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0. Introduction

Let Y be a simply connected open neighborhood of the origin in C™. For a finite
Galois covering 7 : X — Y of Y, we denote by B, the divisor r1B; + roBs +
--++ 1By, where By, Bs, ---, By are the irreducible components of the branch locus
{y € Y|#nr~!(y) < degn} of 7 and r; are the ramification indices of m along Bj,
ie., r; = degm/max{#n '(y)|ly € B;}. In the previous paper[4], we study Abel
coverings 7 : X — Y of Y with B, = D for a given effective divisor D on Y. In this
paper, we study Galois coverings 7 : X — Y such that B, = D and that the covering
transformation groups Gal(X/Y) = {g € Aut(X)|rog = «} are finite solvable groups
(e.g. the dihedral groups Dy, the quaternion group @, the alternating group A4 and
the symmetric group S, of degree 4).

In Section 1, we show that for any Galois covering 7w : X — Y of Y, there exists
a commutative diagram:

X XY
v | LB
X 5 v

where i : Y — Y and 7 : X — X are Abel coverings such that B; = B, and that ¥
does not ramify on 7~1(Y"\ Sing(B; +---+B;)), and A : X — Y is a Galois covering
which does not ramify on 7~ '(Y \ Sing(B; + --- + B;)). Moreover, the composite
Zo):X — Y of A\ and & is a Galois covering and [Go, Go] ~ Gal(X/Y), where
Go = Gal(Y/Y) Let G; = [Go,Go], let Gy = [Gl,Gl], --- and let 72 = Y/Gl
Then fio\ induces Galois coverings X; — Y and Abel coverings X ;1 — X; which do
not ramify on X; \ Sing(X;). Hence if the covering transformation group Gal(X/Y')
is solvable, then there exists a Galois covering X,, — Y which is the composite of
Abel coverings X,, — Xm_1, -+ X2 — X1 and X; — Y such that By =
B, and that X; — X;_; do not ramify along divisors for 2 < j < m, and X is
isomorphic to a quotient of X,,. We also study the connection among B,, Gal(X/Y)
and the quasi-Gorensteinness. For example, if Gal(X/Y) ~ @, then there exist at least
two irreducible components B; of B, with r; = 4 and X is not a quasi-Gorenstein
singularity.
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In Section 2, we study Abel coverings of normal Stein analytic spaces. First, we
show that any Abel covering Z’' — Z of a normal Stein space Z is isomorphic to the
normalization of the analytic subspace of Z x C! defined by £ —f; = --- = &' —fi=
0 for some holomorphic functions fi, ..., fi on Z and for some positive integers rj,
..., Ty, Where (&1, . ..,&) is a coordinate system of C'. Next, assume that Z is a Galois
covering of a normal Stein space Y. Then we give a necessary and sufficient condition
on these functions f; and these integers r; that the composite of the Abel covering
Z' — Z and the Galois covering Z — Y becomes a Galois covering. Moreover, we
show how to determine the structure of the covering transformation group Gal(Z’/Y).

In Section 3, we construct some examples of Galois coverings 7 : X — Y of an
open neighborhood Y of the origin in C™ such that Gal(X/Y") are isomorphic to Dy,
Q, A4 or Sy, applying the methods in §2. For example, if there exist holomorphic
functions «, (3, v and (% 0) on Y such that codim([a] N [8]) > 2 and that §% =
43 4+ 2a. — 33, then there exists a Galois covering 7 : X — Y with Gal(X/Y) ~ S,
and B, = 2D;, where D; is the divisor on Y defined by a? — 3% = 0. This Galois
covering 7 : X — Y is constructed as the composite of three Abel coverings X3 — X,
Xo — X; and X; — Y, where X; (resp. X2, X3 ) is the normalization of the analytic
subspace of Y x C (resp. X; xC, X x C? ) defined by £€2—(a?—/3%) = 0 (resp. ¢3—
(a—€) =0, n2— (y+(+B/C) = ng— (y+exp(2my/—1/3)¢ +exp(4my/=1/3)B/¢) = 0
).

In Section 4, we show that any Galois covering of a Stein analytic space whose
covering transformation group is isomorphic to Das, ), A4 or Sy, is isomorphic to
that constructed in the similar manner as in §3. For example, any Galois covering
m: X — Y with Gal(X/Y) ~ S is constructed as the composite of three Abel
coverings as above.

Let p, ¢, 71, s be positive integers with g.c.d.(p,q) = 1 and let D; be the ir-
reducible divisor defined by the equation 2z — 23 = 0 on a simply connected open
neighborhood Y of the origin in C2. In Section 5, we give a necessary and sufficient
condition on these integers p, ¢, 7; and s that there exists a Galois covering 7: X — Y
such that Gal(X/Y") is isomorphic to Dsog, A4 or Sy and that B, = r1D;. Moreover,
we show the dual graph of the exceptional set of a resolution of X.

NOTATIONS. 7 : X — Y : a Galois covering of an open neighborhood Y of
deC”
B,, By, -+, B; : the irreducible components of the branch locus of 7
r; : the ramification index of 7 along B;
Br=r1B1+13Bs+---+1B;
H; = [m(Y \ ((Br),eq)) — Gal(X/Y)]({lassos rounding B; once in the positive
direction})
W Y - Y : the projection (17 = {(y,w1,...,w)) € Y xCw]* — f; = --+ =
wi' = fi =0})
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oi t (Y wy. -y wi) = (Y, W15 Win 1, Pry Wiy Wik, - W) € Aut(Y)
p:Ga(Y/Y) —» Z,; &--- ®Z, : the homomorphism defined by p(ci; ,+1) =

J
-p(oij)=(0,...,1,...,0)_ ~
E:Y =Y : the projection (Y =Y/ ker(p))

Yb =p (Y \Sing(By +-+-+ By)), Yo:=7"'(Y\Sing(By +--- + By))

X' : an irreducible component of X Xy Y X : the normalization of X

G : the subgroup of Gal(X/Y) @ Z, : - @ Z,; generated by (hi,p(0;)) for all
h; € H;

p1:G — Gal(X/Y), p2: G — Z,,®---®Z, : the projections

X' : Gal(Y/Y) — C* : the homomorphism sending p(o;) to p,

Zi o ={(2,61,...,6) € ZxCYeP = fr=--- =€ — i =0}

mey : Zgy — Z : the composite of the normalization Z¢, — Zé,r and the projection
ZxC - Z

‘r},r Dy, 8) — (2,6, &im1s P Eirs - -5 &) € Aut(Zs )

Gsr = ZT}". DD Z7'fl’r

fi : a holomorphic function on Z¢ , with f,-” = s fi

pr = exp(2mv/~1/r)

1. Non-Abel Galois coverings

Let 7: X — Y be a Galois covering of a simply connected open neighborhood Y
of 0in C™ and let B, = r1B; + --- + r By as in Introduction. Let H; be the subset
of Gal(X/Y) consisting of the images under the quotient map 7y (Y \ (Br)ea) —
Gal(X/Y) of the lassos in 71 (Y \ (Br),.4) rounding B; once in the positive direction
for j=1,---, 1. Then H; = {ghg~'|g € Gal(X/Y)} and |h| = r; for any h in H;.

Proposition 1.1. Gal(X/Y) is generated by H1 U Hy U - - - U H;.
Proof. Let G be the subgroup of Gal(X/Y') generated by H; U Hy U --- U H;.

Then the covering X/G — Y does not ramify on Y \ Sing(B; + --- + B;). Hence it
is an isomorphism, because Y \ Sing(B; + -+ + B;) is simply connected. Therefore,

G = Gal(X/Y). O
We may assume that Hy =--- = H;, H;, 41 =+ = Hi2, e Hy 41 =

Hj and that H; # Hy if i <1i; < i’ for some j. Then 7y = --- =1y, 7,41 = =

Tig, +-and 75, _ 41 =--- =1 Let Y be the Abel covering of Y as in §3 of [4] for

D = By, ie., Y is the subvariety of Y x C! defined by the equations w]* — f; = 0 (i =

1, ---, 1), where f; are defining equations of B;. Recall that ¢; are the automorphisms

of Y sending (y,wi,...,w) o (Y,wr,..., W1, Pr; Wi, Wit1,..., W), where p,, =

exp(2my/—1/r;). Let p: Gal(Y/Y) — Z,, & ®Z,, be the homomorphism defined
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by p(o1) = --- = p(g;,) = (1,0,...,0), p(0'¢1+1) == P(Eiz) = (0’1’0""_’0)’
vow P(O4p_141) = -+ = p(or) = (0,...,0,1) and let Y = Y /ker(p). Then Y is

isomorphic to the subvariety in ¥ x CF defined by the equations w;j —fijoav1 iy =
0@y =1, -+, k), where r; =r; for 4,1 < i <45, o = 0, 3 = [. Moreover, 1 :=
Prer(p) © Y — Y is an Abel covering with By = B, and Gal(Y/Y) ~Z,, ®---®Z,;.
Let X be the normalization of an irreducible component X of X Xy Y. Then the
projection 7 : X — Y to Y is a Galois covering with Bz = B, because the projection
X — Y to Y does not ramify on Yy := 7 (Y \ Sing(B; + --- + B;)). Let G be
the subgroup of Gal(X/Y) ® Gal(Y/Y) generated by (h;, p(c;)) for all i and for all
h; € H;.

