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ABSTRACT
To characterize liquid-solid friction using molecular dynamics simulations, Bocquet and Barrat (BB) [Phys. Rev. E 49, 3079–3092 (1994)]
proposed to use the plateau value of a Green-Kubo (GK) integral of the friction force. The BB method is delicate to apply in finite-
size simulations, where the GK integral vanishes at long times. Here, we derive an expression for the GK integral in finite-size systems,
based on a Langevin description of a coarse-grained system effectively involving a certain thickness of liquid close to the wall. Fitting this
expression to GK integrals obtained from simulations of a liquid slab provides the friction coefficient and the effective thickness of the
coarse-grained system. We show that the coarse-grained system for a Lennard-Jones fluid between flat and smooth solid surfaces is 2–3
molecules thick, which provides a criterion for measuring the friction coefficient independently of confinement. As compared to nonequilib-
rium simulations, the new approach is more accurate and removes some ambiguities of nonequilibrium measurements. Overall, we hope
that this new method can be used to characterize efficiently liquid-solid friction in a variety of systems of interest, e.g., for nanofluidic
applications.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5104335., s

I. INTRODUCTION

To describe flows in macroscopic channels, one can combine
a continuum description of mass transport in the bulk (e.g., the
Navier-Stokes equation) with a no-slip boundary condition (BC)
for the fluid velocity at the wall. Such a macroscopic description
is expected to fail to capture flows in nanofluidic systems,1,2 which
offer great promises of application in green energies3–5 and water
treatment.6–8 Yet, it has been discussed that for water the continuum
description of the bulk flow should remain valid down to typically
1 nm.1 In contrast, both experiments and molecular simulations
have shown that the no-slip BC can fail when liquid-solid friction
is low enough.9,10

In the presence of slip, the hydrodynamic BC is obtained by
writing that the viscous shear stress in the liquid at the wall, η∂zv

(with η being the shear viscosity, z being the direction normal to
the interface, and v being the velocity parallel to the interface), is
equal to the interfacial friction shear force per area τw, proportional
to the slip velocity vs (the jump of parallel velocity at the interface),
as initially discussed by Navier,11,12

τw = λvs. (1)

Equation (1) defines the (fluid) friction coefficient λ, a critical
parameter controlling flows in nanofluidic systems.

Molecular dynamics (MD) simulations, which explicitly
describe the atomistic details of liquid-solid interfaces, can be instru-
mental in measuring the friction coefficient13–25 and in exploring
the underlying mechanisms.26–35 Friction can be measured directly
in nonequilibrium MD (NEMD) simulations of a flowing liquid.
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However, the direct approach is time consuming and poses differ-
ent issues20,36–38 related to, e.g., the choice of the thermostatting
method, the necessary tests on the linear response of the system, or
the definition of the effective position of the hydrodynamic bound-
ary. Alternative approaches have been proposed based on equilib-
rium molecular dynamics (EMD). In particular, Bocquet and Barrat
(BB) introduced a Green-Kubo (GK) expression where the friction
coefficient is obtained as the plateau value at long times of a GK
integral,13

λ = lim
t→∞

Λ(t), with Λ(t) =
1

SkBT ∫
t

0
⟨Fw(0)Fw(t)⟩dt, (2)

where S, kB, T, and Fw denote the surface area, Boltzmann constant,
absolute temperature, and instantaneous shear force exerted on the
solid, respectively, and the angular brackets ⟨⟩ mean the ensemble
average.

