

Title	Spectra of Laplace-Beltrami operators on $S0(n+2)/S0(2) \times S0(n)$ and $Sp(n+1)/Sp(1) \times Sp(n)$
Author(s)	Tsukamoto, Chiaki
Citation	Osaka Journal of Mathematics. 1981, 18(2), p. 407-426
Version Type	VoR
URL	https://doi.org/10.18910/8349
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Tsukamoto, C.
Osaka J. Math.
18 (1981), 407-426

SPECTRA OF LAPLACE-BELTRAMI OPERATORS ON $SO(n+2)/SO(2) \times SO(n)$ AND $Sp(n+1)/Sp(1) \times Sp(n)$

CHIAKI TSUKAMOTO

(Received October 15, 1979)

Introduction. Let $M=G/K$ be a compact symmetric space with G compact and semisimple. We assume that the Riemannian metric on M is the metric induced from the Killing form sign-changed. We consider the Laplace-Beltrami operator Δ^p acting on p -forms and its spectrum $\text{Spec}^p(M)$.

Ikeda and Taniguchi [3] computed $\text{Spec}^p(M)$ for $M=S^n$ and $P^n(C)$, studying representations of G and K . They showed that $\Delta^p = -\text{Casimir operator}$ when we consider the space of p -forms $C^\infty(\Lambda^p M)$ as a G -module. Each irreducible G -submodule of $C^\infty(\Lambda^p M)$ is included in some eigenspace of Δ^p and the sum of irreducible G -submodules of $C^\infty(\Lambda^p M)$ equals to the sum of eigenspaces of Δ^p . We can compute eigenvalues from Freudenthal's formula and multiplicities from Weyl's dimension formula. Thus to compute $\text{Spec}^p(M)$, we have only to decompose $C^\infty(\Lambda^p M)$ into irreducible G -submodules and count out them.

But generally it is not easy. Though Beers and Millman [1] determined $\text{Spec}^p(M)$ when M is a Lie group of a low rank such as $SU(3)$ or $SO(5)$ by the similar method, these seem to be all we know.

Frobenius' reciprocity law enables us to reduce the problem into the following two: How does an irreducible G -module decompose into irreducible K -modules? How does the p -th exterior product of (complexified) cotangent space decompose into irreducible K -modules? The former is usually called a branching law.

In this paper, we give a branching law for $G=SO(n+2)$ and $K=SO(2) \times SO(n)$, which enables us to compute $\text{Spec}^p(M)$. As a matter of fact, we should distinguish between the case $n=\text{odd}$ and the case $n=\text{even}$. Almost in parallel, we get a branching law for $G=Sp(n+1)$ and $K=Sp(1) \times Sp(n)$, which reproduces the result of Lepowsky [4] obtained in a different way.

The latter problem, i.e., the decomposition of an exterior power of an isotropy representation is a rather technical (but indispensable) part in computing $\text{Spec}^p(M)$. We give a complete list of members in the decomposition for $G=SO(n+2)$ and $K=SO(2) \times SO(n)$. For $G=Sp(n+1)$ and $K=Sp(1) \times Sp(n)$, we confine ourselves to indicating a procedure to determine the decom-

position and giving lists for some n and p .

Throughout this paper, modules are assumed to be over the complex number field C .

1. Branching laws

We state branching laws in terms of highest weights.

We denote by $M(n, C)$ the set of all $n \times n$ -matrices of complex coefficients.

Let $G = SO(n+2)$ and $K = SO(2) \times SO(n)$. We adopt the following conventions:

$$\begin{aligned} \mathfrak{g} &= \mathfrak{o}(n+2, C) = \{X \in M(n+2, C); {}^t X + X = 0\}, \\ \mathfrak{k} &= \mathfrak{o}(2, C) \times \mathfrak{o}(n, C) \\ &= \left\{ \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix}; X \in M(2, C), {}^t X + X = 0; Y \in M(n, C), {}^t Y + Y = 0 \right\}, \\ \mathfrak{t} &= \left\{ \begin{pmatrix} R(\lambda_0) & & & \\ & R(\lambda_1) & & \\ & & \ddots & \\ & & & R(\lambda_m) \\ & & & (0) \end{pmatrix}; R(\lambda) = \begin{pmatrix} 0 & -\sqrt{-1}\lambda \\ \sqrt{-1}\lambda & 0 \end{pmatrix}, \lambda_i \in C \right\}, \end{aligned}$$

where $n=2m$ or $n=2m+1$. Then \mathfrak{t} is a Cartan subalgebra of \mathfrak{g} and also one of \mathfrak{k} . We regard λ_i as a form on \mathfrak{t} giving the value of λ_i . We take a Weyl chamber for $(\mathfrak{g}, \mathfrak{t})$ so that the simple roots of \mathfrak{g} are $\alpha_0 = \lambda_0 - \lambda_1, \alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{m-1} = \lambda_{m-1} - \lambda_m$, and $\alpha_m = \lambda_{m-1} + \lambda_m$ when $n=2m$, $\alpha_m = \lambda_m$ when $n=2m+1$. We take a Weyl chamber for $(\mathfrak{k}, \mathfrak{t})$ so that the simple roots of \mathfrak{k} are those of \mathfrak{g} excluding α_0 .

We first treat the case $n=2m$.

Any dominant integral form for $(\mathfrak{g}, \mathfrak{t})$ which corresponds to an irreducible representation of $G = SO(2m+2)$ is uniquely expressed as

$$(1.1) \quad \Lambda = h_0\lambda_0 + h_1\lambda_1 + \dots + h_{m-1}\lambda_{m-1} + \varepsilon h_m\lambda_m,$$

where $\varepsilon = 1$ or -1 and h_0, h_1, \dots, h_m are integers satisfying

$$(1.2) \quad h_0 \geq h_1 \geq \dots \geq h_{m-1} \geq h_m \geq 0.$$

Any dominant integral form for $(\mathfrak{k}, \mathfrak{t})$ which corresponds to an irreducible representation of $K = SO(2) \times SO(2m)$ is uniquely expressed as

$$(1.3) \quad \Lambda' = k_0\lambda_0 + k_1\lambda_1 + \dots + k_{m-1}\lambda_{m-1} + \varepsilon' k_m\lambda_m,$$

where $\varepsilon' = 1$ or -1 and k_0, k_1, \dots, k_m are integers satisfying

$$(1.4) \quad k_1 \geq \dots \geq k_{m-1} \geq k_m \geq 0.$$

For integers h_0, h_1, \dots, h_m and k_1, k_2, \dots, k_m , we define integers l_0, l_1, \dots, l_m by

$$(1.5) \quad \begin{aligned} l_0 &= h_0 - \max(h_1, k_1), \\ l_i &= \min(h_i, k_i) - \max(h_{i+1}, k_{i+1}) \text{ for } 1 \leq i \leq m-1, \\ l_m &= \min(h_m, k_m). \end{aligned}$$

Theorem 1.1. *Let $G=SO(2m+2)$ and $K=SO(2) \times SO(2m)$. Let Λ be the highest weight of an irreducible G -module V . Then the irreducible decomposition of V as a K -module contains an irreducible K -module V' with the highest weight Λ' if and only if;*

$$\begin{aligned} a) \quad h_{i-1} &\geq k_i \geq h_{i+1} \text{ for } 1 \leq i \leq m-1, \\ h_{m-1} &\geq k_m (\geq 0), \end{aligned}$$

expressing Λ and Λ' as (1.1) and (1.3), and

b) the coefficient of X^{k_0} in the (finite) power series expansion in X of

$$X^{e^{e' l_m}} \left(\prod_{i=0}^{m-1} ((X^{l_{i+1}} - X^{-l_i}) / (X - X^{-1})) \right)$$

does not vanish.

Moreover, the number of the times V' appearing in the decomposition is equal to the coefficient of X^{k_0} in the expansion.

REMARK. Suppose a) is satisfied. Then all the integers l_0, l_1, \dots, l_m are non-negative and all the coefficients in the power series are also non-negative.

The proof is given in the next section.

Next we treat the case $n=2m+1$.

Any dominant integral form for (g, t) which corresponds to an irreducible representation of $G=SO(2m+3)$ is uniquely expressed as

$$(1.6) \quad \Lambda = h_0 \lambda_0 + h_1 \lambda_1 + \dots + h_m \lambda_m,$$

where h_0, h_1, \dots, h_m are integers satisfying (1.2). Any dominant integral form for (\mathfrak{k}, t) which corresponds to an irreducible representation of $K=SO(2) \times SO(2m+1)$ is uniquely expressed as

$$(1.7) \quad \Lambda' = k_0 \lambda_0 + k_1 \lambda_1 + \dots + k_m \lambda_m,$$

where k_0, k_1, \dots, k_m are integers satisfying (1.4).

