

Title	Galois covering singularities. II
Author(s)	Tsuchihashi, Hiroyasu
Citation	Osaka Journal of Mathematics. 1999, 36(3), p. 615-639
Version Type	VoR
URL	https://doi.org/10.18910/8346
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

GALOIS COVERING SINGULARITIES II

HIROYASU TSUCHIHASHI

(Received September 10, 1997)

0. Introduction

Let Y be a simply connected open neighborhood of the origin in \mathbf{C}^n . For a finite Galois covering $\pi : X \rightarrow Y$ of Y , we denote by B_π , the divisor $r_1B_1 + r_2B_2 + \cdots + r_lB_l$, where B_1, B_2, \dots, B_l are the irreducible components of the branch locus $\{y \in Y \mid \#\pi^{-1}(y) < \deg \pi\}$ of π and r_j are the ramification indices of π along B_j , i.e., $r_j = \deg \pi / \max\{\#\pi^{-1}(y) \mid y \in B_j\}$. In the previous paper[4], we study Abel coverings $\pi : X \rightarrow Y$ of Y with $B_\pi = D$ for a given effective divisor D on Y . In this paper, we study Galois coverings $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that the covering transformation groups $\text{Gal}(X/Y) = \{g \in \text{Aut}(X) \mid \pi \circ g = \pi\}$ are finite solvable groups (e.g. the dihedral groups D_{2s} , the quaternion group Q , the alternating group A_4 and the symmetric group S_4 of degree 4).

In Section 1, we show that for any Galois covering $\pi : X \rightarrow Y$ of Y , there exists a commutative diagram:

$$\begin{array}{ccc} \overline{X} & \xrightarrow{\lambda} & \overline{Y} \\ \overline{\nu} \downarrow & & \downarrow \overline{\mu} \\ X & \xrightarrow{\pi} & Y \end{array},$$

where $\overline{\mu} : \overline{Y} \rightarrow Y$ and $\overline{\nu} : \overline{X} \rightarrow X$ are Abel coverings such that $B_{\overline{\mu}} = B_\pi$ and that $\overline{\nu}$ does not ramify on $\pi^{-1}(Y \setminus \text{Sing}(B_1 + \cdots + B_l))$, and $\lambda : \overline{X} \rightarrow \overline{Y}$ is a Galois covering which does not ramify on $\overline{\mu}^{-1}(Y \setminus \text{Sing}(B_1 + \cdots + B_l))$. Moreover, the composite $\overline{\mu} \circ \lambda : \overline{X} \rightarrow Y$ of λ and $\overline{\mu}$ is a Galois covering and $[G_0, G_0] \simeq \text{Gal}(\overline{X}/\overline{Y})$, where $G_0 = \text{Gal}(\overline{X}/Y)$. Let $G_1 = [G_0, G_0]$, let $G_2 = [G_1, G_1]$, \dots and let $\overline{X}_i = \overline{X}/G_i$. Then $\overline{\mu} \circ \lambda$ induces Galois coverings $\overline{X}_i \rightarrow Y$ and Abel coverings $\overline{X}_{i+1} \rightarrow \overline{X}_i$ which do not ramify on $\overline{X}_i \setminus \text{Sing}(\overline{X}_i)$. Hence if the covering transformation group $\text{Gal}(X/Y)$ is solvable, then there exists a Galois covering $\overline{X}_m \rightarrow Y$ which is the composite of Abel coverings $\overline{X}_m \rightarrow \overline{X}_{m-1}, \dots, \overline{X}_2 \rightarrow \overline{X}_1$ and $\overline{X}_1 \rightarrow Y$ such that $B_{[\overline{X}_1 \rightarrow Y]} = B_\pi$ and that $\overline{X}_j \rightarrow \overline{X}_{j-1}$ do not ramify along divisors for $2 \leq j \leq m$, and X is isomorphic to a quotient of \overline{X}_m . We also study the connection among B_π , $\text{Gal}(X/Y)$ and the quasi-Gorensteinness. For example, if $\text{Gal}(X/Y) \simeq Q$, then there exist at least two irreducible components B_j of B_π with $r_j = 4$ and X is not a quasi-Gorenstein singularity.

In Section 2, we study Abel coverings of normal Stein analytic spaces. First, we show that any Abel covering $Z' \rightarrow Z$ of a normal Stein space Z is isomorphic to the normalization of the analytic subspace of $Z \times \mathbf{C}^l$ defined by $\xi_1^{r_1} - f_1 = \cdots = \xi_l^{r_l} - f_l = 0$ for some holomorphic functions f_1, \dots, f_l on Z and for some positive integers r_1, \dots, r_l , where (ξ_1, \dots, ξ_l) is a coordinate system of \mathbf{C}^l . Next, assume that Z is a Galois covering of a normal Stein space Y . Then we give a necessary and sufficient condition on these functions f_i and these integers r_i that the composite of the Abel covering $Z' \rightarrow Z$ and the Galois covering $Z \rightarrow Y$ becomes a Galois covering. Moreover, we show how to determine the structure of the covering transformation group $\text{Gal}(Z'/Y)$.

In Section 3, we construct some examples of Galois coverings $\pi : X \rightarrow Y$ of an open neighborhood Y of the origin in \mathbf{C}^n such that $\text{Gal}(X/Y)$ are isomorphic to D_{2s} , Q , A_4 or S_4 , applying the methods in §2. For example, if there exist holomorphic functions α, β, γ and $\delta (\not\equiv 0)$ on Y such that $\text{codim}([\alpha] \cap [\beta]) \geq 2$ and that $\delta^2 = \gamma^3 + 2\alpha - 3\beta\gamma$, then there exists a Galois covering $\pi : X \rightarrow Y$ with $\text{Gal}(X/Y) \simeq S_4$ and $B_\pi = 2D_1$, where D_1 is the divisor on Y defined by $\alpha^2 - \beta^3 = 0$. This Galois covering $\pi : X \rightarrow Y$ is constructed as the composite of three Abel coverings $X_3 \rightarrow X_2$, $X_2 \rightarrow X_1$ and $X_1 \rightarrow Y$, where X_1 (resp. X_2, X_3) is the normalization of the analytic subspace of $Y \times \mathbf{C}$ (resp. $X_1 \times \mathbf{C}, X_2 \times \mathbf{C}^2$) defined by $\xi^2 - (\alpha^2 - \beta^3) = 0$ (resp. $\zeta^3 - (\alpha - \xi) = 0, \eta_1^2 - (\gamma + \zeta + \beta/\zeta) = \eta_2^2 - (\gamma + \exp(2\pi\sqrt{-1}/3)\zeta + \exp(4\pi\sqrt{-1}/3)\beta/\zeta) = 0$).

In Section 4, we show that any Galois covering of a Stein analytic space whose covering transformation group is isomorphic to D_{2s} , Q , A_4 or S_4 , is isomorphic to that constructed in the similar manner as in §3. For example, any Galois covering $\pi : X \rightarrow Y$ with $\text{Gal}(X/Y) \simeq S_4$ is constructed as the composite of three Abel coverings as above.

Let p, q, r_1, s be positive integers with $\text{g.c.d.}(p, q) = 1$ and let D_1 be the irreducible divisor defined by the equation $z_1^p - z_2^q = 0$ on a simply connected open neighborhood Y of the origin in \mathbf{C}^2 . In Section 5, we give a necessary and sufficient condition on these integers p, q, r_1 and s that there exists a Galois covering $\pi : X \rightarrow Y$ such that $\text{Gal}(X/Y)$ is isomorphic to D_{2s} , A_4 or S_4 and that $B_\pi = r_1 D_1$. Moreover, we show the dual graph of the exceptional set of a resolution of X .

NOTATIONS. $\pi : X \rightarrow Y$: a Galois covering of an open neighborhood Y of $0 \in \mathbf{C}^n$

B_1, B_2, \dots, B_l : the irreducible components of the branch locus of π

r_j : the ramification index of π along B_j

$B_\pi = r_1 B_1 + r_2 B_2 + \cdots + r_l B_l$

$H_j = [\pi_1(Y \setminus ((B_\pi)_{\text{red}})) \rightarrow \text{Gal}(X/Y)](\{\text{lassos rounding } B_j \text{ once in the positive direction}\})$

$\mu : \tilde{Y} \rightarrow Y$: the projection ($\tilde{Y} = \{(y, w_1, \dots, w_l) \in Y \times \mathbf{C}^l \mid w_1^{r_1} - f_1 = \cdots = w_l^{r_l} - f_l = 0\}$)

$\sigma_i : (y, w_1, \dots, w_l) \mapsto (y, w_1, \dots, w_{i-1}, \rho_{r_i} w_i, w_{i+1}, \dots, w_l) \in \text{Aut}(\tilde{Y})$
 $p : \text{Gal}(\tilde{Y}/Y) \rightarrow \mathbf{Z}_{r'_1} \oplus \dots \oplus \mathbf{Z}_{r'_k}$: the homomorphism defined by $p(\sigma_{i_{j-1}+1}) = \dots p(\sigma_{i_j}) = (0, \dots, \overset{j}{1}, \dots, 0)$
 $\bar{\mu} : \bar{Y} \rightarrow Y$: the projection ($\bar{Y} = \tilde{Y}/\ker(p)$)
 $\bar{Y}_0 := \mu^{-1}(Y \setminus \text{Sing}(B_1 + \dots + B_l))$, $\bar{Y}_0 := \bar{\mu}^{-1}(Y \setminus \text{Sing}(B_1 + \dots + B_l))$
 \bar{X}' : an irreducible component of $X \times_Y \bar{Y}$, \bar{X} : the normalization of \bar{X}'
 \bar{G} : the subgroup of $\text{Gal}(X/Y) \oplus \mathbf{Z}_{r'_1} \oplus \dots \oplus \mathbf{Z}_{r'_k}$ generated by $(h_i, p(\sigma_i))$ for all $h_i \in H_i$
 $p_1 : \bar{G} \rightarrow \text{Gal}(X/Y)$, $p_2 : \bar{G} \rightarrow \mathbf{Z}_{r'_1} \oplus \dots \oplus \mathbf{Z}_{r'_k}$: the projections
 $\chi' : \text{Gal}(\bar{Y}/Y) \rightarrow \mathbf{C}^*$: the homomorphism sending $p(\sigma_i)$ to ρ_{r_i}
 $Z'_{\mathbf{f}, \mathbf{r}} = \{(z, \xi_1, \dots, \xi_l) \in Z \times \mathbf{C}^l \mid \xi_1^{r_1} - f_1 = \dots = \xi_l^{r_l} - f_l = 0\}$
 $\pi_{\mathbf{f}, \mathbf{r}} : Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z$: the composite of the normalization $Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z'_{\mathbf{f}, \mathbf{r}}$ and the projection $Z \times \mathbf{C}^l \rightarrow Z$
 $\tau_{\mathbf{f}, \mathbf{r}}^i : (x, \xi_1, \dots, \xi_l) \mapsto (x, \xi_1, \dots, \xi_{i-1}, \rho_{r_i} \xi_i, \xi_{i+1}, \dots, \xi_l) \in \text{Aut}(Z_{\mathbf{f}, \mathbf{r}})$
 $G_{\mathbf{f}, \mathbf{r}} = \mathbf{Z} \tau_{\mathbf{f}, \mathbf{r}}^1 \oplus \dots \oplus \mathbf{Z} \tau_{\mathbf{f}, \mathbf{r}}^l$
 \tilde{f}_i : a holomorphic function on $Z_{\mathbf{f}, \mathbf{r}}$ with $\tilde{f}_i^{r_i} = \pi_{\mathbf{f}, \mathbf{r}}^* f_i$
 $\rho_r = \exp(2\pi\sqrt{-1}/r)$

1. Non-Abel Galois coverings

Let $\pi : X \rightarrow Y$ be a Galois covering of a simply connected open neighborhood Y of 0 in \mathbf{C}^n and let $B_\pi = r_1 B_1 + \dots + r_l B_l$ as in Introduction. Let H_j be the subset of $\text{Gal}(X/Y)$ consisting of the images under the quotient map $\pi_1(Y \setminus (B_\pi)_{\text{red}}) \rightarrow \text{Gal}(X/Y)$ of the lassos in $\pi_1(Y \setminus (B_\pi)_{\text{red}})$ rounding B_j once in the positive direction for $j = 1, \dots, l$. Then $H_j = \{ghg^{-1} \mid g \in \text{Gal}(X/Y)\}$ and $|h| = r_j$ for any h in H_j .

Proposition 1.1. $\text{Gal}(X/Y)$ is generated by $H_1 \cup H_2 \cup \dots \cup H_l$.

Proof. Let G be the subgroup of $\text{Gal}(X/Y)$ generated by $H_1 \cup H_2 \cup \dots \cup H_l$. Then the covering $X/G \rightarrow Y$ does not ramify on $Y \setminus \text{Sing}(B_1 + \dots + B_l)$. Hence it is an isomorphism, because $Y \setminus \text{Sing}(B_1 + \dots + B_l)$ is simply connected. Therefore, $G = \text{Gal}(X/Y)$. \square

We may assume that $H_1 = \dots = H_{i_1}$, $H_{i_1+1} = \dots = H_{i_2}$, \dots , $H_{i_{k-1}+1} = \dots = H_l$ and that $H_i \neq H_{i'}$ if $i \leq i_j < i'$ for some j . Then $r_1 = \dots = r_{i_1}$, $r_{i_1+1} = \dots = r_{i_2}$, \dots and $r_{i_{k-1}+1} = \dots = r_l$. Let \tilde{Y} be the Abel covering of Y as in §3 of [4] for $D = B_\pi$, i.e., \tilde{Y} is the subvariety of $Y \times \mathbf{C}^l$ defined by the equations $w_i^{r_i} - f_i = 0$ ($i = 1, \dots, l$), where f_i are defining equations of B_i . Recall that σ_i are the automorphisms of \tilde{Y} sending (y, w_1, \dots, w_l) to $(y, w_1, \dots, w_{i-1}, \rho_{r_i} w_i, w_{i+1}, \dots, w_l)$, where $\rho_{r_i} = \exp(2\pi\sqrt{-1}/r_i)$. Let $p : \text{Gal}(\tilde{Y}/Y) \rightarrow \mathbf{Z}_{r'_1} \oplus \dots \oplus \mathbf{Z}_{r'_k}$ be the homomorphism defined

by $p(\sigma_1) = \dots = p(\sigma_{i_1}) = (1, 0, \dots, 0)$, $p(\sigma_{i_1+1}) = \dots = p(\sigma_{i_2}) = (0, 1, 0, \dots, 0)$, \dots , $p(\sigma_{i_{k-1}+1}) = \dots = p(\sigma_l) = (0, \dots, 0, 1)$ and let $\bar{Y} = \tilde{Y}/\ker(p)$. Then \bar{Y} is isomorphic to the subvariety in $Y \times \mathbf{C}^k$ defined by the equations $w_j^{r'_j} - f_{i_{j-1}+1} \cdots f_{i_j} = 0$ ($j = 1, \dots, k$), where $r'_j = r_i$ for $i_{j-1} < i \leq i_j$, $i_0 = 0$, $i_k = l$. Moreover, $\bar{\mu} := \mu_{\ker(p)} : \bar{Y} \rightarrow Y$ is an Abel covering with $B_{\bar{\mu}} = B_{\pi}$ and $\text{Gal}(\bar{Y}/Y) \simeq \mathbf{Z}_{r'_1} \oplus \cdots \oplus \mathbf{Z}_{r'_k}$. Let \bar{X} be the normalization of an irreducible component \bar{X}' of $X \times_Y \bar{Y}$. Then the projection $\bar{\pi} : \bar{X} \rightarrow Y$ to Y is a Galois covering with $B_{\bar{\pi}} = B_{\pi}$, because the projection $\bar{X} \rightarrow \bar{Y}$ to \bar{Y} does not ramify on $\bar{Y}_0 := \bar{\mu}^{-1}(Y \setminus \text{Sing}(B_1 + \cdots + B_l))$. Let \bar{G} be the subgroup of $\text{Gal}(X/Y) \oplus \text{Gal}(\bar{Y}/Y)$ generated by $(h_i, p(\sigma_i))$ for all i and for all $h_i \in H_i$.

Proposition 1.2. $\bar{G} = \{g \in \text{Gal}(X/Y) \oplus \text{Gal}(\bar{Y}/Y) \mid g\bar{X}' = \bar{X}'\}$.

Proof. $g\bar{X}' = \bar{X}'$ for all g in \bar{G} , because $(h_i, p(\sigma_i))\bar{X}' = \bar{X}'$. Since $\bar{X}'/\bar{G} \rightarrow Y$ does not ramify on $Y \setminus \text{Sing}(B_1 + \cdots + B_l)$, we have $\bar{X}'/\bar{G} \simeq Y$. \square

Let C be the commutators group of $G := \text{Gal}(X/Y)$ and let $F = G/C$. Then we have the commutative diagram:

$$\begin{array}{ccccccc} 1 & \longrightarrow & C & \longrightarrow & \bar{G} & \xrightarrow{p_2} & \mathbf{Z}_{r'_1} \oplus \cdots \oplus \mathbf{Z}_{r'_k} \longrightarrow 0 \\ & & \parallel & & \downarrow p_1 & & \downarrow \\ 1 & \longrightarrow & C & \longrightarrow & G & \longrightarrow & F \longrightarrow 0, \end{array}$$

where p_1 and p_2 are the restrictions to \bar{G} of the projections from $G \oplus \text{Gal}(\bar{Y}/Y)$ to G and $\text{Gal}(\bar{Y}/Y)$, respectively. Here we note that $\ker(p_2) = C$, because $|h_i| = r_i$ for $h_i \in H_i$. Hence $\text{Gal}(\bar{X}/\bar{Y}) \simeq C$. Also note that p_1 is surjective, by Proposition 1. On the other hand, $\text{Gal}(\bar{X}/X) \simeq \ker(p_1)$ is isomorphic to a subgroup of $\text{Gal}(\bar{Y}/Y)$. Hence it is an Abelian group.

