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Introduction

In this paper we shall treat two compactifications—Wiener’s and Martin’s
compactifications. Relations between two ideal boundaries of these compactifi-
cations were first remarked by Prof. Y. Kusunoki [5], and Prof. S. Mori [7]
discussed this theme by using fine cluster sets. In their book [3], C. Constan-
tinescu and A. Cornea pointed out that Martin space is a quotient space of
Wiener space. This fact is fundamental throughout this paper.

Meanwhile, J.L. Doob [4] and L. Naim [8] studied the behaviour of super-
harmonic functions at the Martin boundary point by using the notion of the fine
limit and succeeded in getting beautiful results.

In this paper we shall discuss the relations between limits of harmonic
functions at Wiener boundaries and fine limits at Martin boundaries. From
this point of view, the structure of Wiener boundaries will be studied.

In §1, the relations between limits of harmonic functions at Wiener bounda-
ries and fine limits at Martin boundaries are studied by means of the harmonic
boundary of Wiener space, and the main result is stated in Theorem 1.3. In
§2, the same study as in §1 is made by means of the poles in Wiener space. The
notion of poles was first introduced by M. Brelot [2] in the case of metrizable
compactifications. We define the poles in Wiener space and get the main
result of this section, Theorem 2.4. The set of poles is identical with the fine
cluster set defined by S. Mori [7]. Both the set of poles and the harmonic
boundary on Wiener space are related to the fine limit, but we shall see that
these two sets are not identical. We can consider a new minimum principle and
the Dirichlet problem in the set of poles, which are treated in §3. In §4 a short
remark on harmonic boundary of Martin space is made. In §5 we study the
limits of positive minimal harmonic functions at Wiener boundaries. For this
purpose we first define a cluster set (s), which includes the set of poles but is
in general different from the harmonic boundary (Theorem 5.2). In the rest of
this section we treat mainly bounded minimal harmonic functions. The results
stated there are not always new but they are treated in the light of studies deve-
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loped in the preceding sections. In the last section we treat the relative Dirich-
let problem.

The author wishes to express his hearty thanks to Prof. S. Mori, Prof. Y.
Kusunoki, Prof. Y. Toki and Prof. S. Sat6 who have kindly undertaken to read
the manuscript and given valuable remarks.

1. Harmonic boundary

1.1. Let R be a hyperbolic Riemann surface. In the following, we shall
consider two sorts of compactifications of R, that is, the Wiener’s and the Martin’s
compactifications which are denoted by R* W, R*M respectively. Their boundaries
are denoted by AW, AM respectively. There exists a mapping = from R*%
onto R*M which leaves every point of R invariant. If we consider these points
to be equivalent which are mapped onto the same point by this mapping =,
then the quotient space of R*" obtained by this equivalence relation is home-
omorphic to R*M,  Therefore 7 is continuous®.

Let R* be an arbitrary compactification of R, then R is a subset everywhere
dense in R*. We shall write A=R*—R. For each extended real valued
function f on A (that is, f may take values =+ co), we condsider the family ¥, of
all functions v with the following properties:

a) o is superharmonic on R or =+ oo,

b) o is bounded from below,

c) at each point b= A, we have lir?;nf v (a) =>1(b).

The lower envelope of this family
H (a)=inf{v(a);0E 7}

is harmonic on R or =400 or =—oo. Similarly we can define H,. If
H,=H, holds and this function is harmonic, then it is denoted by H and f is
said to be resolutive. If all bounded continuous functions on A are resolutive,
R* is called a resolutive compactification of R. Let R* be a resolutive compacti-
fication and let a be a fixed point in R. For a bounded continuous function f
on A, the correspondence

Jf—Hg(a)

defines a positive mass-distribution on A. This mass-distribution is denoted by
dw, and is called a harmonic measure. In the Wiener space and in the Martin
space, harmonic measures are denoted by dw) and by dw?? respectively. Also
the notations H}, H M are used.

For a Green potential p on R, we set

1) [3], p. 140.
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I'y={be A; lim inf p(a)=0}
a-»bh

and
I'=NT,,

»

where p ranges over the family of all Green potentials on R. T is a non-empty
compact subset of A and is called a harmonic boundary. Notations 'V, T'M are
used to express harmonic boundaries in the Wiener space and in the Martin space.

In A% and A™, harmonic boundaries ' and '™ are the carriers of harmonic
measures dw"” and de™, respectively. Each point of T'" is regular for the
Dirichlet problem.

1.2. Lemma 1.1. For a Borel set B in AM, z~'(B) is a Borel set in AV,
Proof. Set
B={ACAM; 7 (A) is a Borel set in AV} .

For a compact subset ACAM, z7*(4) is compact in A%, hence B contains all
compact sets. Since

z (A)Nz(AM—A)=¢,
2 (A)Uz " (AM—A4)=A",

= () 4= [ =74,

Ae®B implies AM—AeB, and 4,8 (n=1, 2,--+) implies | 4,=B.
n=1
B is a o-algebra containing all compact sets, and contains all Borel sets in
AM,

Lemma 1.2. If ACAM is of dwl'-harmonic measure zero, then A=n""(A4)
is of dwl’-harmonic measure zero.

Proof. Assume that the dw?-outer harmonic measure of A is a>0.
We take an arbitrary open set G in AM containing 4, and set G=="(G). G
is open in AW and contains A. Therefore

(1.1) a<ol(©)=

Xado
w G a
A

where X, is the characteristic function of G on A¥. In general, we have

G

Sxédw;"gﬁ}" (@ .