However, applying the BB formula in MD simulations poses
a number of issues.17,21–23 In particular, simulations are limited to
finite-size systems, where it has been discussed that GK integrals
should vanish at infinite time instead of reaching a plateau corre-
sponding to the response coefficient,39,40 an issue sometimes referred
to as “the plateau problem.”41,42 Different solutions have been sug-
gested to the plateau problem. For instance, the maximum of the
GK integral—or the value of the GK integral at the first zero of
the autocorrelation function—has been used to estimate the friction
coefficient.13,43–47 Alternative equilibrium18–20,22,23,25,42 and nonequi-
librium14,15 methods have been developed. Recently, Español, de la
Torre, and Duque-Zumajo41 have proposed a general solution to
the plateau problem within the context of Mori projection operator
formulation, which could in principle be applied to the GK mea-
surement of the liquid-solid friction coefficient. The fundamental
statistical physics underlying the BB formula has also been discussed
in two recent theoretical articles.48,49 Nakano and Sasa48 started from
the Hamiltonian of the particle system and, by considering the local
detailed balance condition, examined the applicability of existing
expressions of the liquid-solid friction from a viewpoint of time- and
length-scale separation, which can be evaluated from hydrodynam-
ics behavior. On the other hand, Camargo et al.49 considered the
mechanical balance and local constitutive equation of a thin slab of
layered fluid formed near the wall covering the liquid-solid interface
(mentioned as a “pillbox” for a spherical interface) and derived the
boundary condition. In contrast with these recent articles, here we
propose a pragmatic approach to extend the BB formula to finite-size
systems by introducing a simple expression for the memory kernel
and fitting the full GK curve based on a coarse-grained descrip-
tion without dealing with the details of local mechanics. Based on
this approach, we show the following two features: (1) an effective
mass or thickness of liquid involved in the Langevin equation is
obtained as a result and (2) the simple approach of taking the max-
imum of the GK integral leads to accurate measurements when the
memory kernel time scale and the relaxation time scale as a func-
tion of the friction coefficient and effective mass are well separated.
The two features could consequently correspond to the time- and
length-scale separation mentioned in Nakano and Sasa,48 and the
effective coarse-grained system could also be related to the thin slab
in Camargo et al.49

II. THEORY
The BB formula can be derived based on a generalized Langevin

equation (GLE),

M
dU
dt
= −λS∫

t

−∞

ξ(t − t′)U(t′)dt′ + R(t), (3)

where M and U are the mass and velocity (relative to the wall) of a
coarse-grained system of interest, and S, ξ, and R(t) denote the sur-
face area, memory kernel, and random force, respectively. In their
analytical derivation, Bocquet and Barrat21 described the Brownian
motion of a finite-mass wall in contact with a semi-infinite liquid,
and M and U were the mass and velocity of the wall, respectively.
In MD simulations, however, a liquid confined between two parallel
immobile walls is usually considered. In that case, the coarse-
grained system should effectively describe the hydrodynamic fluc-
tuations of the liquid. We anticipate that the coarse-grained sys-
tem can be described as an effective thin region of liquid close to
the interface. However, we emphasize that the coarse-grained sys-
tem encompasses the whole liquid dynamics and that the effec-
tive representation by a thin slab of fluctuating liquid should not
be taken literally. In particular, viscous friction in the whole liq-
uid is described implicitly through the coarse-graining process and
we did not describe it explicitly in the following GLE descrip-
tion; this approach will be validated a posteriori by the simulations.
We also emphasize that our model differs from previous work18,19

where the equation of motion was applied to a liquid slab near the
solid because we do not impose any constraint on the mass M of
the coarse-grained system, which will be measured from the GK
integral.

A full expression for the GK integral can be derived from the
GLE, Eq. (3), through the Laplace transform. The complete deriva-
tion can be found in the Appendix, and here we only summarize the
key steps. Let the Laplace transform of a function f (t) be denoted
by L(f ) ≡ f̃ (s). The Laplace transform C̃U(s) of the equilibrium
autocorrelation function CU(t) of the velocity U writes

C̃U(s) =
kBT
M

1
s + t−1

d ξ̃(s)
. (4)

On the other hand, the force Fw(t) exerted on the coarse-grained
system of interest is given by

Fw(t) =M
dU
dt

. (5)

Then, the autocorrelation function CF(t) of the force Fw satisfies the
following relation:50

CF(t) = −M2 d2CU(t)
dt2 . (6)