As we see in §1 of [4], there exists a nowhere vanishing holomorphic n -form ϕ on $\tilde{Y}_0 := \mu^{-1}(Y \setminus \text{Sing}(B_1 + \cdots + B_l))$ with $\sigma^* \phi = \chi(\sigma) \phi$ for $\sigma \in \text{Gal}(\tilde{Y}/Y)$, where $\chi : \text{Gal}(\tilde{Y}/Y) \rightarrow \mathbf{C}^*$ is the homomorphism sending σ_i to ρ_{r_i} . Since $\ker(p) \subset \ker(\chi)$, there exists a nowhere vanishing holomorphic n -form ϕ' on \bar{Y}_0 with $\bar{g}^* \phi' = \chi'(\bar{g}) \phi'$ for all $\bar{g} \in \text{Gal}(\bar{Y}/Y)$, where $\chi' : \text{Gal}(\bar{Y}/Y) \rightarrow \mathbf{C}^*$ is the homomorphism sending $p(\sigma_i)$ to ρ_{r_i} . Then $\tilde{g}^* (\pi_2^* \phi') = ((\chi' \circ p_2)(\tilde{g})) (\pi_2^* \phi')$ for all \tilde{g} in $\text{Gal}(\bar{X}/Y)$, where $\pi_2 : \bar{X} \rightarrow \bar{Y}$ is the projection. Since $X \simeq \bar{X}/\ker(p_1)$, we have:

Proposition 1.3. (X, x) is a quasi-Gorenstein singularity if and only if $\ker(p_1)$ is contained in $\ker(\chi' \circ p_2)$, where $\{x\} = \pi^{-1}(0)$.

EXAMPLE 1.1. Assume that $\text{Gal}(X/Y)$ is isomorphic to the symmetric group S_3 of degree 3, i.e., $\text{Gal}(X/Y)$ is generated by two elements α and β enjoying the

relations $\alpha^2 = \beta^2 = (\alpha\beta)^3 = e$. Then $H_i = \{\alpha, \beta\alpha\beta, \beta\}$ or $\{\beta\alpha, (\beta\alpha)^2\}$, accordingly as $r_i = 2$ or 3. Hence there exists at least one irreducible component B_i of $B_\pi = r_1B_1 + \cdots + r_lB_l$ with $r_i = 2$, by Proposition 1.1. Assume that there exists an irreducible component B_i with $r_i = 3$. Then $(\beta\alpha, p(\sigma_i))((\beta\alpha)^2, p(\sigma_i)) = (e, p(\sigma_i)^2) \in \ker(p_1)$. However, $(e, p(\sigma_i)^2) \notin \ker(\chi' \circ p_2)$. Hence (X, x) is not a quasi-Gorenstein singularity. Conversely, assume that all r_i are equal to 2. Then $\ker(p_1) = \{e\}$. Hence (X, x) is a quasi-Gorenstein singularity.

EXAMPLE 1.2. Assume that $\text{Gal}(X/Y)$ is isomorphic to the quaternion group Q , i.e., $\text{Gal}(X/Y)$ is generated by two elements α and β enjoying the relations $\alpha^4 = e$, $\beta^2 = \alpha^2$ and $\alpha\beta = \beta\alpha^3$. Then $H_i = \{\alpha^2\}$ ($r_i = 2$), $\{\alpha, \alpha^3\}$ ($r_i = 4$), $\{\beta, \alpha^2\beta\}$ ($r_i = 4$) or $\{\alpha\beta, \alpha^3\beta\}$ ($r_i = 4$). Hence there exist at least two irreducible components B_i of B_π with $r_i = 4$, by Proposition 1.1. Moreover, we see that (X, x) is not a quasi-Gorenstein singularity, because $\alpha\alpha^3 = \beta(\alpha^2\beta) = (\alpha\beta)(\alpha^3\beta) = e$.

2. Abel coverings of normal Stein spaces

Let Z be a normal Stein analytic space. We say that two Galois coverings $\pi_1 : Z_1 \rightarrow Z$ and $\pi_2 : Z_2 \rightarrow Z$ of Z are isomorphic over Z , if there exists an isomorphism $\phi : Z_1 \simeq Z_2$ with $\pi_1 = \pi_2 \circ \phi$.

DEFINITION 2.1. For an ordered set \mathbf{f} of holomorphic functions f_1, \dots, f_l on Z and for an ordered set \mathbf{r} of integers r_1, \dots, r_l greater than 1 with $|\mathbf{f}| = |\mathbf{r}|$, we denote by $Z_{\mathbf{f}, \mathbf{r}}$, the normalization of the analytic subspace $Z'_{\mathbf{f}, \mathbf{r}}$ in $Z \times \mathbf{C}^l$ defined by $\xi_1^{r_1} - f_1 = \cdots = \xi_l^{r_l} - f_l = 0$, where (ξ_1, \dots, ξ_l) is a coordinate system of \mathbf{C}^l . We also denote by $G_{\mathbf{f}, \mathbf{r}}$, the Abelian group generated by the automorphisms $\tau_{\mathbf{f}, \mathbf{r}}^i$ of $Z_{\mathbf{f}, \mathbf{r}}$ sending (x, ξ_1, \dots, ξ_l) to $(x, \xi_1, \dots, \xi_{i-1}, \rho_{r_i}\xi_i, \xi_{i+1}, \dots, \xi_l)$, where $\rho_{r_i} = \exp(2\pi\sqrt{-1}/r_i)$, by $\pi_{\mathbf{f}, \mathbf{r}}$, the composite of the normalization $Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z'_{\mathbf{f}, \mathbf{r}}$ and the projection $Z \times \mathbf{C}^l \rightarrow Z$, and by \tilde{f}_i , the holomorphic function on $Z_{\mathbf{f}, \mathbf{r}}$ which is the pull-back of $\xi_i|_{Z'_{\mathbf{f}, \mathbf{r}}}$.

Here we note that $\pi_{\mathbf{f}, \mathbf{r}}$ does not ramify at a point x in Z , if there exist holomorphic functions h_1, \dots, h_l on a neighborhood U of x with $h_i^{r_i} = f_i|_U$. Also note that $(\tau_{\mathbf{f}, \mathbf{r}}^i)^* \tilde{f}_i = \rho_{r_i} \tilde{f}_i$, $(\tau_{\mathbf{f}, \mathbf{r}}^i)^* \tilde{f}_j = \tilde{f}_j$ ($i \neq j$) and $\tilde{f}_i^{r_i} = \pi_{\mathbf{f}, \mathbf{r}}^* f_i$.

Proposition 2.1. For any Abel covering $\pi' : Z' \rightarrow Z$ of Z with $\text{Gal}(Z'/Z) \simeq \mathbf{Z}_{r_1} \oplus \cdots \oplus \mathbf{Z}_{r_l}$, there exist holomorphic functions f_1, \dots, f_l on Z such that $\pi_{\{f_1, \dots, f_l\}, \{r_1, \dots, r_l\}}$ is isomorphic to π' over Z .

Proof. Let τ_1, \dots, τ_l be generators of $\text{Gal}(Z'/Z)$ with $|\tau_i| = r_i$. Take a holomorphic function f' on Z' and let $\bar{f}_i = \sum_{k_1=0}^{r_1-1} \cdots \sum_{k_l=0}^{r_l-1} (\tau_1^{k_1} \cdots \tau_l^{k_l})^* f' / \rho_{r_i}^{k_i}$. Then

$\tau_i^* \bar{f}_i = \rho_{r_i} \bar{f}_i$, $\tau_i^* \bar{f}_j = \bar{f}_j$ ($i \neq j$) and $\bar{f}_i \not\equiv 0$ for a suitable f' . Since $\bar{f}_i^{r_i}$ are $\text{Gal}(Z'/Z)$ -invariant, there exist holomorphic functions f_1, \dots, f_l on Z with $\pi'^* f_i = \bar{f}_i^{r_i}$. Then the image of the holomorphic map $Z' \rightarrow Z \times \mathbf{C}^l$ sending x' to $(\pi'(x'), \bar{f}_1(x'), \dots, \bar{f}_l(x'))$ is equal to $Z'_{\mathbf{f}, \mathbf{r}}$, where $\mathbf{f} = \{f_1, \dots, f_l\}$ and $\mathbf{r} = \{r_1, \dots, r_l\}$. Since the surjective map $Z' \rightarrow Z'_{\mathbf{f}, \mathbf{r}}$ is one to one on $Z' \setminus \pi'^{-1}(\cup_{i=1}^l [f_i])$, it induces a biholomorphic map $\phi : Z' \simeq Z_{\mathbf{f}, \mathbf{r}}$ satisfying $\phi \circ \tau_i = \tau_{\mathbf{f}, \mathbf{r}}^i \circ \phi$. \square

Let $\mathbf{f} = \{f_1, \dots, f_l\}$, $\mathbf{g} = \{g_1, \dots, g_l\}$ be ordered sets of holomorphic functions on Z and let $\mathbf{r} = \{r_1, \dots, r_l\}$ be an ordered set of integers greater than 1 with $|\mathbf{f}| = |\mathbf{g}| = |\mathbf{r}|$.

Proposition 2.2. *$Z_{\mathbf{f}, \mathbf{r}}$ is reducible if and only if there exist non-negative integers s_i which are smaller than r_i and at least one of which is positive, and a holomorphic function h on Z with $f_1^{\frac{r_{s_1}}{r_1}} \cdots f_l^{\frac{r_{s_l}}{r_l}} = h^r$, where $r = \text{l.c.m.}(\frac{r_1}{\text{g.c.d.}(r_1, s_1)}, \dots, \frac{r_l}{\text{g.c.d.}(r_l, s_l)})$. Especially, when $l = 1$, if $Z_{\mathbf{f}, \mathbf{r}}$ is reducible, then there exist a holomorphic function h on Z and a divisor t of r_1 greater than 1 with $f_1 = h^t$.*

Proof. Assume that $Z'_{\mathbf{f}, \mathbf{r}}$ is reducible and let Z_1 be an irreducible component of $Z'_{\mathbf{f}, \mathbf{r}}$. Then $H := \{\sigma \in G_{\mathbf{f}, \mathbf{r}} \mid \sigma Z_1 = Z_1\} \neq G_{\mathbf{f}, \mathbf{r}}$. Hence there exist integers s_i such that $0 \leq s_i < r_i$, that $(s_1, \dots, s_l) \neq (0, \dots, 0)$ and that $h := \tilde{f}_1^{s_1} \cdots \tilde{f}_l^{s_l}$ is H -invariant. When $l = 1$, we may assume that s_1 is a divisor of r_1 . Then $h^r = \pi_{\mathbf{f}, \mathbf{r}}^* \left(f_1^{\frac{r_{s_1}}{r_1}} \cdots f_l^{\frac{r_{s_l}}{r_l}} \right)$ and the restriction of h to Z_1 is equal to the pull-back of a holomorphic function on Z , because $\text{Gal}(Z_1/Z) = H$.

Conversely, let s_i and h be as in the proposition and let $\tilde{h} = \tilde{f}_1^{s_1} \cdots \tilde{f}_l^{s_l}$. Then $\tilde{h}^r = \pi_{\mathbf{f}, \mathbf{r}}^* h^r$. Hence $\tilde{h} = \epsilon \pi_{\mathbf{f}, \mathbf{r}}^* h$ on each irreducible component Z_1 of $Z_{\mathbf{f}, \mathbf{r}}$ for an r -th root ϵ of the unit. Therefore, $\sigma^* \tilde{h} = \tilde{h}$ for all elements σ in $\{\sigma \in G_{\mathbf{f}, \mathbf{r}} \mid \sigma Z_1 = Z_1\}$. On the other hand, there exists an element σ in $G_{\mathbf{f}, \mathbf{r}}$ with $\sigma^* \tilde{h} \neq \tilde{h}$. Hence $Z_1 \neq Z_{\mathbf{f}, \mathbf{r}}$. \square

Proposition 2.3. *Assume that $Z_{\mathbf{f}, \mathbf{r}}$ and $Z_{\mathbf{g}, \mathbf{r}}$ are irreducible. Then there exists an isomorphism $\phi : Z_{\mathbf{f}, \mathbf{r}} \simeq Z_{\mathbf{g}, \mathbf{r}}$ with $\pi_{\mathbf{g}, \mathbf{r}} \circ \phi = \pi_{\mathbf{f}, \mathbf{r}}$, if and only if there exist meromorphic functions h_j on Z ($1 \leq j \leq l$) and integers s_{ij} ($1 \leq i, j \leq l$) such that $h_j^{r_j} = g_j / (f_1^{s_{1j}} \cdots f_l^{s_{lj}})$ and that $r_i s_{ij} \equiv 0 \pmod{r_j}$. Then $\phi \circ \tau_{\mathbf{f}, \mathbf{r}}^i = (\tau_{\mathbf{g}, \mathbf{r}}^1)^{s_{i1}} \cdots (\tau_{\mathbf{g}, \mathbf{r}}^l)^{s_{il}} \circ \phi$.*

Proof. Assume that there exists an isomorphism $\phi : Z_{\mathbf{f}, \mathbf{r}} \simeq Z_{\mathbf{g}, \mathbf{r}}$ with $\pi_{\mathbf{g}, \mathbf{r}} \circ \phi = \pi_{\mathbf{f}, \mathbf{r}}$. Then there exist integers s_{ij} with $\phi \circ \tau_{\mathbf{f}, \mathbf{r}}^i = (\tau_{\mathbf{g}, \mathbf{r}}^1)^{s_{i1}} \cdots (\tau_{\mathbf{g}, \mathbf{r}}^l)^{s_{il}} \circ \phi$. Since $|\tau_{\mathbf{f}, \mathbf{r}}^i| = r_i$, we see that $r_i s_{ij} \equiv 0 \pmod{r_j}$. Let $h_j = \phi^* \tilde{g}_j / (\tilde{f}_1^{r_1 s_{1j}/r_j} \cdots \tilde{f}_l^{r_l s_{lj}/r_j})$. Then h_j are $G_{\mathbf{f}, \mathbf{r}}$ -invariant meromorphic functions on $Z_{\mathbf{f}, \mathbf{r}}$ and $h_j^{r_j} = \pi_{\mathbf{f}, \mathbf{r}}^* (g_j / (f_1^{s_{1j}} \cdots f_l^{s_{lj}}))$.