2) [1], p. 34, Satz 16.
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Now, at each b& G there exists an open neighbourhood U(b) of b in R*M
such that U(l)NAMCG. Set

Uo: L U(b)
e
and
Uy=n"Y(Uy,),

then U, is open in R*" and G U,
Now let v be a superharmonic function on R, bounded from below satisfying
the condition: lim inf v(a)>X4(b) for each b= AM, where a—b is considered in
a-»b

the sense of the topology of R**. Then, we have v>0. For sufficiently
small positive number &, there exists an open neighbourhood U, of G in R*™
such that

v>1—¢ on U,NR.
Since U,N R=U,N R, we have

>0, and v/(1—€>=1 on (I)'ODR.
Hence at each b= A7, we have

lim inf o(a) /(1—€) >Xa(b),

where a—b is considered in the sense of the topology of R*W.
Hence we have

v/(1—&>=HY .

/(1—e)=AY,

Since & and v are arbitrary, we have
Ow « gM _ M
HZéSHZG_HZG .

Therefore
(1.2) SAWXédeVSE%(a)SHﬁ (@)= LuXG doM=oM(G) .
From (1. 1) and (1. 2) we have

I<a<oM(G).

Since G is an arbitrary open set in AM containing 4, the dw?-outer harmonic
measure of A4 is positive, g.e.d.

3) In the following, we shall not mention the topology explicitly, unless confusion would
occur.
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Theorem 1.1. 7 is a measurable mapping.

Proof. Let ECAM be a do™-measurable set, then there exist three sets

B, N,, N ,with the following properties:

(i) Bisa Borel set in AM,

(ii) N,, N, are of do™-harmonic measure zero,

(i) E=(B—N,)UN,.
From (iii) we have

7 (E)=(z"(B)—n{(N.)) Uz "(NV,) .

By Lemmas 1.1 and 1.2, z7'(B) is a Borel set in A%, and both = *(V,) and

7 Y(IN,) are of do"-harmonic measure zero. Thus we see that z7(E) is dw"”-
measurable.

Let f(b) be an extended real valued function defined on A, we define
the function £(8) on A¥ by f(8)=f[=(b)]-

Corollary. If f is dwX-measurable, then f is do¥-measurable.

Theorem 1.2. If f is resolutive as a function on AM, then f is resolutive as a
function on AV,

Proof. Let v be a superharmonic function on R, bounded from below sat-
isfying the condition: lim inf v(a)>#(b) for each b= AM. For an arbitrary
a>»b

positive number € and for each point b= A¥, there exists an open neighbourhood
U(b) of b in R*M such that

v>f(b)—& on UWB)NR.

Since ﬁbzn”‘( U(d)) is a neighbourhood of each point of z~(b), we have
v+e=HY.

Here & and v are arbitrary and we get
HY>HY .

Similarly we have

Thus we obtain the desired relation

up<Hy<|  faov<{ faov<my<my.
A A

Corollary. If fis dwl-summable, then £ is do¥-summable and
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[ fdoti={ , Fol.

Theorem 1.3. If u is a quasi-bounded harmonic function on R, then there
A . . .
exists a set £ in AV of do"-harmonic measure zero and the following relation holds.

lim u(a)=fine lim u(a), for each b AV—FE.
a->b

a>7(%)

Proof. Let @ be a trace on A" of the continuous extension of u in R*W,
that is, the restriction on A" of the continuous extension of % in R*%. Then
we have

(1.3) ua=| ,o®dol®p.
On the other hand, there exists a dw2/-measurable function f on AM such that
(1.4) u@)={ , fB)dodB .
By the corollary to Theorem 1.2, we have
(L.9) ua=| ,F@)dol®),
where  f(B)=f[=(d)].
From (1.3), (1.5) we have
[ @) f@dorE)—0.
Therefore
Smax [p(B)—F(B), 0]dw¥ (5)=0V0=0,
Smin [p(B)—/(B), 0]de(B)=0A0=0.
From these we conclude
(1.6) [ 120) 7)) dor(B)=0,
that is, we have

(1.7) P(B)=F(6)=f[=()]

at every point b, except at those of a set El of dw}’-harmonic measure zero.

4) [6], p. 37, th. 4.4.
5) [2], p. 332.
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Let E denote the set of points b& A¥® at which u has no fine limit or has
fine limit not equal to f(b), then E is of dw}-harmonic measure zero”. By
Lemma 1.2, we see that

E,=n"(E U A¥)®

is of dw}Y-harmonic measure zero. Then, from (1.7) we have
lim u(a)=g(8)=/(8)=f[x(5)]=fine lim u(a)
a->} a>7(F)

for each b= A" — E, where E=E,U E,.

Lemma 1.3. Let u be a positive singular harmonic function, then the con-
tinuous extension of u in R*% is zero at each point of T'V.

Proof. Assume that u(b)=a >0 at b= T'" (the continuous extension of u
in R*" will be denoted by # again). Take «, such as 0<a,<<a and consider

p=inf (u, at,) .

p is a continuous potential. From the assumption, there exists a neighbourhood

(9'(77) of b such that

u>a, on [j(i)) NR.
Therefore
p=a, on lAf(f)) NR.

By the definition of I'" and by the continuity of p we have

0=Ilim inf p(a)=lim sup p(a) >, ,
a->b a>h

which is a contradiction.

