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ON THE UNIQUENESS FOR THE SOLUTION
OF THE CAUCHY PROBLEM

By

Hrrosur KUMANO-GO

§0. Introduction. We shall consider a linear partial differential
operator L with complex valued coefficients in a neighborhood of the origin
in (v+1)-space (¢, x)=(, x,, -**, ).

In the recent note [4] we have proved the uniqueness of the solution
of the Cauchy problem for the differential equation

0.1) Lu Em;gm a; ., x) 575% .,,u(t x) = f(¢, x)
(= (an ) av)» || = a1+"'+av)

under some conditions for the characteristic roots. On the other hand

S. Mizohata [7] proved the uniqueness of the Cauchy problem for a
parabolic equation

Lu—<za,,<t x)a o +§]b(t x) o relt 1) - )u(t x)
0.2)
= f(t, x) (i;:la,-,-(t, x)&,«f,gS(i;fz) for 8>>0)

when the data are prescribed on a piece of a time-like surface, and T.
Shirota [10] and M. H. Protter [9] gave other proofs for this problem
under weaker conditions.

In this note we shall prove a more general uniqueness theorem which
can be applied to the parabolic equation (0. 2).

The differential equation which we shall study is of the form

|
Lu=Lu(t, x)+ o b; (2, x) o

jmlein<m-1 otiox®

—u(t, x)

(0.3) N .
=t n) (lem= St Sim=m, (G=1, )

where L, has the form
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aj+|ml
0. 4) Ly = i+"‘l§nl=m a; (¢, x) 555 u(t, x)
and is called the principal part of L. We prove the uniqueness theorem
when the initial data are given on a surface which meets the plane ({=0)
only at the origin. If the initial data are given on a plane portion, we
must set the condition: m=m; or m =2m; (j=1, -+, ») instead of m=m;
(j=1, --+, v), which is caused by Holmgren’s transformation.

If we set m=m,=---=m,, then (0. 3) takes the same form with (0. 1),
and for the parabolic equation (0.2) we get the form (0.3) by setting
m=m,=---=m,_,=2 and m,=1,

The tool used in this note is the singular integral operator of A. P.
Calderén and A. Zygmund [1]. But we have some difficulties to use this
since the homogeneity of the characteristic roots does not hold. We
define r=vr(§) for real vector £=(&,, ---, £,)==0 as the positive root of the
equation

v
Sy =1
j=1

and represent the characteristic roots A as A=7'"A, where A, are homo-
geneous of order 0 with respect to & in some sense, and we define
singular integral operators of type Cj (Definition 1 in §1) with the sym-
bols A,.

Although some results are evident from the note [4], we shall mention
them for the sake of completeness. The author wishes to express his
sincere gratitude to Prof. M. Nagumo for his advices and encouragement.

§1. Notations and definitions. We denote a point in (v +1)-dimen-
sional Euclidean space R* X R* by (¢, x)=(, x,, --+, x,) or (5, ¥)=(S, ¥, =", ¥»)
and denote a point in the dual space of R* by &=(,, ---, &) or
=11, ***, 1)-

(m, m) =(m, m,, ---, m,) expresses a real vector whose elements are
positive integers (m=m;; j=1, .-+, v) and a@=(«,, ---, &,) expresses a real
vector whose elements are non-negative integers.

We use notations :

la’:al+...+av, .f‘”:f{h...fg‘:‘y’

o a
|a{:ml:_1~+...+_\‘_’ ax‘”:axfl...ax:”u’
m, m

|x|2:jz=;x§’ |512:§§§, x"f:ngfj,
Ep={ %); £+ |x|*<n}.
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We shall consider a differential polynomial

1.1) L(t, 2,7, &) = Ly(¢, 2, N\, &)+ . b; 4(t, x)

jtmle < m-
in a open domain in (v+1)-space, where L, has the form

(1' 2) Lo(t» X, A', E) = 2 ai,u(t’ x))\'jgw (am,o = 1)

j+mi@ T|=m
and is called the characteristic polynomial of L.
We define for u € L? the Fourier transform F[«] by

Flu] =a(¢) = S e =y (x)dx

\/2

and set

(1.3) K@) = (g&mye.