Proposition 1.2. G = {g € Gal(X/Y) ® Gal(Y/Y)|gX =X }.

Proof. gX =X for all g in G, because (h;,p(c;))X = X . Since X /G —Y
does not ramify on Y \ Sing(B; + -+ + B;), we have X /G ~ Y. O

Let C be the commutators group of G := Gal(X/Y) and let FF = G/C. Then we
have the commutative diagram:

1 —- ¢ — G 2 7,892, — 0

l I m !
1 — C — G — F — 0,

where p; and p, are the restrictions to G of the projections from G @ Gal(Y/Y) to
G and Gal(Y'/Y), respectively. Here we note that ker(py) = C, because |h;| = r; for
h; € H;. Hence Gal(X/Y) ~ C. Also note that p; is surjective, by Proposition 1.
On the other hand, Gal(X/X) =~ ker(p;) is isomorphic to a subgroup of Gal(Y/Y).
Hence it is an Abelian group.

As we see in §1 of [4], there exists a nowhere vanishing holomorphic n-form ¢
on Yy := pY(Y \ Sing(B; + - - - + By)) with 0*¢ = x(0)¢ for o € Gal(Y/Y), where
x : Gal(Y/Y) — C* is the homomorphism sending o; to pr;- Since ker(p) C ker(x),
there exists a nowhere vanishing holomorphic n-form ¢’ on Yy with g*¢’ = x/(g)¢’
for all g € Gal(Y/Y), where X’ : Gal(Y/Y) — C* is the homomorphism sending
p(03) 10 pr,. Then §(m36") = (X' © p2)(3)(m3¢") for all § in Gal(X/Y), where
7y : X — Y is the projection. Since X ~ X /ker(p;), we have:

Proposition 1.3. (X, x) is a quasi-Gorenstein singularity if and only if ker(p;)
is contained in ker(x’ o p2), where {z} = m=1(0).

EXAMPLE 1.1. Assume that Gal(X/Y) is isomorphic to the symmetric group
S3 of degree 3, i.e., Gal(X/Y') is generated by two elements @ and 3 enjoying the
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relations o? = 32 = (af)® = e. Then H; = {a,BaB, 3} or {Ba, (Ba)?}, accord-
ingly as r; = 2 or 3. Hence there exists at least one irreducible component B; of
B: =r1By + -+ + rB; with r; = 2, by Proposition 1.1. Assume that there exists an
irreducible component B; with r; = 3. Then (Ba, p(0;))((Ba)?, p(0;)) = (e, p(04)?) €
ker(p;). However, (e,p(0;)?) ¢ ker(x’ o p2). Hence (X, x) is not a quasi-Gorenstein
singularity. Conversely, assume that all r; are equal to 2. Then ker(p;) = {e}. Hence
(X, z) is a quasi-Gorenstein singularity.

EXAMPLE 1.2. Assume that Gal(X/Y) is isomorphic to the quaternion group @,
i.e., Gal(X/Y) is generated by two elements a and 3 enjoying the relations a* = e,
8% = a? and o = Bad. Then H; = {a?} (r; = 2), {a,a3} (r; = 4), {3,028}
(r; = 4) or {aB3,a3B3} (r; = 4). Hence there exist at least two irreducible components
B; of B, with r; = 4, by Proposition 1.1. Moreover, we see that (X, z) is not a

quasi-Gorenstein singularity, because aa® = ,B(azﬁ) = (aﬂ)(a%’) =e.

2. Abel coverings of normal Stein spaces

Let Z be a normal Stein analytic space. We say that two Galois coverings 7; :
Zy — Z and 7y : Zg — Z of Z are isomorphic over Z, if there exists an isomorphism
¢ : Zy ~ Zy with m; = w3 0 ¢.

DEFINITION 2.1. For an ordered set f of holomorphic functions f;, ..., f; on

Z and for an ordered set r of integers 71, ..., 7; greater than 1 with |f| = |r|, we
denote by Zg ., the normalization of the analytic subspace Zé,r in Z x C! defined by
M=fi=--=¢"' = fi =0, where (&,...,&) is a coordinate system of C!. We also

denote by G¢ ., the Abelian group generated by the automorphisms T},r of Z¢ » sending

(fL’, gla e 7€l) to (1‘,61, e >€i—1’p‘l‘i§i?§i+17 e ?61)1 where Pr; = exp(27rv —1/7'1;), by
¢y, the composite of the normalization Z¢ , — Zé,r and the projection Z X Cl - Z,

and by ﬁ-, the holomorphic function on Z¢ » which is the pull-back of &; z;,

Here we note that 7¢ » does not ramify at a point x in Z, if there exist holomorphic
functions hj, ..., h; on a neighborhood U of z with h?’ = fz‘[U- Also note that

(i) Fi = prJi (i) F = Jj i # ) and |7 =g fi.

Proposition 2.1. For any Abel covering ©' : Z' — Z of Z with Gal(Z'/Z) ~
Z, - DLy, there exist holomorphic functions f1, ..., fi on Z such that w(s . 73
A{r1,...,r} 1S isomorphic to ' over Z.

Proof. Let 71, ..., 7; be generators of Gal(Z’/Z) with |r;| = r;. Take a holo-
morphic function f’ on Z’ and let f; = Z;‘l;})---zzll;(l)(rfl - TFY)* £/ pki. Then
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72 fi = pr.fis 7 fj = fj (i # j) and f; # 0 for a suitable f'. Since f]* are Gal(Z'/Z)-
invariant, there exist holomorphic functions fy, ---, f; on Z with 7"* f; = f/*. Then the
image of the holomorphic map Z’ — Z x C! sending z’ to (7'(z'), fi(z'),..., fi(z'))
is equal to Ztl',r’ where f = {f1,...,fi} and r = {ry,...,m}. Since the surjective
map Z' — Z; . is one to one on Z' \ w'~*(Ul_, [fi]), it induces a biholomorphic map
¢:Z' ~ Zg , satisfying ¢ o 7; = 7§ . 0 ¢. O

Let f = {f1,...,fi}, g = {91,-.., g1} be ordered sets of holomorphic functions
on Z and let r = {ry,...,m} be an ordered set of integers greater than 1 with |f| =

g = [r].

Proposition 2.2. Zg , is reducible if and only if there exist non-negative integers
8; which are smaller than r; and at least one of which is positive, and a holomorphic

rsy

function h on Z with f,"* - f, o = h", where r = l.c.m. (g.c_d.(rl,sl), . g.c.d.(n,s,))'
Especially, when | = 1, if Zg . is reducible, then there exist a holomorphic function h
on Z and a divisor t of v, greater than 1 with f; = ht.

Proof. Assume that Zg . is reducible and let Z; be an irreducible component of
Zé’r. Then H := {0 € G¢,|0Z1 = Z1} # Ggr. Hence there exist integers s; such that
0 < s; <y, that (s1,...,5) # (0,...,0) and that h := flsl --"fvlsl is H-invariant.

rsy sy
When | = 1, we may assume that s, is a divisor of r;. Then h™ = W;’r FEAREERY A
and the restriction of A to Z1 is equal to the pull-back of a holomorphic function on
Z, because Gal(Z,/7Z) = .

Conversely, let s; and h be as in the proposition and let h= f1 - fi. ‘. Then
AT = 7rf h". Hence h = eﬂ'f l,h on each irreducible component Z; of Zf ¢ for an r-th

root ¢ of the unit. Therefore, o*h = h for all elements o in {0 € GgrloZ1 = Z1}. On
the other hand, there exists an element ¢ in Gg, with a*h # h. Hence Z1 # Zgr. [

Proposition 2.3. Assume that Zs ,» and Zg , are irreducible. Then there exists an
isomorphism ¢ : Zsg » ~ Zg r With Tg y0¢ = T¢ r, if and only if there exist meromorphic
functions hj on Z (1 < j < 1) and integers s;; (1 < i,j < 1) such that h =
g;/(fi¥ -+ f") and that r;s;; = 0(mod ;). Then poTi, = (Tg)%" (7h . )s“ o ¢.

Proof. Assume that there exists an isomorphism ¢ : Z¢  ~ Zg , with mg.0¢ =
e Then there exist integers s;; with ¢ o 7§ = (7} )% .- (1L )% o ¢. Since

|7 .| = ri, we see that r;s;; = O(mod r;). Let h; ¢*g‘3/(flrls“/rj '--:flnslj/rj).

Then h; are Gf,-invariant meromorphic functions on Zg . and h}’ = nf .(9;/(f;
S
)
Conversely, assume that the condition of the proposition is satisfied. Then the
restriction ¢’ to Zg .. of the meromorphic map Z x C' — Z x C! sending (z,&1,...,&)

S5,
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to (z, hy&]o/™ ---{{’3“/”,...,hlﬂ‘s”/” ---51”3”/”) is a meromorphic map onto
Z,’;,,. Hence ¢’ induces a meromorphic map ¢ : Zg, — Zg . which is one to one on
Zgr \ gy (U_y[fi]U UL, [g:]) and an irreducible component Z of Zgr Xz Zgy is the
graph of ¢. Therefore, the projections 7 - Zg» and 7 — Zg r are isomorphic by
Zariski’s Main Theorem. O

Corollary 2.1. Assume that Zg, is irreducible. Then for any automorphism o
of Z, there exists an automorphism ¢ of Zg, with T¢r 0 G = 0 o ¢, if and only if
there exist meromorphic functions hj on Z (1 < j <) and integers s;; (1 < 4,5 <)
such that b = o* f;/(f;"" --- ;") and that risi; = 0(mod ;). Then & o 7§, =
(rdp)t - (k) 0.

