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Introduction. Let M=G/K be a compact symmetric space with G
compact and semisimple. We assume that the Riemannian metric on M is
the metric induced from the Killing form sign-changed. We consider the
Laplace-Beltrami operator A? acting on p-forms and its spectrum Spec?(M).

Ikeda and Taniguchi [3] computed Spec’(M) for M=S" and P"(C), study-
ing representations of G and K. They showed that A?=—Casimir operator
when we consider the space of p-forms C*(A?M) as a G-module. Each irredu-
cible G-submodule of C*(A?M) is included in some eigenspace of A? and the
sum of irreducible G-submodules of C*(A?M) equals to the sum of eigenspaces
of A?. We can compute eigenvalues from Freudenthal’s formula and multi-
plicities from Weyl’s dimension formula. Thus to compute Spec’(M), we
have only to decompose C<(A?M) into irreducible G-submodules and count
out them.

But generally it is not easy. Though Beers and Millman [1] determined
Spec?(M) when M is a Lie group of a low rank such as SU(3) or SO(5) by the
similar method, these seem to be all we know.

Frobenius’ reciprocity law enables us to reduce the problem into the follow-
ing two: How does an irreducible G-module decompose into irreducible K-
modules? How does the p-th exterior product of (complexified) cotangent space
decompose into irreducible K-modules? The former is usually called a branch-
ing law.

In this paper, we give a branching law for G=S0(n-+2) and K=S0(2)x
SO(n), which enables us to compute Spec?(M). As a matter of fact, we should
distinguish between the case #—=odd and the case n=even. Almost in parallel,
we get a branching law for G=Sp(n+1) and K=Sp(1) X Sp(n), which repro-
duces the result of Lepowsky [4] obtained in a different way.

The latter problem, i.e., the decomposition of an exterior power of an
isotropy representation is a rather technical (but indispensable) part in com-
puting Spec?(M). We give a complete list of members in the decomposition
for G=80(n+2) and K=SO(2)x SO(n). For G=Sp(n+1) and K=Sp(1)x
Sp(n), we confine ourselves to indicating a procedure to determine the decom-
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position and giving lists for some 7 and p.
Throughout this paper, modules are assumed to be over the complex

number field C.

1. Branching laws

We state branching laws in terms of highest weights.
We denote by M(n,C) the set of all # X n-matrices of complex coefficients.
Let G=SO(n+2) and K=SO(2)xSO(n). We adopt the following
conventions:
g = o(n+2,C) = {XeM(n+2,C); ' X+X = 0},
t=0(2,C)x0(n,C)
{ X 0]. XeM2,C), ' X+X = O}

0 Y) YeEMnC),'Y+Y =0
(RO 0 —v/—1a
BT |
R | mec
0)

where n=2m or n=2m--1. Then t is a Cartan subalgebra of g and also one of
f. We regard \; as a form on t giving the value of A;. We take a Weyl chamber
for (g, t) so that the simple roots of g are ay=Ne—Ny, G=N;1—Nz ***, A 1=Am-1
—A and a,=\,_+A\,, when n=2m, a,,=, when n=2m-+1. We take a
Weyl chamber for (£, t) so that the simple roots of f are those of g excluding «,.

We first treat the case n="2m.

Any dominant integral form for (g, t) which corresponds to an irreducible
representation of G=S0(2m-2) is uniquely expressed as

(1'1) A= hoxo+hlx1+"'+hm—1xm—l+8hm7\‘m s
where €=1 or —1 and Ay, &,, -+, h,, are integers satisfying
(1.2) hy=h>->h, >h,>0.

Any dominant integral form for (f,t) which corresponds to an irreducible
representation of K=.S0(2) x SO(2m) is uniquely expressed as

(1.3) A" = kho+RnF AR N1 HE RGN,
where €'=1 or —1 and k,, k,, -+, k,, are integers satisfying

(1.4) k> >k, >k, >0.
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For integers hg, by, +++, h,, and k,k,, ---,k,, we define integers Iy, 1, +++,1, by

(1.5) ly = hy—max(hy, k,) ,
I; = min(h;, k;)—max (h; .y, kiyy) for 1<i<m—1,
l,= min(h,, k,) .

Theorem 1.1. Let G=SO(2m+2) and K=SO0(2)x SO(2m). Let A be
the highest weight of an irreducible G-module V. Then the irreducible decomposi-
tion of V as a K-module contains an irreducible K-module V' with the highest
weight A’ if and only if;

a) hi =k >2hy, for 1<i<m—1,
hy1=k, (=0),

expressing A and A’ as (1.1) and (1.3), and
b) the coefficient of X*o in the (finite) power series expansion in X of

X ([T — X ) (X — X))

does not vanish.
Moreover, the number of the times V' appearing in the decomposition is equal
to the coefficient of X* in the expansion.

ReMARK. Suppose a) is satisfied. Then all the integers [, [, --+, [,, are
non-negative and all the coefficients in the power series are also non-negative.

The proof is given in the next section.

Next we treat the case n=2m-}1.