Conversely, assume that the condition of the proposition is satisfied. Then the restriction ϕ' to $Z'_{\mathbf{f}, \mathbf{r}}$ of the meromorphic map $Z \times \mathbf{C}^l \rightarrow Z \times \mathbf{C}^l$ sending (x, ξ_1, \dots, ξ_l)

to $(x, h_1 \xi_1^{r_1 s_{11}/r_1} \cdots \xi_l^{r_l s_{ll}/r_l}, \dots, h_l \xi_1^{r_1 s_{11}/r_1} \cdots \xi_l^{r_l s_{ll}/r_l})$ is a meromorphic map onto $Z'_{\mathbf{g}, \mathbf{r}}$. Hence ϕ' induces a meromorphic map $\phi : Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z_{\mathbf{g}, \mathbf{r}}$ which is one to one on $Z_{\mathbf{f}, \mathbf{r}} \setminus \pi_{\mathbf{f}, \mathbf{r}}^{-1}(\cup_{i=1}^l [f_i] \cup \cup_{i=1}^l [g_i])$ and an irreducible component \tilde{Z} of $Z_{\mathbf{f}, \mathbf{r}} \times_Z Z_{\mathbf{g}, \mathbf{r}}$ is the graph of ϕ . Therefore, the projections $\tilde{Z} \rightarrow Z_{\mathbf{f}, \mathbf{r}}$ and $\tilde{Z} \rightarrow Z_{\mathbf{g}, \mathbf{r}}$ are isomorphic by Zariski's Main Theorem. \square

Corollary 2.1. *Assume that $Z_{\mathbf{f}, \mathbf{r}}$ is irreducible. Then for any automorphism σ of Z , there exists an automorphism $\tilde{\sigma}$ of $Z_{\mathbf{f}, \mathbf{r}}$ with $\pi_{\mathbf{f}, \mathbf{r}} \circ \tilde{\sigma} = \sigma \circ \pi_{\mathbf{f}, \mathbf{r}}$, if and only if there exist meromorphic functions h_j on Z ($1 \leq j \leq l$) and integers s_{ij} ($1 \leq i, j \leq l$) such that $h_j^{r_j} = \sigma^* f_j / (f_1^{s_{1j}} \cdots f_l^{s_{lj}})$ and that $r_i s_{ij} \equiv 0 \pmod{r_j}$. Then $\tilde{\sigma} \circ \tau_{\mathbf{f}, \mathbf{r}}^i = (\tau_{\mathbf{f}, \mathbf{r}}^1)^{s_{11}} \cdots (\tau_{\mathbf{f}, \mathbf{r}}^l)^{s_{ll}} \circ \tilde{\sigma}$.*

Let $\sigma_1, \sigma_2, \dots$ and σ_m be automorphisms of Z with $\sigma_1 \sigma_2 \cdots \sigma_m = id$. Assume that there exist meromorphic functions h_j^k on Z and integers s_{ij}^k ($1 \leq i, j \leq l, 1 \leq k \leq m$) such that $(h_j^k)^{r_j} = \sigma_k^* f_j / (f_1^{s_{1j}^k} \cdots f_l^{s_{lj}^k})$ and that $r_i s_{ij}^k \equiv 0 \pmod{r_j}$. Then for each k there exist $r_1 r_2 \cdots r_l$ automorphisms $\tilde{\sigma}_k$ of $Z_{\mathbf{f}, \mathbf{r}}$ with $\pi_{\mathbf{f}, \mathbf{r}} \circ \tilde{\sigma}_k = \sigma_k \circ \pi_{\mathbf{f}, \mathbf{r}}$, by the above corollary. Among those, for each k we can choose one so that $\tilde{\sigma}_k^* \tilde{f}_j = h_j^k \tilde{f}_1^{r_1 s_{1j}^k / r_j} \cdots \tilde{f}_l^{r_l s_{lj}^k / r_j}$. On the other hand, $\tilde{\sigma}_1 \cdots \tilde{\sigma}_m = (\tau_{\mathbf{f}, \mathbf{r}}^1)^{t_1} \cdots (\tau_{\mathbf{f}, \mathbf{r}}^l)^{t_l}$ for some integers t_1, t_2, \dots, t_l with $0 \leq t_i < r_i$. Then $\tilde{\sigma}_m^* \cdots \tilde{\sigma}_1^* \tilde{f}_j = \rho_{r_j}^{t_j} \tilde{f}_j$. Hence we can determine these integers t_i by the data h_j^k and s_{ij}^k . For instance, if $m = 4$, $\sigma_3 = \sigma_1^{-1}$, $\sigma_4 = \sigma_2^{-1}$, i.e., $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ and if $l = 1$, then

$$\rho_{r_1}^{t_1} = \frac{(\sigma_2^* h_1^1)^{(h_1^2)^{s_{11}^1}}}{(\sigma_1^* h_1^2)^{(h_1^1)^{s_{11}^2}}},$$

because $\tilde{\sigma}_2^* \tilde{\sigma}_1^* \tilde{f}_1 = (\sigma_2^* h_1^1)(h_1^2)^{s_{11}^1} \tilde{f}_1^{s_{11}^2 s_{11}^1}$ and $\tilde{\sigma}_1^* \tilde{\sigma}_2^* ((\tau_{\mathbf{f}, \mathbf{r}}^1)^{t_1})^* \tilde{f}_1 = \rho_{r_1}^{t_1} (\sigma_1^* h_1^2)(h_1^1)^{s_{11}^2} \tilde{f}_1^{s_{11}^1 s_{11}^2}$.

Assume that Z is a Galois covering of a normal Stein space Y and let $\sigma_1, \sigma_2, \dots, \sigma_m$ be generators of $\text{Gal}(Z/Y)$. If there exist meromorphic functions h_j^k and integers s_{ij}^k satisfying the condition of Corollary 2.1 for each σ_k ($k = 1, 2, \dots, m$), then the composite $Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z \rightarrow Y$ is a Galois covering of Y . Moreover, the structure of $\text{Gal}(Z_{\mathbf{f}, \mathbf{r}}/Y)$ is completely determined by the integers s_{ij}^k and t_j in the relations $\tilde{\sigma}_k \tau_{\mathbf{f}, \mathbf{r}}^i \tilde{\sigma}_k^{-1} = (\tau_{\mathbf{f}, \mathbf{r}}^1)^{s_{11}^k} \cdots (\tau_{\mathbf{f}, \mathbf{r}}^l)^{s_{ll}^k}$ and $\tilde{\sigma}_{i_1} \cdots \tilde{\sigma}_{i_p} = (\tau_{\mathbf{f}, \mathbf{r}}^1)^{t_1} \cdots (\tau_{\mathbf{f}, \mathbf{r}}^l)^{t_l}$ for fundamental relations $\sigma_{i_1} \cdots \sigma_{i_p} = id$ of $\sigma_1, \sigma_2, \dots, \sigma_m$.

REMARK 2.1. In the 2-dimensional case, we can construct resolutions $\lambda : \tilde{Z} \rightarrow Z$ of Z , via embedded resolutions of B_π (see §3 of [4]), if $\pi : Z \rightarrow Y$ are Abel coverings of open sets Y of \mathbf{C}^2 . Assume that $[\lambda^* f_i] = \sum c_{ij} E_j + r_i D'_i$ for some

integers c_{ij} and divisors D'_i on \tilde{Z} , where $\sum E_j$ are the exceptional sets of λ . Then $\pi_{\mathbf{f}, \mathbf{r}} : Z_{\mathbf{f}, \mathbf{r}} \rightarrow Z$ does not ramify on $Z \setminus \text{Sing}(Z)$. If the dual graphs of $\sum E_j$ are tree, we can explicitly construct resolutions also of $Z_{\mathbf{f}, \mathbf{r}}$, in the similar manner as in §3 of [4]. On the other hand, if there exists an integer j such that $\sum_{i=1}^l c_{ij} \frac{r s_i}{r_i}$ is not a multiple of $r = l.c.m.(\frac{r_1}{\text{g.c.d.}(r_1, s_1)}, \dots, \frac{r_l}{\text{g.c.d.}(r_l, s_l)})$ for each combination of non-negative integers s_i which are smaller than r_i and at least one of which is positive, then by Proposition 2.2, $Z_{\mathbf{f}, \mathbf{r}}$ are irreducible, because

$$\left[\lambda^* \left(f_1^{\frac{r s_1}{r_1}} \cdots f_l^{\frac{r s_l}{r_l}} \right) \right] = \sum \left(\sum_{i=1}^l c_{ij} \frac{r s_i}{r_i} \right) E_j + r \sum_{i=1}^l (s_1 D'_1 + \cdots + s_l D'_l).$$

3. Examples

Let $D = r_1 D_1 + r_2 D_2 + \cdots + r_k D_k$ be a divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^n , where r_j are integers greater than 1, D_j are reduced and may be reducible divisors on Y defined by $f_j = 0$. We assume that $0 \in D_j$, i.e., $f_j(0) = 0$ and that if $i \neq j$, then D_i and D_j have no common irreducible components, throughout this section. Let \bar{Y} be the analytic subspace of $Y \times \mathbf{C}^k$ defined by $w_1^{r_1} - f_1 = \cdots = w_k^{r_k} - f_k = 0$, where (w_1, w_2, \dots, w_k) is a coordinate system of \mathbf{C}^k and let $\bar{\mu} : \bar{Y} \rightarrow Y$ be the projection. Then we see in the same way as in Proposition 3 of [4] that \bar{Y} is normal. Hence $\bar{Y} \simeq Y_{\{f_1, \dots, f_k\}, \{r_1, \dots, r_k\}}$. Moreover, $\bar{\mu}$ is a Galois covering with $B_{\bar{\mu}} = D$ and $\text{Gal}(\bar{Y}/Y) \simeq \mathbf{Z}_{r_1} \oplus \cdots \oplus \mathbf{Z}_{r_k}$.

First, we construct some examples with the covering transformation groups whose commutators groups are cyclic. Let r be an integer greater than 1 and let g be a holomorphic function on \bar{Y} . We simply write $\bar{Y}_{g,r}$, $\pi_{g,r}$ and $\tau_{g,r}$ for $\bar{Y}_{\{g\}, \{r\}}$, $\pi_{\{g\}, \{r\}}$ and $\tau_{\{g\}, \{r\}}^1$, respectively. Assume that there exist no holomorphic functions g_0 on \bar{Y} with $g_0^s = g$ for any divisor s of r greater than 1. Then $\bar{Y}_{g,r}$ is irreducible, by Proposition 2.2. Furthermore, assume that there exist a meromorphic function h_j and an integer s_j satisfying $\bar{\sigma}_j^* g / g^{s_j} = h_j^r$ for each j , where $\bar{\sigma}_j$ is the automorphism of \bar{Y} sending $(y, w_1, \dots, w_j, \dots, w_k)$ to $(y, w_1, \dots, w_{j-1}, \rho_{r_j} w_j, w_{j+1}, \dots, w_k)$. Then the composite $\bar{\mu} \circ \pi_{g,r} : \bar{Y}_{g,r} \rightarrow Y$ of $\pi_{g,r}$ and $\bar{\mu}$ is a Galois covering by Corollary 2.1. Moreover, if there exist an open neighborhood U of y_0 and a holomorphic function h on U with $h^r = g|_U$ for each point y_0 in $\bar{Y}_0 := \bar{\mu}^{-1}(Y_0)$, then $\pi_{g,r}$ does not ramify on \bar{Y}_0 and hence $B_{\bar{\mu} \circ \pi_{g,r}} = D$, where $Y_0 = Y \setminus \text{Sing}(D_1 + \cdots + D_k)$.

Proposition 3.1. *Let $D = 2D_1$. Assume that there exist holomorphic functions α, β on Y and an odd integer r greater than 2 such that $\alpha(0) = \beta(0) = 0$ and that $f_1 = \alpha^2 - \beta^r$. Then $\bar{\mu} \circ \pi_{g,r} : \bar{Y}_{g,r} \rightarrow Y$ is a Galois covering such that $B_{\bar{\mu} \circ \pi_{g,r}} = D$ and that $\text{Gal}(\bar{Y}_{g,r}/Y) \simeq D_{2r}$, where $g = \alpha + w_1$.*

Proof. Suppose that there exists a holomorphic function g_0 on \bar{Y} with $g_0^s = g$ for

an integer s greater than 1. Then $g_0 = h_0 + w_1 h_1$ for some holomorphic functions h_0 and h_1 on Y . Since $g_0(0) = 0$, we have $h_0(0) = 0$. Then $g_0^s = (h_0^s + {}_s C_2 h_0^{s-2} h_1^2 f_1 + \dots) + w_1 ({}_s C_1 h_0^{s-1} h_1 + {}_s C_3 h_0^{s-3} h_1^3 f_1 + \dots)$ and $({}_s C_1 h_0^{s-1} h_1 + {}_s C_3 h_0^{s-3} h_1^3 f_1 + \dots)(0) = 0$, because $f_1(0) = 0$. Hence $g_0^s \neq g$. Therefore, $\overline{Y}_{g,r}$ is irreducible, by Proposition 2.2. Since $g\overline{\sigma_1}^*g = \beta^r$ and $[\overline{\sigma_1}^*g] \cap [g] = \overline{\mu}^{-1}([\alpha] \cap [f_1]) = \overline{\mu}^{-1}([\alpha] \cap [\beta]) \subset \overline{\mu}^{-1}(\text{Sing}(D_1))$, $\pi_{g,r}$ does not ramify on \overline{Y}_0 . Hence $B_{\overline{\mu} \circ \pi_{g,r}} = D$. Let $h_1 = \beta/g$. Then $\overline{\sigma_1}^*g/g^{r-1} = h_1^r$. Hence there exists an automorphism $\widetilde{\sigma_1}$ of $\overline{Y}_{g,r}$ such that $\pi_{g,r} \circ \widetilde{\sigma_1} = \overline{\sigma_1} \circ \pi_{g,r}$ and that $\widetilde{\sigma_1} \tau_{g,r} = \tau_{g,r}^{-1} \widetilde{\sigma_1}$. Moreover, $\widetilde{\sigma_1}^2 = \text{id}$, because $(\widetilde{\sigma_1}^2)^* \widetilde{g} = \widetilde{\sigma_1}^* (\epsilon \beta/\widetilde{g}) = \widetilde{g}$, where ϵ is an r -th root of the unit. Hence $\text{Gal}(\overline{Y}_{g,r}/Y) \simeq D_{2r}$. \square

For example, $f_1 = z_1^{2q} - z_2^r$, $\alpha = z_1^q$ and $\beta = z_2$ satisfy the condition of the above proposition. Then we easily see that $\overline{Y}_{g,r}$ is non-singular, if $q = 1$. Hence if the divisors defined by $\alpha = 0$ and $\beta = 0$ cross normally at a point p in Y , then $\overline{Y}_{g,r}$ is non-singular at all points in $(\overline{\mu} \circ \pi_{g,r})^{-1}(p)$.

Let α and β be homogenous polynomials of degree r and 2, respectively. Then $f_1 = \alpha^2 - \beta^r$ is a homogenous polynomial of degree $2r$. Let $\lambda : Z \rightarrow Y$ be the blow up of Y at the origin and let $E = \lambda^{-1}(0)$. Then $[\lambda^* f_1] = \overline{D_1} + 2rE$, where $\overline{D_1}$ is the proper transformation of D_1 . Hence the projection $\overline{Z} := \overline{Y} \times_Y Z \rightarrow Z$ does not ramify along E . Therefore, \overline{Y} is a cone over the double covering of $E \simeq \mathbf{P}^{n-1}$ ramifying along the divisor defined by $f_1 = 0$. Moreover, \overline{Y} has singularities along the inverse image of the intersection of the divisors defined by $\alpha = 0$ and $\beta = 0$. Since the vanishing order along $\overline{E} = \overline{\lambda}^{-1}(0)$ of the pull back $\overline{\lambda}^*g$ of $g = \alpha + w_1$ under the projection $\overline{\lambda} : \overline{Z} \rightarrow \overline{Y}$ is equal to r , the projection $\overline{Y}_{g,r} \times_{\overline{Y}} \overline{Z} \rightarrow \overline{Z}$ does not ramify along \overline{E} . Hence $\overline{Y}_{g,r}$ is also a cone over a covering space \widetilde{E} of E whose covering transformation group is isomorphic to D_{2r} . If the divisors A and B of \mathbf{P}^{n-1} defined by $\alpha = 0$ and $\beta = 0$, respectively, cross normally each other and the divisor defined by $\alpha^2 - \beta^r = 0$ has no singularities except those on the intersection of A and B , then \widetilde{E} is non-singular and hence $\overline{Y}_{g,r}$ has only an isolated singularity.

Proposition 3.2. *Let $D = 2D_1 + 2D_2$. Assume that there exist a holomorphic function β on Y and an integer r greater than 1 with $f_1 - f_2 = \beta^r$. Then $\overline{\mu} \circ \pi_{g,r} : \overline{Y}_{g,r} \rightarrow Y$ is a Galois covering such that $B_{\overline{\mu} \circ \pi_{g,r}} = D$ and that $\text{Gal}(\overline{Y}_{g,r}/Y) \simeq D_{4r}$, where $g = w_1 + w_2$.*

Proof. Suppose that there exists a holomorphic function g_0 on \overline{Y} with $g_0^s = g$ for an integer s greater than 1. Then $g_0 = h_{00} + w_1 h_{10} + w_2 h_{01} + w_1 w_2 h_{11}$ for some holomorphic functions h_{00} , h_{10} , h_{01} and h_{11} on Y and $g_0^s = \overline{h_{00}} + w_1 \overline{h_{10}} + w_2 \overline{h_{01}} + w_1 w_2 \overline{h_{11}}$ for some holomorphic functions $\overline{h_{00}}$, $\overline{h_{10}}$, $\overline{h_{01}}$ and $\overline{h_{11}}$ on Y . Then $\overline{h_{10}}(0) = \overline{h_{01}}(0) = 0$, because h_{00} , $w_1^2 = f_1$ and $w_2^2 = f_2$ vanish at 0. Hence $g_0^s \neq g$. Therefore, $\overline{Y}_{g,r}$ is irreducible, by Proposition 2.2. Since $g\overline{\sigma_2}^*g = \beta^r$ and $[\overline{\sigma_2}^*g] \cap [g] = \overline{\mu}^{-1}(D_1 \cap D_2)$, $\pi_{g,r}$ does not ramify on \overline{Y}_0 . Hence $B_{\overline{\mu} \circ \pi_{g,r}} = D$. Let $h_1 = \rho_{2r} \beta/g$ and let $h_2 = \beta/g$. Then $\overline{\sigma_i}^*g/g^{r-1} = h_i^r$ ($i = 1, 2$). Among the

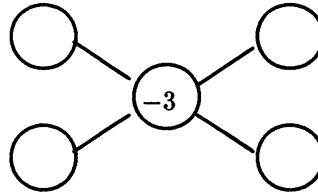
automorphisms $\tilde{\sigma}_i$ of $\bar{Y}_{g,r}$ satisfying $\pi_{g,r} \circ \tilde{\sigma}_i = \bar{\sigma}_i \circ \pi_{g,r}$, we choose one so that $\tilde{\sigma}_i^* \tilde{g} = h_i \tilde{g} \tau^{-1}$ ($i = 1, 2$). Then we see by an easy calculation that $\tilde{\sigma}_1^2 = \tilde{\sigma}_2^2 = \text{id}$ and that $\tilde{\sigma}_1 \tilde{\sigma}_2 \tilde{\sigma}_1 \tilde{\sigma}_2 = \tau_{g,r}$. Therefore, $\text{Gal}(\bar{Y}_{g,r}/Y) \simeq D_{4r}$. \square

For example, $f_1 = z_1^q + z_2^r$ and $f_2 = z_1^q - z_2^r$ satisfy the condition of the above proposition. Then we easily see that $\bar{Y}_{g,r}$ is non-singular, if $q = 1$.

