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1. Introduction

In the recent paper [8] S. Kaplan has obtained an analogue of Garding’s
inequality for parabolic differential operators and applied it to a Hilbert space
treatment of the Cauchy problem. D. Ellis [3] has extended those results to
higher order parabolic differential operators (see also [4]). On the other hand
in [13] the author has studied a Hilbert space treatment of the Cauchy problem
for parabolic pseudo-differential equations and generalized the results of S.
Kaplan [8].

In the present paper we shall study the Cauchy problem for higher order
parabolic pseudo-differential equations of the form

Lu = D:u(t’ X)—I— 2?!‘(1‘7 X’ Dx)D:—ju(t7 x) :f(t’ x)

where p;(¢, x, £) are symbols of the class S} introduced in [11] and [12]. We
need not assume that the basic weight function A(£) tends to infinity as | £| —oo.
Therefore the theory can be applied to more general classes of operators (includ-
ing difference operators) than the class of usual parabolic differential operators.

In section 2 we give definitions and lemmas for pseudo-differential operators.
In section 3 the algebras and L*-theory are stated. The L?-continuity of pseudo-
differential operators has been studied in many papers (see for example, Calderon
and Vaillancourt [1], [2], Hérmander [7] and Kumano-go [10]. In the present
paper the L-continuity theorem by Calderon and Vaillancourt in [1] plays an
essential role. In section 4 we define the space H, (Q) which is needed to study
the Cauchy problem. In section 5 we derive energy inequalities for the parabolic
system which is associated with a higher order parabolic pseudo-differential
operator. ‘'These energy inequalities are very similar to those of D. Ellis [3] and
[4]. To obtain the energy inequalities the idea of double symbols of pseudo-
differential operators is very important. In section 6, using the results in section
4 and 5, we discuss a Hilbert space treatment of Cauchy problem for parabolic
systems. In section 7 finally we state the main results for the Cauchy problem
for higher order parabolic pseudo-differential equations.
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2. Definitions and lemmas
Let a=(et;, -+, at,,) be a multi-integer of @; =0, j=1, --,n. We put |a|=a,
+ o ta, al=a,!--a,! and 0f =(0/0E,)" -+ (0/0E ).

DEerFINITION 2.1, Let A(£) be a real valued C* function defined on the 7-
dimensional real space Rf. We say that A(£) is a basic weight function when
M(E) satisfies that

@.1) ME)Z1,
22) |BEA(E)| S CM(E)'™™ for any a,

(see [9] and [13]).

We can see that the function <€>=(1+4 | £|?)"/2=(1+E}+ -+ E5)'/* is a basic
weight function.

The following lemma was proved in [13].

Lemma 2.2. Let \(£) be a basic weight function and § and m be real numbers
satisfying 0= <1. Then we have

(2.3) ME)=CLE,

(2:4) ME+D)=ENME)+Coln| =CMEX,

@3)  CPMOEMETME)ZCAE)
for any o € R" satisfying |o| <1,

(2.6) ME+2)" = Coh(E)" <™,

where C,, C,, Cs and C,, are positive constants which are independent of &, n and o.

Throughout this paper the letter C with or without indices will denote
positive constants not necessarily the same at each occurence.

Lemma 2.3. Let N\ (&) be areal valued C* function such that \(&)=c, for

some positive constant c, and 0y \(E) (j=1, -+, n) are bounded. Then there exists a
basic weight function \(§) which satisfies that
(2.7) e(E)=ME)=cN(€)

for some positive constants ¢, and c,.

Proof. By assumptions for A (&) we have |A(&)—N(7)|=C|E—n], so
1

taking &= it holds that (1/2)A(E)SN(n)=2ny(E) for [E—n| =EN (7).
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Let p(n)e C5(R™ satisfy thatS p(n)dn=1,0= (1)< C,, supp @ {n; | 7| <&}
R
and @(n)=C1>0 for || <&,/2. Then the function 7»(«’3)25 LP((E—n)/N(n))
R
No(7)"™*'d7 is a basic weight function and satisfies the inequality (2.7). In fact,

OEME) = | P (E—nMlN() ™ dn
where @®(7)=0,9(7), so
opE) | =C A(E)

1E-¢1SegAglO)

< —Atl- (@) Jp < 1- @
= C"S lE—{lézevo(E)XO(E) df=Canl8) ’

A(E) = A(E)7E

c,,S
1E-81Seghg(E)/4

= (E"?)ng 1€-¢) §eoho(§)/z7\'0(5)—”+ld§
=C | _PE—OMOME ™t = O )
[ A(E) g

1E-L1=egho(H

=C M(E) MG = CA(E) .

4
S 1§~ ¢1S2eqhgCE)

By these inequalities we obtain Lemma 2.3. Q.E.D.

Let B(R")={f(x)=C~(R"); |05 f(x)| =C, for any a}, S=S(R")={f(x)e
C=(R"); lim |x|™ |07 f(x)| =0 for any « and real number m} and let .S’ denote
| %] >

the dual space of S.

DEerFINITION 2.4. Let A (£) be a basic weight function.

(1) We say that p(x, £) belongs to ST\ when p(x, £)A(E)" & B(R™).

(i1) We say that p(x, £, x’) belongs to S\ when p(x, &, x")A(E)"" = B(R™).

(iii) We say that p(x, £, &/, £') belongs to St when p(x, &, &/, E')A(E)™™
ME)™™ = B(R"™).

(iv) Weset Sga= U Strand Sg3= N Sta

—eeLmg oo —eoegm e
(v) Let A(E) and A(£) be basic weight functions. Then we say that
p(x, E, x', £’) belongs to STy when p(x, &, &/, E’)X(E)"”h’(’g")‘m'eB(R‘“').

We use the notation: D;=(—1)'*!(3/dx,)"1-+-(0/0x,)*" for any a. Then we
set piE(x, E)=DEOEP(x, £), pZws(x, &, )= DEDYORp(x, E, ) and pigiin(s, &, ', £')
=DEDE3FdY p(x, &, «/, £’) for any a, a’, 8 and S’

We can see that



242 M. NaGAase

(1) p(x, &)= St if and only if | pE(x, £)| = C, e\(E)™ for any & and B,

(ii) p(x, &, &) S5 if and only if | pigle (%, &, &) | = C, peN(E)™ for any «,
Band &',

(iii) p(x, &, &', E)e Sg™ if and only if | pigan(x, &, &/, E')| < Co o’s g/ ME)™
(&)™ for any a, o/, B and S,

(iv) when m,=m,, it holds that S¢.; > S¢ 2.

In this paper we write S f(x)dx for S f(x)dx and 4§ for (2n)™" dE.
R

DeriniTION 2.5. (i) For p(x, £)Sq,, we define the pseudo-differential
operator p(X, D,) by

(2.8) p(X, D,)u(x) = Se""e p(x, E)a(g)dE for us.S, where #(£) denote the
Fourier transform Se‘i"'su(x)dx of u(x) and x-E=x,,+ -+ +x,&,.