DErFINITION 1. We call H =ga,h, a singular integral operator of
type Cp with the symbol o(H ):Z; a,(x) 1, (€) if the following conditions
are satisfied :

a,(x)€Csy, h,(8)€Ciup r=1,2, ),

and for every « and / there exists a positive constant A,, such that

(1.4) gl ;a (x)}gAa, 7 (r=1, 2, )

and for every « there exist positive constants B, and /, such that

(1.5) RO =B KO (=12, ).

Then, Hu is defined dy

Hu = vé—,,v Se""wH)a(f)ds

or equivalently Hu = Z}ia,(x)(h,u)(x) where /4,4 are defined by ;;z; =
h,(E)a(£).
DerFINITION 2. Let A() be infinitely differentiable in £(==0), and for

1) i=+/—1, without description we use { in two meanings: a square root of —1 and a
suffix, these distinction will be easily seen case by case.
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every « there exists a positive constant <, such that

(1.6) 26 A©)| = vaK@-mem.

Then, we define a convolution operator A by Awu(§)=A(&)a(€).

Let r=7(£) be a positive root of the equation

1.7) F(r,£)=2Er"m =1 for real £(+0).

As lim F(r, &)= oo, lim F(r, £)=0 and %F(r, £)= —2r' %E?r‘”’”:<0
750 7-po0 j=1 7|
for £==0 and »_>0, it follows that its positive root »=7(§) is uniquely

determined and infinitely differentiable.
We write for »=(y,, -+, 7,)==0

Ly(t, %, M inln| ™) = L2 7, ),

then A, (¢, x, ) (!=1, ---, m) are homogeneous of order 0 with respect
to 7.

Now we define a mapping §—7 by 5;=&7 " (j=1, ---,v) with
r=r(€) determined by (1.7), and define a matrix R by

ri™ 0
(1.8) R = ( "
0
then #=E&R"".
Set
(1.9) Lt %, \, iE) = r=1 AN (8, 7, E))

Remarking [ER™'| =1 by (1.7) it follows that
L,(t, x, N, iE) = ) a; (¢, 2)N (&)

jem@m=m

- 2 ai’w(t: x)x,j(ifR-'l)M’,[m;m]

jmiETm=m
=7 2 a;.(t ) "N ([GERT)”

j+mla: mi=m

— rIL(r ™+, (¢, %, ER™Y))
=1

= L (A +7"0, , (¢, %, ER7Y)),
=1
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hence by (1.9) we have
(1.10) N(2 x, E) =10, (8 %, ERTY) (D=1, -, m).

REMARK. A (#, %, 7) is infinitely differentiable and homogeneous of
order 0 with respect to 7, then, after A. P. Calder6on and A. Zygmund
[1] we may represent it as

Mo(t, % 1) = 316, (t, %), ()

where a,(t, x) satisfy (1.4) and %,,(») satisfy

LT ,
]aﬁho,(m]g&rwmrl“' (r=1,2).
on ’

Setting %(£)=h, (ER"") we have A (Z, %, fR"):i a,(t, x)h,(&).
=i |@|
On the other hand by (2.3) of Lemma 1, we have g?;(&jr“‘/mj) =

CK(E)™*™ (j=1, «-, »).
Hence it follows that A (f, x, §R~') becomes the symbol of some
operator of type Cjx. Similarly we verify that '/ satisfies (1.6), so we

can define an operator A by Awu=r""j§).

§2. Preliminary lemmas. Our main tool is the inequality (3. 6)
of Theorem 1. In this section we shall mention some lemmas for the
proof of Theorem 1. All the lemmas except Lemma 1 is essentially the
same with the previous note [4], but we shall give brief proofs to some
of them so that we may be convinced of them.