Accordingly, the GK integral Λ(t) in Eq. (2) writes

Λ(t) ≡
1

SkBT ∫
t

0
CF(t′)dt′ = −

M2

SkBT
dCU(t)

dt
, (7)
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where dCU(t)
dt ∣t=0

= 0 considering that CU(t) is an even function due

to the stationarity condition.51–54 Note that

dCU(t)
dt

∣
t=0
≡

1
2
(
dCU(t)

dt
∣
t=0+

+
dCU(t)

dt
∣
t=0−
) = 0 (8)

should be applied in the case the memory kernel ξ(t) is equal to
the Dirac delta function, i.e., Eq. (3) is a simple Langevin equation,
where dCU(t)

dt has a discontinuous derivative at t = 0, see Refs. 21
and 54. The Laplace transform of Eq. (7) is

Λ̃(s) = −
M2

SkBT
(sC̃U(s) − CU(0)). (9)

Inserting Eq. (4) into Eq. (9), it follows that

Λ̃(s) =
M
S

t−1
d ξ̃(s)

s + t−1
d ξ̃(s)

=
λ̃ξ(s)

s + t−1
d ξ̃(s)

. (10)

We now assume a simple Maxwell-type memory kernel50

ξ(t) = t−1
m e−

t
tm (t ≥ 0). (11)

This memory kernel is originally designed to describe a viscoelastic
response; here, we choose it for its simple functional form, although
simulations will later show that tm is indeed compatible with vis-
coelastic relaxation. We also introduce the characteristic decay time
of the GLE

td ≡
M
λS

. (12)

Note that through the coarse-graining process, hydrodynamic relax-
ation in the liquid—controlled by the kinematic viscosity ν—
is enclosed implicitly in the coarse-grained mass M/S, and the
decay time only depends explicitly on the liquid-solid friction
coefficient.

Inserting the Laplace-transformed memory kernel in Eq. (10)
and going back to the time domain, one can show that when
td > 4tm, the GK integral Λ(t) in Eq. (2) is given by

Λ(t) = λ0(e
−

t
t1 − e−

t
t2 ), (13)

where the 3 parameters λ0, t1, and t2 can be obtained through

1
t1
=

1
2tm
⎛

⎝
1 −
√

1 −
4tm
td

⎞

⎠
, (14)

1
t2
=

1
2tm
⎛

⎝
1 +
√

1 −
4tm
td

⎞

⎠
, (15)

λ0 =
λ

√
1 − 4tm

td

. (16)

Equations (13)–(16) provide a generic framework that can be used
to extract the friction coefficient from a fitting of the GK integral.
In particular, the friction coefficient can be obtained from the three
fitting parameters,

λ = λ0
1 − u
1 + u

, (17)

with u = t2/t1. One can also relate the maximum of the GK integral
to λ and to the two time scales of the fit,

Λmax = λ
1 + u
1 − u

[u
u

1−u − u
1

1−u ]. (18)

From Eq. (18), it is clear that the maximum of the GK integral Λmax
is not in principle equal to the friction coefficient λ and that Λmax
and λ cannot be related without the knowledge of the characteristic
times t2 and t1, which can only be obtained through a full fit of the
GK curve. However, when the time scales are well separated, i.e., in
the limit of u→ 0, Λmax becomes an increasingly good estimate of λ:
the difference between Λmax and λ is on the order of 25% for u = 1/5
and falls, e.g., to 4% for u = 1/100 or to less than 1% for u = 1/1000.
Note that in the limit where the time scales are separated, the two
time scales t1 and t2 are given by t1 ≃ td and t2 ≃ tm, respectively.

Finally, in the limit of td →∞,

Λ(t) = λ(1 − e−
t
tm ), (19)

so that the GK integral reaches a plateau equal to the friction
coefficient, which corresponds to the original BB result.

In the following, we will test the general method presented here
when the time scales of the memory kernel and of the GK integral
decay are not well separated, using MD simulations.