Proposition 3.3. *Let $D = 2D_1 + 2D_2$. Assume that there exists a holomorphic function β on Y with $f_1 - f_2 = \beta^2$. Then $\bar{\mu} \circ \pi_{g,2} : \bar{Y}_{g,2} \rightarrow Y$ is a Galois covering such that $B_{\bar{\mu} \circ \pi_{g,2}} = 4D_1 + 4D_2$ and that $\text{Gal}(\bar{Y}_{g,2}/Y)$ is isomorphic to the quaternion group, where $g = w_1 w_2 (w_1 + w_2)$.*

Proof. Since $g \bar{\sigma}_1^* g = w_1^2 w_2^2 \beta^2$ and $g \bar{\sigma}_2^* g = -w_1^2 w_2^2 \beta^2$, there exist automorphisms $\tilde{\sigma}_i$ of $\bar{Y}_{g,2}$ satisfying $\pi_{g,2} \circ \tilde{\sigma}_i = \bar{\sigma}_i \circ \pi_{g,2}$ and $\tilde{\sigma}_i \tau_{g,2} = \tau_{g,2} \tilde{\sigma}_i$ ($i = 1, 2$). If we choose one among those automorphisms for each $i = 1, 2$ so that $\tilde{\sigma}_1^* \tilde{g} = w_1 w_2 \beta / \tilde{g}$ and that $\tilde{\sigma}_2^* \tilde{g} = \sqrt{-1} w_1 w_2 \beta / \tilde{g}$, then $(\tilde{\sigma}_i^*)^2 \tilde{g} = -\tilde{g}$, $\tilde{\sigma}_1^* \tilde{\sigma}_2^* \tilde{g} = -\sqrt{-1} \tilde{g}$ and $\tilde{\sigma}_2^* \tilde{\sigma}_1^* \tilde{g} = \sqrt{-1} \tilde{g}$. Hence $\tilde{\sigma}_i^2 = \tau_{g,2}$ and $\tilde{\sigma}_1 \tilde{\sigma}_2 = \tau_{g,2} \tilde{\sigma}_2 \tilde{\sigma}_1$. On the other hand, $\pi_{g,2}$ does not ramify along $[w_1 + w_2]$, because $(w_1 + w_2)(w_1 - w_2) = \beta^2$. While, $\pi_{g,2}$ ramifies along $[w_1] \cup [w_2]$. Hence $\bar{Y}_{g,2}$ is irreducible and $B_\pi = 4D_1 + 4D_2$. \square

For example, $f_1 = z_1$ and $f_2 = z_1 - z_2^2$ satisfy the condition of the above proposition. Then the dual graph of the exceptional set of the minimal resolution of $\bar{Y}_{g,2}$ is as follows:



We can show the following proposition, in the manner similar to the proof of the above propositions.

Proposition 3.4. *Let $D = 2D_1 + r_2 D_2$, where r_2 is an odd integer greater than 2. Assume that there exist a holomorphic function α and an odd integer $q > 0$ with $f_1 + f_2^q = \alpha^2$. Let $g = \alpha + w_1$. Then $\bar{Y}_{g,qr_2} \rightarrow Y$ is a Galois covering such that $B_{\bar{\mu} \circ \pi_{g,qr_2}} = D$ and that $\text{Gal}(\bar{Y}_{g,qr_2}/Y)$ is generated by three elements σ_1, σ_2 and τ enjoying the relations $\sigma_1^2 = \sigma_2^{r_2} = \tau^{qr_2} = e$, $\sigma_1 \sigma_2 = \tau^q \sigma_2 \sigma_1$, $\sigma_1 \tau = \tau^{-1} \sigma_1$, $\sigma_2 \tau = \tau \sigma_2$.*

For example, $f_1 = z_1^2 - z_2^q$ and $f_2 = z_2$ satisfy the condition of the above proposition. When $q = 1$, $\langle \sigma_2 \tau^s \rangle$ is a normal subgroup of $\text{Gal}(\bar{Y}_{g,r_2}/Y)$ and $\text{Gal}(\bar{Y}_{g,r_2}/Y)/\langle \sigma_2 \tau^s \rangle \simeq D_{2r_2}$ for an integer s with $2s \equiv 1 \pmod{r_2}$. Hence $\bar{Y}_{g,r_2}/\langle \sigma_2 \tau^s \rangle$ is a Galois covering of Y whose covering transformation group is isomorphic to D_{2r_2} .

Next, we construct examples whose covering transformation groups are isomorphic to the group $H_{q,r} = \langle \sigma, \tau_1, \dots, \tau_{q-1} \rangle$ generated by q elements σ, τ_1, \dots and τ_{q-1} enjoying the relations $\sigma^q = \tau_i^r = e$, $\tau_i \tau_j = \tau_j \tau_i$ ($1 \leq i, j \leq q-1$), $\sigma \tau_1 = \tau_{q-1}^{-1} \sigma$, $\sigma \tau_i = \tau_{i-1} \tau_{q-1}^{-1} \sigma$ ($2 \leq i \leq q-1$). Here we assume that $\text{g.c.d.}(q, r) = 1$. Then $[H_{q,r}, H_{q,r}] = \langle \tau_1, \dots, \tau_{q-1} \rangle$. Note that $H_{3,2}$ is isomorphic to the alternating group of degree 4.

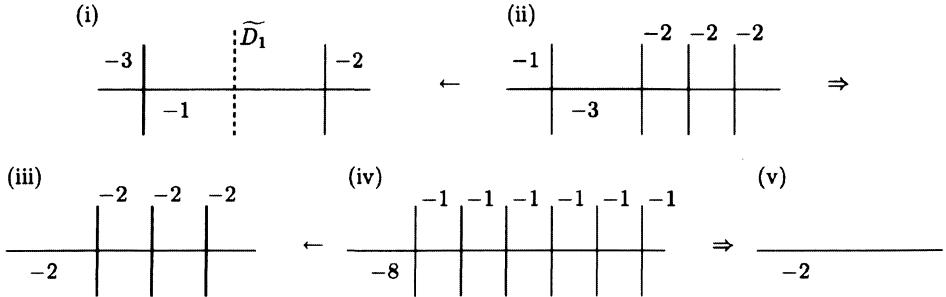
Proposition 3.5. *Let $D = qD_1$. Assume that there exist holomorphic functions α and β on Y such that $\alpha(0) = \beta(0) = 0$ and that $f_1 = \alpha^q - \beta^r$. Let $\mathbf{g} = \{g_1, \dots, g_{q-1}\}$, where $g_i = \alpha - \rho_q^{i-1} w_1$ and let $\mathbf{r} = \{\overbrace{r, \dots, r}^{q-1}\}$. If $\bar{Y}_{\mathbf{g}, \mathbf{r}}$ is irreducible, then $\bar{\mu} \circ \pi_{\mathbf{g}, \mathbf{r}} : \bar{Y}_{\mathbf{g}, \mathbf{r}} \rightarrow Y$ is a Galois covering such that $B_{\bar{\mu} \circ \pi_{\mathbf{g}, \mathbf{r}}} = D$ and that $\text{Gal}(\bar{Y}_{\mathbf{g}, \mathbf{r}}/Y) \simeq H_{q,r}$.*

Proof. Since $\bar{\sigma}_1^* g_i = g_{i+1}$ ($1 \leq i < q-1$) and $\frac{\bar{\sigma}_1^* g_{q-1}}{g_1^{r-1} \dots g_{q-1}^{r-1}} = \left(\frac{\beta}{g_1 \dots g_{q-1}} \right)^r$, there exist r^{q-1} automorphisms $\widetilde{\sigma}_1$ of $\bar{Y}_{\mathbf{g}, \mathbf{r}}$ such that $\pi_{\mathbf{g}, \mathbf{r}} \circ \widetilde{\sigma}_1 = \bar{\sigma}_1 \circ \pi_{\mathbf{g}, \mathbf{r}}$, that $\widetilde{\sigma}_1 \tau_{\mathbf{g}, \mathbf{r}}^1 = (\tau_{\mathbf{g}, \mathbf{r}}^{q-1})^{-1} \widetilde{\sigma}_1$, and that $\widetilde{\sigma}_1 \tau_{\mathbf{g}, \mathbf{r}}^i = \tau_{\mathbf{g}, \mathbf{r}}^{i-1} (\tau_{\mathbf{g}, \mathbf{r}}^{q-1})^{-1} \widetilde{\sigma}_1$ ($2 \leq i \leq q-1$), by Corollary 2.1. Among those, we can choose one so that $\widetilde{\sigma}_1^* \widetilde{g}_i = \widetilde{g}_{i+1}$ ($1 \leq i < q-1$) and that $\widetilde{\sigma}_1^* \widetilde{g}_{q-1} = \frac{\beta}{g_1 \dots g_{q-1}}$. Then we see by an easy calculation that $\widetilde{\sigma}_1^q = \text{id}$. Hence $\langle \widetilde{\sigma}_1, \tau_{\mathbf{g}, \mathbf{r}}^1, \dots, \tau_{\mathbf{g}, \mathbf{r}}^{q-1} \rangle \simeq H_{q,r}$. On the other hand, $\pi_{\mathbf{g}, \mathbf{r}}$ ramifies only along $[\bar{\mu}^* \alpha] \cap [\bar{\mu}^* \beta]$ ($\subset \bar{\mu}^{-1}(\text{Sing}(D_1))$), because $(\alpha - w_1)(\alpha - \rho_q w_1) \dots (\alpha - \rho_q^{q-1} w_1) = \beta^r$. \square

We see by the following example that if the divisors defined by $\alpha = 0$ and $\beta = 0$ cross normally at a point of Y , then $\bar{Y}_{\mathbf{g}, \mathbf{r}}$ is irreducible.

EXAMPLE 3.1. We consider the case that $n = 2$, $\alpha = z_1$ and $\beta = z_2$. When $q = 3$ and $r = 2$, there exists an embedded resolution $Z \rightarrow Y$ of D_1 whose exceptional set is as (i) in the following picture. Then the projection $Z \times_Y \bar{Y} \rightarrow Z$ ramifies along thick lines in (i). Hence the exceptional set of $Z \times_Y \bar{Y}$ is as (ii) and we obtain a resolution \bar{Z} of \bar{Y} as (iii) contracting the exceptional curve of the first kind in $Z \times_Y \bar{Y}$. Then the projection $\bar{Z} \times_{\bar{Y}} \bar{Y}_{\mathbf{g}, \mathbf{r}} \rightarrow \bar{Z}$ ramifies along thick lines in (iii), because the vanishing order of g_1, g_2 along the thin (resp. thick) lines are equal to 2 (resp. greater than 0) and that of $g_1 g_2 \widetilde{\sigma}_1^* g_2 = z_2^2$ along the thick lines is equal to 4. Thus we obtain a resolution of $\bar{Y}_{\mathbf{g}, \mathbf{r}}$ as in (v) contracting the exceptional curves of the first kind in $\bar{Z} \times_{\bar{Y}} \bar{Y}_{\mathbf{g}, \mathbf{r}}$. Here we note that the curve in (v) is rational, because $2 - 2g = 2 \cdot 4 - 3 \cdot \frac{1}{2} \cdot 4 = 2$.

In general, $\bar{Y}_{\mathbf{g}, \mathbf{r}}$ is irreducible and isomorphic to the singularity obtained by contracting a non-singular curve E of the genus $1 + \frac{qr-2r-q}{2} r^{q-2}$ with the self intersection number



$-r^{q-2}$. We can obtain the genus of E using Riemann-Hurwitz formula $2 - 2g = 2r^{q-1} - q\frac{r-1}{r}r^{q-1}$. For the calculation of the self-intersection number $-E^2$ of E , see the proof of Theorem 5.2 in §5. Let W be a small open neighborhood of 0 in \mathbf{C}^2 and let $W \rightarrow Y$ be the holomorphic map sending (x_1, x_2) to (x_1^a, x_2^b) for positive integers a and b . Then the normalization \widetilde{W} of $W \times_Y \overline{Y}_{g,r}$ is irreducible, because $\overline{\mu} \circ \pi_{g,r} : \overline{Y}_{g,r} \rightarrow Y$ does not ramify along $[z_1]$ and $[z_2]$. Hence the projection $\pi : \widetilde{W} \rightarrow W$ to W is a Galois covering such that $\text{Gal}(\widetilde{W}/W) \simeq H_{q,r}$ and that $B_\pi = q\{x_1^{aq} - x_2^{br} = 0\}$.

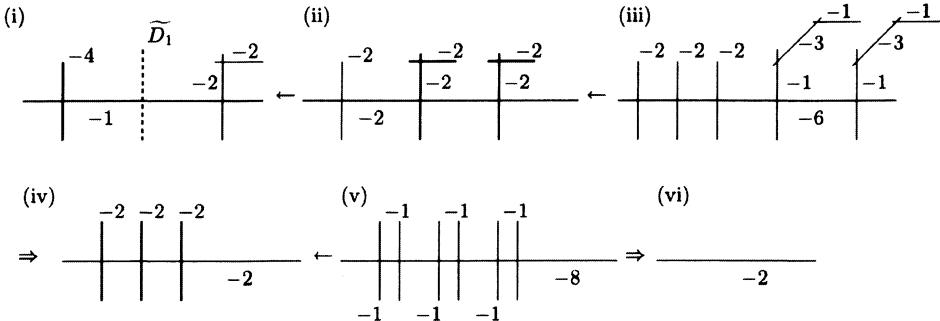
Finally, we construct examples whose covering transformation groups are isomorphic to the symmetric group S_4 of degree 4.

Proposition 3.6. *Let $D = 2D_1$. Assume that there exist holomorphic functions α, β, γ and δ on Y such that $\alpha(0) = \beta(0) = 0$, that $\delta \not\equiv 0$, that $f_1 = \alpha^2 - \beta^3$ and that $\delta^2 = \gamma^3 + 2\alpha - 3\beta\gamma$. Let $g = \alpha - w_1$, let $\mathbf{h} = \{h_1, h_2\}$, where $h_1 = \gamma + \tilde{g} + \beta/\tilde{g}$ and $h_2 = \gamma + \rho_3\tilde{g} + \rho_3^2\beta/\tilde{g}$, and let $\mathbf{s} = \{2, 2\}$. Then h_1, h_2 are holomorphic functions on $\overline{Y}_{g,3}$ and if $(\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is irreducible, then $\overline{\mu} \circ \pi_{g,3} \circ \pi_{\mathbf{h},\mathbf{s}} : (\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}} \rightarrow Y$ is a Galois covering such that $B_{\overline{\mu} \circ \pi_{g,3} \circ \pi_{\mathbf{h},\mathbf{s}}} = D$ and that $\text{Gal}((\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}}/Y) \simeq S_4$.*

Proof. Since $\overline{\sigma_1}^* g = \frac{\beta^3}{g} = \left(\frac{\beta}{\tilde{g}}\right)^3$, $\frac{\beta}{\tilde{g}}$ is a holomorphic function on $\overline{Y}_{g,3}$ and $\overline{Y}_{g,3}$ is a Galois covering of Y whose covering transformation group is generated by two elements $\tau_{g,3}$ and $\widetilde{\sigma_1}$ satisfying $\pi_{g,3} \circ \widetilde{\sigma_1} = \overline{\sigma_1} \circ \pi_{g,3}$ and $\widetilde{\sigma_1} \tau_{g,3} = \tau_{g,3}^2 \widetilde{\sigma_1}$. Here we may assume that $\widetilde{\sigma_1}^* \tilde{g} = \beta/\tilde{g}$. Then $\widetilde{\sigma_1}^* h_1 = h_1$, $\tau_{g,3}^* h_1 = h_2$ and $\widetilde{\sigma_1}^* h_2 = \tau_{g,3}^* h_2 = \left(\frac{\delta}{h_1 h_2}\right)^2 h_1 h_2$, because $h_1 h_2 \tau_{g,3}^* h_2 = \gamma^3 + \tilde{g}^3 + (\beta/\tilde{g})^3 - 3\gamma\tilde{g}(\beta/\tilde{g}) = \gamma^3 + (\alpha - w_1) + (\alpha + w_1) - 3\beta\gamma = \delta^2$. Hence $(\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is a Galois covering of Y . Moreover, we easily see that $\text{Gal}((\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}}/Y)$ is isomorphic to the group $\langle \sigma, \tau, \lambda_1, \lambda_2 \rangle$ generated by σ, τ, λ_1 and λ_2 enjoying the relations $\sigma^2 = \tau^3 = \lambda_1^2 = \lambda_2^2 = e$, $\sigma\tau = \tau^2\sigma$, $\sigma\lambda_1 = \lambda_1\lambda_2\sigma$, $\sigma\lambda_2 = \lambda_2\sigma$, $\tau\lambda_1 = \lambda_2\tau$, $\tau\lambda_2 = \lambda_1\lambda_2\tau$ and $\lambda_1\lambda_2 = \lambda_2\lambda_1$. On the other hand, $\pi_{g,3}$ ramifies only along $[\overline{\mu}^* \alpha] \cap [\overline{\mu}^* \beta]$ ($\subset \overline{\mu}^{-1}(\text{Sing}(D_1))$), and $\pi_{\mathbf{h},\mathbf{s}}$ ramifies only along

$\{\pi_{g,3}^* \bar{\mu}^* \gamma = \tilde{g} = \beta/\tilde{g}\} \cup \{\pi_{g,3}^* \bar{\mu}^* \gamma = \rho_3 \tilde{g} = \rho_3^2 \beta/\tilde{g}\} \cup \{\pi_{g,3}^* \bar{\mu}^* \gamma = \rho_3^2 \tilde{g} = \rho_3 \beta/\tilde{g}\}$ which is contained in $[\pi_{g,3}^* \bar{\mu}^* f_1] \cap [\pi_{g,3}^* \bar{\mu}^* (\alpha - \gamma^3)] \cap [\delta]$. \square

EXAMPLE 3.2. When $n = 2$, $\alpha = z_1^2$, $\beta = z_2$, $\gamma = 0$ and $\delta = \sqrt{2}z_1$ satisfy the relation $\delta^2 = \gamma^3 + 2\alpha - 3\beta\gamma$. There exists an embedded resolution $Z \rightarrow Y$ of D_1 whose exceptional set is as (i) in the following picture. Then $Z \times_Y \bar{Y} \rightarrow Z$ ramifies along thick lines. Hence there exists a resolution \bar{Z} of \bar{Y} whose exceptional set is as (ii). Then $\bar{Z} \times_{\bar{Y}} \bar{Y}_{g,3} \rightarrow \bar{Z}$ ramifies along thick lines in (ii). Hence contracting the exceptional curves of the first kind in (blowing up of \bar{Z} at two points) $\times_{\bar{Y}} \bar{Y}_{g,3}$ (iii), we obtain a resolution \tilde{Z} of $\bar{Y}_{g,3}$ as (iv). Then $\tilde{Z} \times_{\bar{Y}_{g,3}} (\bar{Y}_{g,3})_{h,s} \rightarrow \tilde{Z}$ ramifies along thick lines in (iv). Thus we obtain a resolution of $(\bar{Y}_{g,3})_{h,s}$ as (vi) contracting the exceptional curves of the first kind in $\tilde{Z} \times_{\bar{Y}_{g,3}} (\bar{Y}_{g,3})_{h,s}$ (v).