Lemma 1. Let r=r(&) be a positive root of
2.1 F(r,&) = Z" Er-*"y =1 for real £§3=0.

Then, we have for some constants C? and C,

2.2) CoIKE" < r(E) < CK(©&)™
and
2.3) g; r(§) ‘ < C K (Eyma-tomD

Proof. In the previous section we have already studied that 7 is
uniquely determined and infinitely differentiable.

2) We denote by C (with or without subscript) positive constants.
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From (2.1) we have &r%™: _2_% for some 7/ and &r~*"s;<1 for
every j, hence we get
Keymzamz(g)"r ad oz 3em = Ko™,
j=1

This shows the inequality (2.2) holds.
Differentiating the both sides of (2.1) with respect to & we have

L _l‘ 2 —2/m __a_ 1- 2/m’ —_— '= s
2. 4) E >a§r Ex 0 (=1, -,v).

More generally we have

1 _2/m>a @l
@9 (585
QM a““l
80,1 7~ | 1| s
+“o<"'o y‘0+2+y‘,—m +aaM E r ° af"l r E“'l
B <a@(i=1,--, D
=0 (|2|>0).

From (2.1) we have —1* SZ Er-*"”;<1 and by the definition (1.3) of
.7
K($) ,
|E%| |, %0 tee o | £, % < K(E)™1%0™,

Hence applying (2.3) for #;(< ), instead of «, as the assumption of the
induction we have
_g; r ‘ < CK(£)™100 M1+ 2= g M+ [y T e L= g1
— CK(’.;‘)"‘""('“O“'"'“‘F‘“"l‘”o‘mb
= CK(&yra-tomb Q.E.D.

Lemma 2. i) Let P and Q be singular integral operator of type Cp
with real valued symbols, then the operator norms

|PA—AP*||, lQA—AQ¥||,
I(P*Q—Q*P)All, ||A(P*Q—Q*P)||

are all bounded, where P* and Q* show the adjoint operators of P and
Q respectively.

' ii) Let H, H, and H, be singular integral operators of type Cy;, then
we have for amy positive integer p and q the representations

(2. 6)
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HA?—A?H = H, A+ H

@.7)
(H1H2_H1° z)A = H4+HZI

where H,, and H, are bounded operators together with A‘H,, N and
NHIN (0<i+ji<q) respectively, and H,oH, is an operator of type C&
with the symbol o(H,)-o(H,).

iili) Let H be a singular integral operator of type Cy such that
|o(H)| =6">0, then there exists positive constant C, such that

2.8) 1 HAu|* = (1—&)&||Au| " — C,||ull*
(weCs(RY), 1>€>0)
(In what follows we apply (2.8) setting E=1).

By (1.6) it follows that ggm A(«E)'SC‘,K(E)‘ 1l if |£|=1 and by
K& Z=C|E|'™ (|E|=1), it follows for every k that ggmA(g)'gc,,m —k

(|€|=1) for sufficiently large «, so that the operator of type C& in
Definition 1 and operator A in Definition 2 are essentially the same with
those of M. Yamaguti’s [11]. Hence we can prove the lemma by the
parallel process, but we omit the proof since it is very troublesome.
The reader may consult [11] for i) and ii), and [8] for iii).

Lemma 3. Let P and Q belong Cj and have real valued symbols.
Then we haue the following representation

2.9) 1(AQ*P—PAQ)A = HA+H'PA+H”
where H belongs to Cj with the symbol

@10)  o(H) = 3 |5 o(P) 5 (*(QAE) ~ o (7(Q) oz (*(PYAE)]

and H and H” are bounded operators.