III. SIMULATIONS
We considered a generic Lennard-Jones (LJ) liquid confined

between parallel walls, see Fig. 1. We used fcc walls made of 8 atomic
layers exposing a (001) face to the liquid; first neighbors in the
solids were bound by a harmonic potential Φh(r) = k/2 (r − req)

2,
with r being the interparticle distance, req = 0.277 nm, and
k = 46.8 N/m. Interactions between liquid particles and between
liquid and solid particles were modeled by a LJ pair potential,
ΦLJ(r) = 4εij[(σij/r)12

− (σij/r)6
], where i, j can be L for liquid par-

ticles or S for solid particles. The LJ interaction was truncated at a
cut-off distance of rc = 3.5 σ and quadratic functions were added so
that the potential and interaction force smoothly vanished at rc.55

We used σLL = 0.34 nm, εLL = 121 K kB, σLS = 0.345 nm, and εLS
= αεLL, where the “wetting coefficient” α was varied between 0.120
and 0.359. The corresponding contact angle of droplets with these
parameters was shown in our previous work.56 The atomic masses
were mL = 39.95 u and mS = 195.1 u. We used periodic boundary
conditions along the x and y lateral directions, with a box size Lx = Ly
= 6.27 nm. The total system height (walls included) along the z direc-
tion was varied between 4 and 12 nm, with a corresponding number
of liquid particles varying between ∼800 and 6400. We defined the
liquid film height as Hliq = z

top
wall − z

bottom
wall , with ztop

wall and zbottom
wall being

the positions where the liquid density vanishes, which can be accu-
rately identified due to the steep rise of the density at the interface,
see Fig. 1. Accordingly, Hliq varied between 1 and 9 nm. The above
definition of zwall was also used as the origin of δeff described later in
Eq. (20).

To compare the GK measurement and a reference NEMD mea-
surement of the friction coefficient in the same system, we sheared
the liquid in the x direction to extract the nonequilibrium response
and we applied the GK formalism in the y direction. We checked
on representative systems that independent EMD and NEMD sim-
ulations provided results consistent with the ones obtained using
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FIG. 1. Top: side view of a typical simulated system, superimposed with the corre-
sponding density and velocity profiles. Bottom: side views of systems with different
heights.

this approach. In practice, particles in the most external layer of the
walls were fixed in the y direction, and we imposed a shear force
per area τw = 0.2 MPa by applying opposite forces Fw = ±τw × S
in the x direction to the most external particles of the top/bottom
wall, respectively. Particles in the second most external layer were

FIG. 2. Green-Kubo integrals Λ(t) obtained for different wetting coefficients α. Full
lines: MD data and dashed lines: fits with Eq. (13).

FIG. 3. Evolution of λfit, tm, M/S, and the corresponding δeff with the wetting
coefficient α. For λfit, the error bars are smaller than the symbols.

thermostatted at 100 K using a Langevin thermostat applied only in
the z direction. We checked that the liquid temperature remained
within 2 K of the set value. To set the pressure to 4 MPa, we first
used the top wall as a piston, without shear; second, we applied shear,
still using the top wall as a piston; and finally, we fixed the vertical
wall position and continued shearing the system. We integrated the
equations of motion using the velocity-Verlet algorithm, with a time
step of 5 fs. The simulation time was 50 ns. Error bars in Figs. 2,
3, and 6 were obtained by separating the production run into five
10 ns chunks, measuring the quantities for each chunk, and estimat-
ing the statistical error within a 95% confidence interval from the five
values.

IV. RESULTS AND DISCUSSION
We first computed the GK integrals Λ(t) for different wetting

coefficients α, see Fig. 2. For low α (nonwetting surfaces), friction is
low so that the decay time td given by Eq. (12) is large and a plateau of
the GK integral is observed at times intermediate between the mem-
ory kernel time tm and the decay time td. However, as α increases,
so does the friction coefficient. As a consequence, the GK integral
goes to higher values, and the decay time decreases; for large α, td
becomes comparable with tm so that one cannot observe a plateau of
the GK integral anymore. In that situation, the original BB formula
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cannot be directly applied and we used our finite-size extension of
the formula, Eq. (13), to fit the GK integrals. Since at long times the
error on the GK integrals becomes large, the numerical data were
fitted for times t < 5 ps. The model indeed reproduces well the MD
data at short and intermediate times, see Fig. 2.