Any dominant integral form for (g, t) which corresponds to an irreducible
representation of G=S0(2m+-3) is uniquely expressed as

(1.6) A = Ipng At hon,,

where Ay, hy, -+, h,, are integers satisfying (1.2). Any dominant integral form
for (f,t) which corresponds to an irreducible representation of K=.S0(2)X
SO(2m+-1) is uniquely expressed as

(1.7) A’ = kg B R,

where k,, k,, -+-, k,, are integers satisfying (1.4).
In this case we also define integers I, ,, -+, [,, by (1.5).

Theorem 1.2. Let G=SO0(2m-+3) and K=SO(2)xSO(2m~+1). Let
A be the highest weight of an irreducible G-module V. Then the trreducible de-
composition of V as a K-module contains an irreducible K-module V' with the
highest weight A’ if and only if;
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a) hi =2k >h;y, for 1<i<m—1,
hm—l>km (>0) ’

expressing A and A' as (1.6) and (1.7), and
b) the coefficient of X* in the (finite) power series expansion in X of

(X_X—l)—m([[h;:(l’(Xl,.+l_X—I'.—1)) (Xl/z_X—llz)—1(X1m+1/2_X-1,,,—1/2)

does not vanish.
Moreover, the number of the times V' appearing in the decomposition is equal
to the coefficient of X*o in the expansion.

REMARK. Suppose a) is satisfied. Then all the integers [, [, -++, [, are
non-negative and all the coefficients in the power series are also non-negative.

For the sake of completeness we state the branching law for G=Sp(m-1)
and K=Sp(1)x Sp(m). We adopt the following convensions:

g = 8p(m+1, C)
B “X z J.X, Y,ZeM(m+1,C)

)

Y —X)'Y=Y,Z=12
= 8p(1, C)x 8p(m, C)
x 0 2 O cc
oxo z | »»F
— s X,Y,ZeM(@m,C) },
y 0 —x0
Y=Y, Z=2
0Y 0—tX

t= {diag(xo, AL ot Ay —Ngy —Agy '—xm); 7MEC'}’ .

Then t is a Cartan subalgebra of g and also one of . We regard \; as a
form on t. We take a Weyl chamber for (g, t) so that the simple roots of g are
=N Apy C1=A1— Nz ***s Uy 1=Ame1— Ay Apy=2N,,. We take a Weyl cham-
ber for (%, t) so that the simple roots of £ are af=21, and a; (1<i<m).

Since G and K are simply connected, each representation of their Lie alge-
bras can be lifted to a group representation. Hence each dominant integral
form corresponds to an irreducible representation and vice versa.

Any dominant integral form for (g,t) is uniquely expressed as (1.6),
where hy, ky, -+, h,, are integers satisfying (1.2). Any dominant integral form
for (1) is uniquely expressed as (1.7), where k, &,, -*+, k,, are integers satisfy-
ing (1.4) and k£ >0. We again define integers /, [, --+, /,, by (1.5).

Theorem 1.3 (Lepowsky). Let G=Sp(m-+1) and K=Sp(1)x Sp(m).
Let A be the highest weight of an irreducible G-module V. Then the irreducible
decomposition of V as a K-module contains an irreducible K-module V' with the
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highest weight A' if and only if;

a) hio, =k, =h for 1<i<m—1,
hm—1>km (>0) ’

expressing A and A’ as (1.6) and (1.7), and
b) the coefficient of X** in the (finite) power series expansion in X of

(X_X—l)—m(ﬂ:p_o Xl‘.+l_X—l,-—l))

does not vanish.
Moreover, the number of the times V' appearing in the decomposition is equal to
the coefficient of X** in the expansion.

REMARK. Suppose a) is satisfied. Then all the integers [, /,, -+, [, are
non-negative and all the coefficients of X* (k>0) are also non-negative. The
coefficient of X * is equal to the negation of the coefficient of X*.

2. Proof of branching laws

Let G be a compact connected semisimple Lie group, K a closed subgroup
of G. We denote by g and f the complexified Lie algebras of G and K. We
assume that g contains a Cartan subalgebra t which is also a Cartan subalgebra
of £.

We consider a group algebra over Z generated by an additive group of
integral forms for (g,t) and one for (f,t). Since an integral form for (g, t) is
also integral for (%, t), the group algebra for (g, t) is included in the group algebra
for (%, ).

A formal character of a G-module V is an element of the group algebra for
(8,1) defined by the formal sum of all the weights of V. (See, for example,
Humphreys [2].) For an irreducible G-module V' with the highest weight A,
we denote its formal character by X;(A). We do the same for a K-module.

In terms of formal characters, a branching law for G and K means to deter-
mine the set .S (which counts multiplicities) in the following formula:

2.1 Xo(A) = ZXx(A') (A'ES),

where A is a dominant integral form for (g,t) and A’ is one for (%, 1).

We will rewrite (2.1). Let W, be the Weyl group of (g,t) acting on
integral forms. We denote by e(A) a generator of the group algebra correspond-
ing to an integral form A. We define £;(A) by

Eo(8) = S(—1)e(ch) (e W5).