Proof. As a simple case we consider P=ak and Q =0bk with
o(P)=a(x) k(&) and o(Q)=>b(x)k(£) respectively. Then we can write
(AQ*P— PAQ)A = (Akbah—ahAbk) A
= {((AR)b—b(Ak))ahA +b((Ak)a—a(Ak)) hA +abhkA’}
— {a((BA)b—b(hA))(RA) +abhkA?} .
By (2.6) we have ((Ak)b—b(Ak))ahA =(AQ* —QA)PA =H,PA with a bound-

ed operator H,.
For a(&)e C~(§) such that
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af) =0 on {£;|§|<1} and af)=1 on {£;|§|=2}
we consider an operator A’ defined by X’z;=aoAz?, then we have

b((AR)a—a(AR)RA = b((Ak)a—a(Ak)) kA
+b{(A—AE((ah) A —A(ah)) +(A—A')kAah—a(A—A')khA} .

As it is easy to see that the second term is bounded, we may consider
only the first term.
For ue C3(R”) we have

(AB)a—a(A'k)u = S (A'R)(x—y)a(y)—a(x)(AR) (x—3))u(y)dy
(in the distribution sense)

= - 212 0@ | G- WB E—u(r)dy

i=1

£, 3 (0" 22 a) [ E - uxdy

2wl <

5, | G—ramne—na. e udy.

|@l=i+1

The first term is equal to an operator of type Cj with the symbol

-1 _V é% a(x) 585— (ka,A). If we estimate the remaining term for sufficiently

large fixed / according to M. Yamaguti [11], we see that it is equal to a
bounded operator H,, together with H,A, applied to ». Hence, we write
ib((AR)a—a(AR)hA = HA+ H, where H, is an operator of type Cy with

o(H,) = Z;; 58:6— a(x) 8% (kA) and H, is a bounded operator, and so we have

the similar result for sa((AA)b—b(hA))kA. This shows that (2.9) holds for

the simple case.
For the general case if we estimate the operator norms in detail

using constants A4,; of (1.4) and B, of (1.5) we can (2.9). Q.E.D.

Lemma 4. Let P(t) and Q(t) be singular integral operators of type
Cr with real valued symbols defined in (x)-space with t as a parameter.
Suppose we can write

=2 P+ 5 {2 o) Z QN 5@ Z (<))
= o(H)-o(P) (1£1=1)

with some H' € C% (the condition of M. Matsumura [6]).
Then, for the operator J :%Jr (P+iQ)A there exists an positive

2.11)
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constant C depending only on P and Q such that for sufficiently small h,
every n® and p=1+t/2h

1

@12 [eiurat = {nn | - muirar + 1 | qf“nPAuHZdt}

for every ueCgy(E,).

Especially, if the condition |o(P)|=8">0 is added, then we have for
a positive constant C’

[ o1t

2.13)
> {nh 5;04"1 lul lza’t+—’11— S ¢-z"( a%u

Jor every ueCg(E,).

- l1Aul) e

ReEMARK 1. i) If o(P)=0, then it is easy to see that (2.11) is
satisfied with any operator He C2.

ii) In this paper we treat only the operator P with o(P)=X\,(t, x,ER™)
where A(¢, x, 7) is homogeneous of order 0 with respect to . Hence,
if |o(P)]|=86>0, then, |A(¢ x, )| <8 and A\ (¢4, x, #)~" is homogenous

of order 0, so that we can expand A(?, x, 71)'1'—‘2 a,(t, x)ﬁo,r(n) by [1].
This shows that if we consider an operator H with o(H) =
I -,i}ar(t, %)%, ,(ER™), then H is of type Cp and (2.11) is satisfied with

this H.
iii) If o(P) is independent of ¢ and ¢ (Q)=c(H,)-o(P) with H,e Cq

then (2.11) holds for HeCr with o(H) = z"]{aax o-(P)%(o—(Ho))A
2 2 : g
o oUH) - (P)N)}

ReEMARK 2. The condition (2.11) has local property in the following
sense :
If there exists a partition of the unity such that ®;(|n| )€ C~

(n==0) (i=1, -+, p), 2@)3(77!7;1*‘):1 and (2.11) holds only in supp®

®;(ERY) for each i where H may depend on 7, then we can get (2.12)
by dividing # according to that partition.
This fact is verified by the same method as in the appendix of the