Let 0, 09, - -+ and o, be automorphisms of Z with o109 -:- 0, = id. Assume
that there exist meromorphic functions hf on Z and integers sfj 1<, <,1<

k k
k < m) such that (k%) = orfi)(fh - ) and that rist; = 0(mod r;). Then
for each k there exist 7172 - - - r; automorphisms oy, of Zg, with m¢ » 0 0 = 0y © e r,
by the above corollary. Among those, for each k we can choose one so that oy f; =

~risk./r; ~7s¥ /T — —

h;?fl LY On the other hand, o7 - - Gy = (18,7 -“(Té’r)t’ for some
integers t1, to, -+, t; with 0 < ¢; < r;. Then 0, -+ -1 f; = pfﬁg'.fj. Hence we can
determine these integers t; by the data h_’; and sfj. For instance, if m =4, 03 = 07 H

o4 = 02_1, i.e.,, 0109 = 0901 and if [ = 1, then

(o3h}) (k)"
(o1h2) (hd)*

1

_ o2 ol * ~

because 75°57" f1 = (o3h})(h2)*11 f """ and 515" ((Tfl,r)tl) fi=
2 ~sl 82

P (orh2) (RS fi M

Assume that Z is a Galois covering of a normal Stein space Y and let o, oo,
..., Om be generators of Gal(Z/Y). If there exist meromorphic functions h;“ and
integers sfj satisfying the condition of Corollary 2.1 for each o (kK = 1,2,...,m),
then the composite Zg , — Z — Y is a Galois covering of Y. Moreover, the structure
of Gal(Zgr/Y) is completely determined by the integers sfj and t; in the relations
TkTE Ok = (Tfl,r)s‘i'cl -"(T},r)“’fl and o5, --- 0y, = (1¢,)" -+ (7§ )% for fundamental
relations o;, - - 0;, = id of 01, 02, ..., Op.

REMARK 2.1. In the 2-dimensional case, we can construct resolutions \ : Z —
Z of Z, via embedded resolutions of B, ( see §3 of [4] ), if m : Z — Y are Abel
coverings of open sets Y of C2. Assume that [\*f;] = Y ¢;;E; + r; D} for some
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integers ¢;; and divisors D] on Z, where > E; are the exceptional sets of A\. Then
meyr @ Zgr — Z does not ramify on Z \ Sing(Z). If the dual graphs of ) E; are
tree, we can explicitly construct resolutions also of Zg ., in the similar manner as in
83 of [4]. On the other hand, if there exists an integer j such that Zizl cij%i is
not a multiple of r = l.c.m.(y'c_d.r(lrl,sl), ceey g.c.d.T(ln,sz)) for each combination of non-
negative integers s; which are smaller than r; and at least one of which is positive,
then by Proposition 2.2, Z¢ , are irreducible, because

=1 1=1

%1' ;L ! T8; ! ’ ,
[A*(fll fll)]zz ZCUT_ Ej+TZ(31D1+"‘+lel)-

3. Examples

Let D = r1Dy + 12D + --- 4+ 1Dy be a divisor on a simply connected open
neighborhood Y of 0 in C™, where r; are integers greater than 1, D; are reduced and
may be reducible divisors on Y defined by f; = 0. We assume that 0 € Dy, ie.,
f;(0) = 0 and that if ¢ # j, then D; and D; have no common irreducible components,
throughout this section. Let Y be the analytic subspace of Y x CF defined by w]' —
fi =+ =wi*— fr =0, where (w;,ws, - -, wy) is a coordinate system of C* and let
7i: Y — Y be the projection. Then we see in the same way as in Proposition 3 of [4]
that Y is normal. Hence Y ~ Yir, . fey {r1,...,r}- Moreover, 1 is a Galois covering
with By =D and Gal(Y/Y )~ Z,, &---® Z,,.

First, we construct some examples with the covering transformation groups whose
commutators groups are cyclic. Let r be an integer greater than 1 and let g be a
holomorphic function on Y. We simply write Yy, 7y, and 74 for Y g}, (r}> T(g}.{r}
and 'r{lg}, Jae respectively. Assume that there exist no holomorphic functions gy on
Y with g5 = g for any divisor s of r greater than 1. Then 79, is irreducible, by
Proposition 2.2. Furthermore, assume that there exist a meromorphic function h; and
an integer s; satisfying 73 g /g% = h’ for each j, where ; is the automorphism of Y
sending (y,w1,...,wj, ,wk) to (Y, w1, -, Wj_1, Pr;Wj, Wj41, -, Wk). Then the
composite fo g, : Yy, — Y of my, and 7z is a Galois covering by Corollary 2.1.
Moreover, if there exist an open neighborhood U of yo and a holomorphic function h
on U with h™ = gy for each point yo in Yy := 71 (Y}), then 7y, does not ramify on
Yo and hence Bgor,, = D, where Yy =Y \ Sing(D; + - -+ + D).

Proposition 3.1. Let D = 2D;. Assume that there exist holomorphic functions
o, S on'Y and an odd integer v greater than 2 such that o(0) = $(0) = 0 and that
fi=a®>—p". Theniomy, : Yy, — Y is a Galois covering such that Bgor,, = D
and that Gal(Y g, /Y) >~ Dy,, where g = a + w.

Proof. Suppose that there exists a holomorphic function gy on Y with g§ = g for
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an integer s greater than 1. Then gy = ho + w1 h; for some holomorphic functions hg
and h; on Y. Since go(0) = 0, we have ho(0) = 0. Then g§ = (h§ + ;Cahi 2h3 f1 +
)4 wi (sCrhy i +5Csh§ 3R fi+- - +) and (sC1hs ™ hy+5sCsh™3h3 fi+---)(0) =
0, because f;(0) = 0. Hence g§ # g. Therefore, Y, , is irreducible, by Proposition 2.2.
Since go7*g = 8" and [o"gNlg] = A~ (la]N[A1]) = B (2] N[8]) C 7~ (Sing(Dy)),
g, does not ramify on Y. Hence Bpor,, = D. Let hy = 3/g. Then a1*g/g" ! =
h7. Hence there exists an automorphism o7 of Y . such that 7, , 057 = &7 oy and
Lo

that 17y, = 7, }01. Moreover, 1% = id, because (51°)*G = 01" (¢8/§) = g, where

€ is an 7-th root of the unit. Hence Gal(Y,,/Y) ~ D,. O

For example, f; = 229 — 25, a = 27 and 8 = z, satisfy the condition of the
above proposition. Then we easily see that Y, is non-singular, if ¢ = 1. Hence if the
divisors defined by « = 0 and 3 = 0 cross normally at a point p in Y, then VQ,T is
non-singular at all points in (o m, )~ (p).

Let o and 3 be homogenous polynomials of degree r and 2, respectively. Then
fi = o? — 37 is a homogenous polynomial of degree 2r. Let A\ : Z — Y be the
blow up of Y at the origin and let E = A~1(0). Then [\*f;] = D; + 2rE, where D;
is the proper transformation of D;. Hence the projection Z := Y xy Z — Z does
not ramify along E. Therefore, Y is a cone over the double covering of E ~ P"~1
ramifying along the divisor defined by f; = 0. Moreover, Y has singularities along the
inverse image of the intersection of the divisors defined by « = 0 and 8 = 0. Since
the vanishing order along E = X (0) of the pull back X'g of g = a + w; under the
projection X : Z — Y is equal to r, the projection Yy, X Z — Z does not ramify
along E. Hence Yg,r is also a cone over a covering space E of E whose covering
transformation group is isomorphic to Ds,. If the divisors A and B of P"~! defined
by @ = 0 and 8 = 0, respectively, cross normally each other and the divisor defined by
a? — B = 0 has no singularities except those on the intersection of A and B, then E
is non-singular and hence Y, , has only an isolated singularity.

Proposition 3.2. Let D = 2Dy + 2D,. Assume that there exist a holomorphic
function B on'Y and an integer r greater than 1 with fi — fo = 3". Then io Ty, :

Yy — Y is a Galois covering such that Bgor,, = D and that Gal(Y ;./Y) =~ Dy,
where g = w1 + wa.

Proof. Suppose that there exists a holomorphic function go on Y with g§ = g
for an integer s greater than 1. Then go = hoo + wihio + waher + wiwzhiy for
some holomorphic functions hgg, hio, ho1 and hq; on Y and g§ = hoo + wihig +
woho1 + wiwghy; for some holomorphic functions koo, k1o, o1 and hy; on Y. Then
h10(0) = ho1(0) = 0, because hog, w? = f; and w? = fo vanish at 0. Hence
g5 # g. Therefore, Y, is irreducible, by Proposition 2.2. Since goz*g = 3" and
[62*g] N [g] = B~(D1 N Dy), 7y, does not ramify on Yy. Hence Bgor,, = D.
Let hy = p2,B/g and let ho = 3/g. Then G;*g/g"~* = hl (i = 1,2). Among the
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automorphisms G; of Y, , satisfying 7y, 0 6; = G; o 7y, we choose one so that
;"G = hig"! (@ = 1,2). Then we see by an easy calculation that 6‘{2 = 552 = 1id
and that 01020102 = 74,. Therefore, Gal(Yy,/Y) =~ Dy,. 0

For example, fi = 2{ + 2} and f, = 27 — 23 satisfy the condition of the above
proposition. Then we easily see that Y4 . is non-singular, if ¢ = 1.