(ii) For p(x, &, x')= S5, we define the operator p(X, D,, X’) by

(2.9) p(X, Dy, X' )u(x) = “e"(”""'g P, E, 2 Yu(x")dx'- dE for uc S,
where dx’- d€ means the integration in £ follows the integration in x’.

(iii) For p(x, £, %/, )& Sey™ or Sgy™, we define the operator p(X, D,, X', D,/)
by

(2.10) (X, D, X', D Yu(x) = Ssgei“"")‘f“‘/'s’p(x, £, E')A(E)dE - dx’-
4ag for ues S.

We can see that the above operators p(X, D,) and p(X, D,, X’) are conti-
nuous linear operators from S(R”) to S(R"). We say that the functions p(x, &),
p(x, &, «") and p(x, &, «', £') are symbols of the pseudo-differential operators
p(X, D,), p(X,D,, X’) and p(X, D,, X’, D,’) respectively and in particular
p(x, &, «’, £’) is often called a double symbol. ‘

DEFINITION 2.6. Let A(£) be a basic weight function and s be a real num-
ber. We define a Sobolev space H, by

H,=H,, = {ucsS’; a(&)eL},(R"), ME)a(E)e L (R")}.
We can see that H_ , is a Hilbert space with inner product
(2.11) (4, 9), = (1, 9)n = [MEHENE)eE
and the set S=S(R") is a dense subset of H, ,

For s=0, H,,=L*R"). When 5,<s,=5s,, for any £€>0 there exists a con-
stant C=Cs,_ s, s, . such that

(2.12) (el |3, = €l|ull3,+C|lul|3, for any uc S,
where |[ull,=V/(u, u); , (see [13]).
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When P(x, £)=(p; i(x, £)) is a kX k matrix function, we say that P(x, £)
belongs to S¢*, if all the elements p; ;(x, £) belong to S¢*, in the sense of Defini-
tion 2.4 (i). By the same way we define P(x, £, x")=.S¢", and P(x, &, x/, £')E
Sy or Sg™r.  For P(x, £)=(p.,i(x, E))= S5, we define the pseudo-differential

operator P(X, D,) by P(X, D,)U(x) = Se""fP(x, &) ﬁ(g)d&, where U(x)="(u,(x),

R S0, E)S(E)
e u(x))e{S} and P(x, E)UE)=|";": ) .
J_Z_.‘{Pk.j(x: E)uz(f)
By the same way we can define the operators P(X, D,, X’) and
P(X,D,, X', D,).

ReMARK 2.7. With the aid of Lemma 2.3, we can see that

(i) for any basic weight functions A,(€) and A,(£), there exists a basic
weight function A(&) such that ¢, AM(&) S \,(E)+A(E) = eM(E),

(ii) for any basic weiht function A(£) in R" and real number m=>1, there
exists a basic weight function \,(7, £) in R*** such that ¢\ (7, £) < (74 M(E)™™) /™"
<o\ (T, E) (see [12] and [13]).

The fact of Remark 2.7 (ii) is important to define the spaces which are ne-
cessary to study the Cauchy problem for parabolic pseudo-differential equations.

REMARK 2.8. From the definition of basic weight functions, if A\M¥) is a
basic weight function in R", A(£) is also a basic weight function in R},

3. Properties of pseudo-differential operators

All the theorems and corollaries of this section are stated in [12] and [13],
so we omit the proofs.

Theorem 3.1. Let N(E) and N'(£) be basic weight functions and let
plx, E, &, ENe Sy, Then there exists a function p (%, E) such that

(3.1) pulx, EYME)™N(E)"™ € B(R™)
and

3.2) (X, D)u=p(X,D,, X', D,/))u  foranyucsS.

Corollary 3.2. (i) Let p,(x, £)=.ST\ and p(x, E)S STy.. Then there exists
a function p;(x, £) such that

(3.3) pu(x, EME)"N(E) ™ € B(R™)
and
(34)  pu(X, D)u=p(X, D,) p(X, D,)u for anyus S .

(it) For p(x, E)=Se\, there exists a symbol p*(x, £)= Sg'\ such that
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(p(X, D.Ju, v))=(u, p*(X, D,)0), for anyu, vES.

When A(E)=N\/(£), the assertions in Corollary 3.2 mean that the class of
pseudo-differential operators defined by the symbols in Sg, forms an algebra.

Theorem 3.3. Let 0<8=<1 and p(x, £, ', &) Spr. We assume that
ngp(x, £, E)ESTT i’,”". Then for p,(x, E) in Theorem 3.1 and p(x, )=
p(x, E, x, E), it holds that

(3.3) {Du(x, E)—po(x, E)INME) ™ N(E) ™ EB(R™).

Corollary 3.4. (i) Let p,(x, £)eS& and pyx, E)eSPy. Assume that
0g,py(x, £)E ST (j=1, -+, n) for some & (0,1]. Then

(3:6)  {pulx, E)—pu(w, E)pulx, EINME) " TN(E) ™ EB(R™),
where p;(x, E) is the function defined in Corollary 3.2.

(i) Assume that p(x, )€ S\ and O, p(x, E)€.S5'T.  Then for p*(x, £) in
Corollary 3.2 (ii) we have

3.7) {p*(x, )—p(x, E)}ESET.

Corollary 3.5. For p(x, £)= S\, there exists a symbol p; ./(x, E) such that
(3.8)  {pr.m(x, E)—p(x, N (E)™IN(E) ™M) "EBR™),

(39)  Prn/(X,Dyu=N(D,)"-p(X,D,)u foranyucsS.

Corollary 3.6. Let p,(x, £)E S\ and p,(x, )= S&. Assume that 0, pu(x, £)

€8st and 0, po(x, £)e S (j=1, ---,n). Then there exists a symbol p(x, £)
e SP+™ -8 such that

(3.10)  p(X, D.Ju = [p(X, Ds), poX, D)Ju

= {p«(X, D.) p«X, D.)—p«X, D.)- p(X, D.)}u
for any ucs S.

The following L*-estimate was proved in [1].
Lemma 3.7. Let p(x, £)S8 . Then it holds that
(3.11) 1 p(X, Dul|,<Cl|lull, for any ucsS,

where C=C ,=c M sup | pig)(x, E)| for some positive integer N.
11 +1BISH 5,8

Using Corollary 3.2 (i) and Lemma 3.7 we have

Theorem 3.8. Let s be an arbitrary real number and p(x, €)= S5*\. Then it
holds that

(3.12) 12X, DJull \=Cllulls 1 for any ueS.
Corollary 3.9. When p(x, £)= S3\, we have
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(3.13) [(p(X, D.yu, u),| ECllullzsen for any usS.
For any p(x, £)=.S¢, we denote | p| m:sug) | p(x, E)N(E)™™].
&8
Using the Friedrichs approximation (see [5], [10] and [13]) we have,

Theorem 3.10. Assume that 0<S<1 and p™(x, £) ST for || =1.
Then we have

(3.14) | Re (p(X, DyJu, u),| < | Re p| llullmseatCllullin-s/72r for any u< S.