3) In what follows we shall use # as real number >1.
4) For u=u(x), supp u=closure of {x;u(x)==0}.
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note [4], so that we assume that (2.11) holds for every &(|&|=1).
Proof of Lemma 4. Set u=¢" for ue Cg(E,), then ve C5(E,) and
P~ Ju= (' +iQAv) + (n(2hp)~'v -+ PAv).
We have
[ o=l uirmat = { 11 +iQA0)+(n(2hp) 0 + PAD) Fat
- S Il +iQAv|"dt + S \1n(2hg) v+ PA|"dt
@14 +n@h) (o7 {0, 0)+ @, o)} at +in@h)y | p~{(@A0,0) (v, QAv)}dt
+ {S (' +iQAv, PAv) dt+s (PA, v’+iQA1))dt}

I;.

Il
Mo

Il
M

By Schwarz’s inequality
I, = S (n* (2hp)~*||0||* —2n (2he) | |v]|[| PA|| + || PAvl|*) dt
and integrating by parts
J— -1 -1 d 2 — -2 2
1, = n@n)y | 9 £ it = u | @hp) it
hence we have

@.15)  I,+1I, = %n S ( 2hp) ||| *dE + 417; S IPADIfdE (n=1).

Using (2.16) and Schwarz’s inequality

2.16) I, =in S(Zhgv)“‘((QA—AQ*)v, v)dt = —Cn S (2hp)~|lo|dt .

Estimation for I, is fairly complicated. Integrating by part the
second term we have

I, = S (v +iQAv, PAv)—(PAY, v)—(P'Av, v)— (i Pv, QAv)} dt
— [ 1@ +iQa, PAY)— (' +iQav, AP*)—(iQA, AP*))
—(P’Av, v)—(iPAv, QAv)}dt
- S (' +iQAv, (PA— AP¥))df — g (P’ +3i(AQ*P— PAQ)) Av, v)dt

= L+1Y.
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Using (2. 6) we have
n=- S 10/ +iQAD|dt — S (PA— AP*)o|Pdt
=—1,-C, { lFat.
By Lemma 3 and the condition (2.11) we can write
(P’ +i(AQ*P—PAQ))A = H,PA+H,
where H, and H, are bounded operators, so that we have
17 = —C, {{ 1Pl |oldt +  joipat)
>-1 S |PAv|[Pdt—Cn § lolfdt  (n=1)
= 8n ¢ =
Hence
@.17) L+1,= —l§ \|PAo|fdt — Cn S llol*de
L4 1 5 = 8” 5 .
From (2.14)-(2.17) it follows
—2n 2 2 -2 -1 2 1 2
[ o uipdt = (2 @ho)—C.(2hp)*~C.) lolFdt + . |1PAalat

Since [[v]*=@~"|lul|]®, ||PAv|[’=¢p *||PAu||® and ¢":(1+f/2h)‘12%,~ for
h>>t>>—h, we have (2.12) for sufficiently small A.
Furthermore if |o(P)|=06">0, then ||PAqug—;— & ||Au|)? — C|lu|f? by

(2.8), and since %uz Ju—(P+1iQ)Au we have

H‘%“” < 2|1 Jul [+ [[(P+iQ)AlIY) < 211 Jul I+ CllAu*

Hence we have (2.13) for sufficiently small 4. Q.E.D.
Lemma 5. Let H(t) (i=1, -, k for k=2) belong to Cj; defined in
(x)-space with t as a parameter, and let |o(H;—H;)|=6_>0 (i==7).
Set Ji=+ HA (1=1, -+, B), and lot Jie Ty T, ot for v )
be the product operators for the permutation from ], J,, -+, and J,.
Then, we have for positive constants C and C’



162 H. KUMANO-GO

) 2 _H]:‘,""']ik-lu”z

i1, d

=C X

i+j=k—1

(2. 18)

2 2

o 2 |2 A
0<itj=k-2

> uc C:(Eh) .