Theorem 1.4. If u is an HP function (that is, u is the difference of some two
non-negative harmonic functions), then we have

lim u(a)=fine lim u(a)
a>3 a->rm(b)

at every b, except at those of a set of dw"-harmonic measure zero.

Proof. Without loss of generality, we can assume #>0. « is decomposed
into a sum

u=u,~+u,,

6) A% and Ay¥ denote the minimal and the non-minimal Martin boundaries, respec-
tively.
7) [4], p. 296, th. 4.1.
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where u, is quasi-bounded and u, is singular. By Theorem 1.3, there exists
A, .
E of do"-harmonic measure zero such that
lim u,(a)=fine lim u,(a)
a>} a>m(Ch

holds at each be AW —E.
Since

p=inf (u,, 1)

is a continuous potential on R, there exists a subset E of AM of dw™-harmonic
measure zero such that p has fine limit zero at each point of A¥—E®. There-
fore by Lemma 1.3 and by the continuity of p, we have

lim u,(a)=0,
a>f
lim p(a)=lim inf p(a)=0
a>rb a>%
at every point b not in (A" —1'")U " Y(E).
Since z(b) & E,

fine lim p(a)=fine lim u,(a)=0.
a>7(h)

a>7(F)
This completes the proof.
Corollary. If v is non-negative and superharmonic on R, then we have

lim inf v(@)=fine lim v(a)=fine lim u(a)
a>} a->m(5) a>m(b)

at each point b, except at those of a set of dw"-harmonic measure zero, where u is the
greatest harmonic minorant of v. In particular, if v is continuous, we have

lim v(a)=fine lim v(a) ,
a->h a->m(b)
where equality holds almost everywhere in the sense of dw"-harmonic measure.

REMARK. As is shown in the follwoing example, the /Zm inf in the above
corollary can not be replaced by the lm.

ExamMPLE. Let R be a unit disc {2; |2|<<1} and let {a,}, a,=0, be a sequence
of points in R which is dense in R. If G, denotes a Green function in R with
pole a,, we can select a sequence of positive numbers {c,} such that

2 6,Ga,(0)<oo.

8) [8], p. 235, th. 21.
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The function
2(2)= 3 6,Ga,(2)

has lim sup (@)=} co at every point » on A”. On the contrary, every potential
a->b

has fine limit zero at every point of AM, except at those of a set of dw™-harmonic
measure zero.

2. Poles on the Wiener boundary

2.1. 'The notion of poles was considered by M. Brelot [2] and by L. Naim
[8] for the case of metrizable compactification. In this section we shall extend
this notion of poles to an arbitrary compactification R* of R.

Let s be a minimal Martin boundary point, let K, be a positive minimal
harmonic function on R corresponding to s, and let 4 be an arbitrary subset of
A=R*—R. We define

(K)a(@)=inf v(a)
where v ranges over the family of all non-negative superharmonic functions on

R dominating K on the intersection of R and some neighbourhood of 4 in R*,
Clearly we have that

(K,)a ts a non-negative harmonic function and K,>(K,) 4.

Lemma 2.1. (K,), is either zero or identically equal to K, and the former
case holds if and only if there exists a neighbourhood of A in R* such that its trace
on R (the intersection of R and the neighbourhood) is thin at s.

Proof. For a neighbourhood U of A in R*, we define (Ks)ong(a) as an
infimum of v(a) satisfying the following conditions:
1) v is a non-negative superharmonic function on R,
2) o dominates K on UNR.
As is known?, (K,)snr is equal to a potential or equal to K;. The former case
occurs if and only if UNR is thin at s. In this case (K)a=0 holds, since (K,)4
is a non-negative harmonic function which is dominated by the potential

(K)ong-
Lemma 2.2. There exists at least one point 2 of A such that
(K=K, .

Proof. Assume that there exists no such point. At each point s A there

9) [81, p. 204, lemme 1, th. 5; also, p. 233, th. 20.
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exists a neighbourhood U(z) of z such that U(z)ﬂR is thin at s. Since A is
compact, it is covered by a finite number of such neighbourhoods, say {U(z )

(i=1,2 .-, n). U U(z, AR is thin at s. On the other hand, R— U (0(z,)
i=1 . =1
NR)N A=¢, that is, R— [J (0(2,-)0R) is relatively compact, whence it is also
i=1
thin at 5. But then, R should be thin at s which is a contradiction, q.e.d.

The point z in Lemma 2.2, is called a pole of s on A.

2.2. In the following, we shall consider the polesin R*". The set of the

poles of s on A" is denoted by ®(s), The next theorem gives a new characteri-
zation of poles.

Theorem 2.1. Let §, denote the family of subsets E of R such that R—E
is thin at s. Then we have

d)(s):EQ% E,

where the closure of E is taken in R¥V.

Proof. First we assume bEcIJ(s) then by Lemma 2.1, for every neigh-
bourhood U(b) of b the set U(b)ﬂR is not thin at s. If for each EE$, there
should exist an U(d) such that U()N RN E=¢, then U(d)N RCR—E, and
U(5)ﬂR would be thin at s since R—FE is thm at s. This implies that U(b)
N RN E=¢ for an arbitrary neighbourhood U(b) of b, that is, b E.