Corollary 3.11.  Assume that p™(x, £)= Sgx'*! for |a| <1, then we have
(3.15) Ip(X, Dyull? = | plallullzss a+Cllullnss-s/0n for any us S.

We note that all the theorems and corollaries of this section except for
Corollary 3.6 remain valid when the symbols of operators are kX & matrix func-
tions. But in the case of matrix symbols we must replace |Re p|,, in (3.14) and
| p|%4 in (3.15) by k|Re p|,, and k|p|3 respectively, where we mean that for

p(x, E)=(p;,i(x, £)) ST, Re pZ%{P(x, £)+p(x, £)*} and |P|m={$;|:1 sup
| p:, (% EYNME) ™™ I7F

In the case of matrix symbols, Corollary 3.6 holds if matrix p,(x, £) commutes

with p,(x, £).
By virtue of Corollary 3.2 (ii), we can define the pseudo-differential operators

on the space S’ by {p(X, D, )u, v>=<u, p*(X, D,)0) for uc .S’ and v&S. Then
inequalities (3.11), (3.12), (3.13), (3.14) and (3.15) hold for functions in H_,
spaces.

4. Spaces H, (Q)

In what follows we fix a basic weight function A(£) in R” and a real number
m=1. By Remark 2.7 (ii), there exists a basic weight function A (7, £) in R***
such that ¢,\ (7, E)S (T NE)™) P Zen (T, E).

DErINITION 4.1.  For any real numbers 7 and s, we define the space H, ,
by H, ={us S (R™");#(7,E)E Lo (R™), M(T, E) " ME) (T, E)= L*(R™*)} where
(T, £) is the Fourier transform Se“""”"f)u(t, x)dtdx of u(t, x).

The space H, ; is a Hilbert space with inner product

) o). = [um B ME T £, Bydrat

We can see that S(R™*") is a dense subset of H, ..
For —coZa<b=<+ o0, we set =0, ,={(¢, x) €R™""; a<t<b, xR"}.

DeriniTION 4.2. (i) H, (Q)={ucsD'(Q); v|o=u for some veH, },
where v|,=u means that the restriction of v to Q coincides with # and D’(Q)
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denote the space of distributions on Q.
(ii) For any closed set K in R**!, we set H, , (K)={ucH, ,; supp uCK}.
(iii) For any open set G in R™*, we set Cio,(G)={@|¢; p=Cq(R")}.
For uesH, () we define the norm of « by |||, , o=inf {||v||, ;; vEH,
v|g=u} where |[9||, ,=v/(v,7),,. The space H, (Q) is a Banach space with
norm [|9||, s o. We can see that H,, (K) is a closed subspace of H, ..
Using a similar method in [6], [8] and [11], we can see that for any r and s,
the set C%,(Q) is dense in H, (Q), C3°(Q) is dense in H,, (Q) and Cg(Q°) is
dense in H , (°), where Q° means the complement of Q.

The following lemmas are stated in [13] and can be proved by the similar
methods to those in [8] and [11].

Lemma 4.3. Assume that ucH, .., (Q) and % ucH, (Q), Then ues
Hr+m,s(ﬂ) and

(+2) 1l 0 0= C {1l o] -2 ]}

Lemma 4.4. Assume that 2r>m and — oo <a<b< 0.

(i) Wecan define the trace operator 7v,: H, (Q)—>H, s, Suchthat (7 u)(x)
=u(a, x) for u(t, x)= S(R"*") and

(4-3) Yoty ss-men = Cllully 5,0 -

(if) There exists a bounded linear operator v*: H,s_ppor—>H, (Q) such that
Ya* (yau:u fOT ues Hr+s—m/2,}\'

Lemma 4.5. Assume that |r| <mf2. We put
o(t, %) fort=a,
H,p(t, x) =
(%) { 0 for t<a,

for o(t, x) S(R™?), then it holds that ||H,p||, . <Cl||pll,s. Thatis, the operator
H, can be extended to a bounded linear operator on H, , and the range of H, is H, , ,

8.,
When a function p(¢, x, £) satisfies that |9/050£p(2, x, )| < C; o sME) for

any j, « and B, we write p(¢, x, £).S§ ,, by the same notation as in Definition
2.4. For u(t, x)= S(R™"), we define

20, X, D.Jult, ) = [ 0p(s, , By, E)drdg
- §ef“-£p(t, %, EYi(t, £)dE where (s, £) = Se""’Eu(t, x)dsx .

Proposition 4.6. Let r and s be arbitrary real numbers. For p(t, x, £)=Si a,
it holds that

(4.4) lp@t, X, Do)ull, = Cllully 54 for ue S(R™).
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Proof. By the definitions,

”P(t) X’ Dx)u“r,s = ”7\'1(Dt) Dx)r°7\'(Dx)s°P(t7 X, Dx)u“Lz(R”“) ’
where A (D,, D,)" v = Se"“”"‘f)xl(f, E)o(r, E)drdE .

Using Theorem 3.1 and Corollary 3.2 (i) we can write

M(Dyy DY MDY - p(t, X, D)u(t, x) = p, (t, X, D,, D,)u(t, x)
where p, (t, x, 7, E)\ (T, E)T"ME) T e B(R*Y) .

From Lemma 3.7, we have

”P(ti X’ Dx)u”r,s = ”Pr,s(t7 X’ Dt) Dz)'hl(Db Dx)—r'x(Dx)—s_l

*M(Dy, D) - MDY ull 2wt 5= ClINM(Dy, D)« MDY ull 2z +5

= C“u”r,s+l . Q.E.D.

By Proposition 4.6, the pseudo-differential operator p(t, X, D,) with symbol
p(t,%,E)€ S5 x can be extended to a bounded linear operator from H, ., to H, .
In the above proof we used the fact that when A\ (£) is a basic weight function in
R, \(£) is also a basic weight function in R"*'.

For any us H, , ((Q2), we take a sequence {u;}7-, in C5(Q) such that u;—u
in H, ;. Then by Proposition 4.6, p(t, X, D,)u;—p(t, X, D,)u in H, _,. There-
fore we have p(¢, X, D,JucH, , ;- (Q) for uc H, , (Q). This fact permits us to
extend the operator p(¢, X, D,) from H, ((Q) to H, ,_,(Q). Indeed,let uc H, (),
0| o=9,|g=u and v, v,€H,,. Since v,—v,€H, (Q°), we have p(¢, X, D,)
(v,—v)eH,, (). So we define p(t, X, D,)u by p(¢, X, D,Ju=p(t, X, D,)v|g

for veH, ; such that v|g=u. Furthermore, we have

”P(ta X> Dx)u”r,s—l,a = lnf {“v”r,s—l; v | o= P(t7 X: Dx)u )
vEHr,s—l}é inf {”P(t) Xa Dx)'v”r,s—l; vIQ =u, ‘UEH,.,S}
é inf {C”'U”r,s; ’UIQ =u, WEHr,s}l = C”u”r,s,u'

Thus we can extend the operator p(t, X, D,) to a bounded linear operator from
H, (Q) to H, ;_,(Q).