Ay

(9‘_
ot
Proof is omitted since it is quite the same as that of Lemma 4 of

the note [4].

Lemma 6. Let HJ(t)=P,t)+iQ(t) (i=1, ---, k) belong to Cp defined
in (x)-space with t as a parameter and let |o(H,—H;)|=8>0 (i=Fj).
Suppose each pair P; and Q; (i=1, .-, k) satisfies the condition (2. 11).

Set ]‘:éa"t +HA (i=1, -+, k), then we have for the operator A=],+-+]i

with a constant C

2

o

(2.19) S P~ Au|’dt = C SV (mhTR)ET S P~ é_i.Afu dt,
o<itj=T=k-1 A
uc Cg (B,
for sufficiently small h.
Especially, if |o(P,)|=98">0, then furthermore we have
-2n 2 /_1_ —2(k-T) —2n 2 i 2
@20)  (oildurar=C o S e (oo | oA ar

ueCg(E,).

Proof. (a) The proof of (2.19). For the case k=1 the proof is
trivial from (2.12) of Lemma 4.

For the general case =2, the proof is performed by the induction
method.

JoTo—ToTe = <a% (H,— H,-2)>A+ (H, AH, A— H, AH, A)
= (2., - Hy,) ) A= {H(AH,, — H, N+ (H, H,, — H,o H,)A
+(Hyyo H, — H, H,)A— H, (H,A—AH, )} A
Hence, using (2.7) we can write
JooToy=ToyJo = H'A+ H + H”

where H” and H” belong to C; and H” is a bounded operator together
with A{HA7 (0<i+j<Fk). Using the above equality in succession we
have
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] 02 2
< 8_ "']iku| +”A]x'2""']iku“>
(2. 26) 5 5
= — A:
:C xgk ot A’u C110§i+i§k-1 ot ]u!
From (2.19), (2.21), (2.25) and (2. 26)
—2’! 2 1 —2n ai 7, 2
+n > R Sq)’z" ' A dt}
O<i+i=rk-1 ot
ot
— —-2n AJ
C%gégj¢ at"w

Hence we have (2.20) for sufficiently small %2 and every n(=1). Q.E.D.

§3. A priori inequality. We shall consider a differential poly-
nomial L=L(¢, x, A, §) in a neighborhood of the origin in (»+ 1)-space.
Let
(3' 1) Lo(t, x, A, S) = 2 aj,u(t’ x)xjfm (am,o(t’ x) = 1)
j+mi@T | =m
be a characteristic polynomial of L with infinitely differentiable coefficients.
Now we resolve L(t, x, \, in{n|~") into the form

(3.2 L,(t, x, A, in|n|™") = II(HX‘“(t x, n)) II (>x+>»‘2’ (¢, %, 7))
O=kr<m),

and L(¢, x, A, i€) into the form

(3.3) Ly(t, %, %, i) = LMD (E, 2 E) T AP (Y, 7, )
O=k<m),

and we write

MO, 6) = PO, 2, B +igP (1, 8) (=1, B)
st)(t’ X, S) - ﬁgz)(t’ X, E)_‘_lqu)(t» X, E) (.7 = 1) ot m“‘k) .
Theorem 1. Let L(t, %, N E)=Ly(t, 5, M, &)+ 31 b, (¢ x)VE

jtmi@ni=rm-1

be a differential polynomial of order m with bounded measurable b; ,(t, x).
Suppose A, (i=1, .-+, k) and A\ (j=1, .-, m—Fk) in (3.2) are distinct
respectively (A}, and A, may comczde at some i and j) and infinitely
differentiable, and suppose each p» (i=1, ---, k) in (3.4) does not vanish

(3. 4)
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IJaeeweeJa=Taee TP < Co 31 |2 Au
0<iti=k-1 :
(i,==i. for v==p), consequently
@21) AP =C, 5 Tl =Co 32 |2
1,70 0§x+]§k—1 .

