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The sporadic simple group ON of order 29.34.5.7M1.19.31 discovered by
O'Nan [8] has exactly one conjugacy class of elements of order three and the
centralizer of one of its elements of order three is isomorphic to the direct pro-
duct of the alternating group A6 of degree six with an elementary abelian group
of order nine. The purpose of this paper is to prove the converse under the
following

HYPOTHESIS. The only simple groups containing a standard subgroup A such
that A/Z(A) is isomorphic to P5L(3,4) are the sporadic simple groups He, ON and
Suz.

For the definition of a standard subgroup and for the proof of the above
hypothesis under some additional conditions see [2],

Our result is the following

Theorem. Let G be a finite simple group with exactly one conjugacy class
of elements of order three. If the centralizer of an element of order three is isomor-
phic to the direct product of an elementary abelian group of order nine with the
alternating group of degree six, then G is isomorphic to ON.

The notation is hopefully standard. M^ stands for the subgroup of Aut
A6 containing A6 as a subgroup of index two and having semidihedral Sylow
2-subgroups.

In the whole paper G denotes a finite simple group with exactly one con-
jugacy class of elements of order three. Let a be a fixed element of G of order
and let CG(a)=R X K where R=O3(CG(a)) is elementary abelian of order nine and
K=CG(a)' is isomorphic to A6.

The first lemma follows immediately from the structure of A6 and is given
without proof.

Lemma 1. The following hold in CG(a):
(i) Every 2-element of CG(a) is contained in the characteristic subgroup K

ofCG{a).
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(ii) CG(a) has exactly one conjugacy class of involutions and if x^CG(a) is

an involution, then CG(a,x)—Rx Cκ(x), where Cκ(x) is dihedral of order eight and

is a Sylow 2-subgroup of K and hence of CG(a).

(iii) No involution in G centralizes a subgroup of order 27.

(iv) CG(a) has exactly one conjugacy class of elements of order four and such

an element normalizes a Sylow 3-subgroup of K.

(v) For any subgroup V of order four of CG(a) we have CG{a,V)=Rx V.

(vi) Any 3-subgroup of CG(a) which is centralized by an involution of CG{a)

is contained in R=O3(CG(a)).

(vii) If y is an element of order three of K, then Cκ{y) is a Sylow 3-subgroup

of K and is elementary abelίan of order nine. R X Cκ(y) is a Sylow 3-subgroup of

G.

(viii) Aut A6 ^ PΓL(2,32) has no involution which centralizes a Sylow 3-

subgroup of it. Aut A^jInA^ is elementary abelίan of order four.

L e m m a 2. NG(R)ICG(R) is isomorphic either to the cyclic group of order

eight or to the quaternion group. CG(K) Π NG(R) is a Frobenius group of order 36

and NG(R)ING(R) Π CG(K) is isomorphic to M1Q. Furthermore R is conjugate to a

Sylow 3-subgroup of K.

Proof. Since all elements of order 3 are conjugate in G we get that CG(r)=
CG(a)=CG(R) for all r e i ? . This implies that all elements of Λ* are conjugate
to a in NG(R). Thus \NG(R): CG(a)\=8. Since NG/(R)ICG(R) acts regu-
larly on R we obtain by [4,5.3.14] that it is isomorphic either to Z8, the cyclic
group of order 8 or to O8, the quaternion group.

Since K is a characteristic subgroup of CG(R) we see that K<lNG(R). Let
N=NG(R). NICN(K) is isomorphic to a subgroup of Aut A6 containing A6.
Since G has exactly one class of elements of order three we see by the structure
of a Sylow 2-subgrouρ (l.ii) of CG(a), that (KxCN(K))/CN(K)^A6 is a proper
subgroup of N/CN(K). Since Aut A6/InA6 is elementary abelian we get that K
is centralized by an involution.