Let W be a small open neighborhood of 0 in \mathbf{C}^2 and let $W \rightarrow Y$ be the holomorphic map sending (x_1, x_2) to (x_1^a, x_2^b) for positive integers a and b . Then the normalization \tilde{W} of $W \times_Y (\bar{Y}_{g,3})_{h,s}$ is irreducible. Hence the projection $\pi : \tilde{W} \rightarrow W$ is a Galois covering such that $\text{Gal}(\tilde{W}/W) \simeq S_4$ and that $B_\pi = 2\{x_1^{4a} - x_2^{3b} = 0\}$.

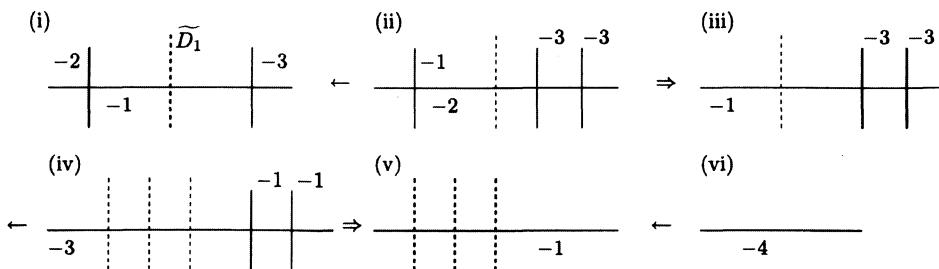
EXAMPLE 3.3. When $n = 4$, $\alpha = 2^5(2z_2^3 - 9z_1z_2z_3 + 27z_1^2z_4^2 + 27z_3^2 - 72z_2z_4^2)$, $\beta = 2^4(z_2^2 - 3z_1z_3 + 12z_4^2)$, $\gamma = 3z_1^2 - 8z_2$ and $\delta = 3\sqrt{3}(z_1^3 - 4z_1z_2 + 8z_3)$ satisfy the relation $\delta^2 = \gamma^3 + 2\alpha - 3\beta\gamma$ for any positive integer a . Let X be the subvariety of \mathbf{C}^5 defined by $x_1x_2x_3x_4 - x_5^a = 0$ and let $\varphi : X \rightarrow \mathbf{C}^8$ be the holomorphic map sending $(x_1, x_2, x_3, x_4, x_5)$ to $(z_1, z_2, z_3, z_4, w_1, v_1, u_1, u_2)$, where $z_1 = x_1 + x_2 + x_3 + x_4$, $z_2 = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$, $z_3 = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4$, $z_4 = x_5$, $w_1 = 2^53\sqrt{-3} \left(\prod_{\sigma \in A_4} x_{\sigma(1)}^3 x_{\sigma(2)}^2 x_{\sigma(3)} - \prod_{\sigma \in A_4} x_{\sigma(1)}^3 x_{\sigma(3)}^2 x_{\sigma(2)} \right)$, $v_1 = 4((x_1x_2 + x_3x_4) + \rho_3(x_1x_3 + x_2x_4) + \rho_3^2(x_1x_4 + x_2x_3))$, $u_1 = \sqrt{3}(x_1 + x_2 - x_3 - x_4)$ and $u_2 = \sqrt{3}(x_1 - x_2 - x_3 + x_4)$. Then φ is one-to-one on a Zariski open set of X and its image is the closure of the subvariety of $\mathbf{C}^8 \setminus \{v_1 = 0\}$ defined by $w_1^2 - (\alpha^2 - \beta^3) =$

$v_1^3 - (\alpha + w_1) = u_1^2 - (\gamma + v_1 + \frac{\beta}{v_1}) = u_2^2 - (\gamma + \rho_3 v_1 + \frac{\beta}{\rho_3 v_1}) = 0$ for the above α , β , γ and δ . Hence $(\bar{Y}_{g,3})_{h,s}$ is irreducible and isomorphic to X .

Proposition 3.7. *Let $D = 2D_1$. Assume that there exist holomorphic functions α and β on Y such that $\alpha(0) = \beta(0) = 0$ and that $f_1 = \alpha^2 - \beta^3$. Let $g = \alpha + w_1$, let $\mathbf{h} = \{h_1, h_2\}$, where $h_1 = w_1(\tilde{g} - \beta/\tilde{g})$ and $h_2 = w_1(\rho_3\tilde{g} - \rho_3^2\beta/\tilde{g})$, and let $\mathbf{s} = \{2, 2\}$. Then h_1, h_2 are holomorphic functions on $\bar{Y}_{g,3}$ and $\bar{\mu} \circ \pi_{g,3} \circ \pi_{\mathbf{h},\mathbf{s}} : (\bar{Y}_{g,3})_{\mathbf{h},\mathbf{s}} \rightarrow Y$ is a Galois covering such that $B_{\bar{\mu} \circ \pi_{g,3} \circ \pi_{\mathbf{h},\mathbf{s}}} = 4D_1$ and that $\text{Gal}((\bar{Y}_{g,3})_{\mathbf{h},\mathbf{s}}/Y) \simeq S_4$.*

Proof. We see in the same way as in the proof of Proposition 3.6 that h_1 and h_2 are holomorphic functions on $\bar{Y}_{g,3}$ and $\bar{Y}_{g,3}$ is a Galois covering of Y whose covering transformation group is generated by two elements $\tau_{g,3}$ and $\tilde{\sigma}_1$ satisfying $\pi_{g,3} \circ \tilde{\sigma}_1 = \bar{\sigma}_1 \circ \pi_{g,3}$, $\tilde{\sigma}_1 \tau_{g,3} = \tau_{g,3}^2 \tilde{\sigma}_1$ and $\tilde{\sigma}_1^* \tilde{g} = \beta/\tilde{g}$. Then $\tilde{\sigma}_1^* h_1 = h_1$, $\tau_{g,3}^* h_1 = h_2$ and $\tilde{\sigma}_1^* h_2 = \tau_{g,3}^* h_2 = \left(\frac{\sqrt{2}f_1}{h_1 h_2}\right)^2 h_1 h_2$, because $h_1 h_2 \tau_{g,3}^* h_2 = w_1^3 (\tilde{g}^3 - (\beta/\tilde{g})^3) = w_1^3 ((\alpha + w_1) - (\alpha - w_1)) = 2w_1^4$. Hence $(\bar{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is a Galois covering of Y , if it is irreducible. Moreover, we see in the same way as in the proof of Proposition 3.6 that the covering transformation group is isomorphic to S_4 and $\pi_{g,3}$ ramifies only along $[\bar{\mu}^* \alpha] \cap [\bar{\mu}^* \beta] (\subset \bar{\mu}^{-1}(\text{Sing}(D_1)))$. On the other hand, $\pi_{\mathbf{h},\mathbf{s}}$ ramifies only along $(\bar{\mu} \circ \pi_{g,3})^{-1}(D_1)$, because $h_1 h_2 \tau_{g,3}^* h_2 = 2w_1^4$. Let D' be an irreducible component of D_1 . Then the number m of the irreducible components C_1, \dots and C_m of $(\bar{\mu} \circ \pi_{g,3})^{-1}(D')$ is equal to 1 or 3. If $m = 1$, then the vanishing order of h_1 along C_1 is equal to $\frac{4}{3}$. Let c_i be the vanishing order of h_1 along C_i . Then the vanishing order of $2w_1^4 = h_1 h_2 \tau_{g,3}^* h_2$ along C_i is equal to $4 = c_1 + c_2 + c_3$, because $\tau_{g,3} C_1 = C_2$, $\tau_{g,3} C_2 = C_3$ or $\tau_{g,3} C_1 = C_3$, $\tau_{g,3} C_3 = C_2$. Hence two of c_1, c_2 and c_3 are equal to 1. Therefore, $\pi_{\mathbf{h},\mathbf{s}}$ ramifies along $C_1 + C_2 + C_3$ with the ramification index 2 and $(\bar{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is irreducible. \square

EXAMPLE 3.4. When $n = 2$, $\alpha = z_1$ and $\beta = z_2$, we see as in Example 3.2 that $(\bar{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is isomorphic to the singularity obtained by contracting a non-singular rational curve with the self-intersection number -4 .



Let W be a small open neighborhood of 0 in \mathbf{C}^2 and let $W \rightarrow Y$ be the holomorphic map sending (x_1, x_2) to (x_1^a, x_2^b) for positive integers a and b . Then the normalization \widetilde{W} of $W \times_Y (\overline{Y}_{g,3})_{\mathbf{h},\mathbf{s}}$ is irreducible. Hence the projection $\pi : \widetilde{W} \rightarrow W$ to W is a Galois covering such that $\text{Gal}(\widetilde{W}/W) \simeq S_4$ and that $B_\pi = 4\{x_1^{2a} - x_2^{3b} = 0\}$.

4. Galois coverings whose covering transformation groups are isomorphic to D_{2s} , Q , A_4 or S_4

Let $\pi : X \rightarrow Y$ be a Galois covering of a normal Stein analytic space Y .

Theorem 4.1. *Let r be an odd integer greater than 1. If $\text{Gal}(X/Y) \simeq D_{2r}$ then there exist holomorphic functions α and β on Y such that $X \simeq (Y_{f,2})_{g,r}$, where $f = \alpha^2 - \beta^r$ and $g = \alpha + \tilde{f}$. Moreover, if Y is non-singular and if B_π is irreducible, then there exists a holomorphic function γ on Y such that $f = \gamma^2 f_1$, where f_1 is a defining equation of $(B_\pi)_{\text{red}}$.*

Proof. $\text{Gal}(X/Y)$ is generated by two elements σ and τ enjoying the relations $\sigma^2 = \tau^r = e$ and $\sigma\tau = \tau^{-1}\sigma$. Then there exists a holomorphic function \tilde{g}_1 on X such that $\tau^*\tilde{g}_1 = \rho_r\tilde{g}_1$ and that $X \simeq (X/\langle\tau\rangle)_{\tilde{g}_1^{r-1},r}$, by Proposition 2.1. Let $\tilde{g}_2 = \sigma^*\tilde{g}_1$. Then $\sigma^*\tilde{g}_2 = \tilde{g}_1$ and $\tau^*\tilde{g}_2 = \tau^*\sigma^*\tilde{g}_1 = \sigma^*(\tau^{-1})^*\tilde{g}_1 = \rho_r^{-1}\tilde{g}_2$. Hence $\alpha = \frac{1}{2}(\tilde{g}_1^r + \tilde{g}_2^r)$ and $\beta = \tilde{g}_1\tilde{g}_2$ are $\text{Gal}(X/Y)$ -invariant. Let $\tilde{f} = \frac{1}{2}(\tilde{g}_1^r - \tilde{g}_2^r)$. Then $\tilde{f}^2 = \alpha^2 - \beta^r$ and $\tilde{f} \neq 0$. Otherwise, \tilde{g}_1/\tilde{g}_2 is a non-zero constant. However, it contradicts the fact that $\tau^*(\tilde{g}_1/\tilde{g}_2) = \rho_r^2(\tilde{g}_1/\tilde{g}_2)$. Since $\tau^*\tilde{f} = \tilde{f}$ and $\sigma^*\tilde{f} = -\tilde{f}$, $X/\langle\tau\rangle \simeq Y_{\tilde{f}^2,2}$.

If Y is non-singular and if $(B_\pi)_{\text{red}}$ is an irreducible divisor defined by $f_1 = 0$, then $X/\langle\tau\rangle$ is isomorphic to the hypersurface of $\mathbf{C} \times Y$ defined by $w_1^2 - f_1 = 0$. Hence $\gamma = \tilde{f}/w_1$ is a $(\text{Gal}(X/Y)/\langle\tau\rangle)$ -invariant holomorphic function on $X/\langle\tau\rangle$. \square

Since $g\tau_{f,2}^*g = (\alpha + \tilde{f})(\alpha - \tilde{f}) = \beta^r$, $\pi_{g,r}$ ramifies only along $[\pi_{f,2}^*\alpha] \cap [\tilde{f}] = [\pi_{f,2}^*\alpha] \cap [\pi_{f,2}^*\beta]$. Let D be an irreducible divisor on Y contained in $[\alpha] \cap [\beta]$, let a and b be the vanishing order along D of α and β , respectively. When $2a < br$, the vanishing order of f along D is equal to $2a$. Hence then $\pi_{f,2}$ does not ramify along D . Moreover, the vanishing orders along $\pi_{f,2}^{-1}(D)$ of g and $\tau_{f,2}^*g$ are not smaller than a and at least one of them is equal to a . Hence $\pi_{g,r}$ ramifies along $\pi_{f,2}^{-1}(D)$ with the index $\frac{r}{\text{g.c.d.}(a,r)}$. When $2a > br$, $\pi_{f,2}$ ramifies along D with the index $\frac{2}{\text{g.c.d.}(2,br)}$ and $\pi_{g,r}$ does not ramify along $\pi_{f,2}^{-1}(D)$. In the case of the example $\overline{Y}_{g,r_2}/\langle\sigma_2\tau^s\rangle$ following Proposition 3.4, $\alpha = z_1 z_2^{\frac{r-1}{2}}$ and $\beta = z_2$ satisfy the condition of the above theorem and $[\overline{Y}_{g,r_2}/\langle\sigma_2\tau^s\rangle \rightarrow Y]$ ramifies along the divisors defined by $z_1^2 - z_2 = 0$ and $z_2 = 0$ with the indices 2 and r , respectively.

In the manner similar to the proof of the above theorem, we can show the following.

Theorem 4.2. *If $\text{Gal}(X/Y) \simeq D_{4r}$, then there exist holomorphic functions f_1, f_2 and β on Y such that $f_1 - f_2 = \beta^r$ and that $X \simeq (Y_{\{f_1, f_2\}, \{2, 2\}})_{g, r}$, where $g = \tilde{f}_1 + \tilde{f}_2$.*

Since $g \left(\tau_{\{f_1, f_2\}, \{2, 2\}}^2 \right)^* g = (\tilde{f}_1 + \tilde{f}_2)(\tilde{f}_1 - \tilde{f}_2) = f_1 - f_2 = \beta^r$, $\pi_{g, r}$ ramifies only along $[\tilde{f}_1] \cap [\tilde{f}_2]$. Let D be an irreducible divisor on Y contained in $[\tilde{f}_1] \cap [\tilde{f}_2]$, let a_1 and a_2 be the vanishing orders along D of f_1 and f_2 , respectively. If $a_1 < a_2$, then a_1 is a multiple of r , because $f_1 - f_2 = \beta^r$. Assume that $a_1 \leq a_2$. If at least one of a_1 and a_2 is odd, then $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}$ ramifies along D and $\pi_{g, r}$ ramifies along $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}(D)$ with the index $\frac{r}{\text{g.c.d.}(a_1, r)}$. While, if a_1 and a_2 are both even, then $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}$ does not ramify along D and $\pi_{g, r}$ ramifies along $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}(D)$ with the index $\frac{r}{\text{g.c.d.}(a_1/2, r)}$. For example, if $Y = \mathbf{C}^2$, if $f_1 = z_1 z_2^2$ and if $f_2 = (z_1 - z_2^{r-2}) z_2^2$, then π ramifies along the divisors defined by $z_1 = 0$, $z_1 - z_2^{r-2} = 0$ and $z_2 = 0$ with the indices 2, 2 and r , respectively.