In this case we also define integers l_0, l_1, \dots, l_m by (1.5).

Theorem 1.2. *Let $G=SO(2m+3)$ and $K=SO(2) \times SO(2m+1)$. Let Λ be the highest weight of an irreducible G -module V . Then the irreducible decomposition of V as a K -module contains an irreducible K -module V' with the highest weight Λ' if and only if;*

$$a) \quad h_{i-1} \geq k_i \geq h_{i+1} \text{ for } 1 \leq i \leq m-1, \\ h_{m-1} \geq k_m (\geq 0),$$

expressing Λ and Λ' as (1.6) and (1.7), and

b) the coefficient of X^{k_0} in the (finite) power series expansion in X of

$$(X - X^{-1})^{-m} (\prod_{i=0}^{m-1} (X^{l_i+1} - X^{-l_i-1})) (X^{1/2} - X^{-1/2})^{-1} (X^{l_m+1/2} - X^{-l_m-1/2})$$

does not vanish.

Moreover, the number of the times V' appearing in the decomposition is equal to the coefficient of X^{k_0} in the expansion.

REMARK. Suppose a) is satisfied. Then all the integers l_0, l_1, \dots, l_m are non-negative and all the coefficients in the power series are also non-negative.

For the sake of completeness we state the branching law for $G=Sp(m+1)$ and $K=Sp(1) \times Sp(m)$. We adopt the following conventions:

$$\begin{aligned} \mathfrak{g} &= \mathfrak{sp}(m+1, C) \\ &= \left\{ \begin{pmatrix} X & Z \\ Y & {}^t X \end{pmatrix}; X, Y, Z \in M(m+1, C) \right\}, \\ \mathfrak{k} &= \mathfrak{sp}(1, C) \times \mathfrak{sp}(m, C) \\ &= \left\{ \begin{pmatrix} x & 0 & z & 0 \\ 0 & X & 0 & Z \\ y & 0 & -x & 0 \\ 0 & Y & 0 & {}^t X \end{pmatrix}; x, y, z \in C \right. \\ &\quad \left. ; X, Y, Z \in M(m, C) \right\}, \\ \mathfrak{t} &= \{\text{diag}(\lambda_0, \lambda_1, \dots, \lambda_m, -\lambda_0, -\lambda_1, \dots, -\lambda_m); \lambda_i \in C\}. \end{aligned}$$

Then \mathfrak{t} is a Cartan subalgebra of \mathfrak{g} and also one of \mathfrak{k} . We regard λ_i as a form on \mathfrak{t} . We take a Weyl chamber for $(\mathfrak{g}, \mathfrak{t})$ so that the simple roots of \mathfrak{g} are $\alpha_0 = \lambda_0 - \lambda_1, \alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{m-1} = \lambda_{m-1} - \lambda_m, \alpha_m = 2\lambda_m$. We take a Weyl chamber for $(\mathfrak{k}, \mathfrak{t})$ so that the simple roots of \mathfrak{k} are $\alpha'_0 = 2\lambda_0$ and $\alpha'_i (1 \leq i \leq m)$.

Since G and K are simply connected, each representation of their Lie algebras can be lifted to a group representation. Hence each dominant integral form corresponds to an irreducible representation and vice versa.

Any dominant integral form for $(\mathfrak{g}, \mathfrak{t})$ is uniquely expressed as (1.6), where h_0, h_1, \dots, h_m are integers satisfying (1.2). Any dominant integral form for $(\mathfrak{k}, \mathfrak{t})$ is uniquely expressed as (1.7), where k_0, k_1, \dots, k_m are integers satisfying (1.4) and $k_0 \geq 0$. We again define integers l_0, l_1, \dots, l_m by (1.5).

Theorem 1.3 (Lepowsky). *Let $G=Sp(m+1)$ and $K=Sp(1) \times Sp(m)$. Let Λ be the highest weight of an irreducible G -module V . Then the irreducible decomposition of V as a K -module contains an irreducible K -module V' with the*

highest weight Λ' if and only if;

$$a) \quad \begin{aligned} h_{i-1} &\geq k_i \geq h_{i+1} \text{ for } 1 \leq i \leq m-1, \\ h_{m-1} &\geq k_m (\geq 0), \end{aligned}$$

expressing Λ and Λ' as (1.6) and (1.7), and

b) the coefficient of X^{k_0+1} in the (finite) power series expansion in X of

$$(X - X^{-1})^{-m} (\prod_{i=0}^m (X^{l_i+1} - X^{-l_i-1}))$$

does not vanish.

Moreover, the number of the times V' appearing in the decomposition is equal to the coefficient of X^{k_0+1} in the expansion.

REMARK. Suppose a) is satisfied. Then all the integers l_0, l_1, \dots, l_m are non-negative and all the coefficients of X^k ($k > 0$) are also non-negative. The coefficient of X^{-k} is equal to the negation of the coefficient of X^k .

2. Proof of branching laws

Let G be a compact connected semisimple Lie group, K a closed subgroup of G . We denote by \mathfrak{g} and \mathfrak{k} the complexified Lie algebras of G and K . We assume that \mathfrak{g} contains a Cartan subalgebra \mathfrak{t} which is also a Cartan subalgebra of \mathfrak{k} .

We consider a group algebra over \mathbb{Z} generated by an additive group of integral forms for $(\mathfrak{g}, \mathfrak{t})$ and one for $(\mathfrak{k}, \mathfrak{t})$. Since an integral form for $(\mathfrak{g}, \mathfrak{t})$ is also integral for $(\mathfrak{k}, \mathfrak{t})$, the group algebra for $(\mathfrak{g}, \mathfrak{t})$ is included in the group algebra for $(\mathfrak{k}, \mathfrak{t})$.

A formal character of a G -module V is an element of the group algebra for $(\mathfrak{g}, \mathfrak{t})$ defined by the formal sum of all the weights of V . (See, for example, Humphreys [2].) For an irreducible G -module V with the highest weight Λ , we denote its formal character by $\chi_G(\Lambda)$. We do the same for a K -module.

In terms of formal characters, a branching law for G and K means to determine the set S (which counts multiplicities) in the following formula:

$$(2.1) \quad \chi_G(\Lambda) = \sum \chi_K(\Lambda') \quad (\Lambda' \in S),$$

where Λ is a dominant integral form for $(\mathfrak{g}, \mathfrak{t})$ and Λ' is one for $(\mathfrak{k}, \mathfrak{t})$.

We will rewrite (2.1). Let W_G be the Weyl group of $(\mathfrak{g}, \mathfrak{t})$ acting on integral forms. We denote by $e(\Lambda)$ a generator of the group algebra corresponding to an integral form Λ . We define $\xi_G(\Lambda)$ by

$$\xi_G(\Lambda) = \sum (-1)^\sigma e(\sigma \Lambda) \quad (\sigma \in W_G).$$

We set $\delta_G = (\sum \alpha)/2$ ($\alpha \in \Delta_G^+$), where Δ_G^+ denotes the set of positive roots of \mathfrak{g} .

Then, by Weyl's character formula, we have

$$\xi_G(\Lambda + \delta_G) = \xi_G(\delta_G) \cdot \chi_G(\Lambda) .$$

We get in parallel

$$\xi_K(\Lambda' + \delta_K) = \xi_K(\delta_K) \cdot \chi_K(\Lambda') .$$

Now (2.1) is reduced to

$$(2.2) \quad \xi_G(\Lambda + \delta_G) \cdot \xi_K(\delta_K) = \xi_G(\delta_G) \cdot \sum \xi_K(\Lambda' + \delta_K) \quad (\Lambda' \in S) .$$

Our task is to devide $\xi_G(\Lambda + \delta_G)$ by $\xi_G(\delta_G)/\xi_K(\xi_K)$ and set it in the form $\sum \xi_K(\Lambda' + \delta_K)$. Since $\xi_K(\Lambda')$ for dominant integral forms Λ' are linearly independent, the set S is uniquely determined.