Next we assume be®(s), then there exists a nelghbourhood U(b) of b
such that U(b)ﬂR is thin at s. Therefore R— U(b (b) belongs to F,, and

be&R— U(b) This means that et E.
Ec%,

Corollary. &(s) is compact.
For s€ A}, S. Mori [7] defined the fine cluster set:
¥(s)= (] {G; G is open in R and R—G is thin at s} ,
where the closure is taken in R*". The next theorem gives a new characteriza-
tion of this Mori’s cluster set W(s).
Theorem 2.2. For s€ A¥, we have ®(s)=Y¥(s)Cx(s).

Proof. By Theorem 2.1, it is clear that ®(s)CW¥(s). If beW(s)— D(s),
then, from the compactenss of d(s), there exist an open neighbourhood U(b)
of b and an open neighbourhood G of @(s) such that U(b)ﬂG‘ ¢. We note
that £E—G is compact for each EE, (the definition of ¥, is given in Theorem
2.1). Now, if we assume that E &G for every EE, ,then we can conclude
that for an arbitrary finite number of E; e, (i=1, 2 -+, n) holds
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(1 E—6>( Q E)—C=+¢.

By the finite intersection property of compactness, we have

&()—G= (| E—G+¢),
Esd,
which is a contradiction. Therefore we have ECG for some Ec$,, and
EcCENRcCGNR. GNRis open in R and R—(GNR) is thin at s. Since
bew(s), we get b= GN R, while 0(5){’1@:(1). This is a contradiction. Thus
we have ®(s)="V(s).
In order to prove W(s)Cz7'(s), it is sufficient to show that

7z7'(s)= [} {UNR; U is an open neighbourhood of s in R*M} |

where the closure is taken in R*%. If bz "'(s), then, for each open neighbour-
hood U of s in R*M there exists an open neighbourhood V(B) of bin R*¥ such that
(V@) U. Since V(B)NR=n(V(})) NRCUNR, b UNR. On the other
hand, if be&z7'(s), then z(b)=s,+s. There exist an open neighbourhood U,
of s, and an open neighbourhood U of s such that UNU,=¢. We can find
a neighbourhood (j(i)) of b in R*" such that 7:((7(5))(2 U,. This implies that

beUNR, qed.

This theorem shows that Mori’s fine cluster set W(s) coincides with the set of
poles of s on AV,

Theorem 2.3. If we assign an arbitrary neighbourhood V(&) of b to each
be®(s), then R—(_|) V(B)NR) is thin at s.
b p)

€S

Proof. As we have seen in the proof of Theorem 2.2,
z ()= () UNR,

where U ranges over the family of all open neighbourhoods of s in R*M and the
closure is taken in R*". From this we see that, for an arbitrary open neigh-
bourhood G of z7*(s), GN R is the trace on R of some neighbourhood of s in
R*M,

We assign an arbitrary open neighbourhood 17(13) to each b€ ®(s), and an
open neighbourhood I?(f)') such that V(3')C R*"—&(s) to each b'crn7'(s)—
®(s). From the compactness of 7~ '(s) it follows that there exist a finite number
of b; (i=1, 2 ,-+-,n) such that O V(b,) is an open neighbourhood of z7'(s).

i=1
R—( ) V(5,)NR) is thin at 5. Since V(b;) N R is thin at s if §,&z(s)—D(s),
i=1

we can remove such points from 4,’s and get the theorem, q.e.d.
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For EC AM we define ®(E)= (] &(s).

sen
2.3. Theorem 2.4. If u is a non-negative harmonic function on R, then
there exists a polar set N in AW such that lim u(a) is finite and is equal to the
a>b

fine limit fine lim u(a) for be o(AM—N.
a>7(E)
Proof. It is known that there exists a subset N of AM of dw™-harmonic
measure zero such that # has a finite fine limit at each s AM—N'9, Since N

is polar, by Theorem 1.2 N:n“(N) is also polar. If ZJE‘I)(A{”)——N, then we
have

fine lim u(a)=a<<4-co .

a->7(F)
For an arbitrary positive number € we set
F.={acR; |u(a)—a|>¢&} .

F, is thin at #(§). By lemmas 2.1 and 2.2 we see that 0(5)(\1(’ is not thin at
7(b) for an arbitrary neighbourhood 0(5) of 5. Hence U(B)NREF,, that is,

U(i)) N {aER; |u(a)—a| <€ *¢.
Therefore we have

inf wu(a)<a+e€,

sl HNR

sup u(a)=>a—¢€.
From these aclHNER

lim inf u(a)<a+-€,
a-)‘s

lim sup u(a)>a—¢€.
a-)‘f

Since lir? u(a) exists, we get
a>
a—e< limu(a)<a+E€.
a->b

€ being arbitrary, we get the theorem.

ReMARK. The set N in the proof of Theorem 2.4 is the union of A}’ and

the set of points in A¥ at which # has no finite fine limit. In particular
z  (AY¥)C N.

Corollary 1. In R*Y every singular harmonic function on R has limit zero
at each point of ®(AY) except at those of some polar set.

10) [4], p. 297, th. 4.3,
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Corollary 2. In R*Y every potential on R has lim inf zero at each point of
D(AM) except at those of some polar set.

ReEmMARK. In general ®(AM)+=T'". We shall see later (Theorem 5.2 in
§5) that there exists even the case where ®(AM)NTW=¢.

3. Minimum principle and Dirichlet problem

3.1. Theorem 3.1. Let v be a superharmonic function on R, bounded from
below. If, at each point be D(AM),

lim 7i}_nf v(a)>a,

then we have v>a.