Theorem 4.3. *If $\text{Gal}(X/Y) \simeq Q$, then there exist holomorphic functions f_1, f_2 and β on Y such that $\beta^2 = f_1 f_2 (f_2 - f_1)$ and that $X \simeq (Y_{\{f_1, f_2\}, \{2, 2\}})_{g, 2}$, where $g = \tilde{f}_1 + \tilde{f}_2$.*

Proof. $\text{Gal}(X/Y)$ is generated by two elements σ and τ enjoying the relations $\sigma^4 = e$, $\tau^2 = \sigma^2$ and $\sigma\tau = \tau\sigma^3$. There exists a holomorphic function h_1 such that $\sigma^* h_1 = \sqrt{-1} h_1$. Let $h_2 = \tau^* h_1$. Then $\sigma^* h_2 = -\sqrt{-1} h_2$, $\tau^* h_2 = -h_1$. Hence $\beta = \frac{1}{4} h_1 h_2 (h_1^4 - h_2^4)$ is a $\text{Gal}(X/Y)$ -invariant holomorphic function on X . Let $\tilde{g} = \frac{1}{\sqrt{2}} (h_1 + h_2)$. Then $(\sigma^2)^* \tilde{g} = -\tilde{g}$. Hence $X \simeq (X/\langle \sigma^2 \rangle)_{\tilde{g}^2, 2}$. Let $\tilde{f}_1 = h_1 h_2$ and let $\tilde{f}_2 = \frac{1}{2} (h_1^2 + h_2^2)$. Then $\sigma^* \tilde{f}_1 = \tilde{f}_1$, $\tau^* \tilde{f}_1 = -\tilde{f}_1$, $\sigma^* \tilde{f}_2 = -\tilde{f}_2$ and $\tau^* \tilde{f}_2 = \tilde{f}_2$. Hence $(X/\langle \sigma^2 \rangle) \simeq Y_{\{\tilde{f}_1^2, \tilde{f}_2^2\}, \{2, 2\}}$. On the other hand, $\tilde{g}^2 = \tilde{f}_1 + \tilde{f}_2$ and $\beta^2 = \tilde{f}_1^2 \tilde{f}_2^2 (\tilde{f}_2^2 - \tilde{f}_1^2)$. \square

Since $g \left(\tau_{\{f_1, f_2\}, \{2, 2\}}^1 \right)^* g = f_2 - f_1 = \left(\frac{\beta}{f_1 f_2} \right)^2$, $\pi_{g, 2}$ ramifies only along $[\tilde{f}_1] \cap [\tilde{f}_2]$. Let D be an irreducible divisor on Y contained in $[\tilde{f}_1] \cap [\tilde{f}_2]$, let a_1 and a_2 be the vanishing orders along D of f_1 and f_2 , respectively. If $a_1 < a_2$, then a_2 is even, because $f_1 f_2 (f_1 - f_2) = \beta^2$. Assume that $a_1 \leq a_2$. If a_1 is odd, then $\pi_{\{f_1, f_2\}, \{2, 2\}}$ and $\pi_{g, 2}$ ramifies along D and $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}(D)$, respectively, i.e., $\pi_{\{f_1, f_2\}, \{2, 2\}} \circ \pi_{g, 2}$ ramifies along D with the index 4. While, if a_1 is even, then $\pi_{\{f_1, f_2\}, \{2, 2\}}$ does not ramify along D and $\pi_{g, 2}$ does not ramify or ramifies along $\pi_{\{f_1, f_2\}, \{2, 2\}}^{-1}(D)$, accordingly as a_1 is a multiple of 4 or not. For example, if $Y = \mathbf{C}^3$, if $f_1 = z_1^2 z_2 (z_1 - z_2) z_3^2$ and if $f_2 = z_1 z_2^2 (z_1 - z_2) z_3^2$, then $\pi_{\{f_1, f_2\}, \{2, 2\}} \circ \pi_{g, 2}$ ramifies along the divisors defined by $z_1 = 0$, $z_2 = 0$, $z_1 - z_2 = 0$ and $z_3 = 0$ with the indices 4, 4, 4 and 2, respectively.

Theorem 4.4. *If $\text{Gal}(X/Y) \simeq A_4$, then there exist holomorphic functions f_1 ,*

f_2 , α , β and γ on Y such that $\beta^2 = \alpha^3 + f_1 + f_2 - 3\alpha\gamma$, that $\gamma^3 = f_1 f_2$ and that $X \simeq (Y_{f_1,3})_{\{g_1, g_2\}, \{2,2\}}$, where $g_1 = \alpha + \tilde{f}_1 + \gamma/\tilde{f}_1$ and $g_2 = \alpha + \rho_3 \tilde{f}_1 + \rho_3^2 \gamma/\tilde{f}_1$.

Proof. $\text{Gal}(X/Y)$ is generated by three elements τ , λ_1 and λ_2 enjoying the relations $\tau^3 = \lambda_1^2 = \lambda_2^2 = e$, $\tau\lambda_1 = \lambda_2\tau$, $\tau\lambda_2 = \lambda_1\lambda_2\tau$ and $\lambda_1\lambda_2 = \lambda_2\lambda_1$. Let $\tilde{g}_1 = \tilde{g}_0 + \lambda_2^* \tilde{g}_0 - \lambda_1^* \lambda_2^* \tilde{g}_0$ for a suitable holomorphic function \tilde{g}_0 on X . Then $\tilde{g}_1 \not\equiv 0$, $\lambda_1^* \tilde{g}_1 = -\tilde{g}_1$ and $\lambda_2^* \tilde{g}_1 = \tilde{g}_1$. Let $\tilde{g}_2 = \tau^* \tilde{g}_1$ and let $\tilde{g}_3 = \tau^* \tilde{g}_2$. Then $\lambda_1^* \tilde{g}_2 = \tilde{g}_2$, $\lambda_2^* \tilde{g}_2 = -\tilde{g}_2$ and $\lambda_1^* \tilde{g}_3 = \lambda_2^* \tilde{g}_3 = -\tilde{g}_3$. Hence $X \simeq (X/\langle \lambda_1, \lambda_2 \rangle)_{\{\tilde{g}_1^2, \tilde{g}_2^2\}, \{2,2\}}$ and $\alpha = \frac{1}{3}(\tilde{g}_1^2 + \tilde{g}_2^2 + \tilde{g}_3^2)$, $\beta = \tilde{g}_1 \tilde{g}_2 \tilde{g}_3$ are $\text{Gal}(X/Y)$ -invariant. Let $\tilde{f}_1 = \frac{1}{3}(\tilde{g}_1^2 + \rho_3^2 \tilde{g}_2^2 + \rho_3 \tilde{g}_3^2)$ and $\tilde{f}_2 = \frac{1}{3}(\tilde{g}_1^2 + \rho_3 \tilde{g}_2^2 + \rho_3^2 \tilde{g}_3^2)$. Then $\tau^* \tilde{f}_1 = \rho_3 \tilde{f}_1$ and $\tau^* \tilde{f}_2 = \rho_3^2 \tilde{f}_2$. Hence $\gamma = \tilde{f}_1 \tilde{f}_2$, $f_1 = \tilde{f}_1^3$ and $f_2 = \tilde{f}_2^3$ are $\text{Gal}(X/Y)$ -invariant and $X/\langle \lambda_1, \lambda_2 \rangle \simeq Y_{f_1,3}$. On the other hand, $\beta^2 = \tilde{g}_1^2 \tilde{g}_2^2 \tilde{g}_3^2 = (\alpha + f_1 + \tilde{f}_2)(\alpha + \rho_3 \tilde{f}_1 + \rho_3^2 \tilde{f}_2)(\alpha + \rho_3^2 \tilde{f}_1 + \rho_3 \tilde{f}_2) = \alpha^3 + f_1 + f_2 - 3\alpha\gamma$. \square

For example, if $Y = \mathbf{C}^2$, then $f_1 = -z_1^2(z_2^2 - z_1)$, $f_2 = -z_1(z_2^2 - z_1)^2$, $\alpha = z_2^2$, $\beta = z_2(2z_1 - z_2^2)$ and $\gamma = z_1(z_2^2 - z_1)$ satisfy the relations $\beta^2 = \alpha^3 + f_1 + f_2 - 3\alpha\gamma$ and $\gamma^3 = f_1 f_2$. In this case, X is isomorphic to the singularity obtained by contracting a non-singular rational curve with the self-intersection number -6 .

Theorem 4.5. *If $\text{Gal}(X/Y) \simeq S_4$, then there exist holomorphic functions α , β , γ and δ on Y such that $\delta^2 = \gamma^3 + 2\alpha - 3\beta\gamma$ and that $X \simeq ((Y_{f,2})_{g,3})_{\{h_1, h_2\}, \{2,2\}}$, where $f = \alpha^2 - \beta^3$, $g = \alpha + \tilde{f}$, $h_1 = \gamma + \tilde{g} + \beta/\tilde{g}$ and $h_2 = \gamma + \rho_3 \tilde{g} + \rho_3^2 \beta/\tilde{g}$.*

Proof. $\text{Gal}(X/Y)$ is generated by four elements σ , τ , λ_1 and λ_2 enjoying the relations $\sigma^2 = \tau^3 = \lambda_1^2 = \lambda_2^2 = e$, $\sigma\tau = \tau^{-1}\sigma$, $\sigma\lambda_1 = \lambda_1\lambda_2\sigma$, $\sigma\lambda_2 = \lambda_2\sigma$, $\tau\lambda_1 = \lambda_2\tau$, $\tau\lambda_2 = \lambda_1\lambda_2\tau$ and $\lambda_1\lambda_2 = \lambda_2\lambda_1$. Let $\tilde{h}_1 = h_0 + \sigma^* h_0 + \lambda_2^* h_0 + \sigma^* \lambda_2^* h_0 - \lambda_1^* h_0 - \lambda_1^* \sigma^* h_0 - \lambda_1^* \lambda_2^* h_0 - \lambda_1^* \sigma^* \lambda_2^* h_0$ for a suitable holomorphic function h_0 on X . Then $\tilde{h}_1 \not\equiv 0$, $\lambda_1^* \tilde{h}_1 = -\tilde{h}_1$ and $\sigma^* \tilde{h}_1 = \lambda_2^* \tilde{h}_1 = \tilde{h}_1$. Let $\tilde{h}_2 = \tau^* \tilde{h}_1$ and let $\tilde{h}_3 = \tau^* \tilde{h}_2$. Then $\lambda_1^* \tilde{h}_2 = \tilde{h}_2$, $\lambda_2^* \tilde{h}_2 = -\tilde{h}_2$ and $\lambda_1^* \tilde{h}_3 = \lambda_2^* \tilde{h}_3 = -\tilde{h}_3$. Hence $X \simeq (X/\langle \lambda_1, \lambda_2 \rangle)_{\{\tilde{h}_1^2, \tilde{h}_2^2\}, \{2,2\}}$. Moreover, since $\sigma^* \tilde{h}_2 = \sigma^* \tau^* \tilde{h}_1 = (\tau^*)^* \sigma^* \tilde{h}_1 = \tilde{h}_3$ and $\sigma^* \tilde{h}_3 = \tilde{h}_2$, we see that $\gamma = \frac{1}{3}(\tilde{h}_1^2 + \tilde{h}_2^2 + \tilde{h}_3^2)$ and $\delta = \tilde{h}_1 \tilde{h}_2 \tilde{h}_3$ are $\text{Gal}(X/Y)$ -invariant. Let $\tilde{g}_1 = \frac{1}{3}(\tilde{h}_1^2 + \rho_3^2 \tilde{h}_2^2 + \rho_3 \tilde{h}_3^2)$ and $\tilde{g}_2 = \frac{1}{3}(\tilde{h}_1^2 + \rho_3 \tilde{h}_2^2 + \rho_3^2 \tilde{h}_3^2)$. Then $\lambda_i^* \tilde{g}_j = \tilde{g}_j$ ($1 \leq i, j \leq 2$), $\sigma^* \tilde{g}_1 = \tilde{g}_2$, $\tau^* \tilde{g}_1 = \rho_3 \tilde{g}_1$ and $\tau^* \tilde{g}_2 = \rho_3^2 \tilde{g}_2$. Hence $\alpha = \frac{1}{2}(\tilde{g}_1^3 + \tilde{g}_2^3)$ and $\beta = \tilde{g}_1 \tilde{g}_2$ are $\text{Gal}(X/Y)$ -invariant. Suppose that $\tilde{g}_1 \equiv 0$. Then $\tilde{g}_2 \equiv 0$ and hence $\tilde{h}_1 = \tilde{h}_2 = \tilde{h}_3$. It contradicts the fact that $\lambda_1^* (\tilde{h}_1/\tilde{h}_2) = -\tilde{h}_1/\tilde{h}_2$. Therefore, $X/\langle \lambda_1, \lambda_2 \rangle \simeq (X/\langle \tau, \lambda_1, \lambda_2 \rangle)_{\tilde{g}_1^3, 3}$. Let $\tilde{f} = \frac{1}{2}(\tilde{g}_1^3 - \tilde{g}_2^3)$. Then \tilde{f} is $\langle \tau, \lambda_1, \lambda_2 \rangle$ -invariant and $\sigma^* \tilde{f} = -\tilde{f}$. Hence $X/\langle \tau, \lambda_1, \lambda_2 \rangle \simeq Y_{\tilde{f}^2, 2}$. On the other hand, $\delta^2 = \tilde{h}_1^2 \tilde{h}_2^2 \tilde{h}_3^2 = (\gamma + \tilde{g}_1 + \tilde{g}_2)(\gamma + \rho_3 \tilde{g}_1 + \rho_3^2 \tilde{g}_2)(\gamma + \rho_3^2 \tilde{g}_1 + \rho_3 \tilde{g}_2) = \gamma^3 + \tilde{g}_1^3 +$

$$\tilde{g}_2^3 - 3\gamma\tilde{g}_1\tilde{g}_2 = \gamma^3 + 2\alpha - 3\beta\gamma, \tilde{f}^2 = \alpha^2 - \beta^3 \text{ and } \tilde{g}_1^3 = \alpha + \tilde{f}.$$

□

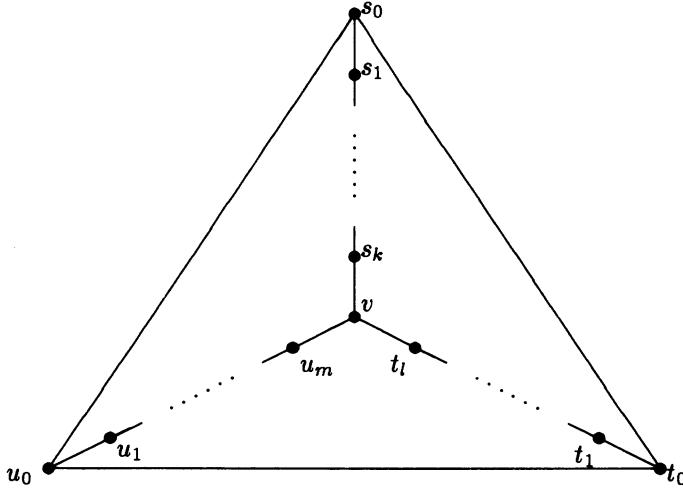
In the case of Example 3.4, $\alpha = (z_1^2 - z_2^3)^2$, $\beta = -(z_1^2 - z_2^3)z_2$, $\gamma = 0$ and $\delta = \sqrt{2}(z_1^2 - z_2^3)$ satisfy the condition of the above theorem.