We set §;=(2a)/2 (e €AE), where Ag denotes the set of positive roots of g.
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Then, by Weyl’s character formula, we have
Ec(A+38c) = £6(86)*Xo(A) .
We get in parallel
Ex(A'+0x) = Ex(Ok) - Xx(A) .
Now (2.1) is reduced to
(2.2) Ec(A+386)-Ex(Ok) = £6(8c) - ZEx(A'+8x) (A'ES).

Our task is to devide E5(A+8;) by E(86)/Ex(Ex) and set it in the form & (A4
8x). Since Ex(A’) for dominant integral forms A’ are linearly independent, the
set S is uniquely determined.

We may calculate in a larger group algebra generated by an additive group
of forms. We can write

£6(8c) = M(e(@/2)—e(—a2)) (a€A),
Ex(8x) = Tl(e(a/2)—e(—a[2)) (aEAK),
and so
Eo(8)/Ex(3x) = T(e(a/2)—e(—f2)) (@S AS\AR).

We will exhibit &; and &4 in terms of A; in the cases of our branching laws.
We set s(A)=e(A)—e(—A), c(A)=e(A)+e(—A). We denote by [a,;],:, a square
matrix whose suffixes 7, j range from p to q.

a) G=S0(2m-+2), K=SO(2)x SO(2m).

When we express A+, as in (1.1), é&=1 or —1 and Ay, Ak, -+, h, are
integers satisfying

h0>h1> A >hm—l>hm>0 .
When we express A'+8; asin (1.3), €’=1or —1 and &k, &,, -+, k,, are integers
satisfying
k> >k, >k,>0.
We get
Ee(A+36) = (1/2)(det[e(hnj)]o: mtEdet [s(h)]o: m) »
Ex(A'82) = elkoro)~(1/2) (det [e(kir)], -+ det [s¢ir)]s: ),
E6(86)/Ex(8x) = ITT=r(s((Mot+23)/2)5(Mo—24)/2)) -
b) G=S80(2m+3), K=S0(2)x SO(2m+1).
When we express A-+8; as in (1.6), kg, hy, -+« k,, are integers +1/2 satisfying

h>h > >h,>0.



SPECTRA OF LAPLACE-BELTRAMI OPERATORS 413

When we express A'+38y as in (1.7), k, is an integer and &, -+, k,, are integers
+1/2 satisfying
k1>k2> b >km>0 .
We get
Ec(A+38¢) = det[s(An)lo: m >
Ex(A'4-8x) = e(koho) - det[s(RN)]i: m »
£6(86)/Ex(Ox) = s(Mo/2)* TTTar(s((Mo 1) [2)s((Mo—24)/2)) -
c) G=Sp(m—+1), K=Sp(1)x Sp(m).
When we express A+-8; as in (1.6), kg, &, -+, h,, are integers satisfying
hy>h > >h, 1>h,>0.
When we express A’'+8 as in (1.7), &y, &y, -**, k,, are integers satisfying
ky>0, ky> - >k, 1 >k,>0.
We get
Ec(A+3c) = det[s(hr)]o: m s
Ex(A'+-8x) = s(koho) - det[s(Rn)]i: m »
£6(86)/Ex(3x) = TTTar(S((Mot2:)/2)5(Mo—N1)/2)) -

The crucial point in the proofs of our branching laws is that the quotient of
det[s(An;)]o: m OF det[e(Rn))]y:, devided by IT7-1(s((hg+2:)/2)s((Xo—2:)/2)) is
a sum of (a finite power series in e(\,)) X (det [s(R;\;)]; :  Or det[c(R\;)];: ). The
next lemma enables us to excute the division. The substitution of the obtained

result in (2.2), using the above expressions, completes the proofs of the branch-
ing laws.

Lemma 2.1. Let (hy, hy, -+, h,) be a set of integers satisfying hy>h,>---
>h,>0. Then

(2.3) det[s(2:2 ;)]0 : m/ LLTar(s((Ao2:)/2)s((Ro—21)/2))
= (s(ha)) " (L1 T-05(liNo)) - det [s(k )]s m »
(24) det [e(A:xj)]o s mf TLTar(s((Ra+20)/2)5((Mo—21)/2))

= (s(ra)) " Z(IL%=0(s(Eina)) * H = c(luno) - det [c(Rik )]s m »
where the summation is taken over all the sets of integers (ky,ky, -+, k,,) satisfying
ky>ky> >k, >0 and
(2.5) k,’_1>k,‘>h,‘+1 for 1<i<m—‘1 ’
hm-—1>km (20) ’
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and integers ly,1,, -+,1, are defined by (1.5) from hy,hy, -, h,, and ky,k,, -+, k,, and
further

1 for k,>0,

H=
1/2 for k,=0.

The equalities (2.3) and (2.4) are also valid when (hy, by, +++,h,,) is a set of inte-
gers+1/2 satisfying hy>h,> -+ >h,>0. Then the summations should be taken
over all the sets of integers—+1/2 (R, k,, -+, k,,) satisfying k,\>k,>+>k,>0 and
(2.5).

ReMark. The assumption on Ay, hy, +++,h,, and ky,k, -+, &, ensures us that
Iy, -+, 1, are positive integers.