We may calculate in a larger group algebra generated by an additive group of forms. We can write

$$\begin{aligned} \xi_G(\delta_G) &= \prod (e(\alpha/2) - e(-\alpha/2)) \quad (\alpha \in \Delta_G^+) , \\ \xi_K(\delta_K) &= \prod (e(\alpha/2) - e(-\alpha/2)) \quad (\alpha \in \Delta_K^+) , \end{aligned}$$

and so

$$\xi_G(\delta_G)/\xi_K(\delta_K) = \prod (e(\alpha/2) - e(-\alpha/2)) \quad (\alpha \in \Delta_G^+ \setminus \Delta_K^+) .$$

We will exhibit ξ_G and ξ_K in terms of λ_i in the cases of our branching laws. We set $s(\Lambda) = e(\Lambda) - e(-\Lambda)$, $c(\Lambda) = e(\Lambda) + e(-\Lambda)$. We denote by $[a_{ij}]_{p \times q}$ a square matrix whose suffixes i, j range from p to q .

a) $G = SO(2m+2)$, $K = SO(2) \times SO(2m)$.

When we express $\Lambda + \delta_G$ as in (1.1), $\varepsilon = 1$ or -1 and h_0, h_1, \dots, h_m are integers satisfying

$$h_0 > h_1 > \dots > h_{m-1} > h_m \geq 0 .$$

When we express $\Lambda' + \delta_K$ as in (1.3), $\varepsilon' = 1$ or -1 and k_0, k_1, \dots, k_m are integers satisfying

$$k_1 > \dots > k_{m-1} > k_m \geq 0 .$$

We get

$$\begin{aligned} \xi_G(\Lambda + \delta_G) &= (1/2) (\det [c(h_i \lambda_j)]_{0:m} + \varepsilon \det [s(h_i \lambda_j)]_{0:m}) , \\ \xi_K(\Lambda' + \delta_K) &= e(k_0 \lambda_0) \cdot (1/2) (\det [c(k_i \lambda_j)]_{1:m} + \varepsilon' \det [s(k_i \lambda_j)]_{1:m}) , \\ \xi_G(\delta_G)/\xi_K(\delta_K) &= \prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)) . \end{aligned}$$

b) $G = SO(2m+3)$, $K = SO(2) \times SO(2m+1)$.

When we express $\Lambda + \delta_G$ as in (1.6), h_0, h_1, \dots, h_m are integers $+1/2$ satisfying

$$h_0 > h_1 > \dots > h_m > 0 .$$

When we express $\Lambda' + \delta_K$ as in (1.7), k_0 is an integer and k_1, \dots, k_m are integers $+1/2$ satisfying

$$k_1 > k_2 > \dots > k_m > 0.$$

We get

$$\begin{aligned}\xi_G(\Lambda + \delta_G) &= \det[s(h_i \lambda_j)]_{0:m}, \\ \xi_K(\Lambda' + \delta_K) &= e(k_0 \lambda_0) \cdot \det[s(k_i \lambda_j)]_{1:m}, \\ \xi_G(\delta_G) / \xi_K(\delta_K) &= s(\lambda_0/2) \cdot \prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)).\end{aligned}$$

c) $G = Sp(m+1)$, $K = Sp(1) \times Sp(m)$.

When we express $\Lambda + \delta_G$ as in (1.6), h_0, h_1, \dots, h_m are integers satisfying

$$h_0 > h_1 > \dots > h_{m-1} > h_m > 0.$$

When we express $\Lambda' + \delta_K$ as in (1.7), k_0, k_1, \dots, k_m are integers satisfying

$$k_0 > 0, k_1 > \dots > k_{m-1} > k_m > 0.$$

We get

$$\begin{aligned}\xi_G(\Lambda + \delta_G) &= \det[s(h_i \lambda_j)]_{0:m}, \\ \xi_K(\Lambda' + \delta_K) &= s(k_0 \lambda_0) \cdot \det[s(k_i \lambda_j)]_{1:m}, \\ \xi_G(\delta_G) / \xi_K(\delta_K) &= \prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)).\end{aligned}$$

The crucial point in the proofs of our branching laws is that the quotient of $\det[s(h_i \lambda_j)]_{0:m}$ or $\det[c(h_i \lambda_j)]_{0:m}$ devideed by $\prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2))$ is a sum of (a finite power series in $e(\lambda_0)$) \times ($\det[s(k_i \lambda_j)]_{1:m}$ or $\det[c(k_i \lambda_j)]_{1:m}$). The next lemma enables us to excute the division. The substitution of the obtained result in (2.2), using the above expressions, completes the proofs of the branching laws.

Lemma 2.1. *Let (h_0, h_1, \dots, h_m) be a set of integers satisfying $h_0 > h_1 > \dots > h_m \geq 0$. Then*

$$\begin{aligned}(2.3) \quad & \det[s(h_i \lambda_j)]_{0:m} / \prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)) \\ &= (s(\lambda_0))^{-m} \sum (\prod_{i=0}^m s(l_i \lambda_0)) \cdot \det[s(k_i \lambda_j)]_{1:m},\end{aligned}$$

$$\begin{aligned}(2.4) \quad & \det[c(h_i \lambda_j)]_{0:m} / \prod_{i=1}^m (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)) \\ &= (s(\lambda_0))^{-m} \sum (\prod_{i=0}^m s(l_i \lambda_0)) \cdot H \cdot c(l_m \lambda_0) \cdot \det[c(k_i \lambda_j)]_{1:m},\end{aligned}$$

where the summation is taken over all the sets of integers (k_1, k_2, \dots, k_m) satisfying $k_1 > k_2 > \dots > k_m \geq 0$ and

$$\begin{aligned}(2.5) \quad & h_{i-1} > k_i > h_{i+1} \text{ for } 1 \leq i \leq m-1, \\ & h_{m-1} > k_m \quad (\geq 0),\end{aligned}$$

and integers l_0, l_1, \dots, l_m are defined by (1.5) from h_0, h_1, \dots, h_m and k_1, k_2, \dots, k_m , and further

$$H = \begin{cases} 1 & \text{for } k_m > 0, \\ 1/2 & \text{for } k_m = 0. \end{cases}$$

The equalities (2.3) and (2.4) are also valid when (h_0, h_1, \dots, h_m) is a set of integers + 1/2 satisfying $h_0 > h_1 > \dots > h_m > 0$. Then the summations should be taken over all the sets of integers + 1/2 (k_1, k_2, \dots, k_m) satisfying $k_1 > k_2 > \dots > k_m > 0$ and (2.5).

REMARK. The assumption on h_0, h_1, \dots, h_m and k_1, k_2, \dots, k_m ensures us that l_0, l_1, \dots, l_{m-1} are positive integers.

Proof. We prove the case (2.4) where (h_0, h_1, \dots, h_m) is a set of integers. By slight changes, we can prove the other cases.

We transform $[c(h_i \lambda_j)]_{0:m}$ by subtracting “the $(i-1)$ -th row $\times c(h_i \lambda_0)/c(h_{i-1} \lambda_0)$ ” from the i -th row in turn.

$$\begin{aligned} & \det [c(h_i \lambda_j)]_{0:m} \\ &= (\prod_{i=1}^{m-1} c(h_i \lambda_0))^{-1} \det [c(h_{i-1} \lambda_0) c(h_i \lambda_j) - c(h_i \lambda_0) c(h_{i-1} \lambda_j)]_{1:m} \\ &= (\prod_{i=1}^{m-1} c(h_i \lambda_0))^{-1} \\ & \quad \times \det [s((h_{i-1} + h_i)(\lambda_0 + \lambda_j)/2) s((h_{i-1} - h_i)(\lambda_0 - \lambda_j)/2) \\ & \quad + s((h_{i-1} - h_i)(\lambda_0 + \lambda_j)/2) s((h_{i-1} + h_i)(\lambda_0 - \lambda_j)/2)]_{1:m}. \end{aligned}$$

We devide the (i, j) -element of the last matrix by $s((\lambda_0 + \lambda_j)/2) s((\lambda_0 - \lambda_j)/2)$. The result is

$$s(\lambda_0)^{-1} \sum P_i(k_i) c(k_i \lambda_j) \quad (k_i \in \mathbb{Z}),$$

where $P_i(k)$ is given by

$$P_i(k) = \begin{cases} c(h_i \lambda_0) s((h_{i-1} - k) \lambda_0) & \text{if } h_{i-1} > k > h_i, \\ c(k \lambda_0) s((h_{i-1} - h_i) \lambda_0) & \text{if } h_i \geq k > 0, \\ s((h_{i-1} - h_i) \lambda_0) & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get

$$\begin{aligned} & \det [c(h_i \lambda_j)]_{0:m} / \prod_{i=1}^{m-1} (s((\lambda_0 + \lambda_i)/2) s((\lambda_0 - \lambda_i)/2)) \\ &= s(\lambda_0)^{-m} (\prod_{i=1}^{m-1} c(h_i \lambda_0))^{-1} \sum (\prod_{i=1}^m P_i(k_i)) \det [c(k_i \lambda_j)]_{1:m} \\ & \quad ((k_1, k_2, \dots, k_m) \in \mathbb{Z}^m) \\ &= s(\lambda_0)^{-m} (\prod_{i=1}^{m-1} c(h_i \lambda_0))^{-1} \sum \det [P_i(k_i)]_{1:m} \det [c(k_i \lambda_j)]_{1:m} \\ & \quad (k_1 > k_2 > \dots > k_m \geq 0). \end{aligned}$$

Note that if k_1, k_2, \dots, k_m do not satisfy (2.5), then $\det[P_i(k_j)]_{1:m}$ vanishes. Indeed, if $k_i \geq h_{i-1}$ ($1 \leq i \leq m$), then the first i columns are linearly dependent. If $h_{i+1} \geq k_i$ ($1 \leq i \leq m-1$), then the first $i+1$ rows are linearly dependent.