Proof. To each s A} we assign an arbitrary b, ®(s). Let a>—oo.
For every a’<a there exists a neighbourhood U(d,,) of b, such that

v>a’ on E,= lA/'(i)(s)) NR.

E, is not thin at s. Therefore we have lim inf v(e)>a’ at each s A¥. Hence,
a-»s
aEHs

v>a’'h, and we have the theorem since a’ is arbitrary. If a=—oo, the
theorem is trivial.

Corollary. If u is a quasi-bounded harmonic function on R, then we have

inf [liminfu(a)]<u<_  sup [lim sup u(a)]
beb(a) 7 b A T aE

at every point of R.

Theorem 3.2. HY =0, and H” =1.

T XA _oca My Zoca

Proof. Let u be a subharmonic function on R, bounded from above satis-
fying the condition:

lirgzsup (@) <X a7 _oca (D)

for each point b& A". Let & be an arbitrary positive number. At each point
be ®(AM), there exists a neighbourhood U(8) of & such that

u<& on Ij(i))ﬂR.

11) [8], p. 244, th. 22.
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If we set Es=3 U (7(5) N R for each s& A¥, then E, is not thin at s. We have
€0

lim sup u(a)<¢€.

aER
s

This implies # <™. From this we get

HY =0
ZAW _oa M ’
and
v =1—H"” =1,
o™ R IIN G YYD

Corollary. P(AM) is not a polar set.

3.2. Theorem 3.3. Let f be an extended real valued function defined on A™.
We define the function f on AV by f(b)=Ff [z(B)]. If an extended real valued function
@ defined on AV coincides with 7 on the set D(AM), then

HY<HM<HY<HY.
Proof. Let ¥¥ be the family of all functions u with the following prop-
erties:
1) u is subharmonic on R or = — oo,

2) uis bounded from above,
3) at each b= A" we have lim sup u(a) <p(b).

Corresponding to ¢} we consider the family &, of all functions ' satisfying
the following conditions:
1') ' is subharmonic on R or =-—oo.
2') u'is bounded from above,
3") at each s AY there exists a subset E; of R (depending on #’ in
general) such that
(i) E, is not thin at s,
(ii) lim sup u'(a) <f(s).
cer,

Then, it is known that
H(a)= sup {u'(a); w'€B ™.

Let & be an arbitrary positive number and uc%¥. At each b= A" there
exists a neighbourhood (7(5) of & in R*" such that

ac 17(5) NR implies u(a)<e(b)-+-¢.
ES:X U l?(l;) N R is not thin at s and for & &(s) we have
€0

12) [8], p. 245, th. 23.



RELATIONS BETWEEN WIENER AND MARTIN BOUNDARIES 51

lim sup u(a) <@(b)+&= F(B)+e=f(s)+¢.

aEl
s

From this uc®,,,, and therefore
u£ﬂ¥+g=ﬂ}w+g .
Since # and & are arbitrary, we have

HY<H}.

As a corollary to this theorem, we get the following result which was ob-
tained by S. Mori'®.

Corollary. T"Wc®(AY).

Proof. Assume that there exists a point 5&T"" which does not belong to
D(A¥). Since TV is the carrier of dw"”-harmonic measure, there exists a

neighbourhood U(d) of & such that
3.1) do™(UB)NAY)>0,
(3.2) Ud)nD(AM)=¢ .

By (3.2) we can find a non-negative continuous function +» defined on A" which
is zero on ®(AM) and is positive on UB)NAY. We set

ua=H¥(@)=|  v@)do¥().

From this and (3.1), u is positive and harmonic. If we take f=0 in Theorem
3.3, since v is zero on ®(A¥), we have

u=HY <0<HV=u.

That is, u=0, which is a contradiction.

4. Remarks on metrizable compactification

In this section we consider the metrizable resolutive compactification.
This was discussed by M. Brelot [2] and by L. Naim [8] from the standpoint
related to the Martin’s minimal point. Our discussion here is related to the
harmonic boundary and to the difference of R*™ from R*V.

Let R* be an arbitrary metrizable resolutive compactification. Let A*=
R*—R, and let T* be the harmonic boundary of A*. Let A,” be the set of
those points in AM that have the unique pole each in A*, and A* the set of

13) [7], p. 34, prop. 3.5.
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their poles. Then, as is well-known'
oM(AM—A,")=0,
o*(A*—AF)=0,

where »* denotes the harmonic measure on A*.

In particular, if we take R*M as R*) the symmetric difference of A} and
'™ is of dw™-harmonic measure zero and ®(A¥)= A} holds.

In the next section, we shall see that these situations are quite different in the
case of R*W. In fact, there exists even the case where ®(AM) N T'"=¢ holds.

Remark. While A is a G set, '™ is a compact set. These two sets are
different in general. In the following example AMETM. For R={z; 0<
|2] <1}, =0 is a minimal boundary point in R*™ (a minimal positive har-
monic function log 1, |z| corresponds to z=0), but 2=0 is not a harmonic
boundary point since a Green function on R takes a positive lim inf at 2=0.

5. Relations between ®(A}¥) and TV

5.1. Here we discuss some applications of the theory developed in the
preceding sections, and get a few results, some are new and some are known.
To this end we introduce the following cluster set Q(s). Let s€ A and let
K, be a minimal harmonic function corresponding to s. Set o= s:{;g K (a).