Proposition 3.3. Let D = 2D, + 2D,. Assume that there exists a holomorphic
function 3 on'Y with f; — fo = (2. Then i o Tg,2 79’2 — Y is a Galois covering
such that Bgor, , = 4D1+4D; and that Gal(Y 42/Y') is isomorphic to the quaternion
group, where g = wiws(wy + w2).

Proof. Since go1*g = ww3B? and gono*g = —w?w3B?, there exist automor-
phisms &; of Y, 2 satisfying 7y 0 0 6; = 75 0 Ty 2 and 6742 = T420; (i = 1,2). If we
choose one among those automorphisms for each i = 1,2 so that 7; g = w;w23/g and
that 55" = v/—1wywy /g, then (6;")?9 = —g, 01702 g = —v/~1g and 55701 § =
V—=1g. Hence ;> = Tg,2 and 0103 = Tg20201. On the other hand, my 2 does not
ramify along [w; + w2, because (w; +w2) (w1 —wa) = (B2. While, 7, o ramifies along
[w1] U [ws]. Hence Y, 2 is irreducible and B, = 4D; + 4D;. O

For example, f; = z; and f, = 2; — 22 satisfy the condition of the above propo-
sition. Then the dual graph of the exceptional set of the minimal resolution of Ygg is

O O
O 0

We can show the following proposition, in the manner similar to the proof of the
above propositions.

Proposition 3.4. Let D = 2D, + ro D3, where 4 is an odd integer greater than
2. Assume that there exist a holomorphic function a and an odd integer ¢ > 0 with
fi+ f3= a? Let g = a+ w,. Then 79,(,,»2 — Y is a Galois covering such that
Bgong o, = D and that Gal(Yy,4r,/Y) is generated by three elements o1, 02 and
T enjoying the relations 0? = o5* = TI"? = e, 0109 = T0p01, 1T = T loy,
02T = TO3.
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For example, f; = 2? — 2z and f, = 25 satisfy the condition of the above proposi-
tion. When ¢ = 1, (027°) is a normal subgroup of Gal(Y,,,/Y) and Gal(Y,,,/Y)/
(097°) =~ D, for an integer s with 2s = 1(mod 7). Hence
Yy.r,/{027®) is a Galois covering of Y whose covering transformation group is iso-
morphic to Day,.

Next, we construct examples whose covering transformation groups are isomorphic
to the group Hy, = (0,71,...,7T4—1) generated by ¢ elements o, 71, ... and 743
enjoying the relations 0? = 77 = e, ;7; = T, 1 <4, < qg—1), o711 = 'rq‘_lla,
oT; = Ti_qu—_lla (2 < i < g—1). Here we assume that g.c.d.(q,7) = 1. Then

[Hgr,Hgr] = (71,...,7T4—1). Note that Hj 5 is isomorphic to the alternating group of
degree 4.

Proposition 3.5. Let D = qD,. Assume that there exist holomorphic functions o

and (3 on'Y such that o(0) = $(0) = 0 and that f = 0?—(". Let g = {g1,...,9q-1}>
q—1
where g; = o — pilwy and let v = {7,.. |7}, If Yg . is irreducible, then io mg :

Ygr — Y is a Galois covering such that Byor,, = D and that Gal(Y gr/Y) ~ Hg .

— Id

; =%, — . < g _ o1 99-1 _ __ B
Proof. Since 71°¢9; = gi+1 (1 <1< qg—1) and o] (gl...g%1 , there
exist 797! automorphisms o7 of Yg . such that 7g, 0 67 = 77 o mg,y, that 017}, =
(r871)7151, and that o775 . = 7471 (7471 o1 (2 < i < ¢ — 1), by Corollary 2.1.
Among those, we can choose one so that 0, g; = giy1 (1 < i < q¢ — 1) and that

01 gg—1 = {fl--f; - Then we see by an easy calculation that 07?7 = id. Hence
a

(01,7g pr-+-,7d%") = Hyr. On the other hand, 7g , ramifies only along [7*a] N [* 4]
( C i~ *(Sing(D1)) ), because (o — wy)(a — pgws) - - - (¢ — I~ wy) = B7. O

We see by the following example that if the divisors defined by « =0 and 8 =0
cross normally at a point of Y, then ?g,,. is irreducible.

EXAMPLE 3.1. We consider the case that n = 2, & = z; and § = 23. When ¢ =
3 and r = 2, there exists an embedded resolution Z — Y of D; whose exceptional set
is as (i) in the following picture. Then the projection Z xy Y — Z ramifies along thick
lines in (i). Hence the exceptional set of Z xy Y is as (ii) and we obtain a resolution
Z of Y as (iii) contracting the exceptional curve of the first kind in Z xy Y. Then
the projection Z XY g — Z ramifies along thick lines in (iii), because the vanishing
order of g1, go along the thin (resp. thick) lines are equal to 2 (resp. greater than 0) and
that of g1g,6*go = 22 along the thick lines is equal to 4. Thus we obtain a resolution
of ?g,, as in (v) contracting the exceptional curves of the first kind in Z Xy ?g,r.
Here we note that the curve in (v) is rational, because 2 —2g =2-4—3- % -4=2.

In general, Vg,r is irreducible and isomorphic to the singularity obtained by contracting
a non-singular curve E of the genus 1+ 9%‘11"‘1_2 with the self intersection number
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0) 5 (i) s s

(iii) (iv) (v)

—r9=2, We can obtain the genus of E using Riemann-Hurwitz formula 2 — 2g =
2r?=! — q==1ra=1, For the calculation of the self-intersection number —E? of E, see
the proof of Theorem 5.2 in §5. Let W be a small open neighborhood of 0 in C? and
let W — Y be the holomorphic map sending (z1,x2) to (z¢,z4) for positive integers
a and b. Then the normalization W of W Xy Vg,r is irreducible, becausgv pLomgy, :

Y4, — Y does not ramify along [z1] and [22]. Hence the projection 7 : W — W to
W is a Galois covering such that Gal(W /W) ~ H, . and that B, = ¢{z}?— 28" = 0}.

Finally, we construct examples whose covering transformation groups are isomor-
phic to the symmetric group S, of degree 4.

Proposition 3.6. Let D = 2D;. Assume that there exist holomorphic functions
o, B, v and § on Y such that a(0) = B(0) = 0, that § # O, that f; = o? — 3% and
that 62 = v3 + 2a — 33y. Let g = a — wy, let h = {hy, hy}, where hy =y +3g + 3/3
and hy = v+ p3g + p28/9, and let s = {2,2}. Then hy, ho are holomorphic functions
onY g3 and if (Y 43)n,s is irreducible, then iomy 30mhs : (Y g3)ns — Y is a Galois

covering such that Bgor, sor, , = D and that Gal((Y g3)ns/Y) ~ Ss.

3 3

Proof. Since 77*g = ﬁ— = <£) R Q is a holomorphic function on Y, 3 and
g g g

Y, 3 is a Galois covering of Y whose covering transformation group is generated by

two elements 7, 3 and ) satisfying g 3007 = 57 07,3 and 517y 3 = 724071. Here we

may assume that 51" g = (3/g. Then o1 hy = hy, Tashy = hy and 01 hy = 7} 3hg =

2
(ﬁ) hiha, because hihaTy shy = +3° +(8/9)° —3v9(8/9) = v* + (@ —w1) +
(a+w1) — 3By = 62. Hence (?g,g)h,s is a Galois covering of Y. Moreover, we easily
see that Gal((Y g,3)n,s/Y) is isomorphic to the group (o, 7, A\, A2) generated by o, 7,
A1 and ) enjoying the relations 02 = 73 = \2 = A2 = ¢, o7 = 720, 01 = A\ )20,
OA2 = A0, TA1 = AT, TA2 = A1 Aa7 and A\ A2 = A2A;. On the other hand, Tg,3
ramifies only along [*a] N [z*B] ( € &~ *(Sing(D1)) ), and 7y, ¢ ramifies only along
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{my sm*y = § = B/g}U{m; si*y = p3g = p36/9}U{m; 37"y = p3g = p3fB/g} which
is contained in (7} 37* f1] N [} 37" (e — )] N [0]. O

EXAMPLE 3.2. When n =2, a = 2%, 3 = 20, v = 0 and § = v/22; satisfy the
relation 62 = 43 + 2o — 3037. There exists an embedded resolution Z — Y of D,
whose exceptional set is as (i) in the following picture. Then Z xy Y — Z ramifies
along thick lines. Hence there exists a resolution Z of Y whose exceptional set is as
(ii). Then Z x5 Y3 — Z ramifies along thick lines in (ii). Hence contracting the
exceptional curves of the first kind in (blowing up of Z at two points) x5 Y g3 (iii),
we obtain a resolution Z of Y3 as (iv). Then Z S (?973)‘],5 — Z ramifies along

thick lines in (iv). Thus we obtain a resolution of (Y 3), _ as (vi) contracting the

h,s
exceptional curves of the first kind in Z X7, § (?913)}1’5 ).