Assuming that k_1, k_2, \dots, k_m satisfy (2.5), we transform $[P_i(k_j)]_{1:m}$ by subtracting “the $(j-1)$ -th column $\times c(k_j \lambda_0)/c(k_{j-1} \lambda_0)$ ” (or its half when $k_m=0$ and $j=m$) from the j -th column for $j=m, m-1, \dots, 2$ in this order. The resulting matrix $[P_{ij}]_{1:m}$ is a tridiagonal matrix such that $P_{i,i+1}P_{i+1,i}=0$ for $1 \leq i \leq m-1$. This means that its determinant is equal to the product of the diagonal elements.

$$P_{ii} = c(h_{i-1} \lambda_0) s(l_{i-1} \lambda_0) c(p_i \lambda_0) / c(p_{i-1} \lambda_0).$$

We defined p_0, p_1, \dots, p_m by $p_0=h_0, p_i=\min(h_i, k_i)$ for $1 \leq i \leq m$ ($p_m=l_m$). Therefore

$$\begin{aligned} \det[P_i(k_j)]_{1:m} &= (\prod_{i=0}^{m-1} c(h_i \lambda_0)) (\prod_{i=0}^{m-1} s(l_i \lambda_0)) \cdot H \cdot c(p_m \lambda_0) / c(p_0 \lambda_0) \\ &= (\prod_{i=1}^{m-1} c(h_i \lambda_0)) (\prod_{i=0}^{m-1} s(l_i \lambda_0)) \cdot H \cdot c(l_m \lambda_0), \end{aligned}$$

which proves (2.4).

3. Decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$

We identify a complexified cotangent space of $M=G/K$ at $o=[K]$ with $(\mathfrak{g}/\mathfrak{k})^*$, the dual space of $\mathfrak{g}/\mathfrak{k}$.

First we treat the case $G=SO(n+2)$ and $K=SO(2) \times SO(n)$.

The space $(\mathfrak{g}/\mathfrak{k})^*$ decomposes into two irreducible K -modules, V_+ and V_- , with the highest weights $\lambda_0 + \lambda_1$ and $-\lambda_0 + \lambda_1$. This decomposition of $(\mathfrak{g}/\mathfrak{k})^*$ gives a rough decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$:

$$(3.1) \quad \Lambda^p(\mathfrak{g}/\mathfrak{k})^* \cong \Sigma \Lambda'^{r,s} \quad (r+s=p),$$

where $\Lambda'^{r,s} = (\Lambda' V_+) \otimes (\Lambda^s V_-)$. Then the $SO(2)$ -parts of weights in $\Lambda'^{r,s}$ are $(r-s)\lambda_0$. In order to decompose $\Lambda'^{r,s}$ as a K -module, we should decompose it as an $SO(n)$ -module.

Let $\Lambda_1, \Lambda_2, \dots, \Lambda_m$ be the fundamental weights of $SO(n)$ dual to the simple roots $\alpha_1, \alpha_2, \dots, \alpha_m$. We set $\Lambda_0=0$. We denote by $V(\Lambda)$ an irreducible $SO(n)$ -module with the highest weight Λ .

The space $\Lambda'^{r,s}$ is isomorphic to $(\Lambda' V(\Lambda_1)) \otimes (\Lambda^s V(\Lambda_1))$ as an $SO(n)$ -module. Since $\Lambda'^{r,s} \cong \Lambda'^{s,r}$ and $\Lambda'^{r,s} \cong \Lambda'^{n-r,s}$ as $SO(n)$ -modules, we may restrict our attention to the case $0 \leq r \leq s \leq m$.

When $n=2m$, we define $V_{i,j}$ by

$$\begin{aligned} V_{i,j} &= V(\Lambda_i + \Lambda_j) \quad \text{for } 0 \leq i \leq j \leq m-2, \\ V_{i,m-1} &= V(\Lambda_i + \Lambda_{m-1} + \Lambda_m) \quad \text{for } 0 \leq i \leq m-2, \\ V_{m-1,m-1} &= V(2\Lambda_{m-1} + 2\Lambda_m), \end{aligned}$$

$$\begin{aligned}
V_{i,m} &= V(\Lambda_i + 2\Lambda_{m-1}) \oplus V(\Lambda_i + 2\Lambda_m) \quad \text{for } 0 \leq i \leq m-2, \\
V_{m-1,m} &= V(3\Lambda_{m-1} + \Lambda_m) \oplus V(\Lambda_{m-1} + 3\Lambda_m), \\
V_{m,m} &= V(4\Lambda_{m-1}) \oplus V(4\Lambda_m), \\
V_{i,j} &= V_{i,n-j} \quad \text{for } m+1 \leq j \leq n-i.
\end{aligned}$$

When $n=2m+1$, we define $V_{i,j}$ by

$$\begin{aligned}
V_{i,j} &= V(\Lambda_i + \Lambda_j) \quad \text{for } 0 \leq i \leq j \leq m-1, \\
V_{i,m} &= V(\Lambda_i + 2\Lambda_m) \quad \text{for } 0 \leq i \leq m-1, \\
V_{m,m} &= V(4\Lambda_m), \\
V_{i,j} &= V_{i,n-j} \quad \text{for } m+1 \leq j \leq n-i.
\end{aligned}$$

Proposition 3.1. *An $SO(n)$ -module $\Lambda^{r,s}$ ($0 \leq r \leq s \leq m$) decomposes into irreducible modules as follows:*

$$\Lambda^{r,s} \cong \sum V_{i,j} \quad ((i,j) \in S),$$

where the set S consists of pairs of non-negative integers (i,j) satisfying $s-r \leq j-i$, $i+j \leq r+s$ and $i+j \equiv r+s \pmod{2}$.

This proposition and (3.1) give an $SO(n)$ -irreducible decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$, which is also the K -irreducible decomposition.

The proof of Proposition 3.1 resembles that of the primitive decomposition of $\Lambda^p(C^n + \bar{C}^n)$ via $U(n)$ and uses it.

The $SO(n)$ -module $V(\Lambda_1)$ is isomorphic to C^n , the complexification of R^n with a canonical $SO(n)$ -action, and possesses a natural $SO(n)$ -invariant symmetric inner product. We take an orthonormal basis $\{x_i\}$ ($1 \leq i \leq n$) in R^n . Then $\Omega = \sum_{i=1}^n x_i \otimes x_i$ is the unique $SO(n)$ -invariant element in $V(\Lambda_1) \otimes V(\Lambda_1)$ up to a constant factor. We set $e_i = (x_{2i-1} - \sqrt{-1}x_{2i})/\sqrt{2}$, $e_{n-i+1} = (x_{2i-1} + \sqrt{-1}x_{2i})/\sqrt{2}$ for $1 \leq i \leq m$ and $e_{m+1} = x_n$ when $n=2m+1$. Then we have for $H \in \mathfrak{t} \cap \mathfrak{o}(n, C)$

$$\begin{aligned}
\rho(H)(e_i) &= \lambda_i(H)e_i \quad \text{for } 1 \leq i \leq m, \\
\rho(H)(e_{n-i+1}) &= -\lambda_i(H) \quad \text{for } 1 \leq i \leq m, \\
\rho(H)(e_{m+1}) &= 0 \quad \text{when } n = 2m+1,
\end{aligned}$$

where ρ denotes the action of $\mathfrak{o}(n, C)$. We can rewrite Ω as $\sum_{i=1}^n e_i \otimes e_{n-i+1}$. We define an $SO(n)$ -homomorphism

$$L: \quad \Lambda^{r,s} \rightarrow \Lambda^{r+1,s+1}$$

by $L\omega = \Omega \wedge \omega$ ($\omega \in \Lambda^{r,s}$).

