there corresponds one and only one solution x(¢) of (1) on [ty, +o0)
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satisfying conditions x(fy) = xo and the function

y(1) = {x(t) fort > 1,

0 fort <t

belongs to the ball with radius p in Ls,(i.e., the ball 8, := {g € Ly, : ||g||L(,O < p}.

Following [14], for each #, > 0 the space X((fy) = P(#y)X can be characterized as

. U(t, to)x for t > 1
Xo(tp) = {x € X : the function y(t) = belongs to B},
0 fort < 1y

where B is a Banach space. Concretely, for Ls,, we have that
Xo(to) = {x eX: sup UG i)l < oo}.
te[0,00)
The following lemma gives the solution of (10), which belongs to Ls,.
Lemma 3.1. Let the evolution family (U(t, s))sss0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t));>0 and dichotomy constants M,n > 0. Let

F : R, X B, — X belong to class (C, p). Let x(t) be a solution of (1) such that for fixed t the
function

s {x(t) for t > 1,

0 fort <ty

belongs to B, := {g € L, : IIgIILJO < p}. Then, fort > ty, x(t) can be written in the form

(12) x(1) = U(t, to)vo + f ) ['(z, )(z(0:w)x(7) + G(7, 6w, X(7)))dT,

To

where I(t, T) is the Greens function defined by equality (2).

Proof. Denote

(13) w(t) = f ['(7, 1) (2(0:w)x(7) + G(7, 0w, x(7)))dT
fo
for > 1o and w(¢) = O for ¢ < #. Using (2) and (4) we obtain
lw(@®I|
<M | e T (76 w)l | ]

fo
+Clle @1 + [l |xl))dT
0o
< MC] o)f e—(5|l‘—T|+(50TdT
fo

where

(14) C1.o = sup(|lz(6-w)lle"*"p) + C(sup(le **“)[|e™7) + p).

1) Tl

Using the decomposition
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00 ! 00
f o OI=Tl+00T g — f o S=D+80T g o f o 0T=D+60T g0
Ty To t

yields
MCl,we‘SO’
[lwI < T&%
Thus,
20MCy,
lw(lls, < Té{h

It is straightforward to verify that w(-) satisfies the equation

w(t) = U(t, ty)wy + f U(t, 7)(z(6:w)x(t) + G(1, O, x(7)))dT,

fo
for t > 1.
Since x(?) is a solution of (10) we obtain that

x(1) — w(t) = U1, 10)(x(to) — w(to)) = y(1) — w(r)

for ¢ > 1. Denote by vy = w(ty) — x(#p), since y(¢) and w(z) are in Ls,, we can conclude that
vy € Xo(fy). The conclusion follows from the equality x(¢) = U(t, to)vg + w(?). O

In order to compare solutions on the manifolds, we should recall the cone inequality
theorem.(See p.7-8 of [13])
A closed subset C of a Banach space X is called a cone if it has the following properties:
(i) xo € C implies Axy € C for all 4 > 0;
(i1) x1, xo € C implies x| + x; € C;
(iii) £xo € C implies xy = 0.
Fix a cone C in a Banach space X, for x,y € X we will use the notation x < yif x —y € C.
If the cone C is invariant under a linear operator A, then it is easy to see that A preserves the
inequality, i.e.,x < y implies Ax < Ay.
The following cone inequality theorem which can be found in Theorem 1.9.3 in [7] will be
used later as a lemma.

Lemma 3.2. Let C be a cone given in a Banach space X such that C is invariant under
a bounded linear operator A having spectral radius ra < 1. If a vector x € X satisfies the
inequality

x<Ax+n

for some given n € X, then it also satisfies the estimate x < y, where y € X is the solution of
the equation y = Ay + n.

Now we may construct the structure of certain solutions of (10) in the following theorem.