Proof. We prove the case (2.4) where (h, 4, -+, ,,) is a set of integers. By
sight changes, we can prove the other cases.
We transform [¢(A;\ ;)] : ,,Dy subtracting “the (i—1)-th row X c(A;\g)[c(h; - 0)”
from the i-th row in turn.
det[c(An))]o: m
= (II%Z1e(hine)) " det [e(Biho)e(hin ) —c(no)o (i h )]st m
= (H"::%C(hiko))—l
X det [s((hi-yt-h:) (v t-2)[2)5((hii—h) (No—2)/[2)
+5((hir—1:) Mo+ 25)2)5((Rior-Ri) Mg—2 ) [2)]1 5 m -
We devide the (7, j)-element of the last matrix by s((A,+2X;)/2) s((Ae—2;)/2).
The result is

S()»o)—IEP,-(k,-)c(k,-xj) (k‘EZ) ,
where P,(k) is given by
c(Bng)s((hi—y—R)No) if hy_>k>h;,
c(rng)s((Bioi—PRi)Ng) if h,>k>0,
S((hi—1—h)No) ifk=0,
0 otherwise.

P i(k) =

Thus we get
det [e(Anj)]o : ml TTF21(s((Ro+20)/2)s((Ne—21)/2))
- = s(ao)(IL=0e(hinG)) (T 1 P(R:)) det [e(Rin )]s m
((ky, By =+, k) EZ7)
= s(Ao) "(II7=Tec(hing)) " Z det [Pi(k))]y: mdet[e(Rik )]s : m
(ki >ky> - >k, 20).
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Note that if &k, -+, k, do not satisfy (2.5), then det[P;(k;)],:, vanishes.
Indeed, if k;>h;_; (1<i<m), then the first 7 columns are linearly dependent.
If h;p >k (1<i<m—1), then the first i+ 1 rows are linearly dependent.

Assuming that ky,k,, -+, k,, satisfy (2.5), we transform [P;(k;)],:, by sub-
tracting ‘“‘the (j—1)-th column X c(k;\o)/c(R;-1\o)” (or its half when k,=0 and
j=m) from the j-th column for j=m, m—1,---,2 in this order. The resulting
matrix [P;;];., is a tridiagonal matrix such that P; ;,,P;y, ;=0 for 1<i<m—1.
This means that its determinant is equal to the product of the diagonal elements.

Py; = c(i - no)s(li o) (Pido) [c(Pi-1no) -
We defined pg, p;, ***, o by po="h0, p;=min (k;, k;) for 1<i<m (p,=1,). Therefore
det[P;(k))];: m

= (IT"=de(hing)) (T17%255(Zing)) * H = (o) [c(Poo)
= (IT=1c(hng)) (TT75Z0s(Eing))  H = c(Tuho) 5

which proves (2.4).

3. Decomposition of A?(g/t)*

We identify a complexified contangent space of M=G|K at o=[K] with
(g/2)*, the dual space of g/t.

First we treat the case G=S0(n+2) and K=S0(2)x SO(n).

The space (g/f)* decomposes into two irreducible K-modules, ¥V, and V_,
with the highest weights A+X; and —X\,+A,;. This decomposition of (g/f)*
gives a rough decomposition of A?(g/f)*:

(3.1) A?(@A)* =A™  (r+s=2p),

where A™'=(A"V,)®(A’V_). Then the SO(2)-parts of weights in A" are
(r—s)xe- In order to decompese A™* as a K-module, we should decompose it
as an SO(n)-module.

Let A}, A, -+, A,, be the fundamental weights of SO(n) dual to the simple
roots o, oy *+*, . We set A;=0. We denote by V(A) an irreducible SO(n)-
module with the highest weight A.

The space A™* is isomorphic to (A"V(A,))®(A*V(A,)) as an SO(n)-module.
Since A™°'=A"" and A"’=A""* as SO(n)-modules, we may restrict our
attention to the case 0<r<<s<m.

When n=2m, we define V; ; by

Vii= V(A for 0<i<j<m—2,
Vim1= V(Ait+Apuoi+Ay) for 0<i<m—2,
Vm-l,m—l = V(zAm_1+2Am) , )
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Vimw= V(AiA2A,)BV(AAH2A,)  for 0<i<m—2,
Vm—l,m = V(3Am—l+Am)®V(Am—l+3Am) ’
Vim= V(4A,_)OV(4A,),
Vii=Viaij for m+1<j<n—1.

When n=2m-1, we define V; ; by

Vii= V(Ai4A)) for 0<i<j<m—1,
Vim = V(Ai+2A,) for 0<i<m—1,
Vamw=V(4A,),

Vii=Viaj for m+1<j<n—1.

Proposition 3.1. An SO(n)-module A*(0<r<s<m) decomposes into irre-
ducible modules as follows:

AN*=ZV;; (GHES),

where the set S consists of pairs of non-negative integers (i,j) satisfying s—r< j—i,
i+j<r+s and i+j=r+s (mod 2).

This proposition and (3.1) give an SO(n)-irreducible decomposition of
A?(g/t)*, which is also the K-irreducible decomposition.

The proof of Proposition 3.1 resembles that of the primitive decomposition
of A*(C"+C") via U(n) and uses it.