Lemma 3.2. *For $r+s < n$ ($0 \leq r, s \leq n$), $L: \Lambda^{r,s} \rightarrow \Lambda^{r+1,s+1}$ is injective.*

In fact, $L^{n-r-s}: \Lambda^{r,s} \rightarrow \Lambda^{n-s, n-r}$ is an $SO(n)$ -isomorphism. For the proof, see Weil [5]. Notice that the $SO(n)$ -action on C^n can be extended to $U(n)$ -actions in two manners; a canonical one and a complex conjugate one. When we take a canonical action for a $U(n)$ -action on V_+ and a complex conjugate action for a $U(n)$ -action on V_- , L is the same $U(n)$ -homomorphism used in [5].

There is an $SO(n)$ -isomorphism

$$*: \Lambda^p V(\Lambda_1) \rightarrow \Lambda^{n-p} V(\Lambda_1)$$

given by

$$(*\alpha, \beta)e_1 \wedge e_2 \wedge \cdots \wedge e_n = \alpha \wedge \beta, \quad \alpha \in \Lambda^p V(\Lambda_1), \beta \in \Lambda^{n-p} V(\Lambda_1),$$

where (\cdot, \cdot) denotes the symmetric inner product. If (i_1, i_2, \dots, i_n) is a permutation of $(1, 2, \dots, n)$,

$$*(e_{i_1} \wedge \cdots \wedge e_{i_r}) = \text{sgn}(i_1, i_2, \dots, i_n) e_{n-i_{r+1}+1} \wedge \cdots \wedge e_{n-i_n+1}.$$

We define an $SO(n)$ -homomorphism

$$T: \Lambda^{r,s} \rightarrow \Lambda^{r+1,s-1}$$

by the composition of the following three $SO(n)$ -homomorphisms:

$$\begin{aligned} (-1)^{s-1} Id \otimes *: \Lambda^{r,s} &\rightarrow \Lambda^{r,n-s}, \\ L: \Lambda^{r,n-s} &\rightarrow \Lambda^{r+1,n-s+1}, \\ Id \otimes *^{-1}: \Lambda^{r+1,n-s+1} &\rightarrow \Lambda^{r+1,s-1}. \end{aligned}$$

An explicit formula for T is given by

$$\begin{aligned} T(e_{i_1} \wedge \cdots \wedge e_{i_r} \otimes e_{j_1} \wedge \cdots \wedge e_{j_s}) \\ = \sum_{t=1}^s (-1)^{t-1} e_{i_t} \wedge e_{i_1} \wedge \cdots \wedge e_{i_r} \otimes e_{j_1} \wedge \cdots \wedge \overset{\wedge}{e_{j_t}} \wedge \cdots \wedge e_{j_s}. \end{aligned}$$

The following lemmas are easily verified.

Lemma 3.3. For $0 \leq r < s \leq n$, $T: \Lambda^{r,s} \rightarrow \Lambda^{r+1,s-1}$ is an injective $SO(n)$ -homomorphism.

Lemma 3.4. For $2 \leq r \leq s \leq n-r$, the following diagram commutes:

$$\begin{array}{ccc} \Lambda^{r-2,s} & \xrightarrow{L} & \Lambda^{r-1,s+1} \\ T \downarrow & & T \downarrow \\ \Lambda^{r-1,s-1} & \xrightarrow{L} & \Lambda^{r,s}. \end{array}$$

Lemma 3.5. Let T^* be the adjoint of T with respect to the invariant symmetric inner product.

a) For $2 \leq r \leq s \leq n-r$, the following diagram commutes:

$$\begin{array}{ccc}
 \Lambda^{r-2,s} & \xrightarrow{L} & \Lambda^{r-1,s+1} \\
 T^* \uparrow & & T^* \uparrow \\
 \Lambda^{r-1,s-1} & \xrightarrow{L} & \Lambda^{r,s}.
 \end{array}$$

b) For $1 \leq s \leq r-1$, the following diagram commutes:

$$\begin{array}{ccc}
 & \Lambda^{0,s+1} & \\
 0 \nearrow & T^* \uparrow & \\
 \Lambda^{0,s} & \xrightarrow{L} & \Lambda^{1,s}
 \end{array}
 \quad (0 \text{ denotes 0-map}).$$

Notice that an explicit formula for T^* is given by

$$\begin{aligned}
 & T^*(e_{i_1} \wedge \cdots \wedge e_{i_r} \otimes e_{j_1} \wedge \cdots \wedge e_{j_s}) \\
 & = \sum_{t=1}^r (-1)^{t-1} e_{i_1} \wedge \cdots \wedge \overset{t}{\wedge} e_{i_t} \wedge \cdots \wedge e_{i_r} \otimes e_{i_t} \wedge e_{j_1} \wedge \cdots \wedge e_{j_s}.
 \end{aligned}$$

From these lemmas we can deduce that $\Lambda^{r,s}$ contains submodules isomorphic to $\Lambda^{r-1,s-1}$ and $\Lambda^{r-1,s+1}$ with the intersection isomorphic to $\Lambda^{r-2,s}$ (or $\{0\}$ if $r=1$). The space $\Lambda^{r,s}$ must also contain $V_{r,s}$ which corresponds to the highest weight of $\Lambda^{r,s}$. It is obvious that $V_{r,s}$ can intersect with the sum of $\Lambda^{r-1,s-1}$ and $\Lambda^{r-1,s+1}$ only by $\{0\}$. Computing the dimension of the above modules, we can obtain

Proposition 3.6. *We have the following $SO(n)$ -isomorphisms:*

$$\begin{aligned}
 \Lambda^{1,s} & \cong V_{1,s} \oplus \Lambda^{0,s-1} \oplus \Lambda^{0,s+1} \quad (1 \leq s \leq m), \\
 \Lambda^{r,s} \oplus \Lambda^{r-2,s} & \cong V_{r,s} \oplus \Lambda^{r-1,s-1} \oplus \Lambda^{r-1,s+1} \quad (2 \leq r \leq s \leq m).
 \end{aligned}$$

It is easy to see that this proposition is equivalent to Proposition 3.1.

REMARK. We may call V_- the holomorphic part and V_+ the anti-holomorphic part by the following reason. Let H_0 be an element of \mathfrak{t} satisfying $\lambda_0(H_0) = \sqrt{-1}$, $\lambda_i(H_0) = 0$ for $1 \leq i \leq m$. Then $ad H_0$ defines a complex structure on $\mathfrak{g}/\mathfrak{k}$. The space V_- is an eigenspace of $ad H_0$ in $(\mathfrak{g}/\mathfrak{k})^*$ with an eigenvalue $-\sqrt{-1}$ and the space V_+ is one with an eigenvalue $\sqrt{-1}$. Because $ad H_0$ commutes with the action of K , it defines on $M = G/K$ a G -invariant almost complex structure, with which the metric we assumed defines a Kaehler structure.

Note that Frobenius' reciprocity law gives an explicit correspondence between a K -submodule of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ and a G -submodule of $C^\infty(\Lambda^p M)$. In our case, the holomorphic [anti-holomorphic] part V_- [V_+] corresponds to holomorphic [anti-holomorphic] forms and $V^{r,s}$ to forms of type (s,r) .

We proceed to the case $G = Sp(n+1)$ and $K = Sp(1) \times Sp(n)$. The K -module $(\mathfrak{g}/\mathfrak{k})^*$ is an irreducible module with the highest weight $\lambda_0 + \lambda_1$. We take a maximal torus T in $Sp(1)$ whose complexified Lie algebra is contained in \mathfrak{t} .

We set $K' = T \times Sp(n)$. If we consider $(\mathfrak{g}/\mathfrak{k})^*$ as a K' -module, it decomposes into two irreducible K' -modules V_+ and V_- with the highest weights $\lambda_0 + \lambda_1$ and $-\lambda_0 + \lambda_1$. We first study a K' -irreducible decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ and next reconstruct a K -irreducible decomposition.

First we have the following rough decomposition as K' -modules:

$$\Lambda^p(\mathfrak{g}/\mathfrak{k})^* \cong \Sigma \Lambda^{r,s} \quad (r+s=p),$$

where $\Lambda^{r,s} = (\Lambda^r V_+) \otimes (\Lambda^s V_-)$. The T -parts of weights in $\Lambda^{r,s}$ are $(r-s)\lambda_0$. We should decompose $\Lambda^{r,s}$ as an $Sp(n)$ -module. Let $\Lambda_1, \Lambda_2, \dots, \Lambda_n$ be the fundamental weights of $Sp(n)$ dual to the simple roots $\alpha_1, \alpha_2, \dots, \alpha_n$. We set $\Lambda_0 = 0$. Both V_+ and V_- are irreducible $Sp(n)$ -modules with the same highest weight $\Lambda_1 = \lambda_1$. We denote by $V(\Lambda)$ an irreducible $Sp(n)$ -module with the highest weight Λ .