Theorem 3.1. Let the evolution family (U(t, s))>s>0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))»o and dichotomy constants M,5 > 0. Let
F : Ry X B, — X belong to class (C, p). If
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’

26MC <mi {1"2} and 26(ML + C, ) <1

6% — 62 6% — 62

where C , is defined in (14) and C,,, = supTZlO(IIz(GTw)IIe“SO’), then for r = ﬁ andty > 0
there corresponds to each vy € B, N Xy(ty) one and only one solution x(t) of (10) on [ty, +o0)
satisfying the conditions that Pyx(ty) = vy and the the function

x(t) for t > 1
y(n) =
0 forr<ty

belongs to the ball B, in Ls,. Moreover, the following estimate is valid for any two solutions
x1(t) and x,(t) be two solutions of (10) corresponding to different values vy, v, € B, N Xo(tp)

(15) llx1(£) = x2(0)]| < Cpe™™ ™ Juy — v]

25—)ML
> < s
fort > ty, where u < 6, —r—a

_ M
<landC p = - Zout -
(6—;1)2—6(2)

Proof. We shall show that the following transformation 7 defined by
U(t, ty)vg + ft :c I'(t, 1)(z(6:w)x(7) + G(1, 6w, x(1)))dT fort > ¢
0 fort < 1

(Tx)(®) = {

acts from B, into B, and is a contraction for vy € B,NXy(ty). Note that ||F(z, x)|| < C(1+]|x]])
for x(-) € B,, therefore, putting

) = U, to)vo + ft( To I'(¢, 7)(z(0:w)x(T) + G(7, 6w, x(7)))dr fort > 1
- fort < 1y

by proof of Lemma 3.1, we have

26MC) e
—8(1—1p) w
ly@Il < Me™ " [luoll + 7 o2
where C , is defined in (14).
Thus,
260MC,
||y(t)||L50 < M||Uo||L0~0 + W

26MCy,, .
Now the fact ||vollz,, < 57; and =5 5:2)’ < § yields lly®llz,, < p.

Therefore, the transformation 7" acts from B, into B,,. We now estimate
I(Tx)(2) = (Tw)(@)|
< [ 0w o106 60,30 - G w
to

+Hz(G-w)lllx(7) — w(T)|DdT

< (ML+C.,) f ") - Ol

Therefore,
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26(ML + C.,)

(T x)(#) = (Tw)(B)lIL,, < 52—

() = wOlzy, .

26(ML+C.,,)
62
Thus, there exists a unique x € B, such that Tx = x.
By Lemma 3.1 we know that x(7) is the unique solution in B/, of (10) for > 1,.
Denote by x;(¢) and x,(¢f) be two solutions of (10) corresponding to different values

vy, U2 € B, N Xo(ty). Then,

It follows from assumptions that < 1. Hence, T : B, into B,, is a contraction.

x1(1) — x2(2)
= U(t,10)(v) —v2)

+ foo I'(t, )(G(7, 0w, x1(1)) — G(T, 6w, x>(T))

Tp

+2(6:w)(x1 (1) — x2(7)))dT,
for t > ty. It follows that,

llx1 () = x2 (D)l

< Me™ 20 |jyy — |

+(ML+C.,) f e xy (1) = xo(7)|ld,
fo

for ¢ > 1.
Denote by ¥(2) = [|x1(7) — x2(1)l], then ess sup,,, (1) < oo and

(16) W(t) < Me™" |y — vyl + (ML + C,) f e Ty (7)dx,
fo

for t > tp. We will apply the cone inequality theorem to Banach space L [fy, c0) which is
the space of real-valued functions defined and essentially bounded on [fy, co) with the cone
C being the set of all (a.e.) nonnegative functions. Consider the linear operator A defined
for x € L, [tg, o) by

(Ax)() = (ML + C.) f " e x(r)dr.
Then,

sup(Ax)(1)

[241))

< (ML+C.,) f ¢ NI ()
To

00

< (ML +C.,) e~ G x|,
ty

WML+ Con)
< g,
82 — 82

Thus, we have proved that A is a bounded linear operator with [|A|| < 1, leaving the cone C
invariant. We may rewrite the inequality (16) as
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¥ < Ay +(t) for n(t) = Me™*""|lyy — vall.