The SO(n)-module V(A,) is isomorphic to C", the complexification of R"
with a canonical SO(n)-action, and posesses a natural SO(n)-invariant sym-
metric inner product. We take an orthonormal basis {x;} (1<i<n) in R".
Then Q=3%_,x;Qu; is the unique SO(n)-invariant element in V(A)QV(A,) up
to a constant factor. We set e;= (%51 —V —1%,)/V 2, €y is1=(%zi1-+V — Lx3;)
[v/2 for 1<i<m and e,.,—x, when n=2m--1. Then we have for HEtN
o(n,C)

p(H) (e;) = ni(H)e; for 1<i<m,
p(H) (en-i+1) = —Ni(H) for 1<i<m,
p(H) (ep+1) =0 when n = 2m+1,

where p denotes the action of o(n,C). We can rewrite Q as 3}.,¢;Qe,_;+;. We
define an SO(n)-homomorphism

L: A',S — Ar+l,s+l
by Lo=QAw (0 EA"’).

Lemma 3.2. For r+s<n (0<r, s<n), L: A"*— A1 §s injective.
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In fact, L*7775: A»*—A""**"" is an SO(n)-isomorphism. For the proof,
see Weil [5]. Notice that the SO(n)-action on C”" can be extended to U(n)-
actions in two manners; a canonical one and a complex conjugate one. When
we take a canonical action for a U(n)-action on V, and a complex conjugate
action for a U(n)-action on V_, L is the same U(n)-homomorphism used in [5].
There is an SO(n)-isomorphism

*1 A?V(A) — A"PV(A,)
given by
(x*a, B)es Ney A+ Ne, = a B, aEAV(A,), BEAV(A),

where (, ) denotes the symmetric inner product. If (7,7, +--,7,) is a permuta-
tion of (1,2, :++,n),

*(eil/\ eee /\eir) == Sgn(ivizx "')in)en—i,+l+l/\ o /\en—i,,+1 .
We define an SO(#n)-homomorphism
T: A" —> Artls—1
by the composition of the following three SO(#n)-homomorphisms:
(—1)y"d@x*: A — A""s,
L: ATPTS > Ar+l.n—s+l ,
Id® *—l: Af+l,n—s+l — Ar+l,s—l .
An explicit formula for T is given by
T(e’,l/\ “ee /\el.’®ejl/\ ces /\ejs) ~
= 25-1(_ 1)’-131',/\8,'1/\ /\e,"®8,'1/\ oo /\e,"/\ oo /\ej‘ .
The following lemmas are easily verified.

Lemma 3.3. For 0<r<s<n, T: A"*—A""""! 45 an injective SO(n)-
homomorphism.

Lemma 3.4. For 2<r<s<n—r, the following diagram commutes:

Ar-—Z.s L > Ar—l.s-H.
T : Tl
Ar—l,s—l > A".s .
Lemma 3.5. Let T* be the adjoint of T with respect to the invariant sym-

metric inner product.
a) For 2<r<s<n—r, the following diagram commutes:
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Ar—z,s > Ar—l,s+1
T* T*[
Ar—l.s-l___% Ar,s .

b) For 1<s<r—1, the following diagram commutes:

AO,s+!.
0 T*I (O denotes 0-map).
Ao,, > Al,s
Notice that an explicit formula for 7* is given by
T*(efl/\ ves /\ei'®ej1/\ eee /\ej:)
A
= E;-l(_l)’_leil/\ oo /\e," VARER /\eiy®ei¢/\ef1/\ oo /\ejs .

From these lemmas we can deduce that A™° contains submodules isomor-
phic to A""»*7? and A7"»**! with the intersection isomorphic to A”"*¢ (or {0}
if r=1). The space A™* must also contain V, ; which corresponds to the highest
weight of A™’. It is obvious that 7, can intersect with the sum of A"}

and A""'*! only by {0}. Computing the dimension of the above modules,
we can obtain

Proposition 3.6. We have the following SO(n)-isomorphisms:

Abs~ VI’SGBAO.s—l@AO,s-I-I (1 <s<m) ,
Ar,s@Ar—z,sgVr.s@Ar—l,s—l®Ar—l,s+1 (2 <r<s<m) .

It is easy to see that this proposition is equivalent to Proposition 3.1.

ReMARK. We may call V_ the holomorphic part and V. the anti-holomor-
phic part by the following reason. Let H, be an element of t satisfying A\y(H,)
=V—1, M(Hy)=0 for 1<i<m. Then ad H, defines a complex structure on
g/t. The space V_ is an eigenspace of ad H, in (g/f)* with an eigenvalue
—+/—1 and the space V, is one with an eigenvalue \/—1. Because ad H, com-
mutes with the action of K, it defines on M=G/K a G-invariant almost complex
structure, with which the metric we assumed defines a Kaehler structure.

Note that Frobenius’ reciprosity law gives an explicit correspondence
between a K-submodule of A?(g/f)* and a G-submodule of C*(A?M). In our
case, the holomorphic [anti-holomorphic] part V'_[V,] corresponds to holomor-
phic [anti-holomorphic] forms and V"* to forms of type (s,7).