(1) ~ (i) (iii)
-4 ;Dl 4=2 -2 =2 -2 —2 —2 -2
| P2 - | -2 -2 -

Let W be a small open neighborhood of 0 in C? and let W — Y be the holomorphic
map sending (x1,27) to (¢, %) for positive integers a and b. Then the normalization
W of W Xy ( 4,3)h,s 18 irreducible. Hence the projection 7 : W — W to Wisa
Galois covering such that Gal(W /W) ~ S; and that B, = 2{3:4“ — 3% =0}

EXAMPLE 3.3. When n =4, a = 25(225 — 9212923 + 272%2§ + 2722 — 722,23),

B =2%(2% — 32123+ 122%), v = 32% — 82 and § = 3v/3(2} — 42122 + 823) satisfy the
relation 02 = v3 + 2a — 33 for any positive integer a. Let X be the subvariety of C®
defined by z;722314 — 2 = 0 and let » : X — C8 be the holomorphic map sending
(1,2, %3, T4, Ts5) to (21, 22, 23, 24, W1, U1, U1, U2), Where 21 = T1+To+T3+24, 22 =
21T2 + 123+ Z1T4 + T2T3 + T2Tg +T3Ty, 23 = T1T2T3 + T1T2T4 + T123T4 + T2T3T4,
24 = 35, wi = 2°3V/-3 (Ha€A4 T3 )% 2%e3) — loea, z§(1)$§(3)%(2)), v =
4 ((251332 + z324) + p3(z173 + T274) + P§($1CC4 + $2$3)), U = \/§($1+$2—$3—$4)
and ug = v/3(x, — 2 — 3 +x4). Then ¢ is one-to-one on a Zariski open set of X and
its image is the closure of the subvariety of C8\ {v; = 0} defined by w? —(a?—33) =
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—(a+w) =u? - (’y+v1+B)=u2 (v + psv1 + =£-) = 0 for the above a,

p3v1

[5’, 7 and 6. Hence (Y, 3)n s is irreducible and isomorphic to X.

Proposition 3.7. Let D = 2D,. Assume that there exist holomorphic functions o
and 3 on'Y such that a(0) = B3(0) = 0 and that f; = o® — 33. Let g = a + wy, let
h = {hy, ha}, where hy = w1(§G—B/3) and hy = w1(p3g—p30/9), and let s = {2,2}.
Then hy, hgo are holomorphic functions on Yg 3and Lo Ty 30 Mhg (Yg 3)h,s — Y is
a Galois covering such that Bgor, jor, , = 4D1 and that Gal((Y g,3)n,s/Y) ~

Proof. We see in the same way as in the proof of Proposition 3.6 that h; and
hy are holomorphic functions on Y, 3 and Y, 3 is a Galois covering of Y whose
covering transformation group is generated by two elements 7,3 and E{ satisfying
Tg3001 = 010Tg3, 01Tg3 = 7'235'7 and 01"g = 8/g. Then o1 hy = hy, 7} 3h1 = hy

and o1 hy = Ty 3hy = (‘h/—f,%) hyhs, because hihoTyshy = w (g3 — (ﬁ/g) ) =

w3 ((@+w1) — (@ —w)) = 2w}. Hence (Y,3)n,s is a Galois covering of Y, if
it is irreducible. Moreover, we see in the same way as in the proof of Proposition
3.6 that the covering transformation group is isomorphic to S4 and 7,4 3 ramifies only
along [f*a] N [ﬁ*ﬂ] ( ¢ @ !(Sing(D;)) ). On the other hand, 7, s ramifies only
along (ﬁo7rg,3)_ (D1), because hihaTy shy = 2w%. Let D' be an irreducible com-
ponent of D;. Then the number m of the irreducible components Cy, ... and C,, of
(mo 7rg,3)_1 (D') is equal to 1 or 3. If m = 1, then the vanishing order of h; along C;
is equal to % Let ¢; be the vanishing order of h; along C;. Then the vanishing order
of 2w} = h1h27' 3ho along C; is equal to 4 = ¢; + ¢z + c3, because 7430, = Cs,
T4,3C2 = C3 or Tg,3Cl = (3, 74,3C3 = C,. Hence two of ¢, cz and c3 are equal
to 1. Therefore, m ¢ ramifies along C; + C2 + C3 with the ramification index 2 and
(Y 4.3)ns is irreducible. O

EXAMPLE 3.4. When n = 2, a = z; and 3 = 2z, we see as in Example 3.2

that (Y4 3)n,s is isomorphic to the singularity obtained by contracting a non-singular
rational curve with the self-intersection number —4.

(ii)
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Let W be a small open neighborhood of 0 in C? and let W — Y be the holomorphic
map sending (z;,z2) to (zf, ) for positive integers a and b. Then the normalization
W of W xy (79,3)},,5 is irreducible. Hence the projection 7 : W — WtoWisa
Galois covering such that Gal(W /W) ~ S; and that B, = 4{z2* — z3* = 0}.

4. Galois coverings whose covering transformation groups are isomorphic to
D239 Q9 A4 or 84

Let 7 : X — Y be a Galois covering of a normal Stein analytic space Y.

Theorem 4.1. Let r be an odd integer greater than 1. If Gal(X/Y) ~ Da,
then there exist holomorphic functions o and 8 on'Y such that X ~ (Y52)4,r, where
f=a?2—-p"and g=a+ f Moreover, if Y is non-singular and if B, is irreducible,
then there exists a holomorphic function v on'Y such that f = v%f,, where f is a
defining equation of (Br),..q-

Proof. Gal(X/Y) is generated by two elements ¢ and 7 enjoying the relations
0? =7" = e and o7 = 7 10. Then there exists a holomorphic function g; on X such
that 7*g1 = p,-g; and that X ~ (X/(T))g;r ,» by Proposition 2.1. Let g2 = 0*g1. Then

2

0*Gh = G and 7Ga = 70" Gi = 0" (r-1)*Gi = pr'Ga. Hence a = L(Gi" + ") and
B = g1g> are Gal(X/Y)-invariant. Let f = (g1" — g2"). Then f?> = o® — 8" and

f # 0. Otherwise, g1/g2 is a non-zero constant. However, it contradicts the fact that
7(91/G2) = p(g1/§2). Since 7*f = f and o™ f = —f, X/(1) = Y5, ,.

If Y is non-singular and if (By),., is an irreducible divisor defined by f; = 0,
then X/(7) is isomorphic to the hypersurface of C x Y defined by w? — f; = 0. Hence
v = f/w is a (Gal(X/Y)/(r))-invariant holomorphic function on X/(7). O

Since g77,9 = (o + f)(a — f) = [, my,r ramifies only along [r},a] N [f] =
[7} 0] N [1} ,6]. Let D be an irreducible divisor on Y contained in [a] N [3], let a
and b be the vanishing order along D of o and f3, respectively. When 2a < br, the
vanishing order of f along D is equal to 2a. Hence then 7¢ 2 does not ramify along D.
Moreover, the vanishing orders along ﬂf_;(D) of g and 77 ,g are not smaller than a and
at least one of them is equal to a. Hence 7, , ramifies along w;;(D) with the index
m. When 2a > br, ms o ramifies along D with the ind_ex m and g ,
does not ramify along W;é(D) In the case of the example Y ,,/(o27°) following

r—1

Proposition 3.4 , a = 212,27 and (3 = 2 satisfy the condition of the above theorem
and [Y, ,,/(027°) — Y] ramifies along the divisors defined by 2% — 22 = 0 and 2z =0
with the indices 2 and r, respectively.

In the manner similar to the proof of the above theorem, we can show the follow-
ing.
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Theorem 4.2. If Gal(X/Y) ~ Dy,, then there exist holomorphic functions f1, fa
and 3 onY such that fi—fa = " and that X ~ (Yiy, £,},{2,2})g,r» Where g = f1+ fo.

* ~ ~ ~ ~

Since g (T{Zfl,m,{z,?}) 9= (fi+ f2)(f — f2) = fr — fa = B", my,, ramifies
only along [f1] N [f2]. Let D be an irreducible divisor on Y contained in [f1] N [f2],
let a; and ag be the vanishing orders along D of f; and f, respectively. If a; < a2,
then a; is a multiple of r, because f; — fo = (". Assume that a; < ap. If at
least one of a; and a3 is odd, then 7, r,} (2,2} ramifies along D and 7, , ramifies
along ﬂ'{—flh f2} {2’2}(D) with the index m. While, if a; and aq are both even,
then 7¢s, £,3,(2,2) does not ramify along D and 7, ramifies along ﬂ{_fll,fz}y{z,z}(D)

with the index For example, if Y = C2, if f; = 222 and if fo =

g.c.d.(zl/‘;),r)‘
(21 — zg_z)zg, then 7 ramifies along the divisors defined by 2; = 0, z; — zg‘2 =0

and z; = 0 with the indices 2, 2 and r, respectively.