5. Two dimensional Galois covering singularities

First, we show the following:

Theorem 5.1. *Let p, q, r be positive integers with $\text{g.c.d.}(p, q) = \text{g.c.d.}(q, r) = \text{g.c.d.}(r, p) = 1$ and let D_1 be the divisor defined by $z_1^p - z_2^q = 0$ on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 . If $\pi : X \rightarrow Y$ is a Galois covering of Y with $B_\pi = rD_1$, then $\text{Gal}(X/Y)$ is cyclic or unsolvable.*

Proof. Let $\tilde{Y}, \bar{Y}, \bar{X}, \bar{G}$ and C be as in Section 1. Then $\bar{X}/C \simeq \bar{Y} \simeq \tilde{Y}$, because B_π is irreducible. Hence if $\text{Gal}(X/Y)$ is an Abelian group, then it is cyclic. Suppose that $\text{Gal}(X/Y)$ is solvable and not cyclic. Then C is a non trivial solvable group. Hence by Proposition 2.1, there exist holomorphic functions g_1, \dots, g_j on \bar{Y} and positive integers r_1, \dots, r_j such that $C/[C, C] \simeq \mathbf{Z}_{r_1} \oplus \dots \oplus \mathbf{Z}_{r_j}$, that $\bar{Y}_{\mathbf{g}, \mathbf{r}} \simeq \bar{X}/[C, C]$ and that $\pi_{\mathbf{g}, \mathbf{r}} : \bar{Y}_{\mathbf{g}, \mathbf{r}} \rightarrow \bar{Y}$ does not ramify on $\bar{Y} \setminus \bar{\mu}^{-1}(0)$, where $\mathbf{g} = \{g_1, \dots, g_j\}$ and $\mathbf{r} = \{r_1, \dots, r_j\}$. On the other hand, since \bar{Y} is isomorphic to the hypersurface of $Y \times \mathbf{C}$ defined by $w^r - (z_1^p - z_2^q) = 0$, we can describe a resolution of \bar{Y} in the following way (see §6 of [3] and 1.6 of [2]). There exist integral vectors $s_0 = (1, 0, 0)$, s_1, \dots, s_k , $t_0 = (0, 1, 0)$, t_1, \dots, t_l , $u_0 = (0, 0, 1)$, u_1, \dots, u_m , $v = (qr, rp, pq)$ and negative integers $a_1, \dots, a_k, b_1, \dots, b_l, c_1, \dots, c_m, d$ such that $s_{i-1} + a_i s_i + s_{i+1} = 0$ ($1 \leq i \leq k$), that $t_{i-1} + b_i t_i + t_{i+1} = 0$ ($1 \leq i \leq l$), that $u_{i-1} + c_i u_i + u_{i+1} = 0$ ($1 \leq i \leq m$) and that $s_k + t_l + u_m + dv = 0$, where $s_{k+1} = t_{l+1} = u_{m+1} = v$. Then there exists a resolution $\nu : \bar{Z} \rightarrow \bar{Y}$ of \bar{Y} such that the exceptional set $\nu^{-1}(\bar{\mu}^{-1}(0)) = D + \sum_{i=1}^k A_i + \sum_{i=1}^l B_i + \sum_{i=1}^m C_i$ consists of rational curves, where $A_i^2 = a_i$, $B_i^2 = b_i$, $C_i^2 = c_i$, $D^2 = d$ and $A_i A_{i+1} = B_i B_{i+1} = C_i C_{i+1} = A_k D = B_l D = C_m D = 1$. Since $\pi_{\mathbf{g}, \mathbf{r}}$ does not ramify on $\bar{Y} \setminus \bar{\mu}^{-1}(0)$, we can express $[\nu^* g_1] = D' + r_1 D''$, where $D' = d'D + \sum_{i=1}^k a'_i A_i + \sum_{i=1}^l b'_i B_i + \sum_{i=1}^m c'_i C_i$ for some positive integers a'_i, b'_i, c'_i, d' . Then $A_i D' (= a'_{i-1} + a_i a'_i + a'_{i+1}) \equiv B_i D' (= b'_{i-1} + b_i b'_i + b'_{i+1}) \equiv C_i D' (= c'_{i-1} + c_i c'_i + c'_{i+1}) \equiv DD' (= a'_k + b'_l + c'_m + dd') \equiv 0 \pmod{r_1}$, where $a'_0 = b'_0 = c'_0 = 0$ and $a'_{k+1} = b'_{l+1} = c'_{m+1} = d'$. Let $\langle \cdot, \cdot \rangle$ be the ordinary inner product of \mathbf{R}^2 , i.e., $\langle (s, t), (u, v) \rangle = su + tv$ and let x be the element in \mathbf{Q}^3 defined by $\langle x, v \rangle = d'$, $\langle x, s_k \rangle = a'_k$ and $\langle x, t_l \rangle = b'_l$. Then $\langle x, u_m \rangle \equiv c'_m \pmod{r_1}$, because $0 = \langle x, s_k + t_l + u_m + dv \rangle = a'_k + b'_l + \langle x, u_m \rangle + dd'$. In the same way, we have $\langle x, s_i \rangle \equiv a'_i$, $\langle x, t_i \rangle \equiv b'_i$ and $\langle x, u_i \rangle \equiv c'_i \pmod{r_1}$. Since $\langle x, s_0 \rangle \equiv \langle x, t_0 \rangle \equiv \langle x, u_0 \rangle \equiv 0 \pmod{r_1}$, we see that $x \in r_1 \mathbf{Z}^3$. Hence $a'_i \equiv b'_i \equiv c'_i \equiv d' \equiv 0 \pmod{r_1}$. Therefore, the projection $\bar{Z} \times_{\bar{Y}} \bar{Y}_{g_1, r_1} \rightarrow \bar{Z}$ does not ramify. However, \bar{Z} is simply connected, a



contradiction. □

We make preparations for later convenience. Let N be a free \mathbf{Z} -module of rank 2 and let $N_{\mathbf{R}} = N \otimes_{\mathbf{Z}} \mathbf{R} \simeq \mathbf{R}^2$. For a rational cone σ in $N_{\mathbf{R}}$, we denote by $X(N, \sigma)$, the torus embedding $T_{N\text{emb}}(\{\text{faces of } \sigma\})$ corresponding to the fan consisting of the faces of σ . Let u and v be primitive elements in N , let \square be the convex hull of $((\mathbf{R}_{\geq 0}u + \mathbf{R}_{\geq 0}v) \setminus \{0\}) \cap N$ and let $v_0 = u, v_1, \dots, v_k = v$ be in this order the points of N on the compact faces of \square . Then there exist integers a_i smaller than -1 satisfying $v_{i-1} + a_i v_i + v_{i+1} = 0$ for $i = 1, \dots, k-1$. We denote by $LB(N, u, v)$ and $CF(N, u, v)$, the ordered sets $\{v_0, v_1, \dots, v_k\}$ and $\{a_1, a_2, \dots, a_{k-1}\}$, respectively. There exists a resolution of $X(N, \mathbf{R}_{\geq 0}u + \mathbf{R}_{\geq 0}v)$ such that the exceptional set is a chain of rational curves with the self-intersection numbers a_1, a_2, \dots, a_{k-1} (see Proposition 1.19 of [2]). Moreover, we note that if $N = \mathbf{Z}^2$, $v_0 = u = (1, 0)$, $v_{k-1} = (s, t)$ and $v_k = v = (q, p)$, then

$$[[a_1, a_2, \dots, a_{k-1}]] = \frac{p}{p - \left(q - \left[\frac{q}{p}\right]p\right)} \quad \text{and} \quad [[a_{k-1}, a_{k-2}, \dots, a_1]] = \frac{p}{t}$$

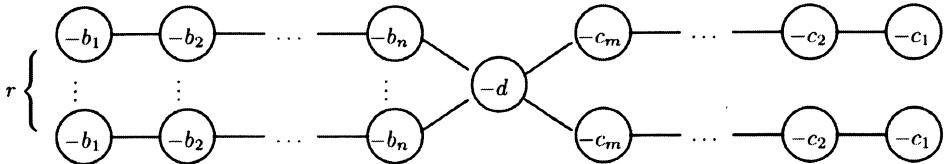
(see p25 of [2]). On the other hand, $\pi_1(X(\mathbf{Z}^2, \sigma) \setminus \text{orb}(\sigma)) \simeq \mathbf{Z}_p$, where $\sigma = \mathbf{R}_{\geq 0}(1, 0) + \mathbf{R}_{\geq 0}(q, p)$ (see Proposition 1.9 of [2]).

Lemma 5.1. *Assume that p is a multiple of a positive integer r and let $N = \mathbf{Z}(1, 0) \oplus \mathbf{Z}(0, r)$. Then $\tilde{X} := X(N, \sigma) \simeq X(\mathbf{Z}^2, \mathbf{R}_{\geq 0}(1, 0) + \mathbf{R}_{\geq 0}(q, p/r))$ is a cyclic covering of $X(\mathbf{Z}^2, \sigma)$ with the index r ramifying only at $\text{orb}(\sigma)$. Conversely, such a covering does not exist except those isomorphic to \tilde{X} .*

Proof. The linear map sending $(1, 0)$ and $(0, 1)$ to $(1, 0)$ and $(0, r)$, respectively, induces an isomorphism of fans from $(\mathbf{Z}^2, \{\text{faces of } \mathbf{R}_{\geq 0}(1, 0) + \mathbf{R}_{\geq 0}(q, p/r)\})$ to $(N, \{\text{faces of } \sigma\})$. Hence $X(N, \sigma) \simeq X(\mathbf{Z}^2, \mathbf{R}_{\geq 0}(1, 0) + \mathbf{R}_{\geq 0}(q, p/r))$. The inclusion $i : N \hookrightarrow \mathbf{Z}^2$ gives rise to a covering map $i_* : X(N, \sigma) \rightarrow X(\mathbf{Z}^2, \sigma)$ with $\text{Gal}(X(N, \sigma)/X(\mathbf{Z}^2, \sigma)) \simeq \mathbf{Z}^2/N \simeq \mathbf{Z}_r$ (see Theorem 1.13 and Proposition 1.25 in [2]). This map i_* does not ramify along $T_{\mathbf{Z}^2}$, $\text{orb}(\mathbf{R}_{\geq 0}(1, 0))$ and $\text{orb}(\mathbf{R}_{\geq 0}(q, p))$, because $(1, 0)$ and (q, p) are points in N . Hence i_* ramifies only along $\text{orb}(\sigma)$, because $X(\mathbf{Z}^2, \sigma) = T_{\mathbf{Z}^2} \sqcup \text{orb}(\mathbf{R}_{\geq 0}(1, 0)) \sqcup \text{orb}(\mathbf{R}_{\geq 0}(q, p)) \sqcup \text{orb}(\sigma)$. Next, assume that $p = r$. Then \tilde{X} is a cyclic covering of $X(\mathbf{Z}^2, \sigma)$ with the index p and $\tilde{X} \setminus \text{orb}(\sigma)$ is simply connected. Hence any Galois covering \bar{X} of $X(\mathbf{Z}^2, \sigma)$ ramifying only along $\text{orb}(\sigma)$, is isomorphic to the quotient of \tilde{X} by a subgroup of $\text{Gal}(\tilde{X}/X(\mathbf{Z}^2, \sigma)) \simeq \mathbf{Z}_p$, which is isomorphic to $X(\mathbf{Z}(1, 0) \oplus \mathbf{Z}(0, s), \sigma)$, where $s = |\text{Gal}(\bar{X}/X(\mathbf{Z}^2, \sigma))|$. \square

Let $\pi : X \rightarrow Y$ be a Galois covering of a simply connected open neighborhood Y of 0 in \mathbf{C}^n such that $\text{Gal}(X/Y)$ is isomorphic to the dihedral group D_{2r} of order $2r$. Then there exists at least one irreducible component B_i of $B_\pi = r_1 B_1 + \cdots + r_l B_l$ along which the ramification index r_i of π is equal to 2, by Proposition 1.1. Hence if B_π is irreducible, then $r_1 = 2$.

Theorem 5.2. *Let $D = 2D_1$, where D_1 is the divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 defined by $z_1^p - z_2^q = 0$ for an integer $p > 0$ and for an odd integer $q > 0$ with $\text{g.c.d.}(p, q) = 1$. Then there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that $\text{Gal}(X/Y) \simeq D_{2r}$, if and only if p is even and r is a divisor of q . Moreover, then there exists a resolution of X , the dual graph of whose exceptional set is as follows:*



Here,

$$[[b_1, b_2, \dots, b_n]] = \frac{\frac{p}{2}}{\frac{p}{2} - \left(q - \left[\frac{2q}{p}\right]\frac{p}{2}\right)}, \quad [[c_1, c_2, \dots, c_m]] = \frac{\frac{q}{r}}{\frac{q}{r} - \left(p - \left[\frac{pr}{q}\right]\frac{q}{r}\right)},$$

$$d = 2\alpha + r\beta + \frac{2r}{pq}, \quad \alpha = \begin{cases} 0 & \text{if } q = r \\ [[c_m, \dots, c_1]]^{-1} & \text{if } q > r \end{cases},$$

$$\beta = \begin{cases} 0 & \text{if } p = 2 \\ [[b_n, \dots, b_1]]^{-1} & \text{if } p > 2 \end{cases}.$$

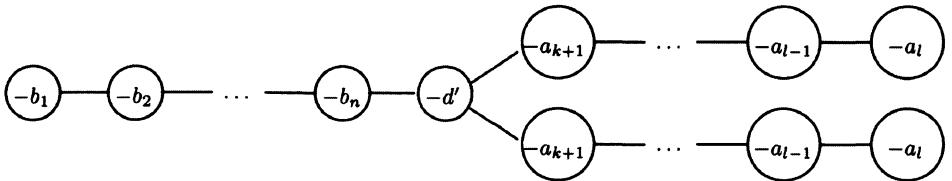
REMARK 5.1. The value of d in the above theorem may be equal to 1. For example, if $p = 2$ and $q = r$, or if $p = 2$, $q = 15$ and $r = 3$, then $d = 1$. Hence the resolution in the above theorem may not be minimal. Especially, if $p = 2$ and $q = r$, then X is non-singular. Also in the following two theorems, the resolutions may not be minimal.

Proof of Theorem 5.2. If the condition in the theorem is satisfied, then $\alpha = z_1^{p/2}$ and $\beta = z_2^{q/r}$ satisfy the condition of Proposition 3.1.

Suppose that p is odd. Then $g.c.d.(p, q) = g.c.d.(q, 2) = g.c.d.(2, p) = 1$. Hence no Galois coverings satisfying the condition of the theorem exist, by Theorem 5.1. Let $LB(\mathbf{Z}^2, (1, 0), (q, p)) = \{v_0, v_1, \dots, v_k\}$, $CF(\mathbf{Z}^2, (1, 0), (q, p)) = \{a_1, a_2, \dots, a_{k-1}\}$, $LB(\mathbf{Z}^2, (q, p), (0, 1)) = \{v_k, v_{k+1}, \dots, v_{l+1}\}$, $CF(\mathbf{Z}^2, (q, p), (0, 1)) = \{a_{k+1}, a_{k+2}, \dots, a_l\}$. Here we recall that $v_0 = (1, 0)$, $v_k = (q, p)$, $v_{l+1} = (0, 1)$ and that a_i are integers smaller than -1 and satisfy $v_{i-1} + a_i v_i + v_{i+1} = 0$ for $1 \leq i \leq l$, $i \neq k$. Since $\{v_{k-1}, v_k\}$ and $\{v_k, v_{k+1}\}$ are bases of \mathbf{Z}^2 , there exists an integer a_k satisfying $v_{k-1} + a_k v_k + v_{k+1} = 0$. Hence by Proposition 1.1, 10 of [2] and [1], we obtain an embedded resolution $\lambda : Z \rightarrow Y$ of D_1 such that the exceptional set $E = \sum_{i=1}^l E_i$ is a chain of non-singular rational curves with the self-intersection numbers $E_i^2 = a_i$ for $1 \leq i \leq l$ and that $\widetilde{D}_1 \cdot E_k = 1$, where \widetilde{D}_1 is the proper transformation of D_1 and $E_i E_{i+1} = 1$ for $1 \leq i \leq l-1$. Since at least one of a_1, a_2, \dots and a_l is equal to -1 , we see that $a_k = -1$. On the other hand, the vanishing order c_i of $\lambda^*(z_1^p - z_2^q)$ along E_i is equal to $\langle v_i, (0, q) \rangle$ or $\langle v_i, (p, 0) \rangle$, accordingly as $i \leq k$ or $i \geq k$. Let \widetilde{Y} be the hypersurface of $Y \times \mathbf{C}$ defined by $w_1^2 - (z_1^p - z_2^q) = 0$, let \widetilde{Z} be the normalization of $\widetilde{Y} \times_Y Z$, let $\widetilde{\lambda} : \widetilde{Z} \rightarrow \widetilde{Y}$, $\nu : \widetilde{Z} \rightarrow Z$ be the projections and let $\widetilde{E} = \nu^{-1}(E)$. Since c_i are even for all $i \geq k$, we see that ν does not ramify along E_i for all $i \geq k$. Hence for each $i \geq k+1$, the inverse image $\nu^{-1}(E_i)$ of E_i consists of two irreducible components, which we denote by F_i and F'_i . Then $\sigma_1 F_i = F'_i$ and we may assume that $F_i F'_{i+1} = F'_i F'_{i+1} = 1$ and that $F_i F'_{i+1} = F'_i F_{i+1} = 0$ for $k+1 \leq i \leq l-1$, where σ_1 is the automorphism of \widetilde{Z} induced by the automorphism of \widetilde{Y} sending (z_1, z_2, w_1) to $(z_1, z_2, -w_1)$. On the other hand, for each $i \leq k-1$, we see that at least one of c_i and c_{i+1} is odd. Otherwise $\{v_i, v_{i+1}\}$ is not a basis of \mathbf{Z}^2 , because q is odd and $v_i = (*, c_i/q)$ for $1 \leq i \leq k$. Hence ν ramifies along at least one of E_i and E_{i+1} . Therefore, $F_i = \nu^{-1}(E_i)$ is irreducible for each $i \leq k$. Clearly $\sigma_1 F_i = F_i$. Now assume that there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that $\text{Gal}(X/Y) = D_{2r}$. Then there exist holomorphic functions g and h on \widetilde{Y} such that X is isomorphic to $\widetilde{Y}_{g, r}$ and that $(\sigma_1^* g)g = h^r$, by Proposition 2.1 and Corollary 2.1. Since $\pi_{g, r} : \widetilde{Y}_{g, r} \rightarrow Y$ does not ramify on $\widetilde{Y} \setminus \{0\}$, $C := [\widetilde{\lambda}^* g] \equiv \sum_{i=1}^k d_i F_i + \sum_{i=k+1}^l (d_i F_i + d'_i F'_i) \pmod{r}$ for some integers d_i and d'_i . Note that since D is irreducible, r is odd, by Proposition 1.1 and that $\sigma_1^* C + C = [\widetilde{\lambda}^*(g \sigma_1^* g)] \equiv \sum_{i=1}^k 2d_i F_i + \sum_{i=k+1}^l (d_i + d'_i)(F_i + F'_i) \pmod{r}$.

