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The sporadic simple group ON of order 2°3%5.73.11.19.31 discovered by
O’Nan [8] has exactly one conjugacy class of elements of order three and the
centralizer of one of its elements of order three is isomorphic to the direct pro-
duct of the alternating group A, of degree six with an elementary abelian group
of order nine. The purpose of this paper is to prove the converse under the
following

HyrotHesis. The only simple groups containing a standard subgroup A such
that A|Z(A) is isomorphic to PSL(3,4) are the sporadic simple grouts He, ON and
Suz.

For the definition of a standard subgroup and for the proof of the above
hypothesis under some additional conditions see [2].
Our result is the following

Theorem. Let G be a finite simple group with exactly ome conjugacy class
of elements of order three. If the centralizer of an element of order three is isomor-
phic to the direct product of an elementary abelian group of order nine with the
alternating group of degree six, then G is isomorphic to ON.

The notation is hopefully standard. M|, stands for the subgroup of Aut
A containing A as a subgroup of index two and having semidihedral Sylow
2-subgroups.

In the whole paper G denotes a finite simple group with exactly one con-
jugacy class of elements of order three. Let a be a fixed element of G of order
and let Cg(@)=R X K where R=04(C¢(a)) is elementary abelian of order nine and
K=C¢(a)’ is isomorphic to 4.

The first lemma follows immediately from the structure of 4 and is given
without proof.

Lemma 1. The following hold in Cg(a):
(1) Every 2-element of Cg(a) is contained in the characteristic subgroup K

of Ce(a).
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(ii) Cg(a) has exactly one conjugacy class of involutions and if x=Cg(a) is
an involution, then C(a,x)=RX Cg(x), where Cx(x) is dihedral of order eight and
is a Sylow 2-subgroup of K and hence of C¢(a).

(iii) No tnvolution in G centralizes a subgroup of order 27.

(iv) Cq(a) has exactly one conjugacy class of elements of order four and such
an element normalizes a Sylow 3-subgroup of K.

(v) For any subgroup V of order four of Cg(a) we have Cy(a,V)=RXV.

(vi) Amy 3-subgroup of C(a) which is centralized by an involution of Cy(a)
is contained in R=04(C(a)).

(vii) If y is an element of order three of K, then Cx(y) is a Sylow 3-subgroup
of K and is elementary abelian of order nine. R X Ci(y) is a Sylow 3-subgroup of
G.

(viii) Aut Ag==PTL(2,3%) has no involution which centralizes a Sylow 3-
subgroup of it. Aut Ag/InAg is elementary abelian of order four.

Lemma 2. Ng(R)/C¢(R) is isomorphic either to the cyclic group of order
eight or to the quaternion group. Cy(K)NNg(R)is a Frobenius group of order 36
and Ng(R)[Ng(R) N C(K) is isomorphic to M,,. Furthermore R is conjugate to a
Sylow 3-subgroup of K.

Proof. Since all elements of order 3 are conjugate in G we get that Cy(r)=
Cs(a)=C¢(R) for all reR!. This implies that all elements of R¥ are conjugate
to a in Ng(R). Thus |Ng(R): Cg(@)|=8. Since Ng/(R)/C¢(R) acts regu-
larly on R we obtain by [4,5.3.14] that it is isomorphic either to Z;, the cyclic
group of order 8 or to Oy, the quaternion group.

Since K is a characteristic subgroup of Cy(R) we see that K<IN(R). Let
N=Ng(R). N|Cy(K) is isomorphic to a subgroup of Aut A; containing A,.
Since G has exactly one class of elements of order three we see by the structure
of a Sylow 2-subgroup (1.ii) of Cg(a), that (K X Cy(K))/Cy(K)==A4s is a proper
subgroup of N/Cy(K). Since Aut Ag/InAs is elementary abelian we get that K
is centralized by an involution.