For a<a set G,={asR; K(a)>a}. Our cluster set is defined by
Q(s)= [;] G,,

where o ranges over all positive numbers less than @ and the closure is taken in
R*%_  Since G, is open and R—G,, is thin at s, we have the following relation
—-1
\ cr ()
D(s5)=W(s) <
(5)=W(s) & o)

t

Theorem 5.1. A necessary and sufficient condition for b to be contained in
Q(s) is that the following equality holds:

lin; K (a)= sup K(a) .
a->, aER

Proof. If b=Q(s), then for every neighbourhoodA (Af(i)) of b and for an
arbitrary positive number a(<a) we have U®)NG,=*¢$, so that

sup Ky (a)>a. This means
acl(HnR

14) [8], Chap. V, p. 256.



ReLaTions BETWEEN WiENER AND MARTIN BouNDARiES 53
lim K (a)=lim sup K (a)>« .
a->b a->b

Therefore, lim K (a)=K (b)>a and K (b)>a=sup K (a). That is, K (b)=a.
a>b aER

Next, if we assume beEQ(s), then there exists an a (<a&) such that be=G,.
Hence there exists a neighbourhood U(®) of b such that U(d)N G,=¢. This
means K,<a on U()NR. Hence

lim K (a)=lim inf K (a)<a<a.
a>rb

a>F
Corollary. b &(s) implies lim K (a)=sup K,(a).
a-»b aER
Theorem 5.2. If a=sup K (a)=- o, then we have
aER
"Nz (s)NQ(s)=¢,

in particular, T N D(s)=4¢.

Proof. Since K is singular, K, has limit zero at each point of I'" by
Lemma 1.3. This gives the theorem.

5.2. In this paragraph we consider only the bounded minimal harmonic
function K.

Theorem 5.3. There exists only one point b in n7*(s) such that
u(a)= SAWX(E) doy’

is a bounded harmonic function on R. Moreover u(a)=c-K(a), where 1,/ c=a—
sup K(a).
acR

Proof. By Theorem 1.2 we have
SAMX(” dwy'= SAW Xe-1pdog = SAWXm'l(s)n v dog .

Let this function be denoted by u,(a) ,and let A be the canonical measure of
the harmonic function 1. Then we have

[ e Xmdot'={ XK@ dM)=A({5)-Ki(a),

that is, u,(a)=c,Ky(a). Since wM({s})>0, we have

fine lim u,(a)=X ,)(5)=1.
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On the other hand, by Theorem 2.4 we have
(5.1) lim u,(a)=fine lim u,(a)=1
a->b a-»s
at be ®(s), while, by the corollary to Theorem 5.1
u,(b)=lim u,(a)=c, K (b)=c,a@ .
a>h

From these, ¢,-a=1, so that u,=1 "akK,.

To show that there exists the unique point described in the theorem, we go
on as follows. For each b&z7'(s) and for every open neighbourhood lA/(i)) of
b, we define

ug(a)= chﬂcsmfksm rydoy .
Since 0 <up <u,, up has the form
ug=c(U)-K,
where 0<¢( lA])g 1. If U,oU,, then o (Afl)_>_c( lAfz) Clearly we have

Sxm do¥ < inf up(a),
Geu.

b

where Hj denotes the family of all open neighbourhoods of 5. Then,

Sxm do?—=0 implies inf up—0.
ﬁeuz

In fact, by the definition of the integral of an upper semi-continuous function
X, for every positive number & there exists a bounded continuous function
@ on AY such that

Since @(b) >1, there exists Ue Hj; such that @>1 on UNAY. Therefore we
have

E> S‘Pdcong S%Xcﬁnﬂ‘ksmr“’) dw(f":%.uﬁ(a) .

Since € is arbitrary, we have ﬁinf up=0.
EH.

If up>0, up is the harmonic measure in the sense of M. Heins, that is,

up AN(1—ug)=0 .
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Now, there exists a function f defined on A such that 0<f<1 and

uo(@)= |, f)dw(r).
Hence

0=up(@) A(1~ug(a)) = |, min [f), 1~} dat).

Therefore we have min [f(£), 1—f(t)] =0 for every point of AM except for
those of a set of dw™-harmonic measure zero.
o™({s})>0 implies min [f(s), 1—£(s)]=0, so that f{s) is either equal to zero
or to 1. On the other hand, the inequality
u(@)= | f0ydot))<u(@)={  Xu(®dott)
A A
implies

fO)<X(2)

where the inequality holds dw™-almost everywhere. Since up>0, it follows
that f(s)=1 and up=u,. Therefore we have the alternative:

uy is either equal to u, or to zero.

If Sxm dw" =0, then there exists Uc H 3 such that up=0. Therefore, if

we have SX“;) do"=0 at each bz '(s), then there exists a covering {U(B)} of

7~'(s) such that uy ;=0 holds for each (A](i)) From this we get a finite covering
of the compact set z7*(s), hence

gxﬂ_l(s)dwwzo )
which is a contradiction. Hence there exists at least one point & z~*(s) such

that
Sxm do"—(1,/a)-K, .

The uniqueness of such & follows easily from the argument above, q.e.d.

For every s&€ AM such that the corresponding minimal harmonic function is

bounded, the unique & described in Theorem 5.3 is denoted by J,.
Corollary. o"(z7'(s)— {8,})=0, b,=Q(s)NT".

Proof. As in the proof of Theorem 5.3, we have
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S X(s) dO)M= SX,,—1(s)dcoW= SX(;,‘S) da)w .