Let x be an element of order 3 of K. CN{x)jR X Cκ(x)^CN(x)CG{R)ICG(R)
is isomorphic to a subgroup of NICG(R). Since Aut A6 has exactly one class
of elements of order three we see that CN(x)/R X Cκ(x) is cyclic of order four.
Here a Sylow 2-subgroup of CN(x) normalizes both R and Cκ(x) and operates
regularly on R. By (l.iv) and (l.v) we get that a Sylow 2-subgroup of CN(x)
must centralize Cκ(x). In particular Cκ(x) = O3(CG(x)) by (l.vi) and hence
Cκ(x) is conjugate to R in G. On the other hand we get by (l.viii) that a Sylow
2-subgroup of CN(x) must induce the trivial automorphism on Ky since it cen-
tralizes a Sylow 3-subgroup of K. Hence CN(x)—CN(K) X Cκ(x) for any element
x of order 3 of K> where CN(K) is a Frobenius group of order 36. This yields
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that NjCN{K) is isomorphic to a subgroup of Aut A6 containing A6 with index
two, in which the centralizer of every element of order three is of order nine.
The only such extension is Λfω, hence N/CN(K)^M10.

From now on we let t denote an element of order four in NG(R) Π CG(K).

Our aim is to construct CG(t).

Lemma 3. For any subgroup V of order four of CG(R) one of the following
holds:

( i ) CG(V)<NG(R)

(ii) CG(V)IV^PSL(3y4)

(iii) CG(V)IV^A6 or Mlo.

Proof. By (l.iii) R is a Sylow 3-subgroup of C=CG(V). Since (|r|, | V\)=1
for any rei?* we get,Cc(f)=Cc{r)VjV where C=C\V. By (l.v) we get Cc{?)=R,
i.e. C is a 3CC-group. By [1] the result follows.

Lemma 4. CG(t)/ζty is isomorphic to PSL(3,4) and CG(t) does not split
over ζt>. Furthermore NG(ζt))=CG(t)(zy where z is an involution inducing the
unitary automorphism on CG(t)ΊZ(CG(t)f)^PSL(3y4).

(Here by the unitary automorphism a of PSL(3,4) we understand the in-
volutory automorphism of PSL(3y4) which is used to define the unitary group.
We have CPSL(3Λ)(a)^PSU(3,4).)

Proof. Let M be a Sylow 3-subgroup of K. Since M is conjugate to R
by (2) we see that the conclusions of (3) also hold for CG(t) if we replace R by
M. Since K<CG(t) we get that CG(ί)/<ί> is isomorphic to P5L(3,4) or A6

Mlo. Furthermore there exists an involution z in CG(M) which inverts t, hence
NG«f»=CG(t)<z>.

Assume now that CG(ί)/<£> is isomorphic to A6 or M lo. Then <ί> X K and
hence K is normal in NG(ζty). z induces an automorphism on K which
centralizes a Sylow 3-subgroup of K. By (l.viii) z must centralize K. Thus
<R, t,z><CG(K) and hence CG(K)ocASf since CG(K)<CG(M)^E9xA6.

Let now Bλ be a subgroup of CG(K) which is isomorphic to the sym-
metric group S4 and which contains t and let B2 be a subgroup of K isomorphic
to S4. Let T=O2(B1xB2) and X=CG(T). Then Γ is elementary abelian of
order 16. In particular 3/Π-XΊ by (l.ϋ). Let m{ be an element of order 3 in
Bh i=\y 2. Then <jnly m2y is a Sylow 3-subgroup of BλxB2 and is elementary
abelian. Since Cx{m^<,CG{O2{B^)V[ CG{m^=Oz{CG{tih))y, O2(B2) by (l.v) we
get that Cx(m1) = O2(B2)=Cτ(m1). Similarly Cx(m2)=O2(B^=Cτ(m2). In par-
ticular we see by [4, 10, 2.1] that XjT and hence X is nilpotent. By [4, 6.2.4]
we have
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X = (Cx{x) 1

where C x{m^2)r^Cx(mxm2

λ) in NG(T). Since Cx(m1m2) is isomorphic to a nil-
potent 3'-subgroup of CG(mιm2) on which mx operates fixed-point-freely we see
that Cx(tn1fn^)^ί or £4.

Assume that Cx(m1m2)^E4 and let y=Cz(O2(-Bi)). By the same argu-
ment as in (3) we see that YjO2{B^) is a 3CC-grouρ containing KO2(B^jO2{B^^
A6. Since I < 7 w e get by the order of a Sylow 2-subgroup of X and by [1]
that F/O2(J51)^P5L(3,4). O2(Bλ) and hence Y is normalized by NBχ(<ri>)t*Sz

which centralizes the subgroup K of Y. Since PSL(3y4) has no nontrivial auto-
morphism which centralizes a subgroup of it isomorphic to A6 (See [6, (1.3)])
we see that

= BJOJBJx

But this contradicts the structure of CG(i), since t^Bv Thus Cx(mιm2)=\ and
hence CG(Γ)=Γ.