Let x be an element of order 3 of K. Cy(x)/RX Cg(x)=2Cy(x)Ce(R)/Cs(R)
is isomorphic to a subgroup of N/Cy(R). Since Aut A; has exactly one class
of elements of order three we see that Cy(x)/R X Cg(x) is cyclic of order four.
Here a Sylow 2-subgroup of Cj(x) normalizes both R and Ck(x) and operates
regularly on R. By (l.iv) and (1.v) we get that a Sylow 2-subgroup of Cy(x)
must centralize Cg(x). In particular Cx(x)= O4(C¢(x)) by (1.vi) and hence
Cx(x) is conjugate to Rin G. On the other hand we get by (1.viii) that a Sylow
2-subgroup of Cy(x) must induce the trivial automorphism on K, since it cen-
tralizes a Sylow 3-subgroup of K. Hence Cy(x)=:Cy(K) X Cg(x) for any element
x of order 3 of K, where Cy(K) is a Frobenius group of order 36. 'This yields
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that N/Cy(K) is isomorphic to a subgroup of Aut 4, containing A with index
two, in which the centralizer of every element of order three is of order nine.
The only such extension is M,y hence N/Cy(K)=M,,

From now on we let ¢ denote an element of order four in N(R) N Cy(K).
Our aim is to construct Cg(%).

Lemma 3. For any subgroup V of order four of C¢(R) one of the following
holds:

(1) Co(V)<Nq(R)

(ii) Cg((V)/V=PSL(3,4)

(iif) Cg(V)|V=As or My,

Proof. By (1.iii) R is a Sylow 3-subgroup of C=C¢(V). Since (Ir], |V])=1
for any r& R we get,Cc(P)=Cc(r)V|V where C=C|V. By (l.v)weget Cc(?)=R,
i.e. Cisa3CC-group. By [1] the result follows.

Lemma 4. Cy(t)/<t> is isomorphic to PSL(3,4) and Cy(t) does mot split
over {t>. Furthermore Ng({tD)=Cg(t)<z)> where 2z is an involution inducing the
unitary automorphism on Cy(t)'[Z(Cs(t)' )= PSL(3,4).

(Here by the unitary automorphism « of PSL(3,4) we understand the in-
volutory automorphism of PSL(3,4) which is used to define the unitary group.
We have Cps;; 9(a)=PSU(3,4).)

Proof. Let M be a Sylow 3-subgroup of K. Since M is conjugate to R
by (2) we see that the conclusions of (3) also hold for Cg(t) if we replace R by
M. Since K< Cy(t) we get that Cg(2)/<t)> is isomorphic to PSL(3,4) or A4
M,,. Furthermore there exists an involution 2 in Cg¢(M) which inverts ¢, hence

N({D)=C(t)<=>.

Assume now that Cg(#)/<t) is isomorphic to Ag or My,. Then <{t>x K and
hence K is normal in N (<{#>). 2 induces an automorphism on K which
centralizes a Sylow 3-subgroup of K. By (1l.viii) 2 must centralize K. Thus
<R, t,2><C4(K) and hence Cy;(K)=<A;, since Co(K) < Co(M)=EyX As.

Let now B, be a subgroup of Cg(K) which is isomorphic to the sym-
metric group S, and which contains # and let B, be a subgroup of K isomorphic
to S;. Let T=0,(B,xB,) and X=C4(T). Then T is elementary abelian of
order 16. In particular 3 /| X| by (1.ii). Let m; be an element of order 3 in
B;, i=1,2. Then <{my, m,) is a Sylow 3-subgroup of B, X B, and is elementary
abelian. Since Cyx(m,) < Cs(Oy(B,)) N Co(m)=04Cs(m,;)) X Ox(B,;) by (1.v) we
get that Cy(m))=0,(B,)=Cr(m,). Similarly Cx(m,)=0,B,)=Cr(m;). In par-
ticular we see by [4, 10, 2.1] that X/T and hence X is nilpotent. By [4,6.2.4]
we have
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X= <Cx(x) |1 E=xelm, mp> =<T, Cx(mxmz); Cx(mlmz—l»

where Cy(mmy)~Cy(mmz") in Ng(T). Since Cy(mym,) is isomorphic to a nil-
potent 3’-subgroup of Cy(m;m,) on which m, operates fixed-point-freely we see
that Cy(mm;)=1 or E,.