Theorem 4.3. If Gal(X/Y) ~ Q, then there exist holomorphic functions f1, fa
and 3 on Y such that 32 = f1fo(fo — f1) and that X ~ (Y{fl,fz},{2,2})g ,» Where

9=h+fa

Proof. Gal(X/Y) is generated by two elements o and 7 enjoying the relations
o* = e, 72 = 02 and o7 = 703. There exists a holomorphic function h; such that
oc*h, = \/—_].hl Let hg = 7*h;. Then o*hy = -—\/—_lhg, 7*hy = —h;. Hence
B = 3hiha(ht — h3) is a Gal(X/Y)-invariant holomorphic function on X. Let § =
%(hl + hs). Then (02)"§ = —§. Hence X =~ (X/<a2))52,2. Let f; = hihy and

let fo = 2(h? + h3). Then o fi = fi, L= —fi, o*fs = —iz ancﬁiy ™*f2 = fo.
Hence (X/(0?)) =~ Y{}vz ey On the other hand, §> = f; + f» and (% =
1 »J2 ) )

RRGE -/ 0

* 2 ~
Since g (T{Ifl,fz},{2,2}) g=fo—fi= (?Tﬁfj) , Tg,2 Tamifies only along [f1] N

[f2]. Let D be an irreducible divisor on Y contained in [f1] N [f2], let a; and ay be
the vanishing orders along D of f; and fs, respectively. If a; < ag, then ay is even,
because f1 fo(f1 — f2) = 3. Assume that a; < ap. If @ is odd, then T, f2),{2,2} and
7,2 Tamifies along D and "{_fll,ﬁ},{z,z}(D)’ respectively, i.e., T(¢, f,},{2,2} © Tg,2 Tam-
ifies along D with the index 4. While, if a; is even, then m(¢, r,} (2,2} does not ramify
along D and 7,2 does not ramify or ramifies along w{_fll’ £}, {2’2}(D), accordingly as
a; is a multiple of 4 or not. For example, if Y = C3, if fi = 2222(21 — 22)2% and if
f2 = z2123(21 — 22)23, then Ty, f,} (2,2} © Tg,2 ramifies along the divisors defined by
21 =0, 22 =0, 21 — 22 = 0 and 23 = 0 with the indices 4, 4, 4 and 2, respectively.

Theorem 4.4. If Gal(X/Y) ~ A4, then there exist holomorphic functions fi,
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fz, a, B and vy on' Y such that % = o3 + fi + fo = 3ay, that v = ffy and that
~ (Y11,8) (g1.00) (2.2 Where g1 = a+ fi +7/F1 and g, = o + psf1 + p3v/ fr.

Proof. Gal(X/Y) is generated by three elements 7, A\; and A, enjoying the re-
lations 72 = A2 = A3 = e, TA; = AT, TA2 = A A7 and Ay = Ao\, Let
g1 = go + A5G0 — Ajgo — A1A34o for a suitable holomorphic function gy on X. Then
91 #0, \jg1 = —¢1 and A3g1 = g1. Let g, = 7*¢7 and let g3 = 7*g2. Then \jgz =
g2, )\gg} = —g> and A} g3 = A\5g3 = —g3. Hence X ~ (X/(/\l,/\2>){ 2 %) g9y 20D

(91 +g2 +g3 ) 8= g19293 are Gal(X/Y) invariant. Let f; = (512+p3g~22+
0333 ) and f, = (91 + p3ga’ +p3g3 2). Then 7*f; = paf1 and 7* f5 = p3f2 Hence
v = fifa fr = fl and f2 f2 are Gal(X/Y)—invariant and X/(A1,A2) ~ Yy, 3

On the other hand, 8% = G:°G2°G3” = (a+ fi + fo) (a+psfi+p3f2) (a+p3 fr+psfa) =
ad + fi + fo — 3ay. O

For example, if Y = C?, then f; = —22(22 — 21), fo = —21(2% — 21)%, a = 22,
B = 22(221 — 22) and v = 21 (2% — 21) satisfy the relations 32 = a3 + f; + fo — 3ay
and 73 = fi f». In this case, X is isomorphic to the singularity obtained by contracting
a non-singular rational curve with the self-intersection number —6.

Theorem 4.5. If Gal(X/Y) ~ Sy, then there exist holomorphic functions o, 3,
v and § on'Y such that 6 = v® + 20 — 30y and that X ~ ((nyg)g,g){h1 ha} {22}

where f=a®> — 33, g=a+ f, hy =v+§+ B/§ and hy = v + psg + p2B/3.

Proof. Gal(X /Y) is generated by four elements o, T, A1 and Ay enjoying the
relations 02 = 73 = A2 = A\ = ¢, o7 = 7~ 0', O = AMA20, OXg = Aoo, TN =
AT, TA2 = AAo7 and Ao = A2)A;. Let h1 = hg + 0*hg + A5hg + o *Asho —
ATho — )\ o*hg — )\ /\*ho AT *A;ho for a suitable holomorphic function ho on X.
Then h1 3:“ 0, )\,l.},ll = —hl and o h1 = )\2h1 = h1 Let h2 = T*hl and let h,3 =

*hz Then )\*hz = hz, )\zhz = —hg and A} h3 = )\2h3 = -—h3 Hence X ~
(X/(,\l,/\g)){h1 22y Moreover, since o*hy = o*r*h; = (12)"o*h; = hs
and 0*h3 = hy, we see that y = %(Ez + 7[;2 + EQ) and & = hyhahs are Gal(X/Y)-
invariant. Let §; = %(7712 + p3ha + pshs ) and G5 = %(EZ + psha + p3hs ).
Then \{g; = g; (1 < 4,5 < 2),0%g1 = G, 7°g1 = p3g1 and 7*gs = p3gs. Hence

= %(g~13 + %) and B = §1 g are Gal(X/Y )-invariant. Suppose that §; = 0. Then
g2 = 0 and hence 7172 = 71;2 = %2. It contradicts the fact that )\{(EI/E;) =—hy/ ha.
Therefore, X/(\1, ) =~ (X/<T”\1’)‘2>)g}§3,3‘ Let f = 1(gi® — ). Then f is

(1,1, A2) invariant and o* f = —f. Hence X/{1, A1, Ag) ~ f2 ,- On the other hand,
P, S, S

2 =hihahs = (v +G1+3)(y + psdi + P2G) (Y + P3G1 + psda) = ¥° + Gi° +
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G —3GiGa =" +2a 38y, fP=a*— B and Gi® =a+f. O

In the case of Example 3.4, a = (22 — 28)%, B = —(22 — 23)2z2, v = 0 and
8 = V/2(2} — 23) satisfy the condition of the above theorem.

5. Two dimensional Galois covering singularities

First, we show the following:

Theorem 5.1. Let p, g, v be positive integers with g.c.d.(p,q) = g.c.d.(¢,T) =
g.c.d.(r,p) = 1 and let D, be the divisor defined by 2z} — 23 = 0 on a simply connected
open neighborhood Y of 0 in C2. If 1 : X — Y is a Galois covering of Y with
B, = 1Dy, then Gal(X/Y) is cyclic or unsolvable.

Proof. LetY,Y, X, G and C be as in Section 1. Then X/C ~ Y ~ Y, because
By is irreducible. Hence if Gal(X/Y) is an Abelian group, then it is cyclic. Suppose
that Gal(X/Y’) is solvable and not cyclic. Then C is a non trivial solvable group.
Hence by Proposition 2.1, there exist holomorphic functions g, ..., g; on Y and pos-
itive integers 1, ..., 7; such that C/[C,C] ~ Z,, & --- ® Z,,, that Yg ~ X /[C,C]
and that mg, : Yg, — Y does not ramify on Y \ @~1(0), where g = {g1,...,9;}
and r = {ry,...,7;}. On the other hand, since Y is isomorphic to the hypersurface of
Y x C defined by w”™ — (2} — zJ) = 0, we can describe a resolution of Y in the fol-
lowing way ( see §6 of [3] and 1.6 of [2]). There exist integral vectors sq = (1,0,0),
81, *** Sk» to = (0,1,0), t1, - -+, t, uo = (0, 0,1), u1, -+, Um, v = (qr,7p,pq) and
negative integers as, - - -, ag, b1, - -+, by, ¢1, -+, ¢, d such that s;_1 +a;8; +8;41 =0
Q1 <i<k)thatt, 1 +bt;+t;x1 =00 <i <), that u;_1 +ciu; + ui41 =0
(1 £ i < m) and that sg + t; + Uy, + dv = 0, where sg4+1 = ti4+1 = Um+1 = v. Then
there exists a resolution v : Z — Y of Y such that the exceptional set v~!(z~1(0)) =
D+YF  A+Y!_ Bi+Y T, C; consists of rational curves, where A2 = a;, B = b;,
012 = Ci, D2 = d and AiAi—i—I = BiBi+1 = Cici+1 = AkD = BlD = CmD = 1.
Since mg, does not ramify on Y \ z~'(0), we can express [v*g;] = D’ + r; D",
where D' = d'D + Y% ajA; + X', b/B; + X7, ¢,C; for some positive integers
a;, b, cj, d. Then A;D'(= aj_, + a;a; + aj,) = B;D'(= b,_; + bib + b)) =
CiD'(= cj_; + cicy + ¢j.y) = DD'(= a}, + b + ¢, + dd’) = 0(mod r;), where
ag =by =cop =0and a; , = b, =c,,, =d. Let (, ) be the ordinary inner
product of R?, ie., {(s,t), (u,v)) = su + tv and let = be the element in Q> defined
by (z,v) = d’, (z,sk) = a}, and (z,t;) = b]. Then (z,un) = c,,(mod 1), because
0= (x,8x +ti + Um + dv) = aj + b] + (z,un) + dd’. In the same way, we have
(@, s:) = a}, (x,t;) = b} and (z,u;) = ¢;(mod 7). Since (z, so) = (z,t0) = (z,up) =
0(mod 1), we see that z € r1Z3. Hence a, = b, = ¢, = d’ = 0(mod r;). Therefore,
the projection Z X3 Yy, », — Z does not ramify. However, Z is simply connected, a
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Ug ¥