Let Z=NG(T) and Z=Z/T. Then Z is isomorphic to a subgroup of
AutT«GL(4,2)fi*iί8. In particular <mlfm2y^Syl3Z. By [3] Cz(#)=<£>χZ
for any xGζtnl9tn£>, where 1Φ (jnly m2y Π L=L1 is a Sylow 3-subgroup of Lψ

By the structure of A8 we have Cχ(£ 1 )=ΐ 1 . By [1] and the structure of A& we see
that L is isomorphic to one of the groups Z3, *S3, A4y S4 or A5. So we get
that there exists a four subgroup S of Z which is normalized by Kjn^ fn2y if
there exists an element x GΞ ζtnly m2y such that CV(#) is not contained in
-Wz(O î> ^2^) Then <jnly m2y normalizes also CT(S) Φ l . This implies by
[4, 6.2.4] that Cτ(S)=Cτ(mι)==O2(B2) or CΓ(S)=CΓ(m2)=O2(β2). As above we
get then that CG(CT(S))ICT(S) is isomorphic to PSL(3,4). On the other
hand M~i? in G implies that O2{B^O2{B2) since if has one class of four
subgroups under the action of NG(R) by (2). This yields again a contradiction
to the structure of CG(t). Thus we have that CV(#) is contained in N^{ζfnly m 2»
for any x^ζm1} w2».

This yields by [10, lemma 3.1 and lemma 3.2] that either ζjnu fn2y is
normal in Z or Z is isomorphic to S6. In the first case [9, Proposition] gives
that G is of sectional 2-rank at most four. But by [5] it is straight forward to
check that no simple group of sectional 2-rank at most four satisfies the assump-
tions of the theorem. So NG(T)/T^S6. This subgroup structure of a simple
group is investigated by Stroth in [11]. In particular there exists an involution
y in Z such that Cj(y)=<^yyxB where B^S4 and a Sylow 3-subgroup of B
operates fixed point freely on T. So we can assume that y is an involution in
the centralizer of an element m of order 3 of NG(T) which operates regularly on
T. Since Cτ(y) is normalized by m, we see that Cτ(y) is a four group. Fur-
thermore ζCτ(y),yy is normalized by the inverse image F of C^(y) in Z. Since
Cτ(Cτ(y),y)=Cτ(y) we see by the structure of GL(3,2) that the elementary
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abelian group ζCτ(y), y} of order 8 is centralized by a subgroup A of order 32
of F with A=(O2(C-zy)). Since AI<CCτ(y), j> is a four group we see that A'
is cyclic and is contained in Cτ(y). Since A is normalized by m which operates
regularly on Cτ(y) we get that A' = l. By the remark following [11, (1.1)] we
see that A is the only abelian subgroup of order 32 of a Sylow 2-subgrouρ of
NG(T) and by [11, (1.5)] that al(A)=^CT(y)fyy. Now all involutions in Cτ(y)y
are conjugate to y under the action of Γ. Since all involutions of T are con-
jugate in NG(T) we see that all involutions of Ω,χ(A) are involutions which are
centralized by some element of order three. Since CG(a) has only one conjugacy
class of involutions by (l.ii) and all elements of order 3 in G are conjugate to a
we see that all involutions of Cί^A) are conjugate in G. By [11, (4.1)] we get
then that G is isomorphic to HiS. But HiS has Sylow 3-subgroups of order
nine. This contradiction shows that CG(t)/<(f> is isomorphic to PSL(3>4).

Next we prove the remaining assertions of the lemma.
Assume that CG(t) splits over <f>. Then CG(/)=<ί> X E with 2?«P£L(3,4).