For o(t, x), Yr(t, x) = C5(R"*"), we write [op, \]r]zgRqu)(t, xX)Y(2, x) dtdx.

Then we can see that ||p]|, ;= Sup{lul:h—?ﬁﬂ; =0, wECI?(R”*‘)}.

Thus, H,, and H_, _; are dual Hilbert spaces and the form [-, -] can be
extended to a sesqui-linear form defined on H, ;xH_, _..

Let {¢.(¢, x)}7-, be a sequence of C3(R*") and {+r;(£)}5-, a sequence of
C5(R™) functions satisfying the following conditions:

() et #=1, SEy=1,

(if) 221050588, x)| =C 00 22105 ri(E)| =C,, for any / and a,

(iii) there exists a positive integer N such that for any (¢, x)R*", the
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number of supp {; containing (¢, x) is at most /N and for any £ = R", the number
of supp +Jr; containing £ is at most V.
Let {c;;}7 ;-. be a bounded sequence of complex numbers.
Then,
; [e:58 8, 2)9ri (D) (2, %), €582, x)r; (D)2, %))
= 2Dl e:; 1%L ilt, x) (Do) p(t, ), (2, )]
= [229i(D:) | ¢ 1"C 2, )" #(D2)p(2, %), (2, x)] .
By assumptions of {c,;}, {¢:(¢, %)} and {yr;(£)}, we can consider the operator
Sri(Dy) ;1% (8, x)4ri(D,) as a pseudo-differential operator with a double
symbol S1(E) 212t &Y i(E) € 582
Hence we have
22Meisl it R AD)p(2, %), €558t X A(D)r(2, x)]
=Cliell, sllll-r,-s -
From this inequality we obtain the following proposition.
Proposition 4.7. The form >1[c;;C(t, x)ri(D,)p(t, ), ;58 (2, x)r (D)
(2, %)] for @, = CT(R™") can be extended uniquely to a continuous sesquilinear form
definedon H, ;X H_, _,.
Using Lemma 4.5 and Proposition 4.7, we obtain the similar proposition to

Proposition 7 in [3].

Proposition 4.8. Let {c,;}, {¢(t, x)} and {yr;j(§)} satisfy the above condi-
tions. Let s,, s, 1, and r, be real numbers satisfying that r,+r,=0, r,+7r,~+5,+5,=0,
min (1, 7,) > —m/[2 and let —co <a<b= - oo.

Then the form

S @t ADIR), st ADI @), de

for o(t, x), (2, x)ae Co,(Q) can be extended uniquely to a continuous sesquilinear
formon H, (Q)X H,, ,(Q).

5. Parabolic operators and energy inequalities

Consider the operator L=Df+gp i(t, X, D,)Di~? where D,=(—12)0/0t.
We assume that the operator L satisﬁe; the following conditions:

(i) we can write L=L,+ L, where L0=D§—|—g pi(t, X, D,)D;~? and
L=3,(t, X, DD!", "~

(ll) pg(t’ X, g)ES&n){ (]:1, °t k),
(iii) for some 0<§, <1, 8;,pY(t, x, £)eSPL™ (=1, -+, n, j=1, -+, k) and
qj(t: Xy E)ES:{)’\_SI:
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(iv) roots P(2, x, £), -+, De(t, x, E) of the equation o-(Lo)='r"—|—j§k P32, x, )

Tk=7=() satisfy the inequalities Im p,(t, x, &) =c,ME)™ (=1, -++, k) where ¢, is a
positive constant.

We can consider the operator L as an extended form for higher order para-
bolic differential operators.

For any ueS(R"™), we put u;=n(D,)”* D{"'u for j=1, .-, k, and
U=*(u,, -**, ). Then we have Dmu;,=\(D,)"u;,, for j=1,.-,k—1 and

Dayy=Dlu=Lu—3p3(t, X, D,)D}u—31g,(t, X, D,)D} 'u=Lu—31p}_ 1.1
=1, =1 =1
(t’ X) Dx)x(Dx)muf_E_lqi—j+1(t) X’ Dx)u]' where P}z—j-tl(ty X, E)=P2—1+1(t) X,y E)

ME) k=70 87\ and gi_jua(?, X, E)=0s-j (2, X, E)ME)F P ST,
Hence we can write

D,U = h(t, X, D) MD,)" U+~ J(t, X, D,)U-+(Lu)es
4

0 1 0
0 i 0 1
where e, =1| : |, A(t,x, )= ¢ ¢
V1 o 0 : :: 0 1
_p}' _p}_l ............... __Pi

and J(t,x,g)=<_ 0 )

i+ —1q

Thus, 8/0t U=H-\(D,)” U+JU+i(Lu)e, and H=ih(t, X, D,). We put
R=0[0t— H-\MD,)"—J.

From the assumptions of operator L, we have

(i) o(H)=ih(t, x, £)= S8, O, o(H)E Sc it (j=1, -+, n) and o(J)=J(t, %, )
eSTx™,

(i) the eigenvalues of o(H) are contained in a fixed compact subset of the
set {z=C; Re 2= —¢,}.

For a matrix A=(a;;) we denote |4|={>]|a;;|*}".

The following lemma is shown in [3].

Lemma 5.1. For any (¢, x, £), there exists a k X k matrix N(t, x, £) such that
(i) IN(@, x E)+INE, x,E)7|=C,
(i) Re (N(t, % &) H(t,  E)N(t &, E)F, )< — 281" for any {="(E,, -+, L)
eC*,
where the constant C is independent of (t, x, £).

Lemma 5.2. We fix an arbitrary point (t,, x,, £,) and put N,=N(t,, %,, &,),
H,= H(t,, x,, £,) and R,=0/0t— H\(D,)”—J. Then we have

(51 allUEE—ell U@+ 1T de
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b b
_ ,ng U@ dtheS (N3'R,U, N5'U), dt

for any U= {S(R"*")}*, where c,, ¢,, u, and p, are constants which are independent
of (ty, %, &,) and

1oz = [ne~ o, o1t

Proof. Since H, and N, are constant matrices, we can write

Re(N3'R,, N3'0), = Re( VT, N30 )—Re(N* HMD.)"U, Ni*U),
—Re(N5'JU, N5'U), = % % NG (I8

—Re(Ns*HND,)™*U, Ng"\MD,)"*U),—Re(N5JU, N5'U), .
Putting Ng*\(D,)™*U=V, we have

b
Re{' (N3 R0, N7 ) drz | NG UGB 1IN U@

—Re| (VT HN,V, V)odt—C | 10N sl Ul
By Theorem 3.8, it holds that
WU -m-sp=CllUm-sp12 -
Using Lemma 5.1,
Re(N3*H,N,V, V), = Re SN;lHoNO V@, 8)- V1, £)dE

<—o[1 V@) rees —u/ MO O ©) Pt =—w Ul
Hence we have

b
Re| (Ve'R,U, N3'0),drz | UG-l U ()3

b b
+u'— )| N0l —C.f 134
for any €>0. Taking é=p,’/2, we obtain (5.1). Q.E.D.