Assume that Cy(mm,)=E, and let Y=C(Oy(B,)). By the same argu-
ment as in (3) we see that Y/O,(B,) is a 3CC-group containing KO,(B,)]O,(B,)==
Ag. Since X <Y we get by the order of a Sylow 2-subgroup of X and by [1]
that Y/O,(B,)==PSL(3,4). Oy(B))and hence Y is normalized by Nj (<m,>)=<S,
which centralizes the subgroup K of Y. Since PSL(3,4) has no nontrivial auto-
morphism which centralizes a subgroup of it isomorphic to 4, (See [6, (1.3)])
we see that

No(Ox(B1))|OBy) = B,|OB1) X Y|OyB,) .

But this contradicts the structure of C¢(z), since t&B,. Thus Cx(mm,)=1 and
hence Cy(T)=T.

Let Z=Ny(T) and Z=Z|T. Then Z is isomorphic to a subgroup of
Aut T=GL(4,2)==4,. In particular <my, m,ySyl,Z. By [3] Cz(®)=<x>x L
for any x&{m,, m,>, where 1%={m,, m,» N\L=L, is a Sylow 3-subgroup of L,
By the structure of Ay we have C(L,)=L,. By [1] and the structure of 4; we see
that L is isomorphic to one of the groups Z, S,, 4, S, or As. So we get
that there exists a four subgroup S of Z which is normalized by <7, 7> if
there exists an element x & (m,, m,> such that Cz(X) is not contained in
Nz({m,, m,>). Then <{m,, m,> normalizes also C(S) 1. This implies by
[4, 6.2.4] that C1(S)=C1r(m,)=04(B,) or Cx(S)=Cyr(m,)=04B,). As above we
get then that Ce(Cr(S))/C(S) is isomorphic to PSL(3,4). On the other
hand M~R in G implies that O,(B,)~O,(B,) since K has one class of four
subgroups under the action of Ng(R) by (2). This yields again a contradiction
to the structure of C¢(#). Thus we have that Cz(%®) is contained in Nz(<i%,, 7,))
for any xe<my, m,)).

This yields by [10, lemma 3.1 and lemma 3.2] that either <, 7,y is
normal in Z or Z is isomorphic to S;. In the first case [9, Proposition] gives
that G is of sectional 2-rank at most four. But by [5] it is straight forward to
check that no simple group of sectional 2-rank at most four satisfies the assump-
tions of the theorem. So Ng(T)/T=<Se. This subgroup structure of a simple
group is investigated by Stroth in [11]. In particular there exists an involution
9 in Z such that Cz(5)=<7> X B where B=S, and a Sylow 3-subgroup of B
operates fixed point freely on 7. So we can assume that y is an involution in
the centralizer of an element 7 of order 3 of Ny(T') which operates regularly on
T. Since C(y) is normalized by m, we see that Cr(y) is a four group. Fur-
thermore <C1(y), ¥> is normalized by the inverse image F of Cz(¥) in Z. Since
Cr(C7(y),y)=Cr(y) we see by the structure of GL(3,2) that the elementary
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abelian group {Cr(y),y) of order 8 is centralized by a subgroup 4 of order 32
of F with A=(04(Cz7)). Since A/{Cr(y),y> is a four group we see that A’
is cyclic and is contained in C7(y). Since 4 is normalized by m which operates
regularly on Cr(y) we get that 4’=1. By the remark following [11, (1.1)] we
see that A is the only abelian subgroup of order 32 of a Sylow 2-subgroup of
Ng(T) and by [11, (1.5)] that OQ,(A)=<Cr(y),y>. Now allinvolutions in Cy(y)y
are conjugate to y under the action of 7. Since all involutions of T are con-
jugate in N(T') we see that all involutions of Q,(4) are involutions which are
centralized by some element of order three. Since Cg(a) has only one conjugacy
class of involutions by (1.ii) and all elements of order 3 in G are conjugate to a
we see that all involutions of Q,(A4) are conjugate in G. By [11, (4.1)] we get
then that G is isomorphic to HiS. But HiS has Sylow 3-subgroups of order
nine. This contradiction shows that C¢(z)/<{¢t> is isomorphic to PSL(3,4).

Next we prove the remaining assertions of the lemma.