We proceed to the case G=Sp(n+1) and K=Sp(1)xSp(n). The K-
module (g/f)* is an irreducible module with the highest weight Ay+2,. We take
a maximal torus 7" in Sp(1) whose complexified Lie algebra is contained in f.
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We set K'=TxSp(n). If we consider (g/f)* as a K'-module, it decomposes
into two irreducible K'-modules V. and V_ with the highest weights A,+ 2, and
—No+ Ay We first study a K'-irreducible decomposition of A?(g/E)* and next
reconstruct a K-irreducible decomposition.

First we have the following rough decomposition as K’-modules:

A gty*=ZA™ (r+s=p),
where A"'=(A"V,)Q(A’V_.). The T-parts of weights in A™* are (r—s)x,. We
should decompose A"™° as an Sp(n)-module. Let A}, A, +++, A, be the fundamental
weights of Sp(n) dual to the simple roots ay, oty -+, cx,. We set A,=0. Both

V. and V_ are irreducible Sp(n)-modules with the same highest weight A;=2x,.
We denote by V(A) an irreducible Sp(n)-module with the highest weight A.

Proposition 3.7. For 0<r<n, we have

AV(A)=V(A,)BV(A, )P DV(A,)) when r=odd,
=V(A)BV(A, )P DV(A,) when r=even;
ANTV(A)=A""V(A,) .

Proof. The Sp(n)-module V(A,) is isomorphic to C?#, the complexification
of R? with a canonical Sp(n)-action, and posesses natural Sp(n)-invariant inner
product and symplectic form w. We take an orthonormal basis {x;} (1<i<2n)
in R* which satisfies w(x;,%;)=0, (¥, %,.;,)=0, o(x;, x,+;)=38;; for 1<,
j<n. We set Q=32%_,x; Ax,,;, which is the unique Sp(n)-invariant element in
AZV(A,) up to a constant factor. We define an Sp(n)-homomorphism L: A?V(A,)
—A??V(A)) by La=QAa (a=A?V(A;). Then L is injective for 0<p<n,
as is seen in the proof of the primitive decomposition in [5]. The space A?V(A,)
includes a submodule isomorphic to A?7?/(A;) and one isomorphic to V(A,),
and they can intersect only by {0}. Computing the dimensions of these mo-
dules, we can prove

AV(A)=V(A)DA?V(A) (2<p<n),

which is equivalent to the top half of the proposition.

The remainder is obvious.

Thus to decompose A"™° as Sp(n)-modules, we have only to decompose
V(A,)QV(A,) for 0<r<s<n.

Proposition 3.8. An Sp(n)-module V(A,)@V(A,) (0<r<s<n) decomposes
into irreducible modules as follows:
V(A)®V(A)=ZV(A:+A)) (()ES),

where the set S consists of pairs of non-negative integers (i,§) satisfying s—r< j—1i
<2n—s—r, i+j<r+s and i+j=r+s (mod 2).
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Proof. As in the SO(n) case, it is enough to prove

(V(A)QV(A)DB(V(A,-)RV(A,))
= V(A4 A)D(V (A, )QV(A-))B(V(A,- )@ V(A1)
(O<p<g¢<n),
where the terms including V(A,) with »<<0 or »>n should be omitted. It is
equivalent to the following relation among the formal characters: (X=%Xg,(,)
X(APUA) XA, XA

= X(Aﬁ+Aq)+X(Ap—l)x(Aq—l)+x(Ap—1)x(Aq+l) .
We can rewrite the above, using Weyl’s character formula. We set =g,
and §=23s,(,y and factor out (£(8))>. Then we have

(32)  E(AAOENAE)TEN o+ OEA,+D)
— E(A A+ OEO)+E(A st OE(N g ) HE(N, 1+ O)EA (11+D)

Let Af, A4, -+, A} be the fundamental weights for SO(2n), £'=E;0(m and
8'=8s0(m- We consider & and £’ as finite power sereis in e(\,), e(A,), ***, e(N\y)-
We can represent £ as (IT7-15(\)) X (a linear combination of £’). For example,
(D=IT%-15(12))

(3.3) £(8) = D-£'(8"),
E(A+8) = D-E'(A1+8),
E(A,+8) = D+ (E'(Aj+8)—E/(Aj48) (2<p<n—2),
E(Ap11+0) = D+(E'(Arat+As+8)—E'(Ar-s19"))
E(A,+8) = D+(E'(205,+8)+E (20, +8)—E (Asr487) ,
E(Apt Dyt 8) = D (E (A Af-8)—E (Mg AJ+8")
—E'(Ap+Afp - 8)+E (Appt Aja+8))
(4<p+2<g<n-2).

On the other hand, Proposition 3.6 provides us relations among &’. For

example,

(34) E'(Ap+0")E" (AI+8")+E (M), +8")E"(AH-0")
= E' (A AH8)E' () +E (A1 +0")E (MG +8)
+E'(Ap-1+8)E (A1 1-87)
(2<p<xg<n—-2).
By combining four equations of the (3.4) type, we can get an equation of
the (3.2) type substituted the expressions (3.3).