contradiction. 0

We make preparations for later convenience. Let N be a free Z-module of rank 2
and let Ng = N ®z R ~ R?. For a rational cone o in Ng, we denote by X (N, o),
the torus embedding Tvemb({faces of o}) corresponding to the fan consisting of the
faces of 0. Let u and v be primitive elements in NV, let O be the convex hull of
((R>ou+R>ov) \ {0}) NN and let vo = u, v1, ..., v = v be in this order the points
of N on the compact faces of 0. Then there exist integers a; smaller than —1 satisfying
vi—1+a;v;4+v;41 =0fori =1,...,k—1. We denote by LB(N,u,v) and CF(N,u,v),

the ordered sets {vo,v1,...,vx} and {a1,as,...,ax—1}, respectively. There exists a
resolution of X (N, R>ou + Rx>ov) such that the exceptional set is a chain of rational
curves with the self-intersection numbers a1, as, ..., ax—1 (see Proposition 1.19 of [2]).

Moreover, we note that if N = Z2, vg = u = (1,0), vg_1 = (s,t) and vy, = v = (g, p),
then

[[a1,az,...,ak-1]] = P ) and [[ak—1,0k-2,...,01]] = P

(see p25 of [2]). On the other hand, m(X(Z2%,0) \ orb(c)) ~ Z,, where 0 =
R>0(1,0) + R>0(q, p) (see Proposition 1.9 of [2]).

Lemma 5.1. Assume that p is a multiple of a positive integer r and let N =
Z(1,0) @ Z(0,7). Then X := X(N,0) ~ X (Z%, R>0(1,0) + Rxo(q,p/7)) is a cyclic
covering of X(Z?,0) with the index r ramifying only at orb(c). Conversely, such a
covering does not exist except those isomorphic to X.
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Proof. The linear map sending (1,0) and (0,1) to (1,0) and (0,r), respectively,
induces an isomorphism of fans from (Z?, {faces of R>0(1,0)+R>0(g,p/r)}) to (N,
{faces of 0}). Hence X(N,0) ~ X(Z? Rxo(1,0) + R>0(g,p/r)). The inclusion i :
N — Z2? gives rise to a covering map i, : X(N,0) — X (2Z2,0) with Gal(X (N, o)/
X(Z2,0)) ~ Z%/N ~ Z, (see Theorem 1.13 and Proposition 1.25 in [2]). This map
ix does not ramify along T2, orb(R>0(1,0)) and orb(R>0(g,p)), because (1,0) and
(g,p) are points in N. Hence i, ramifies only along orb(c), because X(Z2,0) =
Tz2 U orb(R>0(1,0)) U orb(R>o(g,p)) U orb(o). Next, assume that p = r. Then X
is a cyclic covering of X (Z?2, o) with the index p and X \ orb(o) is simply connected.
Hence any Galois covering X of X (Z?, o) ramifying only along orb(c), is isomorphic
to the quotient of X by a subgroup of Gal(X /X (Z2,0)) ~ Z,, which is isomorphic
to X(Z(1,0) ® Z(0,s), o), where s = |Gal(X/X(Z?,0))|. 0

Let 7 : X — Y be a Galois covering of a simply connected open neighborhood Y
of 0 in C™ such that Gal(X/Y") is isomorphic to the dihedral group Dy, of order 2r.
Then there exists at least one irreducible component B; of B, = r1B; + --- + B
along which the ramification index r; of 7 is equal to 2, by Proposition 1.1. Hence if
B, is irreducible, then r; = 2.

Theorem 5.2. Let D = 2D,, where D, is the divisor on a simply connected
open neighborhood Y of 0 in C? defined by 2¥ — z3 = 0 for an integer p > 0 and
for an odd integer q > 0 with g.c.d.(p,q) = 1. Then there exists a Galois covering
m: X — Y such that B, = D and that Gal(X/Y) ~ Da,, if and only if p is even
and r is a divisor of q. Moreover, then there exists a resolution of X, the dual graph
of whose exceptional set is as follows:

o Co— - —Ce—Co)

Coy— .
oo
~by @ —bn,

Here,

(SIS

[[b1,b2,...,b,]] = : (q_ [p] g)v [ler, e, yem]] = %_ (p— [%] g)’

0 ifg=r
[[cﬂ“"'vcl”_l ifg>r

)

2
d:2a+rﬂ+—r, az{
pq
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ﬂ:{ 0 ifp=2
[(br,- -, 01]]7Y ifp>2

REMARK 5.1. The value of d in the above theorem may be equal to 1. For
example, if p=2and g =r, or if p =2, ¢ = 15 and r = 3, then d = 1. Hence the
resolution in the above theorem may not be minimal. Especially, if p = 2 and q = 7,
then X is non-singular. Also in the following two theorems, the resolutions may not
be minimal.

Proof of Theorem 5.2. If the condition in the theorem is satisfied, then o = zf /2
and 8 = 22" satisfy the condition of Proposition 3.1.

Suppose that p is odd. Then g.c.d.(p,q) = g.c.d.(q,2) = g.c.d.(2,p) = 1. Hence
no Galois coverings satisfying the condition of the theorem exist, by Theorem 5.1. Let
LB(Z?,(1,0),(q,p)) = {vo,v1,--.,vk}, CF(Z?,(1,0),(q,p)) = {a1,az,.-.,ak-1},
LB(ZZ, (q7p)> (07 1)) = {Uk7 Uk+1s .- vvl-f-l}’ CF(Z27 (Q7p)7 (0’ 1)) = {ak+1,a’k+2’
...,a;}. Here we recall that vo = (1,0), vy = (q,p), vi+1 = (0,1) and that a; are
integers smaller than —1 and satisfy v;—1 + a;v; + v;41 = 0 for 1 < i < [,i # k.
Since {vk_1,vx} and {vk,vk+1} are bases of Z2, there exists an integer ay satisfying
VUg—1 + axVk + vg+1 = 0. Hence by Proposition 1.1. 10 of [2] and [1], we obtain an
embedded resolution A : Z — Y of D; such that the exceptional set £ = Zi:l E; is
a chain of non-singular rational curves with the self-intersection numbers E? = a; for
1 <4 < and that b: - By = 1, where 51 is the proper transformation of D; and
E,F;y; =1for 1 <i<1l—1. Since at least one of aj, az, ... and a; is equal to
—1, we see that ap, = —1. On the other hand, the vanishing order ¢; of \*(z} — 2%)
along F; is equal to (v, (0, q)) or (v;, (p,0)), accordingly as 2 < k or ¢ > k. Let Y be
the hypersurface of Y x C defined by w? — (2} — 2§) = 0, let Z be the normalization
of Y xy Z,let A\: Z — Y, v: Z — Z be the projections and let E = v~1(E).
Since c; are even for all ¢ > k, we see that v does not ramify along F; for all ¢ > k.
Hence for each i > k + 1, the inverse image v~!(E;) of E; consists of two irreducible
components, which we denote by F; and F]. Then 01F; = F] and we may assume
that F;F; ;1 = F{F} ; = 1 and that F;F], | = F{F;;; = 0for k+1 <14 <[—1, where
o, is the automorphism of Z induced by the automorphism of Y sending (21, 22, w1)
to (21, 22, —wy). On the other hand, for each ¢ < k — 1, we see that at least one of c¢;
and c;41 is odd. Otherwise {v;, v;41} is not a basis of Z2, because q is odd and v; =
(*,¢;/q) for 1 < i < k. Hence v ramifies along at least one of E; and E; . Therefore,
F; = v~1(E;) is irreducible for each i < k. Clearly o1 F; = F;. Now assume that there
exists a Galois covering m : X — Y such that B, = D and that Gal(X/Y) = Da,.
Then there exist holomorphic functions g and h on Y such that X is isomorphic to ?g,
and that (o07g)g = A", by Proposition 2.1 and Corollary 2.1. Since 7, : f’g, —Y
does not ramify on Y \ {0}, C := [A\*g] = ZLI d;F; + Zizk_,_l(d,—Fi +d}F])(mod r)
for some integers d; and d;. Note that since D is irreducible, r is odd, by Proposition
1.1 and that 0;C+C = [\*(gotg)] = S5 2di F+ 3,1 (di+d) (Fy+F))(mod ).
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Hence we see that d; = O(mod r) for i < k. Let s = g.c.d.(dk41,---,d;,7). Then
d; = 0(mod s) for k+ 1 < i < I, because d; + d; = O(mod r). Hence the cyclic
covering Z Xz Yg v/ (Tr) — Z with the index s does not ramify. However, E is
simply connected Hence s = 1. On the other hand, since CF; = 0(mod r) and
F? = E?, we have d;_1 +a;d; + d;4+1 = 0(mod r) for k+1 < i <, where d;+1 = 0.
Since ((d;,0),vi4+1) = 0 and ((d;,0),v;) = d;, we see that {(d;,0),v;) = d;(mod 7)
for k < ¢ <[ —1. Hence g.cd.(d,r) = 1. Therefore, ¢ = O(mod r), because
qd; = di, = 0(mod 7).