Proposition 3.7. *For $0 \leq r \leq n$, we have*

$$\begin{aligned} \Lambda^r V(\Lambda_1) &\cong V(\Lambda_r) \oplus V(\Lambda_{r-2}) \oplus \dots \oplus V(\Lambda_1) & \text{when } r = \text{odd}, \\ &\cong V(\Lambda_r) \oplus V(\Lambda_{r-2}) \oplus \dots \oplus V(\Lambda_0) & \text{when } r = \text{even}; \\ \Lambda^r V(\Lambda_1) &\cong \Lambda^{2n-r} V(\Lambda_1). \end{aligned}$$

Proof. The $Sp(n)$ -module $V(\Lambda_1)$ is isomorphic to C^{2n} , the complexification of R^{2n} with a canonical $Sp(n)$ -action, and possesses natural $Sp(n)$ -invariant inner product and symplectic form ω . We take an orthonormal basis $\{x_i\}$ ($1 \leq i \leq 2n$) in R^{2n} , which satisfies $\omega(x_i, x_j) = 0$, $\omega(x_{n+i}, x_{n+j}) = 0$, $\omega(x_i, x_{n+j}) = \delta_{ij}$ for $1 \leq i, j \leq n$. We set $\Omega = \sum_{i=1}^n x_i \wedge x_{n+i}$, which is the unique $Sp(n)$ -invariant element in $\Lambda^2 V(\Lambda_1)$ up to a constant factor. We define an $Sp(n)$ -homomorphism $L: \Lambda^p V(\Lambda_1) \rightarrow \Lambda^{p+2} V(\Lambda_1)$ by $L\alpha = \Omega \wedge \alpha$ ($\alpha \in \Lambda^p V(\Lambda_1)$). Then L is injective for $0 \leq p < n$, as is seen in the proof of the primitive decomposition in [5]. The space $\Lambda^p V(\Lambda_1)$ includes a submodule isomorphic to $\Lambda^{p-2} V(\Lambda_1)$ and one isomorphic to $V(\Lambda_p)$, and they can intersect only by $\{0\}$. Computing the dimensions of these modules, we can prove

$$\Lambda^p V(\Lambda_1) \cong V(\Lambda_p) \oplus \Lambda^{p-2} V(\Lambda_1) \quad (2 \leq p \leq n),$$

which is equivalent to the top half of the proposition.

The remainder is obvious.

Thus to decompose $\Lambda^{r,s}$ as $Sp(n)$ -modules, we have only to decompose $V(\Lambda_r) \otimes V(\Lambda_s)$ for $0 \leq r \leq s \leq n$.

Proposition 3.8. *An $Sp(n)$ -module $V(\Lambda_r) \otimes V(\Lambda_s)$ ($0 \leq r \leq s \leq n$) decomposes into irreducible modules as follows:*

$$V(\Lambda_r) \otimes V(\Lambda_s) \cong \Sigma V(\Lambda_i + \Lambda_j) \quad ((i, j) \in S),$$

where the set S consists of pairs of non-negative integers (i, j) satisfying $s-r \leq j-i \leq 2n-s-r$, $i+j \leq r+s$ and $i+j \equiv r+s \pmod{2}$.

Proof. As in the $SO(n)$ case, it is enough to prove

$$\begin{aligned} & (V(\Lambda_p) \otimes V(\Lambda_q)) \oplus (V(\Lambda_{p-2}) \otimes V(\Lambda_q)) \\ & \cong V(\Lambda_p + \Lambda_q) \oplus (V(\Lambda_{p-1}) \otimes V(\Lambda_{q-1})) \oplus (V(\Lambda_{p-1}) \otimes V(\Lambda_{q+1})) \\ & \quad (0 \leq p \leq q \leq n), \end{aligned}$$

where the terms including $V(\Lambda_r)$ with $r < 0$ or $r > n$ should be omitted. It is equivalent to the following relation among the formal characters: ($\chi = \chi_{Sp(n)}$)

$$\begin{aligned} & \chi(\Lambda_p)\chi(\Lambda_q) + \chi(\Lambda_{p-2})\chi(\Lambda_q) \\ & = \chi(\Lambda_p + \Lambda_q) + \chi(\Lambda_{p-1})\chi(\Lambda_{q-1}) + \chi(\Lambda_{p-1})\chi(\Lambda_{q+1}). \end{aligned}$$

We can rewrite the above, using Weyl's character formula. We set $\xi = \xi_{Sp(n)}$ and $\delta = \delta_{Sp(n)}$ and factor out $(\xi(\delta))^2$. Then we have

$$(3.2) \quad \begin{aligned} & \xi(\Lambda_p + \delta)\xi(\Lambda_q + \delta) + \xi(\Lambda_{p-2} + \delta)\xi(\Lambda_q + \delta) \\ & = \xi(\Lambda_p + \Lambda_q + \delta)\xi(\delta) + \xi(\Lambda_{p-1} + \delta)\xi(\Lambda_{q-1} + \delta) + \xi(\Lambda_{p-1} + \delta)\xi(\Lambda_{q+1} + \delta). \end{aligned}$$

Let $\Lambda'_1, \Lambda'_2, \dots, \Lambda'_n$ be the fundamental weights for $SO(2n)$, $\xi' = \xi_{SO(2n)}$ and $\delta' = \delta_{SO(2n)}$. We consider ξ and ξ' as finite power series in $e(\lambda_1), e(\lambda_2), \dots, e(\lambda_n)$. We can represent ξ as $(\prod_{i=1}^n s(\lambda_i)) \times (\text{a linear combination of } \xi')$. For example, $(D = \prod_{i=1}^n s(\lambda_i))$

$$(3.3) \quad \begin{aligned} \xi(\delta) &= D \cdot \xi'(\delta'), \\ \xi(\Lambda_1 + \delta) &= D \cdot \xi'(\Lambda'_1 + \delta'), \\ \xi(\Lambda_p + \delta) &= D \cdot (\xi'(\Lambda'_p + \delta') - \xi'(\Lambda'_{p-2} + \delta')) \quad (2 \leq p \leq n-2), \\ \xi(\Lambda_{n-1} + \delta) &= D \cdot (\xi'(\Lambda'_{n-1} + \Lambda'_n + \delta') - \xi'(\Lambda'_{n-3} + \delta')), \\ \xi(\Lambda_n + \delta) &= D \cdot (\xi'(2\Lambda'_{n-1} + \delta') + \xi'(2\Lambda'_n + \delta') - \xi'(\Lambda'_{n-2} + \delta')), \\ \xi(\Lambda_p + \Lambda_q + \delta) &= D \cdot (\xi'(\Lambda'_p + \Lambda'_q + \delta') - \xi'(\Lambda'_{p-2} + \Lambda'_q + \delta') \\ & \quad - \xi'(\Lambda'_p + \Lambda'_{q-2} + \delta') + \xi'(\Lambda'_{p-2} + \Lambda'_{q-2} + \delta')) \\ & \quad (4 \leq p+2 \leq q \leq n-2). \end{aligned}$$

On the other hand, Proposition 3.6 provides us relations among ξ' . For example,

$$(3.4) \quad \begin{aligned} & \xi'(\Lambda'_p + \delta')\xi'(\Lambda'_q + \delta') + \xi'(\Lambda'_{p-2} + \delta')\xi'(\Lambda'_q + \delta') \\ & = \xi'(\Lambda'_p + \Lambda'_q + \delta')\xi'(\delta') + \xi'(\Lambda'_{p-1} + \delta')\xi'(\Lambda'_{q-1} + \delta') \\ & \quad + \xi'(\Lambda'_{p-1} + \delta')\xi'(\Lambda'_{q+1} + \delta') \\ & \quad (2 \leq p \leq q \leq n-2). \end{aligned}$$

By combining four equations of the (3.4) type, we can get an equation of the (3.2) type substituted the expressions (3.3).

Proposition 3.7 and 3.8 enables us to decompose $\Lambda^{r,s}$ as an $Sp(n)$ -module, which completes the K' -irreducible decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$.