Assume that Cg(?) splits over <¢>. Then Cy(f)==<{t> X E with E=PSL(34).
The involution z normalizes E and centralizes M, which is a Sylow 3-subgroup
of E. 'Then z normalizes Ny(M) which is a Frobenius group of order 72 with
quaternion Sylow 2-subgroups. Then C(M) N Nz(M)<z>=M x {z> and hence
{2)> is centralized by Ng(M). So a Sylow 2-subgroup of Ny(M) is isomorphic
to DgX Qg by Lemma 2, since M~R in G. But this is not possible since Dy X O
has no factor group isomorphic to the semidihedral group of order 16 which is
a Sylow 2-subgroup of Ng(M). Thus Cy(t) does not split over t>. In particular
2 Z(Cy?)") and Cy(t)'|Z(Cy(t)")=PSL(3,4).

As we have seen in the above paragraph z induces an automorphism on
Cs(?)'|Z(Cy(t))=PSL(3, 4) which centralizes the normalizer of a Sylow 3-sub-
group of it. So either z induces the unitary automorphism or [z, Cs(¢)'] is con-
tained in Z(C4()") by [6,(1.3)]. In the second case we have [Cy(t), 2]=1
for C4(t)' is generated by its elements of odd order which are all centralized by
2. Then Z(Cy(t)")=<#*>. And since C¢(#, 2)/<t? 2> is a 3CC-group we get by
[1] that Cg(# 2)=<2>X C4(t)’. But this not possible since <z, #*> is nor-
malized in Cg(M) by an element of order 3 which acts regularly on <z, #*>.
This completes the proof of the lemma.

Lemma 5. We have C(t*)=N(<t>) and hence G=ON.

Proof. Let X=C4(#?) and X=X/<t>®.. Let M be a Sylow 3-subgroup of
K. Then M is also a Sylow 3-subgroup of X by (1.iii) and we have for any
meEM*? that Cy(m)=Mx<t,z>. Since Oy(X)=<0x(X)NCx(m)|1FE=meM)
we get by (4) that O;(X) <. If Oy(X)=<t>, then X=Ny(<{t>). So let us
assume that Oy(X)=<t*>.

By the structure of Cg(t) we see that Oy(X)=1. Since Oy(X)=1 by our
assumption we get that 3 | ¥| for any minimal normal subgroup ¥ of X. So



30 GtiLoGry, LS.

YNM=+1. Since Oy(X)=1 this yields that Cy(t)'< Y. By the structure of the

centralizer of an element of order 3 in X we obtain then that Y is simple.
The Frattini argument gives that X= Y Nz(/).

If ¥ is a 3CC-group then Cy(f)=<F>x C(t)'=Z,x PSL(3,4) and V=
Cs()’=PSL(3,4) by [1]. But then Cx(Y)=<%> is normal in X which con-
tradicts our assumption that Oy(X)=1. So Y is not a 3CC-group. Then one
of the following holds:

(i) Co()<¥

(i) Co(t)'=PSL(3,4), Cy(Cy(t))=1 and Ce(t)'<@> or Co(t)' <zE>
is contained in Y.

In case (i) C4(?)" is a standard subgroup of ¥ and we get a contradiction
by the Hypothesis. So we are in case (ii). Let A=Cg(t)'=PSL(3, 4) and
y€ {2,280} NY. We have Cx(9)=Nz(M) by (4). Since Cy(, y)=Mx<F>
for each m M we see that Cy(5)/<y)> is a 3CC-group. By [1] and the structure
of Ny(M) we get that either M <Cy(y) or Cy(9)/{y>=M,, or Cy(9)/[{y>=PSL
(3,4). In the last case Cy(¥)’ is a standard subgroup of ¥ and again the Hy-
pothesis gives a contradiction. If Cy(¥)/<{¥>==M,, then % induces an auto-
morphism on Cy(§)'{F>/{¥>=<A; which centralizes a Sylow 3-subgroup of it.
Since this is not possible in Aut 4, £ must induce the trivial automorphism on
Cy(9)'<{¥>/{¥>. But this contradicts the structure of the centralizer of z
in Cg(?). Thus Cy(§)=<y>XCza(¥y). A Sylow 2-subgroup of Cz(y) is iso-
morphic to Qg. Therefore ¥ is of sectional 2-rank at most four by [7]. By
[6, (1.8)] we obtain again a contradiction.

Thus Oy(X)=<t)> and X <Ng(<t>). This implies that Cg(t)'=4 is a
standard subgroup of G with 2||Z(4)| and A|Z(A)=PSL(3,4). By [2] we
get then that GexON.
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