From the fit of the GK integrals, one can extract the values
of the friction coefficient λfit, of the coarse-grained mass per unit
surface M/S, and of the memory kernel relaxation time tm. The evo-
lution of these parameters with the wetting coefficient α is shown in
Fig. 3. While the friction coefficient strongly depends on the wetting
coefficient α, the memory kernel time tm remains constant within
the error bars, at a value of ∼150 fs (except at the highest α where
it is larger by ≲10%). This value is typical of viscoelastic relaxation
in liquids. The effective mass of the coarse-grained system in the
Langevin description increases slightly beyond the error bars with
α, from ∼1 to 1.5 mg/m2. The fact that the effective mass does not
depend much on α suggests that the description of the decay time
as a function only of the liquid-solid friction coefficient and of a
coarse-grained mass (enclosing effectively the liquid hydrodynamic
modes), Eq. (12), is adequate in all systems considered. Note how-
ever that for the largest values of α, corresponding to the largest
friction coefficients and smallest decay times td, a slower decay of
the GK integral seems to appear at long times, which is not captured
by Eq. (13). This slower time scale could be related to momentum
diffusion through the liquid, which by construction the coarse-
grained description cannot capture. We will come back to that point
when discussing the dependency of the GK integral with the system
height.

We then computed the effective thickness δeff of the coarse-
grained system corresponding to the effective mass M/S, by integrat-
ing the liquid density profiles ρliq(z) near the wall,

M
S
= ∫

zwall+δeff

zwall

ρliq(z) dz. (20)

FIG. 4. Comparison of the GK integrals obtained for different wetting coefficients
α and for different system heights Hliq. Since Hliq depends slightly on α for a given
number of atoms, the Hliq values for systems with α = 0.240 are shown in the
figure.

In Fig. 3, one can observe that the increase of δeff with α is similar to
that of M/S.

Interestingly, δeff is on the order of 2–3 molecular sizes, i.e., the
coarse-grained system of interest in the Langevin equation involves
only a thin region of liquid close to the interface. Accordingly, the
GK integrals should not depend on the system height for heights
larger than δeff.

We tested the influence of system height on the GK integral
for different wetting coefficients α. Figure 4 shows that, as expected
from the small effective thickness of liquid whose fluctuations con-
trol the fluctuations of friction force, the GK integrals obtained for
different liquid heights Hliq above 2.17 nm overlap so that their fit
provides the same values for λfit, M/S, and tm. On the other hand, the
GK integrals obtained for the smallest liquid height Hliq = 1.15 nm,
which is comparable to δeff in Fig. 3, are significantly different from
those for Hliq ≥ 2.17 nm. This indicates that a certain liquid thickness
is needed to apply the present method.

More quantitatively, Fig. 5 shows the dependence of the fric-
tion coefficient, memory time, effective mass, and corresponding
thickness on the liquid height Hliq for systems with α = 0.240. As
suggested by the GK curves in Fig. 4, neither λ nor M/S depend on
Hliq above a certain value so that the decay time td = M/(λS) is also
independent of the liquid height. The independence of td on the sys-
tem size seems to suggest that the GK integral Λ(t) will always vanish

FIG. 5. Evolution of λfit, tm, M/S, and the corresponding δeff with the liquid height
Hliq for systems with α = 0.240.
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at infinite time regardless of the system size, and in particular at
the thermodynamic limit. However, we have already mentioned that
the coarse-grained description, while it worked very well to describe
the GK integral at short and intermediate times, failed to describe
a slower decay of the GK integral at long times. One can imag-
ine two other characteristic time scales related to the momentum
diffusion, i.e., tvisc(δeff) ∼ δ2

eff/ν and tvisc(Hliq) ∼ H2
liq/ν, where

ν is the kinematic viscosity of the liquid. Using the bulk value
ν ≈ 1.1 × 10−7 m2/s, the former is roughly estimated about 9 ps with
δeff ∼ 1 nm, and the latter is from 12 ps to 670 ps with Hliq for the
present systems. These longer time scales should largely affect the
asymptotic behavior. In particular, the second time scale diverges
for infinite system height.