Let vg—1 = (s,t) and let vy = (u,v). Then sp—~tg=qu—pu=1, s+ u =
g and t + v = p, because vg_1 — vk + vg+1 = 0. Let LB(N,(1,0),(g,p)) =
oo = (1,0)v3, - vm = (8,8), 004y = (¢,p)} and let CF(N, (1,0),(¢,p)) =
{b1,b2,...,b,}, where N = Z(1,0) ® Z(0,2). Then [[by,bs,...,b,]] = T[E]E—)

by Lemma 5.1, and s'p — t'q = 2. Hence ls;—si = 2=t and 2up_; = 2 o

)
ot ¥ ¢ Z, because {vg,v,} is a basis of N and 2v;_; 6 N. More—

Here we note that
over, 2tpt > 0. Otherwme, vl = 2up_1 + (—gt;—t')vk is contained in the interior of
the convex hull of ((R>0(1,0) + R>o(q,p)) \ {0}) N N, because 2v_1,vx € N.
Also note that t' = 0 (, i.e., n = 0) if and only if p = 2. While, if ¢/ > 1,
then & = [[bn,...,b1]]. Let w; = jug + o), for j = 0,. 2tpt. Then v; +

Wae—¢ = Wgz—v and Wj—1 +wj+1 = 2wj fOI‘j = 1,...,% — 1. Let ¥ =

-1
{facpes of R>ov; ii)+- R>0vi41]0 <4 < k —1}, let A = {faces of R>ov; + R>ovj [0 <
i < n}, and let © = {faces of R>ov] + R>ovj,;,faces of R>ow; + R>ow;j;1]|0 <
i<n-10<j < 2t;t'}, where wai—v |
E, + E; + - -+ + Eg_; is isomorphic to ;n open set of Tzzemb(X), the point Ey_1 F,
corresponds to orb(R>ovk—1 + R>ovk) by this isomorphism and v~!(U) is isomor-
phic to an open set of Tiyemb(X), by Lemma 5.1. Since 2vx_1 = wa_v, O as

= vg. Then some neighborhood U of

well as ¥ contains R>ovx—1 + R>ovi. Hence the restriction of the biratiponal map
Tnemb(©) — Tvemb(X) to the neighborhood Tyemb({faces of R>qvk—1+R>0vk})
of orb(R>ovk—1 + R>ovg) is biholomorphic. While, we have a holomorphic map
Tnemb(6) — Tyemb(A), because © is a subdivision of A. Hence replacing v—1(U)
by an open set of TNemb(A), we obtain a resolution of Y the dual graph of whose
exceptional set is as follows.
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Since the map Txemb(©) — TNernb(A) is the composite of %Tftl times blow up

at orb(R>ov, +R>ov;,, 1), we have d’' = 2— p . Let LB(Z(r,0)®Z(0,1), (¢,p), (0,

1)) ={(g,p), (v,v"),...,(0,1)} and let CF(Z(r,0)© Z(0,1), (¢, p), (0, 1)) = {1, c2,

.+y ¢m}. Then [[01,02,...,cm]] = ﬂl’_‘%@m and 7(u,v) = ”’;”' (g,p) + (u',2"),

because qv’ — pu’ = r and qu — pu = 1. Hence we obtain a resolution of X the dual
graph of whose exceptional set is as in the proposition and

2t — t/ - 2t —t/ 2 2v’

d = (2- AL P P20 Y

p p p p p

2 tl !/ t/ I 2

= 2r——(t+v)r+—r+2(u—+i)=r—+2u—+—r.

p p q pq p q pq
Here we note that u' = 0 if and only if ¢ = r and that if v/ > 1, then % =
[[cm,“.,cl]]. D

Next, we consider the case that Gal(X/Y) ~ A4. Let D = r1D;, where r is an
integer greater than 1 and D; is a divisor on a simply connected open neighborhood Y
of 0 in C? defined by 27 — 23 = 0 for positive integers p and q with g.c.d.(p,q) = 1.
Here we may assume that g is not a multiple of 3. If r; = 3, if p and ¢ are multiples of
3 and 2, respectively, then there exists a Galois covering 7 : X — Y such that B, = D
and that Gal(X/Y) ~ A4, as we see in Example 3.1. Conversely, let 7 : X — Y be
such a Galois covering. Then X/[G, G] is isomorphic to the hypersurface ¥ of ¥ x C
defined by w} — (2} —2§) = 0, where G = Gal(X/Y), and r; = 3, because |g| = 3 for
any element g in G\ [G, G]. Hence there exist holomorphic functions g;, g2 and mero-
morphic functions hj, he on Y such that Y{gl g2} {22} = X, that ”191 = h? and that

7192
9192

sending (21, z2,w1) to (21, 22, p3w1). Then g1(07g1) ((03)*g1) = (glgzhl(UThl)h2)2-
On the other hand, we can construct a Gal(Y /Y)- -equivariant resolution A : Z-Y
of Y (see §3 of [4]). Then [)\*gl] S eE; + 2C for some positive integers c;
and for a certain divisor C on Z, where > E; is the exceptional set of A\ and each
irreducible component of C is not contained in Y. E;, because (g, g,3,{2,2} does
not ramify along divisors. Hence () c¢;E;)E; = O(mod 2). Moreover, we have
Mg1] + [Motg1] + [\*(02)*g1] = 0(mod 2). Hence we can show the following theo-
rem, in the manner similar to the proof of Theorem 5.2.

= h3, by Proposition 2.1 and Corollary 2.1, where o is the automorphlsm of Y

Theorem 5.3. Let D = ryD;, where r1 is an integer greater than 1 and D;
is the divisor on a simply connected open neighborhood Y of 0 in C? defined by
28 — 23 = 0 for positive integers p and q with g.c.d.(p,q) = 1 the latter of which is
not a multiple of 3. Then there exists a Galois covering w: X — Y such that B, = D
and that Gal(X/Y) ~ A4, if and only if r1 = 3, p and q are multiples of 3 and 2,
respectively.
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The dual graph of the exceptional set of a resolution of X in the above theorem is
as follows:

Here,

[[b1, b2, .., bal] = : (- [2]3) [[e1, 2, .- em]] = (- [2]7)

if g=2
if ¢ > 2

,

d=6a+4ﬂ+2,a={ 0 1
bq [[Cm,-- ’cl]]

- 0 ifp=3

ﬁ‘{ [lba, -+, ba]) " ifp >3
Finally, we consider the case that Gal(X/Y) ~ S4. Let D = r; Dy, where r; is an
integer greater than 1 and D; is a divisor on a simply connected open neighborhood Y
of 0 in C? defined by 27 — 23 = 0 for positive integers p and q with g.c.d.(p,q) = 1.
Here we may assume that ¢ is odd. If r; = 2 ( resp. 4), if p and ¢ are multiples
of 4 (resp. 2 ) and 3, respectively, then there exists a Galois covering 7 : X — Y
such that B, = D and that Gal(X/Y) ~ S,, as we see in Example 3.2 ( resp. 3.4).
Conversely, let 7 : X — Y be such a Galois covering of Y, let G = Gal(X/Y),
let G; = [G,G] and let G; = [G1,G1). Then X/G> is a Galois covering of Y such
that Gal((X/G3)/Y) ~ Dg and that Bix/G,—y] = 2D1, and r; = 2 or 4, because
Bix/G,—y) = 2D and |g| = 2 or 4 for any element g in G\ G;. Hence p is even and
q is a multiple of 3, by Theorem 5.2. Moreover, there exist holomorphic functions g;
and g2 on X/G3> such that (X/G2)(g, ¢,},{2,2} = X. We see by a similar consideration
as in the proof of Theorem 5.2 that such functions do not exist, if 7y = 2 and if p is

not a multiple of 4. Thus we have:

Theorem 5.4. Let D, be the divisor on a simply connected open neighborhood
Y of 0 in C? defined by 2 — 2§ = 0 for an integer p > 0 and for an odd integer
g > 0 with g.c.d.(p,q) = 1. Then there exists a Galois covering m : X — Y such
that By = 2Dy ( resp. 4D, ) and that Gal(X/Y) ~ Sy, if and only if p and q are
multiples of 4 ( resp. 2 ) and 3, respectively.
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When B, = 2D; (resp. 4D, ), the dual graph of the exceptional set of a resolu-
tion of X in the above theorem is as follows:

&6 B 6= 00

where m = 6 ( resp. 12 ),

P p
([b1,be,...,ba]] = -g—(qj[%] §) resp. g—(qj[%] g) ;
3

[[er,e2,.- - em]] = g_(p_ [%3] g), d:8a+mﬂ+l2)—:,

o= 0 ifg=3 4= 0 if p =4 (resp. 2)
T llem,yell™ ifg>3 77 T by, ba)]7t if p>4 (resp. 2)
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