To obtain the similar energy inequalities to those of [3] or [4], we use the
partition of unity of the space R(}*;, and R". Let & be a sufficiently small posi-
tive number which will be determined later.

Let ¢(¢, x) C5(R™")satisfy 0=¢(¢2, )< 1, suppt c{(¢, x); |t <1, |x;] <1
j=1, «--,n} and (¢, x)=1 for [t| <1/2 and |x;|=<1/2 j=1, ---, n.

Let g=(g0,&")=(20» &1» ***, &x) and h=(h,, k') denote (n+1)-tuples of integers.

1 1 ,
(gt 5+

ez =)o

We put £,(2, x)=
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Enumerating the points {g} and the corresponding functions {{,} in some
order, we denote them by (¢, x,), (£, %), -+~ and &, &,, ++-.

Then we have,

() Z‘};‘;(t, x)*=1,

(i1) 2 [080284(t, x)| =C 4, for any / and «,

(iii) the supp ¢; overlap in such a way that each fixed point in R"*' is
contained in at most 2" distinct ones of them,

(iv) | H(, x, E)— H(t;, x;, )| SC{|t—¢;| + | x—x;| }< C,€ for any (¢, x)E
supp ¢; and £=R".

We take the set {g; ;}7-, of points in R" as follows:

@) £.,=0,

(i) &,:+4.; for ik,

(iii) when 14I/(3"—1)=<;=<(I+1)(3"—1), I=0, 1, -+, writing g, j=(a,, **,
a,), a;=2-3' or a,=0 or a;=—2-3' i=1,---,n. We put @, ,=2 and @, ;=2-3/
for 1+/(3"-1)<;=<(I4+1)(3*—1), I=0,1, ---. We put .&l,,-z{’g‘eR"; |&;—a;|

§E dl,j’ l=1, e, 1 for §1,i=(‘ln °*% d,,).
Then it holds that R*=UX, ;, U0A, ; is a set of measure zero and for
j=0 =

almost everywhere £ € R”, there is a number j uniquely such that £€A, ;.

Enumerating the cubes which satisfy @, ;<&N(g, )%, we denote them by
A1 Ay o+ and their centers and the lengths of sides by g, ,, £,,, **- and a, ,,
a, ,, +++ respectively.

Similarly we write A, ;, A, ,, ***, 811,815 -+ and @', ;, @', ,, ++ for the cubes
satisfying &, ;>&M(g, )%

We devide each A’ ; into 2" congruent cubes and enumerate such cubes in
some order: A, ;, &, ,, --. We denote the center and length of side of each cube
A, ; by g, ; and &, ; respectively.

By the same way as above we write {A&, ;},={A, ;};, {&.;};={g.i}; and
{@. ;}i={a. ;}; if @, ;<EMg,;)™ and {&, ;},={A%, ;}; if @, ;> ENME,, ;)"

Repeating this process, we obtain cubes {4, ;}, ; with centers {g; ;},; and
lengths of sides {a; ;}, ;.

Lemma 5.3. (i) R"=UA,;
l’i

(ii) for sufficiently small €>0, {&, ;}={A", ;},
(iii) for sufficiently small €>0, we have c,ENg, ;)< a; ;< ENM(g; ;)™
(0<c,<1).

Proof of (i). We note that R*= Gﬁl, j. Assume that there exists a point
j=0
€ R” such that for any /, (€A’ ;, for some j,. Then by the definition of
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1

1 .
Ay |Ei—d] §7 @i (i=1,+m),a; ;,>ENMg 1,5 Ji=z€and @, ;, = == -75% 1,71

for some j,, here £=(¢,, --+, €,) and ¢’ ,le(a bty @)
Taking sufficiently large /, we have a contradiction. Hence for any £ R",
there exists /and j, such that £€ A, ;.

Proof of (ii). Taking £€>0 sufficiently small, we have &n(0)1<2=d,,,
hence A, ,={A’, ;}. Foranyj,>1, by definitions, 2<4, ;< 18,5,/ =V n &, ;,
By Lemma 2.2 (2'3)) 7\(gfl,il)'sléC'1<4§1,.7’1>81§ C1<§1,i1>§201‘g1.j1| é(201\/ n )
a, j,.

Hence, taking 0<E<(2C,\/ 7 )7, we have EN(&, ;)" <&, j,. This means

K, e{a,)

Proof of (iii). By definitions we have a, ;<&n(g,,;)*. By virtue of Lemma
2.2, we can take & >0 sufficiently small such that

(52 SMOEADS TAE)  for [E-n] <2 EMB™

By definitions and (ii), A, ;CA’;-, j,. Then we have a,,jz—;— a1, >%
E)&(g’,_l,h)sl.

Since g,l—l,fleAl,ja 1 g 1-1,5,—8&1il = < \/ na,;= \/ n EM(g;, ;)™

=2v/n &n(g,;)%. Hence, we have a,,,->712— & (%) h(g,,,-) 1, Q.E.D.

We PUt A*I,J':{E; Igi_a." é%al,h z=1, °tty n} where gl,j:‘—(an Tty an)'

It is clear that A, ;CA¥, ..

Lemma 54. Wetake £>0 sufficiently small so that Lemma 5.3 (ii) and the
inequality (5.2) hold. Thenif A, ;1\ Ay y= b, it holds that % a, ;Say y<3a, .

Proof. Assume that A*, ;N Ay 7+¢ and a,',i'<%a By definitions

2,5

and Lemma 5.3 (ii), A,/ #CA’y_, ;7 for some A’y_, . Taking E€A*, ;NAy
we have

4 , - 1 o ,
lgl'j_g l/_l’j’ll = lgl,]'—fl + |<§—g ll—l,f”l é% \/ n al,j_i_? \/ nay/_;"’
:i Vi a,',].;gi Vo oa ;S2/n ENg, ;)0
2 s 2 4)\%
From (5.2) we have &'y, ;=2 ay /<? a;; = —ex(g P 3\3
ENE -1, ) S ENME 1o 577)

This contradicts to the definition of A’y_, ;.
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Hence we have a,/,./g% a; ;.

By the same way we can prove that ay #<3 a, ;. Q.E.D.

We denote the volume of cube A by [A].

Lemma 5.5. There is a positive integer M such that for any 1, j, the number
of cubes A*y ;» which satisfy A, ;0\ A*y ;== is at most M.

Proof. By Lemma 5.4, we have,
UAy yc{t; |E,—a;| =4 a,;} where g, ;=(a,, -+, a,) and the union is taken for
1/' j/ ’ ’
the cubes satisfying A*y vN A, j=% .

We write the number of such cubes by M,,.

Consider the number M, of cubes which satisfy that |A| g(% a;, ,-) and
AC{&) IEi_ail §4al,jr 1:1: Tty n}'
Then we have,

1 " n

Mx(? al,j> =(8a; ;)"
hence, M, <24".