Finally, we compare the presented method to estimate the fric-
tion coefficient, λfit, with the reference NEMD measurement, and
with the maximum of the GK integral, Λmax. The NEMD fric-
tion coefficient was computed using Eq. (1), where we tested two
definitions for the slip velocity: first, we measured the difference
between the wall velocity and the liquid velocity at the position of
the first adsorption layer z1, vs = |vliquid(z1) − vwall|; second, we com-
puted the difference between the wall velocity and the extrapolated
bulk liquid velocity profile at the position of the first adsorption
layer, vs = |vextrapolated(z1) − vwall|. The NEMD friction coefficients
obtained from these two definitions are denoted as λNE,liq and λNE,ext,
respectively.

Figure 6 compares the different measurements for varying the
wetting coefficient. First, we note that the difference between λfit and
Λmax is less than 5%. Since in the systems considered, the time scale
ratio u = t2/t1 was on the order of 1/100 or less, the relative error
between Λmax and λfit is consistent with the estimate provided in
Sec. II. In practice, this means that, at least for the systems con-
sidered here, simply measuring the maximum of the GK integral
provides a good estimate of the friction coefficient.

FIG. 6. Comparison between different measurements of the friction coefficient
[NEMD measurements, λNE,liq and λNE,ext, maximum of the GK integral, Λmax, and
value obtained from fitting with Eq. (13), λfit, see text for details] as a function of
the wetting coefficient α.

We then turn to the NEMD measurements. One can notice that
the error bars are much larger for the NEMD points than for the
EMD points, even though the data were obtained for the same simu-
lation time. This suggests that EMD provides a more efficient route
to measure liquid-solid friction than NEMD. In addition, two differ-
ent approaches to measure the slip velocity, i.e., based on the fluid
velocity in the first adsorption layer, λNE,liq or based on the extrap-
olated bulk velocity profile at the same position, λNE,ext, result in
different values for the friction coefficient. The NEMD measurement
will also depend on the position where the slip velocity is measured.
While using the position of the first adsorption layer is common
practice, this approach has no firm fundamental basis.

Overall, the NEMD estimate is therefore less accurate for a
given simulation time and sensitive to the procedure used to deter-
mine the slip velocity. In contrast, fitting the GK integral provides
an accurate and unambiguous value. Although the EMD and NEMD
seem to deviate at large wetting coefficients α, the difference is within
the error bars. Additionally, we would like to emphasize that for the
largest values of α, the friction coefficient is very large and corre-
sponds to very small slip lengths, b ∼ 1 nm. For such values of b,
any uncertainty on the hydrodynamic wall position will result in a
large error on the friction coefficient so that we suggest that EMD
should here be thought as the reference measurement method and
that the apparent discrepancy between EMD and NEMD highlights
the difficulties of getting a proper NEMD estimate in the studied
systems.

V. CONCLUSION
The BB formula, identifying the liquid-solid friction coefficient

with the plateau value of a GK integral, poses some problems in
finite-size simulations, where the GK integral vanishes at long times.
This formula can be obtained from a Langevin description of a dif-
fusing wall in contact with a semi-infinite liquid. Here, we derived
the analytical expression of the GK integral for a finite-size liquid
slab confined between immobile walls by applying the Langevin
description to a coarse-grained system involving effectively a frac-
tion of the confined liquid, assuming a simple Maxwell-type memory
kernel relating the slip velocity and velocity of the coarse-grained
system. Using this generic analytical framework, we showed that a
common procedure of taking the maximum of the GK integral as
the friction coefficient was reasonably accurate when the memory
time and the decay time of the GK integral were well separated (e.g.,
a 4% error for a factor of 100 between the two times).