Hence, by cone inequality Lemma 3.2, we obtain that i < ¢, where ¢ is a solution of the
equation ¢ = Ap + 1 which can be rewritten as

(17) @(1) = M|y — vyl + (ML + C.,) f e I Typ(r)dr,
To

fort > 1.

In order to estimate ¢, we set ¢(r) = "= (7) for u < 6 and 2 HLICow))

el < 1. By (I7),

we have
(18)  ¢() = Me |y — vy + (ML + Cv,) f T )
fo
for t > t9. Consider the linear operator D defined for x € L, [#9, o) by
(Dx)(1) = (ML + C.,,) f ) e~ x (1) 7.
to

Then,

sup(Dux)(r)

[2a0)

< (ML+C.,) f e I x(1)dr
1o

< (ML + C.,) f e O I=TROT G | 1xlls,
)

- 20 -wWML+C)
(6 — p)* — 62

[1xlls, -
Thus, we have proved that D is a bounded linear operator with ||D|| < 1. Then (18) can be
rewritten as
¢ = D¢ + 1(0) for (1) = Me™ ™y — vy
Thus, ¢ = (I - D)~!5 uniquely solves the equation ¢ = D¢ + 5(¢) in Ls, [y, 00). Furthermore,
lI¢lls,

= |I(L - D) 'nlls,
< 1= D) imlls,

<M -
S ——||lv1 — U2
)

B 2(6—/1)(ML+CZ,(U) ||U1 - UZ” = C}l”vl - U2I|7

(6—p7*=6;
which yields
P(1) < Cullvr — vo|

for t > to. Hence ¢(1) = e *™0¢(1) < e)C,|lu; — vl Recall the definition of y(z) =
llx1(£) — x2(D)|| < (1), we get the conclusion
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Ix1(8) = X2l < e TVCylluy — va|

for t > 1. O

We now prove our result on local stable manifold.

Theorem 3.2. Let the evolution family (U(t, s))sss0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))o and dichotomy constants M,6 > 0. Let
F : R, X B, — X belong to class (C, p). If

206MC < mi {1,/_)} and 206(ML + C, ) <1

6% — 6} 6% — 62

B

where Cy, is defined in (14) and C.,, is defined in Theorem 3.1, then there exists a local-
stable manifold S(w) of Ls, class for the solutions of (10). Moreover, every two solutions
x1(t) and x,(t) on the manifold S(w) attract each other exponentially in the sense that there
exist positive constants y and C, independent of ty > 0 such that

(19) ll1 (1) = x2(0)]| < Ce™ || P(t0)v1 (1) — Plto)va(to)ll-

Proof. Since the evolution family (U(t, s));s>0 have exponential dichotomy, we know
that for each ¢+ > 0O there are projections P(f),t € R, uniformly bounded and strongly
continuous in ¢, such that the phase space X splits into the direct sum X = X,(1)®X,(¢), where
Xo(t) = P(1)X and X, (t) = kerP(t). Furthermore, we can conclude that inf; inf{||xo + x|} > O
for x; € X;(0),llxjll = 1, j = 0,1 from sup,.q [[P(?)|| < co. We should construct the family
of Lipschitz continuous mapping (g;);>0 which satisfied the conditions of Definition 3.1.

Defined
In(y, ) = f (L(10, )G (7, 0w, x(7)) + 2(6:w)x(7))dT,

where y € B, N Xy(1p) with r = #, x is the solution in B, of (10) on [z, c0) which satisfies

P(t9)(x9) = y and x(r) = 0, t < ty. We can conclude by definition of Green’s function that
gt()(y9 CL)) € X] (t()) Slnce

g, @Il
< f IT(z0, DG (7, B0, x(T))I| + [lz(B-w)Il|xINdT

0

00
<MCy, f e Tt g

To

L 20MCy

Je,
< p—
-5 2

where C| , is defined in (14). Hence g,,(y, w) is a mapping from B, N Xy (1) to B, N X (o) .
For y; and y, belonging to B, N Xy(#y) we have