Using Lemma 5.4, we obtain M, <M, <24". Q.E.D.

Rearranging {A, ;}, {g;;} and {a, ;}, we denote them by {A;}7.,, {g;}7-1
and {a,}7...

Let yr(£) = C5(R™) satisfy that yr(§)=1 for | ;] é% (1=1,---,m) 0=Y(§) =1

and supp () {£; || g%, i=1, -, m}.

We put ¥, (€) =1 (“=22), (O = {21 ¥,(07} and @)= sAOHHE).

a;

Theorem 5.6. For sufficiently small €>0, we have,

(i) PAE)SC3RY, 0= (E)=<1,

(i) Sper=1,

(iii) 23105 @, (E)| = Ca ME) 2 for any a,

(iv) there exists a positive integer M such that each £ =R" is contained in the
supports of at most M of {p;}.

Proof. We put A¥= {E; |E;—b;| é% a;(i=1, -, n)} here gj=(b,, +**, b,,).

Then by definitions supp @, C A¥ and ;(£)=1 for E€A,.
Using Lemma 5.3 (i) and Lemma 5.5, () is well-defined and 1=<+(§)<M.
Therefore from the definitions of ¢ (&), we obtain (i), (ii) and (iv).

Since Ogvr j(g)zxp“”(%) a;~', using Lemma 5.3 (iii) and (5.2) we have,
J
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l 33*]":‘ (‘E)I = l,\l,.(ﬂ)(?:‘_;;gj> | aj‘l‘”l écw(eco)—lm)\’(gj)—sllm
§Czl,a7t(§)_§1“”', for any « .

Hence |0gyr(8)| <CL ,MA(E)"%* for any a.
Using these inequalities we obtain (iii). Q.E.D.

We can see that for any (¢, ¥) € R" and £ supp ¢;,
(53) | H(, % E)—H(t, ) SClE—g,] sup Mg;+s(E—g,) H=C.

Taking €>0 sufficiently small, we have the following Theorem.

Theorem 5.7. We put N;;=N(t;, x;,8;). There exist positive constants c,,
Cyy py and u, such that

(54) UGl U@+ ITENEde
—m | U 3de
< Regb SNt @,RU, Nijt,®,U)dt

for any U {S(R™")}* where & ,;=¢ ;(D,) .

Proof. We put H;,=H(t;, x;, £;) and R;;=0/0t— H;;\(D,)”. By Lemma
5.2, there exist positive constants c,, ¢,, u, and p, such that

ATOE—cll@+ | 1Tt
— | U@ <Re | (NTIR,,U, N3U)dt
Hence we have
lIE b)Y, U3t (a)®, U@
10| )@, U Bsdt— o N )0, U R
éReSZ(N;}R,-J-C,-CDJ-U, N, U)dt .
We can see that
S E@, U@ = 3 ReEnDL LD, U, @,
= Re 3N (D&(t, X)-MD,)* L i(t, X)@,;U, @,U),.
Since ;}]Ci(;, ®)ME)*L(t, x)E SE,, from Theorem 3.3, we can write
S8t X) MDY Eilt, X) =MD" I+ 55 X, D) where p(t, 5, )= S8

Hence we obtain
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2NE@,UDIE= NN+ CHTEE -2re

G-5) 2 L2, Uz N U@~ CNU@I-22 »

in particular,
(56) 2 lle®, Ul = 1TO)IE.
IZ(N, {8:@;JU, Njt:®;0),]
< C SV, T -2, Ul
<SCSIE®, TU) Ean st 6@, T -}

SC{ITUNE im-spre 1 U@ em-s5,72}
éCz” U(t)”(zm—sl)/z

=B IIU(t)H m/2tC o, | UG

for any posmve number N,,.
By (5.5), 2 [18:@,; U@)ll72
2 (1) 10O~ oI
Hence we get the inequality
b
67 alUG)E—cl U@+ (1—-2-) w] 1T
b 0 ‘
—Cu,o| IR
gReSbZ(N 8@, U, NTIE®,U)dt

a i,j

—Re§ SYNH:®,dU, N7}t @,U)dt .

a i

The right hand side of this inequality can be written in the form:

Re|’ SH{(Nt.@,RU, N7jt.@,0),+ 4, dt

a i j

where
A= (N:}( gt C)cp U, N7}¢,®; U)
+H(NFE[®; HIMD,)™U, N7}¢:®;U),
— (N H[MD,)", £]9,U, NjE@,U),
+(N¢ 1§ {H }LJ}X(D;:)"“I’,'U; thlgiq)j U)o
= I; 411411141V

We can see that

255
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68) 1SL1=c2{|(2-6)o,u] e, vis scaek.
IEI ISIE((E(N*,J) 'NtH[®;, HIMD.)"U, ®,U)| .

By Theorem 5.3, we get [®;, H]=p%t, X, D,) where pjt, x, ¥)eSs .
Thus,
| 2151 = 1(239:85°pi(t, X, DIMD,)"U, D)

where = Z(N ‘N, 182, x)’.  Since
2¢](§)§“’(t ®') pi(t, &/, EYNE)"= S04, we have
(5.9 IEIIUI =10’ X, D,)U, U)|
<18t X, DIV - ll Ul
=CUIm- 81)/2—— <-fu llU(t)Ilm/z+CNo U@
where p(¢, x, £)e ST
By the similar way, we can obtain
2L = (6, X, D,)U, U),
where p (t x, £)eSext. Hence we get
(5:10) |50y SCIU NS NV Ba-Cov, DG
To estimate the term 2 IV ;;, we write

ij)

1V ,;;=(N¢ it {H— H;;}P,\MD,)"*U, N;;{:P; 7&(D,,)'“U)0
+(N S H— H;;}2,MD.)"*U, N7} [MD., )”‘/2 1P, 0),
+(NFE: MDY I{H— H;;}®;MD,)"*U, N7}§:®;U),
+HELH, MD2)™1®,MD.)™*U, Ni5¢:®;U),
= B;;+C;;+D;;+E;; .
By the similar way to above estimates (5.9) and (5.10), we can obtain

(5.11) IE(C.,-FD,,)I—l(pS(t X, D)U, U)| C.l|Ul[tn-1/2

§~]’\”,—‘0 U@ 172+ C v, UG

where p°(t, x, £)e Se3Y, and
(5.12) IZE,,I—I(P (t, X, D)U, U)| <C||Ulm-ss2

é g U(t)IIm/z+ C o JIU)IIE,

where p'(¢, x,E)ES . Furthermore we have
| 22B;;1 SCO{ZNOIIC;{H—H;j}cb,-?\(Dx)'”’ZUlI%
] ]

+ - DIERAD) U}
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where the constant C, is independent of N, and &.
Using Theorem 3.3 and Corollary 3.4 (i), (ii), we obtain