By fitting MD results to the derived expression, we could extract
the friction coefficient, the memory time, the mass of the coarse-
grained system, and the corresponding effective thickness of liquid
whose fluctuations control the fluctuations of the friction force. We
varied the wetting properties by tuning the liquid-solid interaction
potential. The friction coefficient was strongly affected by wetting,
while the memory time remained approximately constant, at a value
consistent with viscoelastic relaxation. The effective thickness δeff of
fluctuating liquid did not change much and was on the order of 2–3
molecular sizes. Accordingly, we checked that the measured fric-
tion coefficient was independent of the liquid film height Hliq when
it remained large as compared to δeff. For a smaller system with
Hliq ∼ δeff, the GK integrals changed. The estimate of δeff from the fit
of the GK integral therefore provides a self-consistent criterion on
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the minimal system height that needs to be used to characterize
interfacial friction without confinement effects.

Finally, we compared EMD and NEMD measurements. For a
given simulation time, the approach presented here provides a lower
statistical error; additionally, in NEMD an ambiguity on the mea-
sured friction coefficient results from the difficulty of defining the
slip velocity, but in the proposed method the slip velocity does not
need to be defined. Overall, we suggest that the proposed approach
is simple and accurate, and provides an efficient path to characterize
liquid-solid friction in MD simulations.
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APPENDIX: COMPLETE DERIVATION
Here is the derivation of Bocquet-Barrat formula

λ =
1

SkBT ∫
∞

0
⟨Fw(0)Fw(t)⟩dt. (A1)

We start from the generalized Langevin equation (GLE)51

M
dU
dt
= −S∫

t

−∞

λ′(t − t′)U(t′)dt′ + R(t), (A2)

where M and U are the mass and velocity of the coarse-grained sys-
tem of interest, respectively, while S, λ′, and R(t) denote the surface
area, retarded effect of the friction, and random force, respectively.
The macroscopic friction coefficient λ is related to λ′ by45

λ = ∫
∞

0
λ′(t)dt. (A3)

By substituting λ′(t) = λξ(t) with a memory kernel ξ, which satisfies

∫

∞

0
ξ(t)dt = 1, (A4)

it follows for Eq. (A2) that

M
dU
dt
= −λS∫

t

−∞

ξ(t − t′)U(t′)dt′ + R(t). (A5)

Note that in the case the wall is mobile as in the theoretical derivation
of Bocquet and Barrat,21 the mass and velocity are replaced by wall
mass and velocity Mw and Uw, respectively, and the slip velocity vs
and Uw are related by

vs(t) = ∫
t

−∞

ξ(t − t′)Uw(t′)dt′. (A6)

A Green-Kubo relation is derived from the GLE, Eq. (A5),
through the Laplace transform. By multiplying U(0) to both sides
of Eq. (A5) and by taking the ensemble average, it follows that

M⟨U(0)
dU(t)
dt
⟩ = −λS∫

t

−∞

ξ(t − t′)⟨U(0)U(t′)⟩dt′

+ ⟨U(0)R(t)⟩. (A7)

Denoting CU(t) ≡ ⟨U(0)U(t)⟩ the equilibrium autocorrelation
function of U and assuming ⟨U(0)R(t)⟩ = 0 for t ≥ 0, Eq. (A7) is
rewritten as

dCU(t)
dt

= −t−1
d ∫

t

0
ξ(t − t′)CU(t′)dt′, (A8)

where the lower limit of the integral is changed from −∞ to 0 so that
CU(t) satisfies the stationarity condition,51,52 i.e., CU(t) is an even
function. In addition, the decay time scale td given by

td ≡
M
λS

(A9)

is introduced. Let the Laplace transform L( f ) ≡ f̃ (s) of a function
f (t) be denoted by

L( f ) ≡ f̃ (s) = ∫
∞

0
f (t)e−stdt. (A10)

Then, the Laplace transform of Eq. (A8) is written as

sC̃U(s) − CU(0) = −t−1
d ξ̃(s)C̃U(s). (A11)