191 (Y1, @) = g1, (2, W)I|

< fo ) T (20, DIIIG (7, Or 0, x1 (7)) — G(T, 6, X2(7))]

+lz(G-w)llllxi (7) — x2(D)IDdT



722 X.D. YaNG

< (ML+C.,) f T () = 1y ()l
0

26(ML + C,,,)
< T(%lel(-) = x2()ls, -

Since x;(-) is the unique solution in B, of (10) on [#y, o) satisfying P(t)xi(to) = y;, i = 1,2,,
respectively, we have that
llx1 () = x2(D)l|
< WU, w)llllyr — yall
+ f I, DG (7, 6:w, x1(7)) = G(7, O, X2(D)|
fo

+z(B-w)lllx1 () = x2(D))dT
< Mlly, — yall + f e TG (ML + Co0)lIx1 () = x20)ls,
0

20(ML +C.,)
< Mllyy — yall + 62—62Z”x1(’) = 22()lls,-
~ %
Denote by g = Z‘S(A;Lf%?‘“’) < 1, we obtain that

M
llx1(®) = x2(Dlls, < ——lly1 = yall.

1-5
Hence we have proven that g,, is Lipschitz continuous with Lipschitz constant independent
of 1o,

llgs, W1, w) = g1y (y2, W) < lly1 = yoll.

Mp
2(1-p)
Denote by py := r = 7 and p; := p/2 we obtain that the family of mappings (g,)r0
(9 = By, N Xo(1) — B,, N X;(1)) are Lipschitz continuous with the Lipschitz constant 2(1;4—1)
independent of 7.

Define the transformation Zy := y + g,,(y, w) for all y € B, N Xy(#y), applying the Implicit
Function Theorem for Lipschitz continuous mapping (see [12]), we have that, if Lipschitz

B

constant 2(];/1_—63) of gy, satisfies 2(1;'[—_@ < 1, then Z is a homeomorphism. Put S(w) = {(t,x +

g:(x, w)) € Ry X (Xp(1) EB Xi(0) | teR,,xe B,ﬂXo(t)}, then for each 7y > 0 we have proven
that S¢)(w) = {(x + g4, (x, w)) : (fo, x + g4 (x,w)) € S(w)} is homeomorphic to B, N Xo().
Therefore, the condition (ii) in Definition 3.2 follows. The condition (iii) of Definition 3.2
now follows from Theorem 3.1. Finally, the inequality (19) follows from inequality (15) in
Theorem 3.1. O

Theorem 3.3. Let S(w) = {(t, x + g:(x, w)) € Ry X (Xo(t) P X1())lt € Ry, x € B,, N Xo (1)}
be the local-stable manifold S(w) of Ls, class for the solutions of (10), which is obtained in
Theorem 3.2. Then S(w) = {(t, £ + gi(%)) € Ry X (Xo() P X1(1) | 1 € Ry, x € By, 0 Xo(0)]
is a local-stable manifold of L, class for the solutions of (5).

Proof. Let x(t, w, vy) be the solution of (10) and x(z, w, vo) be the solution of (5). From
Lemma 2.3
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£, w,S) = T Gw, xt, T(w,5)) = T (G, x(t,w,S)) € T (B0, SO,w)) = SO,W).
Thus, S is an invariant set. Notice that
S(w)
=T(w,S(w))
= {vo = TN (w, x + gi(x,w))) | x € By, N Xo(D)}
= {vp = e (x + g,(x, w))) | x € By, N Xo(D)}
= {vo = (x + g(e "“'x, w))) | x € B,, N Xo(1)}

which implies that S(w) is a Lipschitz stable manifold. |

4. Global stable manifolds.

The existence of invariant (global) manifolds will be proved in this section. As in the pre-
vious section, for the linear part we need the fact that the evolution family has an exponential
dichotomy. Then, we impose some kind of global Lipschitz properties on the nonlinear term
F(t, x). Precisely, we have the following definition.

DeriniTion 4.1. Let X be a Banach space. A function f : [0, +00) X X — R is said to have
Lipschitz properties for some positive constants C, if (3) and (4) are satisfied for x € X and
a.e. t€R,.