Let us return to the K -irreducible decomposition. We note that an irreducible K -module with the highest weight $k\lambda_0 + \Lambda$ decomposes into irreducible K' -modules with the highest weights $(k-2i)\lambda_0 + \Lambda$ ($i=0, 1, \dots, k$). Conversely we gather the highest weights in the K' -irreducible decomposition in bunches of the above form: Take the highest weight $k\lambda_0 + \Lambda$ of the biggest T -part for a fixed $Sp(n)$ -part. Then make up the highest weights of the form $(k-2i)\lambda_0 + \Lambda$ ($i=0, 1, \dots, k$) into a bunch. Next do the same in the remaining highest weights, and so on. This procedure exhausts the highest weights without fail and the member of the biggest T -part in each bunch gives the highest weight in the K -irreducible decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$.

We present here a table of the highest weights of the irreducible K -submodules of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ when $G=Sp(n+1)$ and $K=Sp(1) \times Sp(n)$ for some p .

$p=0$		0.
$p=1$		$\lambda_0 + \Lambda_1$.
$p=2$	$n \geq 2$	$2\lambda_0 + \Lambda_2, 2\lambda_0, 2\Lambda_1$.
	$n=1$	$2\lambda_0, 2\Lambda_1$.
$p=3$	$n \geq 3$	$3\lambda_0 + \Lambda_3, 3\lambda_0 + \Lambda_1, \lambda_0 + \Lambda_1 + \Lambda_2, \lambda_0 + \Lambda_1$.
	$n=2$	$3\lambda_0 + \Lambda_1, \lambda_0 + \Lambda_1 + \Lambda_2, \lambda_0 + \Lambda_1$.
$p=4$	$n \geq 4$	$4\lambda_0 + \Lambda_4, 4\lambda_0 + \Lambda_2, 4\lambda_0, 2\lambda_0 + \Lambda_1 + \Lambda_3, 2\lambda_0 + 2\Lambda_1, 2\lambda_0 + \Lambda_2, 2\Lambda_2, \Lambda_2, 0$.
	$n=3$	$4\lambda_0 + \Lambda_2, 4\lambda_0, 2\lambda_0 + \Lambda_1 + \Lambda_3, 2\lambda_0 + 2\Lambda_1, 2\lambda_0 + \Lambda_2, 2\Lambda_2, \Lambda_2, 0$.
	$n=2$	$4\lambda_0, 2\lambda_0 + 2\Lambda_1, 2\lambda_0 + \Lambda_2, 2\Lambda_2, \Lambda_2, 0$.

REMARK. For a compact symmetric space $M=G/K$ with G compact and semisimple, Δ^p preserves a decomposition of $C^\infty(\Lambda^p M)$ corresponding to a decomposition of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ under Frobenius' reciprocity law.

4. Examples

In the cases $G=SO(n+2)$ and $K=SO(2) \times SO(n)$, the cases $n=1$ and 2 are exceptional. When $n=1$, all our computation becomes trivial, and when $n=2$, we need some modification, for K is abelian. Anyway, since $M=G/M$ is homothetic to the standard sphere S^2 when $n=1$, and to $S^2 \times S^2$ when $n=2$, the spectra are well-known.

Our first example is the case $G=SO(5)$ and $K=SO(2) \times SO(3)$ ($n=3, m=1$). We set $\Lambda_1=\lambda_1/2$, $\bar{\Lambda}_0=\lambda_0$ and $\bar{\Lambda}_1=(\lambda_0+\lambda_1)/2$. We denote by $I(k, s)$ for non-negative integers k and s the irreducible G -module with the highest weight $k\bar{\Lambda}_0 + 2s\bar{\Lambda}_1$. The Casimir operator acts on $I(k, s)$ by the multiplication of $-(\{k+s\}(k+2s+3)+s(s+1)\}/6$. The dimension of $I(k, s)$ is $(2k+2s+3)(k+2s+2)(k+1)(2s+1)/6$.

We give in Table A the highest weights that irreducible K -submodules of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ have and the G -modules which includes an irreducible K -submodule of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ at least once. We denote by μ the multiplicity, the number of the times a K -module appearing in the K -irreducible decomposition of a G -module. Integers r and s may take any non-negative value and $\mu=1$ unless otherwise denoted.

Table A.

p	H.W.	G -module	
0	0	$I(2r, s)$	
1	$\lambda_0 + 2A_1$	$I(2r, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu=2 \text{ if } r \geq 1, s \geq 1$
	$-\lambda_0 + 2A_1$	$I(2r+1, s) \quad s \geq 1$	
2	$2\lambda_0 + 2A_1$	$I(2r, s) \quad r \geq 1, s \geq 1$	
	$-2\lambda_0 + 2A_1$	$I(2r+1, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu=2 \text{ if } r \geq 1, s \geq 1$
	$4A_1$	$I(2r, s) \quad r \geq 1 \text{ or } s \geq 2$	$\mu=2 \text{ if } s=1$
		$I(2r+1, s) \quad s \geq 1$	$\mu=3 \text{ if } r \geq 1, s \geq 2$
		$I(2r, s) \quad s \geq 1$	$\mu=2 \text{ if } s \geq 2$
	$2A_1$	$I(2r+1, s)$	$\mu=2 \text{ if } s \geq 1$
		see above	
3	$3\lambda_0$	$I(2r+1, s) \quad r \geq 1$	
	$-3\lambda_0$		
	$\lambda_0 + 4A_1$	$I(2r, s) \quad r \geq 1 \text{ or } s \geq 2$	$\mu=2 \text{ if } r \geq 1, s \geq 2$
	$-A_0 + 4A_1$	$I(2r+1, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu=2 \text{ if } r=0, s \geq 2$
			$\text{or } r \geq 1, s=1$
	$\lambda_0 + 2A_1$	see above	$\mu=3 \text{ if } r \geq 1, s \geq 2$
	$-\lambda_0 + 2A_1$		
	λ_0	$I(2r+1, s)$	
	$-\lambda_0$		

Next we give the information on $\text{Spec}^p(M)$ for the case $G=SO(6)$ and $K=SO(2) \times SO(4)$ ($n=4, m=2$) in Table B. We set $\Lambda_1=(\lambda_1-\lambda_2)/2$, $\Lambda_2=(\lambda_1+\lambda_2)/2$, $\bar{\Lambda}_0=\lambda_0$, $\bar{\Lambda}_1=(\lambda_0+\lambda_1-\lambda_2)/2$ and $\bar{\Lambda}_2=(\lambda_0+\lambda_1+\lambda_2)/2$. We denote by $I_i(r, s)$ for non-negative integers r and s the irreducible G -module with the highest weight given in Table B-1. There we have also given the eigenvalue

of the $(-8) \times$ Casimir operator and the dimension of the module. We list the highest weight of irreducible submodules of $\Lambda^p(\mathfrak{g}/\mathfrak{k})^*$ in Table B-2. Table B-3 indicates G -modules which contain a K -module in their K -irreducible decomposition at least once and the number of times they contain the K -module. In Table B-3, integers r and s may take any non-negative value and multiplicity $\mu=1$ unless otherwise denoted.

Table B-1.

Module	Highest Weight	
$I_0(r, s)$	$2r\bar{A}_0 + s(\bar{A}_1 + \bar{A}_2)$	e.v. $=(2r+s)(2r+s+4)+s(s+2)$ dim. $=(2r+s+2)^2(2r+2s+3)(2r+1)(s+1)^2/12$
$I_1(r, s)$	$(2r+1)\bar{A}_0 + s(\bar{A}_1 + \bar{A}_2) + 2\bar{A}_1$	e.v. $=(2r+s+2)(2r+s+6)+(s+2)^2$
$I_2(r, s)$	$(2r+1)\bar{A}_0 + s(\bar{A}_1 + \bar{A}_2) + 2\bar{A}_2$	dim. $=(2r+2s+6)(2r+s+5)(2r+s+3)(2r+2)\\(s+3)(s+1)/12$
$I_3(r, s)$	$2r\bar{A}_0 + s(\bar{A}_1 + \bar{A}_2) + 4\bar{A}_1$	e.v. $=(2r+s+3)(2r+s+5)+(s+3)^2$
$I_4(r, s)$	$2r\bar{A}_0 + s(\bar{A}_1 + \bar{A}_2) + 4\bar{A}_2$	dim. $=(2r+2s+7)(2r+s+6)(2r+s+2)(2r+1)\\(s+5)(s+1)/12$

Table B-2.

p	Highest Weight
0	0
1	$\lambda_0 + A_1 + A_2, -\lambda_0 + A_1 + A_2$.
2	$2\lambda_0 + 2A_1, 2\lambda_0 + 2A_2, 2A_1 + 2A_2, 2A_1, 2A_2, 0, -2\lambda_0 + 2A_1, -2\lambda_0 + 2A_2$.
3	$3\lambda_0 + A_1 + A_2, \lambda_0 + 3A_1 + A_2, \lambda_0 + A_1 + 3A_2, \lambda_0 + A_1 + A_2$ (twice), $-\lambda_0 + A_1 + A_2$ (twice), $-\lambda_0 + A_1 + 3A_2, -\lambda_0 + 3A_1 + A_2, -3\lambda_0 + A_1 + A_2$.
4	$4\lambda_0, 2\lambda_0 + 2A_1 + 2A_2, 2\lambda_0 + 2A_1, 2\lambda_0 + 2A_2, 2\lambda_0, 4A_1, 4A_2, 2A_1 + 2A_2$ (twice), $2A_1, 2A_2$, 0 (twice), $-2\lambda_0 + 2A_1 + 2A_2, -2\lambda_0 + 2A_1, -2\lambda_0 + 2A_2, -2\lambda_0, -4\lambda_0$.