The involution z normalizes E and centralizes Λf, which is a Sylow 3-subgroup
of Έ. Then z normalizes NF(M) which is a Frobenius group of order 72 with
quaternion Sylow 2-subgroups. Then C(M)C[NE{M)(z)=Mx <#> and hence
<X> is centralized by NE(M). So a Sylow 2-subgroup of NG(M) is isomorphic
to Z)8 X Qs by Lemma 2, since M~R in G. But this is not possible since Z)8 X O8

has no factor group isomorphic to the semidihedral group of order 16 which is
a Sylow 2-subgroup of NG(M). Thus CG(t) does not split over <£>. In particular
t2(EZ(CG(t)') and CG(t)ΊZ(CG(t)')<χPSL(3A).

As we have seen in the above paragraph z induces an automorphism on
CG(t)ΊZ(CG(t)')^PSL(3, 4) which centralizes the normalizer of a Sylow 3-sub-
group of it. So either z induces the unitary automorphism or [z, CG(t)f] is con-
tained in Z(CG(t)') by [6,(1.3)]. In the second case we have [CG(t)\z] = l
for CG(t)r is generated by its elements of odd order which are all centralized by
z. Then Z(CG(t)') = <f>. And since CG(t\ z)/<f, s> is a 3CC-group we get by
[1] that CG(t2,z)=<izyxCG(ty. But this not possible since <#, ί2> is nor-
malized in CG(M) by an element of order 3 which acts regularly on ζz, t2y.
This completes the proof of the lemma.

Lemma 5. We have CG(t2)=NG(φ) and hence G^ON.

Proof. Let X=CG(ΐ2) and Σ=X/φ2. Let M be a Sylow 3-subgroup of
K. Then M is also a Sylow 3-subgroup of X by (l.iii) and we have for any
m£ΞM* that C » = M x < ^ ) . Since O3/(-X)=<O3/(A)nCx(m)| 1ΦW<ΞM>

we get by (4) that O3,(X)<<O If O3/(JΪ)=<f>, then X=NG(φ). So let us
assume that O3/(JY)=<ί2>.

By the structure of CG(t) we see that O3(X)=l. Since O3/(X)=1 by our
assumption we get that 3 \Ϋ\ for any minimal normal subgroup Ϋ of X. So
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Y Π M4= 1. Since O3(X) = 1 this yields that CG(t) ' < Ϋ. By the structure of the

centralizer of an element of order 3 in X we obtain then that Ϋ is simple.
The Frattini argument gives that X=ΫNχ(M).

If Ϋ is a 3CC-group then Cjf)=φxθJίγ^Z2x PSX(3,4) and Ϋ=
Cc(f)'«ΛSZ,(3, 4) by [1]. But then Cχ(Y)=<J> is normal in X which con-
tradicts our assumption that OZ'(X)=\. So Y is not a 3CC-group. Then one
of the following holds:

(i) C G W < Ϋ

(ii) CG(f)'«PSL(3,4), Cy(CG(ί)/)=l and CG(ί)'<z> or CG{t)\zT>
is contained in Y.

In case (i) CG(t)' is a standard subgroup of Y and we get a contradiction
by the Hypothesis. So we are in case (ii). Let A=CG(ty^PSL(3J 4) and
y&{z,zT}nΫ. We have Cz(j)=Λ^z(M) by (4). Since Cγ(my y)=Mx <j;>
for each ra M we see that C?(y)j<jy> is a 3CC-group. By [1] and the structure
of Nγ{M) we get that either M<Cγ(y) or Cy(j)/<j>^M1 0 or C7(y)l<y>e*PSL
(3, 4). In the last case Cγ{y)' is a standard subgroup of Y and again the Hy-
pothesis gives a contradiction. If Cγ(y)l<iyy^M10 then ? induces an auto-
morphism on Cγ{y)\y)Ky)^As which centralizes a Sylow 3-subgrouρ of it.
Since this is not possible in Aut A6, t must induce the trivial automorphism on
Cγ(y)'ζyyfcyy. But this contradicts the structure of the centralizer of z
in CG(t). Thus Cγ(y)=ζyyx C*($). A Sylow 2-subgroup of C^y) is iso-
morphic to O8. Therefore Ϋ is of sectional 2-rank at most four by [7]. By
[6, (1.8)] we obtain again a contradiction.

Thus O?(X)=<jty and X<iVG«*». This implies that CG(t)'=A is a
standard subgroup of G with l\\Z{A)\ and A/Z(A)^PSL(3,4). By [2] we
get then that G^ON.
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