Hence we see that $d_i \equiv 0 \pmod{r}$ for $i \leq k$. Let $s = \text{g.c.d.}(d_{k+1}, \dots, d_l, r)$. Then $d'_i \equiv 0 \pmod{s}$ for $k+1 \leq i \leq l$, because $d_i + d'_i \equiv 0 \pmod{r}$. Hence the cyclic covering $\tilde{Z} \times_{\tilde{Y}} \tilde{Y}_{g,r}/\langle \tau_{g,r}^s \rangle \rightarrow \tilde{Z}$ with the index s does not ramify. However, \tilde{E} is simply connected. Hence $s = 1$. On the other hand, since $CF_i \equiv 0 \pmod{r}$ and $F_i^2 = E_i^2$, we have $d_{i-1} + a_i d_i + d_{i+1} \equiv 0 \pmod{r}$ for $k+1 \leq i \leq l$, where $d_{l+1} = 0$. Since $\langle (d_l, 0), v_{l+1} \rangle = 0$ and $\langle (d_l, 0), v_l \rangle = d_l$, we see that $\langle (d_l, 0), v_i \rangle \equiv d_i \pmod{r}$ for $k \leq i \leq l-1$. Hence $\text{g.c.d.}(d_l, r) = 1$. Therefore, $q \equiv 0 \pmod{r}$, because $qd_l \equiv d_k \equiv 0 \pmod{r}$.

Let $v_{k-1} = (s, t)$ and let $v_{k+1} = (u, v)$. Then $sp - tq = qv - pu = 1$, $s+u = q$ and $t+v = p$, because $v_{k-1} - v_k + v_{k+1} = 0$. Let $LB(N, (1, 0), (q, p)) = \{v'_0 = (1, 0), v'_1, \dots, v'_n = (s', t'), v'_{n+1} = (q, p)\}$ and let $CF(N, (1, 0), (q, p)) = \{b_1, b_2, \dots, b_n\}$, where $N = \mathbf{Z}(1, 0) \oplus \mathbf{Z}(0, 2)$. Then $[[b_1, b_2, \dots, b_n]] = \frac{\frac{p}{2} - (q - \lceil \frac{2q}{p} \rceil) \frac{p}{2}}{2}$ by Lemma 5.1, and $s'p - t'q = 2$. Hence $\frac{2s-s'}{q} = \frac{2t-t'}{p}$ and $2v_{k-1} = \frac{2t-t'}{p}v_k + v'_n$. Here we note that $\frac{2t-t'}{p} \in \mathbf{Z}$, because $\{v_k, v'_n\}$ is a basis of N and $2v_{k-1} \in N$. Moreover, $\frac{2t-t'}{p} \geq 0$. Otherwise, $v'_n = 2v_{k-1} + (-\frac{2t-t'}{p})v_k$ is contained in the interior of the convex hull of $((\mathbf{R}_{\geq 0}(1, 0) + \mathbf{R}_{\geq 0}(q, p)) \setminus \{0\}) \cap N$, because $2v_{k-1}, v_k \in N$. Also note that $t' = 0$ (i.e., $n = 0$) if and only if $p = 2$. While, if $t' > 1$, then $\frac{p}{t'} = [[b_n, \dots, b_1]]$. Let $w_j = jv_k + v'_n$ for $j = 0, \dots, \frac{2t-t'}{p}$. Then $v_k + w_{\frac{2t-t'}{p}-1} = w_{\frac{2t-t'}{p}}$ and $w_{j-1} + w_{j+1} = 2w_j$ for $j = 1, \dots, \frac{2t-t'}{p} - 1$. Let $\Sigma = \{\text{faces of } \mathbf{R}_{\geq 0}v_i + \mathbf{R}_{\geq 0}v_{i+1} \mid 0 \leq i \leq k-1\}$, let $\Lambda = \{\text{faces of } \mathbf{R}_{\geq 0}v'_i + \mathbf{R}_{\geq 0}v'_{i+1} \mid 0 \leq i \leq n\}$, and let $\Theta = \{\text{faces of } \mathbf{R}_{\geq 0}v'_i + \mathbf{R}_{\geq 0}v'_{i+1}, \text{faces of } \mathbf{R}_{\geq 0}w_j + \mathbf{R}_{\geq 0}w_{j+1} \mid 0 \leq i \leq n-1, 0 \leq j \leq \frac{2t-t'}{p}\}$, where $w_{\frac{2t-t'}{p}+1} = v_k$. Then some neighborhood U of $E_1 + E_2 + \dots + E_{k-1}$ is isomorphic to an open set of $T_{\mathbf{Z}^2\text{emb}}(\Sigma)$, the point $E_{k-1}E_k$ corresponds to $\text{orb}(\mathbf{R}_{\geq 0}v_{k-1} + \mathbf{R}_{\geq 0}v_k)$ by this isomorphism and $\nu^{-1}(U)$ is isomorphic to an open set of $T_{N\text{emb}}(\Sigma)$, by Lemma 5.1. Since $2v_{k-1} = w_{\frac{2t-t'}{p}}$, Θ as well as Σ contains $\mathbf{R}_{\geq 0}v_{k-1} + \mathbf{R}_{\geq 0}v_k$. Hence the restriction of the birational map $T_{N\text{emb}}(\Theta) \rightarrow T_{N\text{emb}}(\Sigma)$ to the neighborhood $T_{N\text{emb}}(\{\text{faces of } \mathbf{R}_{\geq 0}v_{k-1} + \mathbf{R}_{\geq 0}v_k\})$ of $\text{orb}(\mathbf{R}_{\geq 0}v_{k-1} + \mathbf{R}_{\geq 0}v_k)$ is biholomorphic. While, we have a holomorphic map $T_{N\text{emb}}(\Theta) \rightarrow T_{N\text{emb}}(\Lambda)$, because Θ is a subdivision of Λ . Hence replacing $\nu^{-1}(U)$ by an open set of $T_{N\text{emb}}(\Lambda)$, we obtain a resolution of \tilde{Y} the dual graph of whose exceptional set is as follows.



Since the map $T_{N\text{emb}}(\Theta) \rightarrow T_{N\text{emb}}(\Lambda)$ is the composite of $\frac{2t-t'}{p}$ times blow up at $\text{orb}(\mathbf{R}_{\geq 0}v'_n + \mathbf{R}_{\geq 0}v'_{n+1})$, we have $d' = 2 - \frac{2t-t'}{p}$. Let $LB(\mathbf{Z}(r, 0) \oplus \mathbf{Z}(0, 1), (q, p), (0, 1)) = \{(q, p), (u', v'), \dots, (0, 1)\}$ and let $CF(\mathbf{Z}(r, 0) \oplus \mathbf{Z}(0, 1), (q, p), (0, 1)) = \{c_1, c_2, \dots, c_m\}$. Then $[[c_1, c_2, \dots, c_m]] = \frac{q}{q - (p - \lceil \frac{pr}{q} \rceil)q}$ and $r(u, v) = \frac{rv - v'}{p}(q, p) + (u', v')$, because $qv' - pu' = r$ and $qv - pu = 1$. Hence we obtain a resolution of X the dual graph of whose exceptional set is as in the proposition and

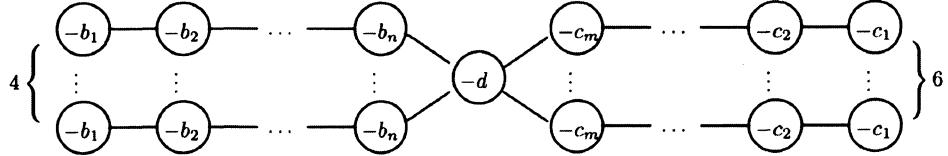
$$\begin{aligned} d &= (2 - \frac{2t-t'}{p})r - \frac{rv - v'}{p}2 = 2r - \frac{2t-t'}{p}r - \frac{2rv}{p} + \frac{2v'}{p} \\ &= 2r - \frac{2}{p}(t+v)r + \frac{t'r}{p} + 2\left(\frac{u'}{q} + \frac{r}{pq}\right) = r\frac{t'}{p} + 2\frac{u'}{q} + \frac{2r}{pq}. \end{aligned}$$

Here we note that $u' = 0$ if and only if $q = r$ and that if $u' > 1$, then $\frac{q}{u'} = [[c_m, \dots, c_1]]$. \square

Next, we consider the case that $\text{Gal}(X/Y) \simeq A_4$. Let $D = r_1 D_1$, where r_1 is an integer greater than 1 and D_1 is a divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 defined by $z_1^p - z_2^q = 0$ for positive integers p and q with $\text{g.c.d.}(p, q) = 1$. Here we may assume that q is not a multiple of 3. If $r_1 = 3$, if p and q are multiples of 3 and 2, respectively, then there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that $\text{Gal}(X/Y) \simeq A_4$, as we see in Example 3.1. Conversely, let $\pi : X \rightarrow Y$ be such a Galois covering. Then $X/[G, G]$ is isomorphic to the hypersurface \tilde{Y} of $Y \times \mathbf{C}$ defined by $w_1^3 - (z_1^p - z_2^q) = 0$, where $G = \text{Gal}(X/Y)$, and $r_1 = 3$, because $|g| = 3$ for any element g in $G \setminus [G, G]$. Hence there exist holomorphic functions g_1, g_2 and meromorphic functions h_1, h_2 on \tilde{Y} such that $\tilde{Y}_{\{g_1, g_2\}, \{2, 2\}} \simeq X$, that $\frac{\sigma_1^* g_1}{g_2} = h_1^2$ and that $\frac{\sigma_1^* g_2}{g_1 g_2} = h_2^2$, by Proposition 2.1 and Corollary 2.1, where σ_1 is the automorphism of \tilde{Y} sending (z_1, z_2, w_1) to $(z_1, z_2, \rho_3 w_1)$. Then $g_1(\sigma_1^* g_1)((\sigma_1^2)^* g_1) = (g_1 g_2 h_1(\sigma_1^* h_1) h_2)^2$. On the other hand, we can construct a $\text{Gal}(\tilde{Y}/Y)$ -equivariant resolution $\lambda : \tilde{Z} \rightarrow \tilde{Y}$ of \tilde{Y} (see §3 of [4]). Then $[\lambda^* g_1] = \sum c_i E_i + 2\tilde{C}$ for some positive integers c_i and for a certain divisor \tilde{C} on \tilde{Z} , where $\sum E_i$ is the exceptional set of λ and each irreducible component of \tilde{C} is not contained in $\sum E_i$, because $\pi_{\{g_1, g_2\}, \{2, 2\}}$ does not ramify along divisors. Hence $(\sum c_i E_i) E_j \equiv 0 \pmod{2}$. Moreover, we have $[\lambda^* g_1] + [\lambda^* \sigma_1^* g_1] + [\lambda^* (\sigma_1^2)^* g_1] \equiv 0 \pmod{2}$. Hence we can show the following theorem, in the manner similar to the proof of Theorem 5.2.

Theorem 5.3. *Let $D = r_1 D_1$, where r_1 is an integer greater than 1 and D_1 is the divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 defined by $z_1^p - z_2^q = 0$ for positive integers p and q with $\text{g.c.d.}(p, q) = 1$ the latter of which is not a multiple of 3. Then there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that $\text{Gal}(X/Y) \simeq A_4$, if and only if $r_1 = 3$, p and q are multiples of 3 and 2, respectively.*

The dual graph of the exceptional set of a resolution of X in the above theorem is as follows:



Here,

$$[[b_1, b_2, \dots, b_n]] = \frac{\frac{p}{3}}{\frac{p}{3} - \left(q - \left[\frac{3q}{p} \right] \frac{p}{3} \right)}, \quad [[c_1, c_2, \dots, c_m]] = \frac{\frac{q}{2}}{\frac{q}{2} - \left(p - \left[\frac{p^2}{q} \right] \frac{q}{2} \right)},$$

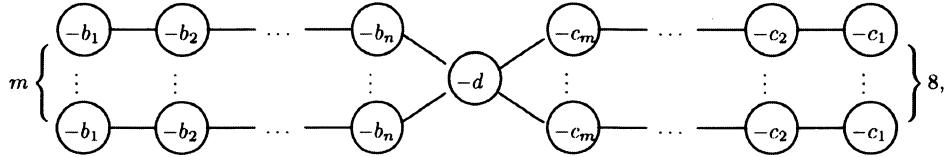
$$d = 6\alpha + 4\beta + \frac{12}{pq}, \quad \alpha = \begin{cases} 0 & \text{if } q = 2 \\ [[c_m, \dots, c_1]]^{-1} & \text{if } q > 2 \end{cases},$$

$$\beta = \begin{cases} 0 & \text{if } p = 3 \\ [[b_n, \dots, b_1]]^{-1} & \text{if } p > 3 \end{cases}.$$

Finally, we consider the case that $\text{Gal}(X/Y) \simeq S_4$. Let $D = r_1 D_1$, where r_1 is an integer greater than 1 and D_1 is a divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 defined by $z_1^p - z_2^q = 0$ for positive integers p and q with $\text{g.c.d.}(p, q) = 1$. Here we may assume that q is odd. If $r_1 = 2$ (resp. 4), if p and q are multiples of 4 (resp. 2) and 3, respectively, then there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = D$ and that $\text{Gal}(X/Y) \simeq S_4$, as we see in Example 3.2 (resp. 3.4). Conversely, let $\pi : X \rightarrow Y$ be such a Galois covering of Y , let $G = \text{Gal}(X/Y)$, let $G_1 = [G, G]$ and let $G_2 = [G_1, G_1]$. Then X/G_2 is a Galois covering of Y such that $\text{Gal}((X/G_2)/Y) \simeq D_6$ and that $B_{[X/G_2 \rightarrow Y]} = 2D_1$, and $r_1 = 2$ or 4, because $B_{[X/G_1 \rightarrow Y]} = 2D_1$ and $|g| = 2$ or 4 for any element g in $G \setminus G_1$. Hence p is even and q is a multiple of 3, by Theorem 5.2. Moreover, there exist holomorphic functions g_1 and g_2 on X/G_2 such that $(X/G_2)_{\{g_1, g_2\}, \{2, 2\}} \simeq X$. We see by a similar consideration as in the proof of Theorem 5.2 that such functions do not exist, if $r_1 = 2$ and if p is not a multiple of 4. Thus we have:

Theorem 5.4. *Let D_1 be the divisor on a simply connected open neighborhood Y of 0 in \mathbf{C}^2 defined by $z_1^p - z_2^q = 0$ for an integer $p > 0$ and for an odd integer $q > 0$ with $\text{g.c.d.}(p, q) = 1$. Then there exists a Galois covering $\pi : X \rightarrow Y$ such that $B_\pi = 2D_1$ (resp. $4D_1$) and that $\text{Gal}(X/Y) \simeq S_4$, if and only if p and q are multiples of 4 (resp. 2) and 3, respectively.*

When $B_\pi = 2D_1$ (resp. $4D_1$), the dual graph of the exceptional set of a resolution of X in the above theorem is as follows:



where $m = 6$ (resp. 12),

$$[[b_1, b_2, \dots, b_n]] = \frac{\frac{p}{4}}{\frac{p}{4} - \left(q - \left[\frac{4q}{p} \right] \frac{p}{4} \right)} \quad \left(\text{resp. } \frac{\frac{p}{2}}{\frac{p}{2} - \left(q - \left[\frac{2q}{p} \right] \frac{p}{2} \right)} \right),$$

$$[[c_1, c_2, \dots, c_m]] = \frac{\frac{q}{3}}{\frac{q}{3} - \left(p - \left[\frac{p^3}{q} \right] \frac{q}{3} \right)}, \quad d = 8\alpha + m\beta + \frac{24}{pq},$$

$$\alpha = \begin{cases} 0 & \text{if } q = 3 \\ [[c_m, \dots, c_1]]^{-1} & \text{if } q > 3 \end{cases}, \quad \beta = \begin{cases} 0 & \text{if } p = 4 \text{ (resp. 2)} \\ [[b_n, \dots, b_1]]^{-1} & \text{if } p > 4 \text{ (resp. 2)} \end{cases}.$$

References

- [1] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal embeddings, Lecture Note in Math.,339, Springer (1973).
- [2] T. Oda: Convex bodies and Algebraic Geometry, *Ergebnisse der Math.*(3) 15, Springer-Verlag, Berlin Heidelberg, New York, London, Paris, tokyo, 1988.
- [3] M. Oka: *On the Resolution of the Hypersurface singularities*, Advanced Studies in Pure Mathematics 8 (1986), 405-436
- [4] H. Tsuchihashi: *Galois covering singularities I*, J. of Math. Soc. Japan, **51** (1999), 35-44