Applying (2.12) to the operators J; «---+J;,=J; (Ji,++--+J;,) and using
(2.21) it follows that

=] Auldt
(2.22) o e

= Cot 3y (@l e fgiiat—C, 51 (|2 nul at.

207" 0<Zi+isk-1
By the assumption of the induction
-2n 2 -2\(k—1-T) —-2n ai Aj z
@28) (@I efuwldt =C, 5 ey (oo O A at.
0<it+j=T<k-2

Considering (2. 22)+&nh™*x (2. 23) for sufficiently small §(C>0) it follows
that

S o~ AulPdt = Cnh* ) S P T, e Tyt
i9y"yip

1 . 2
(2. 24) “Cn D (nh‘z)(k‘”g¢‘2” O Nl dt
O<iti=r=<r-2 ott
C o Aiyld
_ - 2 AT
50§i+i§k-1$¢ oté u| at.

Applying (2.18) of Lemma 5 to the first term of the right hand side in
(2.24), we have (2.19) for sufficiently small % and every n=1.

(b) The proof of (2.20). By the assumption we can apply (2.13)
of Lemma 4 to J;+--<J;,=J;, (Ji,*++-+J;,) and get

[ @it

(2.25) —c % S (P_m(

2 Tige o Tuh| +1IAT e Tl )t

Estimating commutators <a_at JoyorroJiw—Jiyo o Jin aa—t> # and

AJsyeooJy—Jiye oo JuM)u by (2.7), and using (2.18) of Lemma 5 we
have
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for §+0 and each pair p$¥ and ¢ (j=1, ---, m—k) in (3.4) satisfies the
condition

(3. 5) pgz) + Z { (2) aaf 2 __ o (2)82 pm} —_ o.(Hj)p;Z)

(|§|;1, j=1, -, m—k)

with some H;€ Cq.
Then, there exists a positive constant C such that

2

dt

(3.6) S @ || Lu||’dt = C N fxm=m S P 8’“‘”'

jtmle: mi=T<<m-1

(p =1+t/2h) if wueCF(2)°
Jor sufficiently small h and every n (=1).

ReMARK. In Theorem 1, if we omit the condition “A§Y) (j=1, -+, k)
are distinct”, we can derive the inequalities

o

n 5 (oo 2 Al at
@n
<cffpeiarar+ 5w | Zoag) at)
itj=T=m-2

if ueCg ()
for sufficiently small fixed #,(">0), and

N

irmio: pil=r <m-1

S s | dt = C {IiLulrat

if ueCg (2,

for sufficiently small %2(<%,) depending on #, where @,=1-+¢/2h, and
A, is a convolution operator defined by E&(E)———K(E)ﬂ(f).

These inequalities are applicable to the existence theorem and to the
propagation of regularity of the solutions. The proof has been given in
[5], but recently L. Hormander [3] has already derived a similar ine-
quality to (3.7) by another method for the case m;=m (j=1, -, »).

Furthermore we remark the following: Let H, be a class a tem-

perate distributions in (x)-space such that S(1+K(§))2"|ii(§)|2d§<oo for
u€ H,. Setting

7 —__ (1+K@y |
\I’lz,t(g) - {1+E(1+K(f))}23 (S 2 O)

5) In what follows £, means the set {(#, x); 2+ K(x)2<<h2}.
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we define a convolution operator v, , by ¥, % (§)=,,(£)@(£). Then, by
a similar method to L. Hormander [2] pp. 142, we can prove for
k| <2s—1<R,

Cellul< | &P yafde Z|lullt for e H,

and ||(Yr Ay — A ul < Crllvrue|? for we H_,,,. This shows that the
inequality (3.7) holds even for v,  for sufficiently large n.