By using the energy equipartition

CU(0) = ⟨U2
⟩ =

kBT
M

(A12)

for the second term of the LHS of Eq. (A11), it follows that

C̃U(s) =
kBT
M

1
s + t−1

d ξ̃(s)
. (A13)

On the other hand, the force Fw(t) exerted on the coarse-grained
system of interest is given by

Fw(t) =M
dU
dt

. (A14)

Then, the autocorrelation function CF(t) = ⟨Fw(0)Fw(t)⟩ of the
force Fw, satisfies the following relation:50

CF(t) = −M2 d2CU(t)
dt2 . (A15)

By using this, we examine the function form of the integrated force
autocorrelation function Λ(t) given by

Λ(t) ≡
1

SkBT ∫
t

0
CF(t′)dt′ = −

M2

SkBT
(
dCU(t)

dt
−

dCU(t)
dt

∣
t=0
),

(A16)

where dCU(t)
dt ∣t=0

= 0 considering that CU(t) is an even function due

to the stationarity condition.51–54 Note that
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dCU(t)
dt

∣
t=0
≡

1
2
(
dCU(t)

dt
∣
t=0+

+
dCU(t)

dt
∣
t=0−
) = 0 (A17)

should be applied in the case the memory kernel ξ(t) is equal to
the Dirac delta function, i.e., Eq. (3) is a simple Langevin equation,
where dCU(t)

dt has a discontinuous derivative at t = 0, see Refs. 21
and 54. Bocquet and Barrat21 technically dealt with this by setting
the lower limit of integration in Eq. (A10) as 0− instead of 0. The
Laplace transform of the above equation is

Λ̃(s) = −
M2

SkBT
(sC̃U(s) − CU(0)). (A18)

By inserting Eqs. (A12) and (A13) into Eq. (A18), it follows that

Λ̃(s) =
M
S

t−1
d ξ̃(s)

s + t−1
d ξ̃(s)

=
λ̃ξ(s)

s + t−1
d ξ̃(s)

. (A19)

We now assume the following Maxwell-type memory kernel:50

ξ(t) = t−1
m e−

t
tm (t ≥ 0). (A20)

The Laplace transform of this memory kernel is

ξ̃(s) =
t−1
m

s + t−1
m

. (A21)

By inserting Eq. (A21) into Eq. (A19), it follows that

Λ̃(s) =
λ

tm(s2 + t−1
m s + t−1

m t−1
d )

. (A22)

We factorize the denominator of Eq. (A22) as

s2 +
1
tm

s +
1

tmtd
= (s +

1
t1
)(s +

1
t2
) (A23)

with

1
t1
=

1
2tm
⎛

⎝
1 −
√

1 −
4tm
td

⎞

⎠
, (A24)

1
t2
=

1
2tm
⎛

⎝
1 +
√

1 −
4tm
td

⎞

⎠
, (A25)

which are real as long as td > 4tm. Then, it follows from Eq. (A22)
that

Λ̃(s) =
λ

tm(s + 1
t1
)(s + 1

t2
)
= λ0
⎛

⎝

1
s + 1

t1

−
1

s + 1
t2

⎞

⎠

with

λ0 ≡
λ

tm( 1
t2
− 1

t1
)
=

λ
√

1 − 4tm
td

. (A26)

With these three parameters t1, t2, and λ0, we obtain an analytical
solution of Λ(t) as

Λ(t) = λ0(e
−

t
t1 − e−

t
t2 ). (A27)

In the limit of td ≫ tm,

1
t1
≈

1
td
(1 −

tm
td
),

1
t2
≈

1
tm
(1 −

tm
td
), λ0 ≈ λ(1 +

2tm
td
). (A28)

This gives two behaviors: for td →∞,

Λ(t) ≈ λ(1 − e−
t
tm ), (A29)

i.e., the GK integral reaches a plateau value equal to the friction coef-
ficient, which corresponds to the original BB result. On the other
hand, Eq. (A27) for finite td with tm → 0 results in

Λ(t) ≈ λe−
t
td , (A30)

which is expected in a finite system.45
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