This implies o"(z"'(s)— {b,})=0. Also, we have K,=a. Sx@s, do". By
Theorem 1.3, we see

lim K (a)=fine lim K (a)=a .
a-rh a-»s

From Theorem 5.1 this means b, Q(s), Since »"({b,})>0 we have b,cT'".

Theorem 5.4. b, ®(s).

Proof. Assume b,ec®(s). Since ®(s) is compact, there exists a non-
negative bounded continuous function v defined on A" such that

Y(b)=0 and =1 on &(s).
Set

i

H45V=S1I/-dww.

If we assign to each H& P(s) an arbitrary open neighbourhood [7(5) of & and set
E=_|) (UBNR),
b€d(s)

then, by Theorem 2.3, we see that R—E is thin at s.
Let v be non-negative, superharmonic and lim inf v(a) >(8) at each b= A",
a->b

and let & be an arbitrary positive number. For every b& ®(s) there exists an

open neighbourhood U(l;) of & such that
v>1—& on ll}'(i))ﬂR.

If we make up above E from these neighbourhoods 0(5), then >1—¢& holds on
E. Since >0, it follows 712(1—8)[_1";( g Therefore

H\EV=I7‘Z"2(1—5)I7";(

s}

Since € is arbitrary, we have
HY>HM =HY =(1/a)K,.
vET g Ty (L7oK,
From the corollary to Theorem 5.3, we can see
lim Hf(a)>1/a&-lim K (a)=1.
a>bs a>bg

On the other hand, from the continuity of v and from the fact that 5, =TV is
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regular for the Dirichlet problem, we have
lim H¥(@)=(5,)=0,
which is a contradiction.
Corollary 1. For a bounded minimal function K ; we have
D(s)NT7={b,} .
Proof. From the corollary to Theorem 5.3 and from Theorem 5.4, we have
b,e®d(s)NT".

If there exist distinct points &,, b, ®(s)NT'¥, then we can find a bounded
continuous function @ on AW such that @(b,)%@(d,). Set u=HJF. Since u is
quasi-bounded, there exists a function f on A™ such that u=HM. Since
w™({s})>0, we have

fine lim wu(a)=f{(s) .

From the same reason as in the proof of Theorem 5.4, we see
lir? uw(@a)=@(b,) and limu(a)=ep(b,),
a>by a—)b2

but by Theorem 2.4,
<p(l~)1)=f(s)=<p(52) ’

which is a contradiction.

Corollary 2. If s and s’ are points of AM such that K, and K, are both
bounded minimal harmonic functions, then we have

’

. sup K (a), s=s
K (by)=1"<"
0, s=s’.
Theorem 5.5. P(AM) is a measurable set.
Proof. If we define
A= {s& AM; K, is bounded minimal},
then A4 is a countable set. Hence
A={b,; se 4}

is also countable. By the corollary to Theorem 5.3, z7%(4)—A is of dw"-
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harmonic measure zero. Also, by Theorem 5.2, ®(AM—4) is of dw"-harmonic
measure zero. Since ®(AM) is the union of a set of dw"”-harmonic measure zero
and a countable set, ®(AM) is measurable, q.e.d.

We have known that ®(A}") is not polar (Theorem 3.2). Inthe case Re: U,
that is, there exists no bounded minimal positive harmonic function on R, ®(A}")
is of dw"-harmonic measure zero (Theorem 5.2). Further we have

Theorem 5.6. Let ¢ be an arbitrary polar set in AM. If we assign to each
s€ AM—e an arbitrary point b(s)E D(s), then the set

E= | 8{13(&)}

sEAH—

is not polar.

Proof. Assume that there exists a positive superharmonic function » on R
such that lim v(a)=-} oo at each point b E, then as in the proof of Theorem
a-»b

3.1, we can apply the minimum principle and get the conclusion that v is reduced
to identically + oo, q.e.d.

Here we mention a theorem obtained by S. Mori'®.
Theorem 5.7. b, is an isolated point of T'V.

Proof. Suppose that §, is not an isolated point of T'™. Each neigh-
bourhood of &, has points of T'" except &,. Since I'" is the carrier of
dw"-harmonic measure on AW, an arbitrary neighbourhood of an arbitrary
point of T'" has a positive dw"”-harmonic measure. From this and from the
corollary to Theorem 5.3, we can conclude that there exists a set £ in AY of
do"-harmonic measure positive such that sEEn(E). Accordingly n(é) has a
positive dewM-harmonic measure. We can find above E such that laii’le Ky (a)>0

holds at every be E. On the other hand, we have
fine lim K (a)=0

at each point ¢==s except at those of some subset of AM of dw™-harmonic measure
. . 7 A\
zero. From this and from Theorem 1.3, we see, at some point b E,

lim K (a)=0,
a>F
which is a contradiction.

5.3. In this paragraph we shall investigate the relations between I'" and

15) [6], p. 39, th. 5.1., also [3], p. 125, Satz 11.5.
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®(A) again. We have already seen in the corollary to Theorem 3.3 that the
following relation holds:

Ir'"co(AM).
Can we conclude in general T" Nz ' (4)c®(4)? This not the case. For
instance, let A= {s}, where s€ AM and K, is not bounded, then ®(4)=®(A4)

and ®(A)N(T"Nz"*(4))=¢. But as is shown in the following theorem, in
some situation we have that relation.