The definition of stable manifolds for the solutions to (1) is as follows.(See [13])

DermtTion 4.2. A random set S(w) C R, X X is said to be a stable manifold for the solu-
tions of (1) if for every ¢ € R, the phase space X splits into a direct sum X = Xy (f) @ Xi(1)
such that inf; inf{||xo + x1||} > O for x; € X;(#),|lx;][ = 1, j = 0, 1 and if there exist a family
of Lipschitz continuous mappings

gr - Xo(1) = X1(1)

with Lipschitz constants independent of 7 € R, such that

D) S(w) = {(t, x + gi(x, w)) € Ry X (Xo(1) P X1 (D)t € Ry, x € Xo(1)};

ii) Denote by S¢(w) := {x + g:(x,w) : (t,x + g:(x)) € S}. Then S¢(w) is homeomorphic to
Xo(?) for all > 0.

iii) to each xp € S, (w) there corresponds one and only one solution x(¢) of (1) on [f, +0c0)
satisfying conditions x(fy) = xo and the function

{x(t) fort > 1,

0 fort <ty

y(t) =

belongs to Ls,.
iv) S(w) is invariant under (1) in the sense that, if x(-) is a solution of (1) with x(zy) = x( €
S;, (w) then x(s) € Sy(w) for all s > .

The following lemma gives the form of solution of (10), which belongs to Ls,.
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Lemma 4.1. Let the evolution family (U(t, s))=s>0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))»o and dichotomy constants M,5 > 0. Let
F : Ry X B, — X satisfy Lipschitz properties (3) and (4). Let x(t) be a solution of (1) such
that for fixed t, the function

y(1) = {x(t) fort > 1,

0 fort<ty

belongs to Ls,. Then, for t > ty, x(t) can be written in the form

(20) x(t) = U(t, to)vg + f N I'(t, 7)(z(0:w)x(7) + G(7, O, x(7)))dT,

fo

where I(t, T) is the Green’s function defined by equality (2).

Proof. Denote

21 w(t) = f N I'(¢, 7)(z(0:w)x(T) + G(1, 6w, x(T)))dT

To

for t > 1o and w(#) = O for ¢ < #y. Using the proof of Lemma 3.1 we obtain

llw(®)lls,

(o]

<M | e OTHT 0T (|12 G w)lll|xI| + C(lle” | + ||xl))dT
fo

_ W6MCy,,
where
(22) Ca.o = sup e (||z(8-w)llllxll + C(lle || + [|x]])).
1)

It is straightforward to verify that w(-) satisfies the equation

w(t) = U(t, ty)wy + f U(t, 7)(z(6,w)x(t) + G(1, 0w, x(7)))dT,

fo
for t > 1.
Since x(?) is a solution of (10) we obtain that

x(1) — w(t) = U1, 10)(x(to) — w(to)) = y(1) — w(r)

for ¢ > 1. Denote by vy = w(ty) — x(#p), since y(¢) and w(z) are in Ls,, we can conclude that
vy € Xo(fo). The conclusion follows from the equality x(¢) = U(t, to)vg + w(?). O

Theorem 4.1. Let the evolution family (U(t, 5))ss>0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t))»0 and dichotomy constants M,6 > 0. Let
F : Ry X B, — X satisfy Lipschitz properties (3) and (4), then there corresponds to each
vy € Xo(to) one and only one solution x(t) of (1) on [ty, +o0) satisfying the conditions that
Pox(ty) = vy and the the function
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y(t) =

0 forzr<ty

{x(t) fort > 1,

belongs to Ls,. Moreover, the following estimate is valid for any two solutions x(t) and x(t)
be two solutions of (10) corresponding to different values vy, v, € Xo(tp)