Proposition 3.7 and 3.8 enables us to decompose A™° as an Sp(n)-module,
which completes the K'-irreducible decomposition of A?(g/f)*.
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Let us return to the K-irreducible decomposition. We note that an ir-
reducible K-module with the highest weight A\,+A decomposes into ir-
reducible K’'-modules with the highest weights (k—2i)a,+A (=0, 1, -+, k).
Conversely we gather the highest weights in the K'-irreducible decomposition in
bunches of the above form: Take the highest weight kx,+A of the biggest
T-part for a fixed Sp(n)-part. Then make up the highest weights of the form
(k—20)A+A (:=0,1, ---, k) into a bunch. Next do the same in the remain-
ing highest weights, and so on. This procedure exhausts the highest weights
without fail and the member of the biggest T-part in each bunch gives the
highest weight in the K-irreducible decomposition of A?(g/f)*.

We present here a table of the highest weights of the irreducible K-sub-
modules of A?(g/f)* when G=Sp(n+1) and K=Sp(1)x Sp(n) for some p.

»=0 0.
p=1 Ao+ 4.
p=2 n>2 220+ Az, 220, 24;.
n=1 220, 24,.
»=3 n>3 320+ 43, 320+ Ay, Ao+ A1+ Az, 20+ 41
n=2 320+ Ay, Ao+ A+ Ap, Ao+ Ay,
p=4 n>4 420+ A4y 420+ Az, 420, 220+ Ay + A3, 220+245, 220+ A3, 245, 43, 0.
n=3 429+ Az, 420, 220+ A+ Az, 220+241, 220+ A3, 245, A, 0.
n=2 420, 220+24y, 220+ A3, 245, A2, 0.

Remark. For a compact symmetric space M=G/K with G compact and
semisimple, A? preserves a decomposition of C~(A?M) corresponding to a
decomposition of A?(g/f)* under Frobenius’ reciprocity law.

4. Examples

In the cases G=S0(n+2) and K=S0(2)x SO(n), the cases n—=1 and 2
are exceptional. When n=1, all our computation becomes trivial, and when
n=2, we need some modification, for K is abelian. Anyway, since M=G/M is
homothetic to the standard sphere S? when n=1, and to S?X.S? when n=2,
the spectra are well-known.

Our first example is the case G=SO(5) and K=S0(2) x SO(3) (n=3, m=1).
We set A;=ny/2, Ag=x, and A;=(A+2))/2. We denote by I(k,s) for non-
negative integers k& and s the irreducible G-module with the highest weight kA,
+2sA,. The Casimir operator acts on I(k, s) by the multiplication of — {(k+s)
(k+2s+3)+s(s+1)}/6. The dimension of I(k,s) is (2k+2s+3) (k+2s-+2)
(1) (25 1)f6.
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We give in Table A the highest weights that irreducible K-submodules
of A?(g/t)* have and the G-modules which includes an irreducible K-submodule
of A?(g/f)* at least once. We denote by p the multiplicity, the number of
the times a K-module appearing in the K-irreducible decomposition of a G-
module. Integers r and s may take any non-negative value and p=1 unless
otherwise denoted.

Table A.
P H.W. G-module
0 0 I(27, s)
1 A0+24, I(2r, s) r>1 or s>1 pn=2 if r>1, s>1
—20+24,; I2r+1,s) s>1
2 220+24, I(27, s) r>1, s>1
—22,+24, I2r+1,s) »r>1 or s>l pu=2 if r>1, s>1
44, I(2r, s) r>1 or s>2 p=2 if s=1
p=3 if r>1, s>2
I2r+1,s) s>1 p=2 if s>2
24, I(27, s) s>1
I2r+1,5) p=2 if s>1
0 see above
3 32
I2r+1,s) r>1
—310
do+44, I(2r, s) r>1 or s>2 p=2 if r>1, s>2
—Ay+44, I(2r+1,s) r>1 or s>1 u=2 if r=0, s>2
or r>1, s=1
p=3 if r>1, s>2
lo+24;
see above
—29+24,
2o
I(2r+1,5)
—2

Next we give the information on Spec?(M) for the case G=SO0(6) and
K=S8S0(2)x SO(4) (n=4, m=2) in Table B. We set A;=\—X\;)/2, A=
(M+N2)/2, Ag=Ng By=(No+N—2N2)[2 and A,=(Ny+N,+2;)/2. We denote by
I;(r,s) for non-negative integers r and s the irreducible G-module with the
highest weight given in Table B-1. There we have also given the eigenvalue
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of the (—8)x Casimir operator and the dimension of the module. We list
the highest weight of irreducible submodules of A?(g/f)* in Table B-2. Table
B-3 indicates G-modules which contain a K-module in their K-irreducible de-
composition at least once and the number of times they contain the K-module.
In Table B-3, integers r and s may take any non-negative value and multiplicity
p=1 unless otherwise denoted.

Table B-1.
Module Highest Weight
Io(r, s) 2rdg+s(A+Ay) e.v. =Qr+s)2r+s+4)+s(s+2)

dim.=(2r4+s+2)%(2r+2s+3)(2r+1)(s+1)?/12
Iy(r, s) Q@r4+-0)Ay+s(A+A)+24; | ev. =Qr+s+2)(2r+s+6)+(s+2)?
I(r, s) Qr+D)Ap+s(Ai+A)+24; | dim.=Q2r+25s+6)(2r+s+5)2r+s+3)(2r+2)

(s+3)(s+1)/12

Is(r, s) 2rdy+s(A;+Az)+ 44, e.v. =Q2r+s+3)(2r+s+5)+(s+3)?