Theorem 5.8. If G is open in AM, then we have

"Nz (G)c®(G).
Proof. Suppose that there exists b&T'" Nz Y(G) such that b&d(G).
Then there exists an open neighbourhood lA](i)) of b such that
Ud)nD(G)=4,
o(UB) N A%)>0,
2(U@)NAY)CG .

We take a non-negative bounded continuous function ) defined on A% as
follows:

{:0 on 7z (AM—G)UD(G)
v >0 on U®)NA”

and set

HY = SAW"lrde'

We see H}'>0, while in view of Theorem 3.3, we have H}=0, which is a
contradiction

Corollary. If Fis a G set in AM, that is,

where G, is an open set in AM, then
VN Y(F)C (j o(G,) .

In particular, if T Nz~ (F)= ¢, then we have
B(G,)NTW+.
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6. Relative Dirichlet problem

M. Brelot [2] and L. Naim [8] developed the theory of the relative Dirichlet
problem for the case of the metrizable compactification of R. In this section we
shall consider the relative Dirichlet problem especially for R*". First we state
here the formulation of the relative Dirichlet problem.

Let h be a positive harmonic function on R. % is fixed throughout this
section. For an extended real valued function @ on AW, ¥, denotes the
family of all functions v satisfying the following conditions:

a) o is superharmonic on R or =+ oo,
b) w©,/his bounded from below,
c) limﬁinf v(a) / h(a)>p(b) at every point b= AW,

The lower envelope of this family
DFw(a)=inf {v(a); vEFY,
is harmonic on R or =+4-o0 or =—oo. Similarly,we define D,. In general,

we have
D, <DF> .

If DY, =DY, and this is harmonic, then @ is called h-resolutive.

M. Brelot [2] set up the axiom (&,): all bounded continuous functions on the
boundary are h-resolutive, and obtained many results. But it seems that this
axiom is not always effective for other compactifications. We start with the
following axiom:

(X¥) all bounded continuous functions on AW are h-resolutive.

It is well-known that the axiom (&) is always satisfied, but the following
theorem shows that the axiom (&}) is not valid in general.

Theorem 6.1. If the axiom (&%) is satisfied for s A, then the pole of
s on AV is unique.

Proof. Let b, and b, be two distinct poles of s on A”. We take a bounded
continuous function @ on A% such that

(l’(l;x):l and ¢(52)=0

Letucs®},. By definition, « is a function on R with the following properties:
u is subharmonic on R, u,/ K, is bounded from above and lim sup u(a),/ K (a)
ba>

<@(b) at each b= A”. Let & be an arbitrary positive number. There exists
a neighbourhood U(d,) of &, such that
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u(a) /K (a)<& for acUB,)NR.
Since U(h,)N R is not thin at s, we have
u<é&-K;, on R®.
Therefore we obtain
ﬁg./Ks <&-K,.
and since € is arbitrary, we have
6.1) DF x, <0.

Next, let vePy,. For £€>0 there exists a neighbourhood U, of b,
such that

v(a)>(1—&)K(a) for acU(B)NR.
Then, we can see
v(a) = (1—€)(Ks)owpnr(@)™ -
Since 0(131) N R is also not thin at s, we have
(Ks)L‘z(Zp ne=K®
whence v>(1—&)K; on R.
Therefore we get
D x,>(1—6)-K,
and finally we have
(6.2) Dk, =K, .

In view of the inequalities (6.1), (6.2), we see that all bounded continuous func-
tions on A% are not always K -resolutive.

From the proof of the above theorem we obtain:

Corollary. Let ¢ be a bounded continuous function on AY, then we have
EXIK;Z(.maX (p(z)) -K,,
bEP(S)

DY, <(min p(b)-K, .
bED(S)

16) [8], p. 244, th. 22.

17) For ACR, (K,)4 denotes the extremization of K, on A4, that is, the lower envelope
of all non-negative superharmonic functions on R dominating K; on 4. Cf. §2, 2.1.

18) [8], p. 205, th, 5.
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This corollary means that the upper and the lower solutions of the relative
Dirichlet problem for K, are dominated from below and from above by the
values of @ on ®(s) respectively. Whether the equalities hold or not in the
above corollary is unknown, at least to the author. A less precise result is the
following:

Theorem 6.2. Let ¢ be a bounded continuous function on AW. If we set
for every te AM

P(t)=_max o(b)
eI
and
P(t)=_min ¢@(d),
Fer-14))
then we have
DYl =( max p(B))- K, >D'x,

and

DY, =( min ¢(B))-K,<Df, .

Fer—1cs)

Proof. Suppose that o, is a superharmonic function on R such that v, /K,
is bounded from below and lim inf v,(a), /K (a)>(t) at each t AM. 'Then,
a->t

there exists a neighbourhood U(%) of ¢ in R*M such that
v/K,>p(t)—€ on U()NR.

For every bz '(¢), there exists a neighbourhood (7(7)) of b in R*¥ such that
n[(:)'(I;)]C U(t). Hence we have the relation:

ac UB)NR implies v,(a),/ K,(a)>P(H)—&>p(b)—E
This means
lim inf v,(a) / K (a) >p(b)—¢.
From this we see immediately
0, >DF x—E K, .
Varying v,, we have
DY, > D, — K, .

Since ¢ is arbitrary, we get the first inequality in the theorem. The second
inequality is proved quite similarly, q.e.d.
From the above theorem, we know that for a bounded continuous function
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@ the K -solutions depend only on the values of @ on z7'(s).
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