(23) llx1(2) = x2(D)l| < Cpe™™ vy — v

Jort > ty, where u <6, (6262

_ M
<landCy, = |- WL -
(0-n-53

Proof. We shall show that the following transformation 7" defined by

(Tx)0) = { (I)J (t, to)vo + ft ;X’ I'(t, 7)(z(0:w)x(7) + G(1, 6w, x(7)))dT  fort >t

fort < 1y
acts from X into X is a contraction for vy € Xy(#p). Note that ||F (¢, x)|| < C(1 + ||x]|) for
x(+) € X, therefore, putting
y(1) = {U (t, tp)vo + ft( ?o I'(t, 7)(z(0;w)x(7) + G(1, O,w, x(7)))dTr fort > ¢,
0 for ¢ < 1.
Using the proof of Lemma 3.1 we obtain

lly@ll

< My

+M f e NTTHT 0TIz G- )|llx (DNl + Clle™ | + lx(D)I)dT
To

thus
20MC,,,
lly(®lls, < Mlvolls, + = o
52— 32

where C,, is defined in (22).
Therefore, the transformation 7" acts Ls, into Ls,. We now estimate

T - T
< fo ICE DG 60, X(7)) — G, 0, (D)
G-I - w(Ddr

<(ML+C..) f ¢TGBT (1) _ (D)l
0

Therefore,
26(ML + C,,)

(T X)) = (Tw)(B)lls, < 52— 52

[1(-) = wlls, -
26(MLAC..)
67
Thus, there exists a unique x € L, such that 7x = x.

It follows from assumptions that < 1. Hence, T acts L;, into L, is a contraction.
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By Lemma 4.1 we know that x(¢) is the unique solution of (10) for ¢ > .
Finally, the last inequality can now be proved by the same way as the proof of inequality
in Theorem 3.1. O

We now prove our result on global stable manifold.

Theorem 4.2. Let the evolution family (U(t, 5))>s>0 have an exponential dichotomy with
the corresponding dichotomy projections (P(t));s0 and dichotomy constants M,6 > 0. Let
F : R, X B, — X satisfy Lipschitz properties (3) and (4).

26MC 25(ML + C
s U min{l,/—)} ana 2ML* Ceo)

82— 82 &2 — &2

1,

where C,,, is defined in (22) and C., is defined in Theorem 3.1, then there exists a global
stable manifold S(w) of Ls, class for the solutions of (10). Moreover, every two solutions
x1(t) and x,(t) on the manifold S(w) attract each other exponentially in the sense that there
exist positive constants yu and C,, independent of to > 0 such that

[1x1(2) = 22Dl < Cue = N|P(t0)v1 (t9) = Plio)va(to)l-

Proof. Since the evolution family (U(t, 5))>5>0 have exponential dichotomy, we know
that for each r > 0 there are projections P(t),t € R,, uniformly bounded and strongly
continuous in ¢, such that the phase space X splits into the direct sum X = X (1)®X(?), where
Xo(t) = P(1)X and X, (t) = kerP(t). Furthermore, we can conclude that inf, inf{||xy + x{||} > O
for x; € X;(1), ||lx;ll = 1, j = 0,1 from sup,,, [|P(?)|] < co. We should construct the family of
Lipschitz continuous mapping (g;);>0 wWhich satisfied the conditions of Definition 4.2. Define

91, (Y, w) = f (70, 1G(T, Orw, X(7)) + 2(0-w)X(7))dT,

where y € Xy(fy), x is the solution of (10) on [fy, c0) which satisfies P(fy)(x9) = y and
x(t) = 0, t < 1o (note that the existence and uniqueness of x(7) is obtained in Theorem 4.1).
For y; and y, belonging to X () we have

191 (Y1, @) = g1, (2, W)I|

< fo ) IC o, DIAIG(T, O, x1(7)) = G(T, -0, x2(D))|
+lz(@:w)llllx1 (7) = x2(7)IDdT

< (ML+C,,) fo ) e OTIHOT p=00T| |y (1) — o (7)|IdT

_ 20(ML+C.o)

T e_x 121 (7) = x2(Dlls, -

Since x;(-) is the unique solution of (10) in Ls, on [#o, o) satisfying P(ty)x;(to) = y;, i = 1,2,
respectively, we have that

[lx1(2) = x2(D)|
< U@, to)llllyr = yall +
f IIT(z, DG (7, O-w, x1(7)) = G(7, -, x2(T))|

)
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+|lz(B-w)llllx1(T) = x2(D))dT
< Mlly; — yoll + (ML + C,) f e OITTHOT =007 v (1) — xo(7)||dT
20(ML +C,,,)

< Mllyy — ol + llx1(7) = x2(T)lls, -
2
) 60
Denote by 8 = M%Lf;?“) < 1, we obtain that
M
llx1 (1) = x2®)lls, < W”yl yall.