SHIEAH— H )@ D" U13
= (p’(t, X, Dx)x(Dx)m/ZU; 7\'(D:nr)m/z U)o
+(2°(t, X, DIND,)™*U, MD,)"*U), ,
where p7(t’ X, E) = 2 Ci(t) x)z{H(t: X, E)—HU}*
X {H(t’ X, g)_H;]}¢J(E)2
and p’(¢, », £)eSe}
By the assumptions of H, {;, ¢; and Hj;,
| (2, %, )| élel St )| @;(E)1{C.H-C.}E<Ce,

where C, is the constant in (iv) of the definition of {{;} and C, is the one in
(5.3), and 8 p'(t, x, E)eSg i=1, -+, n.
Hence by Theorem 3.10, we have

|(p'(t, X, DMD.)"™*U, MD.)™*U),|
< CENUMIa2tCllU®)|[om-s,/-  Therefore,
Sl A H— H} @MD" Ul
S CENUMmse+Cll U@ 2m-sy0 Cll U o — 5572 -
Thus we obtain
(5.13) 12B;;1 ={C, CNO}SIIU(t)Hm/z—F & IIU(t)IIm/z
+Cw,, e“ U(t)uzm—slm/z
< (C.ONE+-L2 ) 1Dt I1DNat-Cov, | TG
By virtue of the inequalities (5.7)~(5.13), we obtain

(5.14) clnv(b)uz—autf(a)uﬂ{(1—L)ﬂ1_coc‘zvoe;_]<\fr_o}

0

x [ N0 2de—C o, o 10 Bt

<R S 3 (VTEBRY, N0, U)dt

Taking EéN?,lgo c. and N, sufficiently large so that u,— 7”‘}\_;; 0> H1 2 ,
we complete the proof. Q.E.D.

Let r and s be real numbers satisfying » >m/2 and let — o0 <a<b=< oo,

Theorem 5.8. For sufficiently small & there exist positive constants c,, c,, u,
and p, such that
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(5.15)  GNUG)E—cll U@+ T, midt
— | T
gReS DN @MDYRY, NE@ MDY U)dt

for any U {H, (Q)}*, where p=r+s—m|2 and U(t)=v,U, and vy, is the trace
operator defined in Lemma 4.4.

Proof. At first we assume 7r+s—m/2=p=0, then by Theorem 5.7, the
inequality (5.14) holds for U € {S(R***)}*. Since R: {H, (Q)}—{H,_,, (Q)}*
is a continuous linear operator, the form

[(Swovarero, N3te, v

is a continuous sesquilinear form defined on {H, (Q)}*x {H, (Q)}*, because of

Proposition 4.8. Using the continuity of the trace operator v,, we obtain the
theorem for p=0.

Let r+4s—m[2=p. We have that R\(D,)’=n\(D,)’R+{R\D.,)’
—MD,)’R}=\D,)’R+[\D,)", HIMD,)"+[ND,)’, J]. By assumptions of
H and J, we have [X(D,)’, HIMD,)"=p'(t,X,D,) and [\D,)", J]=

p(¢, X, D,) where p'(t, x, £) and p*(, x, £) belong to Sg3°%1.

Thus we have

|ReS E(N 18:@;[MD,)", HIMD,)"U, N5, ®;\MD,) U)dt|
< cga__z;{n;,@jp‘(t, X, D)UIE s 6.0 MDY o}
< C WO syt
S DO B+ o, 1)
for any U< {H, (Q)}*. Similarly,
|Re{ SINTH.@,IMD.Y, 10, N7t @ MDY U)
gNioLnU(t)upm,zdt+cN,,_gSauU(t)uo :
for any U< {H, (Q)}*.

Taking N, sufficiently large and using (5.4) for AM(D,)*U in place of U we
obtain the theorem. Q.E.D.

6. The Cauchy problem for the operator R

In the proof of Lemma 4 in [3] (p. 193) replacing |£|** by A(§)™, we have
the following lemma.
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Lemma 6.1. We fix an arbitrary point (2,, x,, &,), and put H,= H(t,, x,, &)
and R,=0[0t— H\D,)”. Then there exists C >0 such that

6.1) SRM(*”f MEY™-1)| T, £)| *drde
SCI(R,+2I) U3 o
for any n>0 and U<{S(R"*")}*, where I isthe kX k identity matrix and C is a
constant independent of (t,, %, &)
Theorem 6.2. There exist constants C,, C,>0 such that

62) | (+Mermtm) O, )
=Cl(R+2D) U5+ CllU 0
for any U {S(R"+")}*.

Proof. For sufficiently small £€>0, we take {{;},, {®;}; as in Section 5
and put H;;= H(t;, x;, £;). By Lemma 6.1, we have
[ r@rmtmn) B, )1 2amag
=CI(R;;+»I)UII3 o
for any U e {S(R""")}*, where R,;=0/0t— H(¢;, x;, £;)MD,)"
Taking &,(¢, x)p;(D,)U(t, x) in place of U(t, x), we have
[r@rmtm) 1 c000 ) 2ara
_S_C”(Rij"*_nl)giq)jvng,o .

Now we shall estimate various error terms to obtain (6.2). At first,

=10, U, )12t

i

=

ait {t,®,U(t, x)} |"dtdx

> ﬂ a% U, x) rdtdx—CSI U, x)|*didx

=18, )1 2arag—clUIR, .
By the same way as in Section 5, we have

S 4@, UG, £)|"drd
= 2IMD)"{E:@; U5 0
= i,{]e(};‘ ;8 MD,)™s:@;U, U)
= Re(;;l(t, X,D,)U, U),

where p'(t, x, £) = ME)™ I+ p(¢, x, E) and p(¢, x, E)= ST .
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So we get,
PINGIER RIS

= (MEy™ B(r, &)1 drde—CllT N sy -
We can see easily that

S|71L00 o)1 2arag = 710, ) 2arat

iy
Now we can write,

S (Ryy+2D), U1
éC’gllC.-CPj(RMI)UII%,o%—Cg IE:@(R—R;;)UIIf 0
TCDIR;;, &2l -

Using the method as in the proof of Theorem 5.7, we have

VI, (R— R,) U 3,0 <2 2)18,®,( H— H)MD,)" Ul o
+23 e, R
<2 SUE(H— Hi) MDYl o
+22§JIIC;[<1>j, HINMD,)" U o+21JUIIG 0
S2ECNUIS,mt+Cll UG m-sy2
+Coll UG m-s/2F CNUIG pn-s12 »

and we have,

SR, 60101R.<230 (-2 €)@, U1k,
+2NHHMDL)", LI2;UIR o
ClIUIRo+CIUIE -2 -

Summerizing these inequalities, we have,

[t @} Br, )17 dra
§C§ IE:@,(R+2I) U o+ ClUIR -5+ CENUILG,,
SCHRA2D) UG o+ CENUIE mtCllUNE -5,z -

Hence, taking & sufficiently small, we get,

[+ @) B(r, ) arae
SCI(R+2D) UG o+ Cll U1 -2
§CII(R+’71)UII5,0+% NUIE,+CITUIG o -
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Thus we obtain (6.2) for some constants C,, C,>0. Q.E.D.