I(r, s) 2r Ao+ s(Ay+-Az) + 44, dim. =(2r+25+7)2r+5+6)(2r+s+2)(2r+1)
(s+5)(s+1)/12

Table B-2.

P Highest Weight

0 0
1 Ao+ M+ Az — 2o+ M+ A,
2 220+2A45, 220+243, 24,4245, 24y, 245, 0, —229+24;, —22+24,.

3 320+A1+A2, Xo+3A1+Az, 10+A1+3A2, Xo+A1+Az (twice), —10+A1+A2 (twice),
— Ao+ Ay 434z, — Ao+ 341+ 43, =320+ A+ Ao

4 420, 210+ 2A|+2A2, 210—'-2/11, 210+2A2, 210, 4A1, 4A2, 2A1+2Az (tWiCC), 2A1, 2Az,
0 (twice), —2/10+2A1+2A2, —210-’-2/11, —210+2A2, —2&0, —410.

Table B-3.
H.W. G-module
0 Io(7, s)
Ao+ A1+ A, I(r,s) r>1 or s>1 p=2 if r>2, s=1
—Aot+ A1+ 4, Ii(r, 5)
Iy(r, s)
220+24, Iy(r, s) r>1, s>1
—220+424; Ii(r, s)
Ip(r,s) r>1
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Table B-3 (continued).

HW. G-module
220+24, Iy(r, s) r>1, s>1
—220+24; Ii(r,s) r>1
Iy(r, s)
24,424, Iy(r,s) r>1 or s>2 pu=2 if r>2, s=1
u=3 if r>1, s>2
24 Io(r, s) s=>1
24, Iy(z, 5)
Iy(r, 5)
3+ A1+ 4, Iy(r,s) r=1, s>1 n=2 if r>2, s>1
or r>2
=32+ A1+ 4,
Ii(r,s) r>1
Iy(r,s) r>1
Qo+ 341+ 4, Iy(r,s) r>1 or s>2 n=2 if r>1, s>2
—2o+A1+34, Ii(z, 5) p=2 if s>1
Iy(r,s) r>1 or s>1 p=2 if r>1, s>1
Ao+ 41434 Io(r,s) r>1 or s>2 pn=2 if r>1, s>2
—Ao+341+ A2 Ii(r,s) r>1 or s>1 pn=2 if r>1, s>1
Iy(r, s) n=2 if s>1
42 Io(r,s) r>2
—42
220+24,+24, Iy(r,s) r+s>2 pn=2 if r>2, s=1
or r=1, s>2
—24+24;1+24,
24 Iy(r, s) r>1
—22
44, Iog(r, s) s>2
44, Ii(r,s) s>1

I(r, s) s>1

Iy(r,s) r>1

Iy(r,s) r>1
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Our last example is the case G=Sp(3) and K=Sp(1) X Sp(2) (r=2). Notice
that in the case G=Sp(2) and K=Sp(1) x Sp(1) (n=1), M=G|K is homothetic
to the standard sphere S* and therefore Spec?(M) has already given in [3]. We
set Ay=N\;, Apg=N\;+Ny Ay=ng, A;=Ng+N\; and A,=Ny+A;+r,. We denote
by I(r,s,t) for non-negative integers 7, s and ¢ the irreducible G-module with
the highest weight 7A,+sA,+tA,. The eigenvalue of (—16) x Casimir operator
on I(r,s,t) is 2s(s+2t+r—+5)+7(r+2¢+6)+3t(t+2) and the dimension of I(z,s,?)
is (2s+7+2t+5) (s+7+2t+4) (s+r+t+3) (s+7+2) (s+2¢t+3) (s+2+2) (s+1)
X (r+1) (¢4+1)/720. The meaning of each column of Table C is similar to
that of Table A. Integers & may take any non-negative value and multiplicity
p=1 unless otherwise denoted.

Table C.
P H.W. G-module
0 0 I(0, &, 0).
1 lo+4y IO, &, 0) k>1, I(1, &, 1), I(2, %, 0).
2 220+ 4z I(1, k, 1), I(2, k, 0) k>>1, I(3, k, 1).
22 12, &, 0).
24, I(0, &, 2), I(1, &, 1), I(2, &, 0).
3 3%+4, I(2, k, 0) k>1, I(3, &, 1), 1(4, &, 0).

Qo+ Ar+ Ay I(0, k, 0) &2, 1(0, &, 2), I(1, &, 1) n=2 if k>1, I(2, &, 0) &>1,
12, k, 2), I3 &, 1) k>1.

Ao+ 4 see above
4 42 I(4, k, 0).
220+24, I0, k, 0) k22, I(1, k, 1) k>>1, I(2, k, 0) k>1, I(2, k, 2),
I(3, k, 1), I(4, %, 0).
220+ Az see above
24, I0, &, 0) k22, I(1, k, 1) k21, I(2, R, 2).
A, 10, &, 0) k21, I(1, &, 1).
0 see above
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