Hence we have proven that g,, is Lipschitz continuous with Lipschitz constant independent
of 1o,

”gl‘()(yl’ CU) - gt()(y29 (U)” < ”yl - y2||

Mp
S 2(1-p)
Thus, we have obtained that the family of mappings (g,);>0 are Lipschitz continuous with
the Lipschitz constant 57— B 5 independent of ¢.
Define the transformation Zy := y + ¢g,,(y, w) for all y € Xy(ty), applying the Implicit
Function Theorem for Lipschitz continuous mapping (see [12]), we have that, if Lipschitz

_Mp_
constant 5—— 2( i ﬁ) )

g:(x, w)) € Ry X (Xo(?) @ Xi(0) | teR,,xe Xo(t)}, then for each 7y > 0 we have proven
that S¢,(w) = {(x + g4, (x, w)) : (ty, X + g1, (x, w)) € S} is homeomorphic to Xy(ty). Therefore,
the condition (ii) in Definition 4.2 follows. The condition (iii) of Definition 4.2. now follows
from Theorem 4.1. We should prove that the condition (iv) of Definition 4.2 is satisfied. By
Lemma 4.1 we have that, for s > ¢, the solution u(s) can be rewritten in the form

of gy, satisfies i < 1, then Z is a homeomorphism. Put S(w) = {(t X+

x(s) = U(s, to)vg + f ) [(s, )(z(6rw)x(7) + G(7, O-w, x(7))dT,

o
for some vy € Xy(ty) = P(tp)X where I'(¢, 7) is the Greens function defined by equality (2).
Denote by

W(s) := U(s, to)vg + f ' I'(s, 7)(z(6:w)x(7) + G(1, Oz, x(7)))dT,

we obtain that W(s) € P(s)X and )

(24) x(s) = W(s) + f ) I'(s, 7)(2(0-w)x(7) + G(7, 0:w, X(7)))dT.
Fort > s, by (12), straightforw;rd computation yields

(25) x(t) = U(t, s)W(s) + f ) ['(t, 7)(z(6:w)x(7) + G(1, 60, x(7)))dT.

Thus, combing (24) and (25) with definition of g, we obtain that x(s) = W(s) + g,;W(s)
yielding that x(s) € Sy(w) for all s > . Finally, the last inequality follows from the last
inequality in Theorem 4.1. |

Theorem 4.3. Let S(w) = {(t.x + g,(x.w)) € Ry x Xo() P X1(1) | 1 € Ry, x € Xo()}
be the global stable manifold S(w) of Ls, class for the solutions of (10), which is obtained
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in Theorem 4.2. Then the manifold S(a)) =t X + g/(%, w)) € Ry X (Xo(t) EB Xi(0)|t €
Ry, x € Xo(1)} is a global stable manifold of Ls, class for the solutions of (5).

Proof. Let x(t, w, vy) be the solution of (10) and X(z, w, vo) be the solution of (5). From
Lemma 2.3,

i, w,8) = T (O, x(t, T(w,8))) = T~ (G, x(t,w,S)) € T~ (B,w, S(B,w)) = S(O,w).
Thus, S is an invariant set. Notice that

S(w)

=T (w,S(w))

= {vo = T™' (@, x + g,(x, ))) | x € Xo(1)}

= {vo = % (x + gi(x, ) | x € Xo(1))

= {vo = (x + g:(e™"'x, w))) | x € Xo(1)}

which implies that S(w) is a Lipschitz stable manifold. O
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