Theorem 6.3. For any real numbers r and s, there exist positive constants 7,
and c, such that for any n>7,, it holds that

(6.3) collUllrsm, SN RA2D U, S C Ul 1,5 for any UE{H, ., .},
for some positive constant C,.

Proof. The inequality |(R+»I)U||, ,=C,||Ull,+,.s 1s clear. Because
O'(R)ZiTI—H(t, X, g))’(g)m_ J(tv X, 5)6 Sg.')q(r,f)a $0

W(R+2D)Ul, .=7lUIl, +IRUl,,
ZNUlym,sHIMD2)Mi(Dsy D) RU oo

and by Corollary 3.2 (i), we can write AMD,)’A(D,, D,)’R = p'(t, X, D,, D,)
where p'(2, x, T, E)ME) N (T, E)" "= B(R™).

Hence, [[MD,)'\(Dy, D)’ RU|,, = |IP'(t, X, Dy, D) U||
SCIMDYMDyy D) " Ulloo = ClIUly1ms -
Thus we get [(B+20) Ul s S(CHMTUlly s
for any U {S(R"*")}*.
For any Ue{S(R"")}*,
(R+2D)UII7,s = [IMD,)A(Dy, DY (R+-2I)UIS 0
= IR+2INDI (D, DY Ul
—2|I[R, MD:)" (D, DY TU 5 0 -
Now from Theorem 6.2, we have
I(R+21) - M(D,) * M(Dy, D) UG 0
= [N M 71 T, B)drdE—CI| U,
2| Um0 —ONIUI 6 -
Using Corollary 3.4 (i), we get
IR, MD,)'M(Dys D) ]UINE 0 = ||P*(2, X, Dy, D)UIIG 0
where p’(2, x, 7, E)NME) TN (T, E) " € B(R**Y) .
So, |I[R, MDY (Dy, DY TUIG 0= CINUI sm-s,
SE&NUN s+mtCoollUNE S ENUINR s s+ Co I U
for any £,>0. Thus, we obtain,

RFDTIE 2 (5 C—26) 1T 1 (57— C—Co IDIE,
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Taking &, sufficiently small and », such that %nﬁ—C—C%:O, we have
(6.3) for any U= {S(R"**)}*. Hence we have the theorem. Q.E.D.

Let R* be the formal adjoint operator of R, then we have
R* = —0[ot—{H -\(D,)"}*—J*
= —0[0t— H*-\(D,)"—J,
where o(J,) = J\(t, x, )= St and o(H*) = H(t, x, £)* = *H(t, x, E).
In fact, by Corollary 3.2 (ii) and Corollary 3.4 (ii), we have that
o({H-MD,)"}Y*)— H(t, % E)*\ME)" € Sg3™
and o(J¥*) = J*(¢, X, £)eSe .
Hence we can write,
R* = —0[ot— H*-\D,)"—J, .
Using the same way as the proof of Theorem 6.2 and Theorem 6.3, we

have that for any real r and s, there exist constant 7, and ¢, such that for any
%>, it holds that

6.4) cllUllysms=NWR*2D)U||, S C Uy 11, for any Us{H, ,,, }*.
Using (6.3) and (6.4), we have,
Corollary 6.4. For any real numbers r and s, there exists positive constant 7,

such that for any 1>n,, R+l is a topological isomorphism of { H, .}* onto {H, _,, . }*
(See Theorem 2 in [8]).

Using Theorem 5.8 and Corollary 6.4, we have

Theorem 6.5. For any real numbers r, s and a, there exists v, such that for
any 1>, R+l is an isomorphism of {H, , (Q, .)}* onto {H, ,_m (2, )}

Theorem 6.6. Let real numbers r, s, a and b satisfy r > % and —co<a<b
<L oo. Then the mapping UW> < RU, v,U> is a topological isomorphism of
{Hr,s(ﬂa,b)}k onto {Hf—m,s(ﬂa,b)}k®{Hr+s-m/2}k'

This theorem can be shown by using Lemma, 4.3, 4.4, 4.5 and Theorem
6.5 (See [8] and [13]).

7. Cauchy problem for operator L

Let real numbers 7, 5, @ and b satisfy r>(k—1/2)m and — oo <a<b<+ oo,
and let Q=Q, ;.
Then we have the following main theorems.

Theorem 7.1. The mapping u W—> < Lu, v,u, ¥, %u, vy rya(_%)k-lu>
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is a one to one mapping from H, (Q) into H,_,p (Q)DH, c-mpDH, s smp D+
@Hr+s—(k—1/2)m-

Proof. We can see that
@) B VareDyv, Nite D U
zc| st @ it = | o,
By Theorem 5.8 and (7.1), it holds that for any >0,
eNITG) =l U@+ D@ it
+on— )| D@7t
ggReS:(N;}g,cp,.x(Dx)P.(R+nI)U, N0 MD,) U dt

for any Us{H,_muk-» (Q)}, where p=r+s—(k—1/2)m.

Since —oo<a<b<l+oo, e MUs{H, (Q)} for any Ues{H, (Q)}*.
ul
: > where u;=\(D,)"* ”D{"'u. Then Uec
Up
{H, - mi-0(Q)} and RUS{H,_,.; (Q)}*. In the above inequality, replacing
Uby e ™U and putting Lu=f&H,_,,; (), we have

(7.2) ce ™|UD)*—ce ™| U(a)ll,*
e OO mndt-+e(r— e 1T a1
<3 ReSbe'z"’(N,‘}é‘,-CI),x(D,)”{i Lu}e,, NT}E:@ (D, U)dt

For each ueH, (Q), let U=<

for > p,. Assume that Lu=f=0. Then,
c.e” | UO),"—c.e ™| U(a)ll,?
P b
e NOOE it o — e U170t
=0.

If y,u=0, v iu=0 e,y <i>k—lu=0 we can see that U(a)=0
a b a at ’ ’ a at ’ .

Thus we have
b
e D@+ e MU

b
+e(r—me | U@ =0
This inequality means U=0 and therefore u=0. Q.E.D.

Theorem 7.2. Under the same assumptions as Theorem 7.1, the mapping
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k-1
unw—-> < Lu, v ,u, 'yaait Uy =y Yy <—6§t_> u> 1is a topological isomorphism from

Hr_s(ﬂ) onto Hr—mk,s(Q) @Hr+s—m/2®Hr+s—sm/2@ tee @Hr+s—(k-l/2)m'

Proof. We denote Lu=<{Lu, vy,u,, 611: Uy >ty Vs (%)k_lu) By Theo-
rem 7.1, the operator [ is a one to one mapping from H, (Q) to H,_,. (Q)D
Hr+s—m/2®'"@Hr+s—(k—1/2Jm'

So we have only to show that _[ is an onto mapping, due to the open mapping
theorem. But the fact that _ is onto can be shown by the same way as the proof
of Theorem 8 in [3]. In this case we use the argument on Theorem 4.16 in
[13], in place of Theorem 9 of [8]. Q.E.D.
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