Table B-3.

H.W.	G -module	
0	$I_0(r, s)$	
$\lambda_0 + A_1 + A_2$	$I_0(r, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu=2 \text{ if } r \geq 2, s=1$
$-\lambda_0 + A_1 + A_2$	$I_1(r, s)$	
	$I_2(r, s)$	
	$I_0(r, s) \quad r \geq 1, s \geq 1$	
$2\lambda_0 + 2A_1$	$I_1(r, s)$	
	$I_2(r, s) \quad r \geq 1$	

Table B-3 (continued).

H.W.	G -module	
$2\lambda_0 + 2A_2$ $-2\lambda_0 + 2A_1$	$I_0(r, s) \quad r \geq 1, \quad s \geq 1$	
	$I_1(r, s) \quad r \geq 1$	
	$I_2(r, s)$	
$2A_1 + 2A_2$	$I_0(r, s) \quad r \geq 1 \text{ or } s \geq 2$	$\mu = 2 \text{ if } r \geq 2, \quad s = 1$
		$\mu = 3 \text{ if } r \geq 1, \quad s \geq 2$
$2A_1$ $2A_2$	$I_0(r, s) \quad s \geq 1$	
	$I_1(r, s)$	
	$I_2(r, s)$	
$3\lambda_0 + A_1 + A_2$ $-3\lambda_0 + A_1 + A_2$	$I_0(r, s) \quad r = 1, \quad s \geq 1$ or $r \geq 2$	$\mu = 2 \text{ if } r \geq 2, \quad s \geq 1$
	$I_1(r, s) \quad r \geq 1$	
	$I_2(r, s) \quad r \geq 1$	
$\lambda_0 + 3A_1 + A_2$ $-\lambda_0 + A_1 + 3A_2$	$I_0(r, s) \quad r \geq 1 \text{ or } s \geq 2$	$\mu = 2 \text{ if } r \geq 1, \quad s \geq 2$
	$I_1(r, s)$	$\mu = 2 \text{ if } s \geq 1$
	$I_2(r, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu = 2 \text{ if } r \geq 1, \quad s \geq 1$
$\lambda_0 + A_1 + 3A_2$ $-\lambda_0 + 3A_1 + A_2$	$I_0(r, s) \quad r \geq 1 \text{ or } s \geq 2$	$\mu = 2 \text{ if } r \geq 1, \quad s \geq 2$
	$I_1(r, s) \quad r \geq 1 \text{ or } s \geq 1$	$\mu = 2 \text{ if } r \geq 1, \quad s \geq 1$
	$I_2(r, s)$	$\mu = 2 \text{ if } s \geq 1$
$4\lambda_0$ $-4\lambda_0$	$I_0(r, s) \quad r \geq 2$	
$2\lambda_0 + 2A_1 + 2A_2$ $-2\lambda_0 + 2A_1 + 2A_2$	$I_0(r, s) \quad r + s \geq 2$	$\mu = 2 \text{ if } r \geq 2, \quad s = 1$ or $r = 1, \quad s \geq 2$
$2\lambda_0$ $-2\lambda_0$	$I_0(r, s) \quad r \geq 1$	
	$I_0(r, s) \quad s \geq 2$	
	$I_1(r, s) \quad s \geq 1$	
	$I_2(r, s) \quad s \geq 1$	
$4A_1$ $4A_2$	$I_3(r, s) \quad r \geq 1$	
	$I_4(r, s) \quad r \geq 1$	

Our last example is the case $G=Sp(3)$ and $K=Sp(1)\times Sp(2)$ ($n=2$). Notice that in the case $G=Sp(2)$ and $K=Sp(1)\times Sp(1)$ ($n=1$), $M=G/K$ is homothetic to the standard sphere S^4 and therefore $\text{Spec}^p(M)$ has already given in [3]. We set $\Lambda_1=\lambda_1$, $\Lambda_2=\lambda_1+\lambda_2$, $\bar{\Lambda}_0=\lambda_0$, $\bar{\Lambda}_1=\lambda_0+\lambda_1$ and $\bar{\Lambda}_2=\lambda_0+\lambda_1+\lambda_2$. We denote by $I(r,s,t)$ for non-negative integers r , s and t the irreducible G -module with the highest weight $r\bar{\Lambda}_0+s\bar{\Lambda}_1+t\bar{\Lambda}_2$. The eigenvalue of $(-16)\times$ Casimir operator on $I(r,s,t)$ is $2s(s+2t+r+5)+r(r+2t+6)+3t(t+2)$ and the dimension of $I(r,s,t)$ is $(2s+r+2t+5)(s+r+2t+4)(s+r+t+3)(s+r+2)(s+2t+3)(s+t+2)(s+1)\times(r+1)(t+1)/720$. The meaning of each column of Table C is similar to that of Table A. Integers k may take any non-negative value and multiplicity $\mu=1$ unless otherwise denoted.

Table C.

p	H.W.	G -module
0	0	$I(0, k, 0)$.
1	$\lambda_0+\Lambda_1$	$I(0, k, 0)$ $k\geq 1$, $I(1, k, 1)$, $I(2, k, 0)$.
2	$2\lambda_0+\Lambda_2$	$I(1, k, 1)$, $I(2, k, 0)$ $k\geq 1$, $I(3, k, 1)$.
	$2\lambda_0$	$I(2, k, 0)$.
	$2\Lambda_1$	$I(0, k, 2)$, $I(1, k, 1)$, $I(2, k, 0)$.
3	$3\lambda_0+\Lambda_1$	$I(2, k, 0)$ $k\geq 1$, $I(3, k, 1)$, $I(4, k, 0)$.
	$\lambda_0+\Lambda_1+\Lambda_2$	$I(0, k, 0)$ $k\geq 2$, $I(0, k, 2)$, $I(1, k, 1)$ $\mu=2$ if $k\geq 1$, $I(2, k, 0)$ $k\geq 1$, $I(2, k, 2)$, $I(3, k, 1)$ $k\geq 1$.
	$\lambda_0+\Lambda_1$	see above
4	$4\lambda_0$	$I(4, k, 0)$.
	$2\lambda_0+2\Lambda_1$	$I(0, k, 0)$ $k\geq 2$, $I(1, k, 1)$ $k\geq 1$, $I(2, k, 0)$ $k\geq 1$, $I(2, k, 2)$, $I(3, k, 1)$, $I(4, k, 0)$.
	$2\lambda_0+\Lambda_2$	see above
	$2\Lambda_2$	$I(0, k, 0)$ $k\geq 2$, $I(1, k, 1)$ $k\geq 1$, $I(2, k, 2)$.
	Λ_2	$I(0, k, 0)$ $k\geq 1$, $I(1, k, 1)$.
	0	see above

References

- [1] B.L. Beers and R.S. Millman: *The spectra of the Laplace-Beltrami operator on compact, semisimple Lie groups*, Amer. J. Math. **99** (1977), 801–807.
- [2] J.E. Humphreys: *Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Heidelberg-Berlin (1972).

- [3] A. Ikeda and Y. Taniguchi: *Spectra and eigenforms of the Laplacian on S^n and P^n (C)*, Osaka J. Math. **15** (1978), 515–546.
- [4] J. Lepowsky: *Multiplicity formula for certain semisimple Lie groups*, Bull. Amer. Math. Soc. **77** (1971), 601–605.
- [5] A. Weil: *Introduction à l'étude des variétés Kählériennes*, Hermann, Paris (1958).

Department of Mathematics
Kyoto University
Kyoto 606
Japan