If we multiply &' to the both sides of (3.7) for 4, « instead
of » and integrate it with respect to & setting n=—alog &é+/(a_>0; /,
sufficiently large), then we have

()
Adu d
iw';';—l Hat' -28()+b g
i 2
= ClILulP spcrsdt +Cs 3 (|25 Alu at
i+j=m-2 J| OF ~2g(D+b+8

for arbitrary small 6 (C>0) with g(¢)=log (1+1¢/2h,); see [3] pp. 359.
Proof of Theorem 1. By (1.10) we can write

AP, 7, E) = MR, %, ERT) G =1, -, k)

O s = M 5 R G=1, e mb)

where 7 and R are defined by (1.7) and (1. 8) respectively.

Since A$) (¢, x, ) and A (E, x, 7) are infinitely differentiable, by the
remark at the end of §1, M,‘} (¢, x,ER™") and A (¢, x, ER™) become the
symbols of some operators of type Cp.

Now we consider singular integral operators H® (1= -, k) and
H® (j=1, ---, m—k) with the symbols A} (¢, x, ER™") and 7&‘2’ (t x, ER7Y)

respectively, and consider a convolution operator A defined by Au= r'"u).
Set

(3.9) AA, = 11( +H“’A> (at+H§2>A>

ot
then, by the assumption of the theorem we can apply (2.20) to A, and
(2.19) to A, respectively. Applying (2.20) to A, we have

(o= mpat=c L 5 g (o] ‘dt.

0<i+j=T<k

tAAu

ott

Estimating the commutators ( g i NA,—A, = o AJ)u by (2.7) and apply-

ing (2.19) to A, we have
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o s (R B A
B o<ivi= o< i/ +jl=T < m-p-1
<fo )

zdt"ca 2] Sg)—z"
0§."+j’=-r’§'r+m—h—1

Remarking m—k—+'=1 for "<m—k—1 and 7+m—k—1<m—1 for

<k we have

T<k
L /\_J+] u

i/ 2
otiti’ 37 Ay

ot

o A

55 dt

(3.10) §¢-2”||A1Azunwgc4o I P

<i+j=T=m-1

for sufficiently small #.
On the other hand estimating the commutators by (2.7) we have

o Ame o
(3.11) AAqu = ZHJaﬁA w2, Hiigp Mu
where H; belong Cy and H;; are bounded operators. From (3.1), (3.3)
and (3.8) we have o(H;)r'" /™= 31 a; ,(tx)(i§)", hence we have

me : Mt|=m— j

m S | ixed ( _8_>~
;,HfatiA u \/27:'”&6 L, ¢, x, at,lf u(t, £)d¢

. 2 0
= L, (t x’87,535)u’

and consequently we have by (3.11)

5 2\\ | o
(3.12) “(AA L(t 52 ax))u =c_3_ |2 Am
From (3.10) and (3. 12) it follows that
(3.13) S(p‘z”llLoullzdtheo o h‘“"‘“”Sqrz” ; Nl at

for sufficiently small 4.
As |&;|<K(E)"™i<Cx'; by (1.3) and (2.2), we have

al
‘a?“
On the other hand, using Fourier transform we have for u¢€ Cy(L,)

Bl AGul P < CallAgul P < Callr“/™al* (0=b=a) where Aj is defined by
Asu(E) =K (£ a(E).

Hence, we have

‘2: 1) all* = Cillr'*™al|* =< Cl| K (&)™ ™al|.
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2 2

g ClO E h—z(m—‘r)

jri=T<m-1

aj+l¢l
Stoxr?

o
—=_ N/
o

(3.14) > o

jtmie:mi=r<m-1

for sufficiently small 4.
From (3.13) and (3. 14) we have (3. 6) for sufficiently small 2. Q.E.D.

§4. Uniqueness. We are concerned with the uniqueness for the
solution of the Cauchy problem. Let S(¢, x) be a continuous real valued
function defined in a neighborhood of the origin such that the set
{¢, x); S(t, x)=0} lies in the half space =0 and meets the plane #=0
only at the origin, then we have the following.

Theorem 2. Let L be a differential polynomial which satisfies the

condition of Theorem 1.
Suppose u=u(t, x) € Cf; ,, defined in a neighborhood of the origin satis-

fies the differential equation L<t, X, 9 ©

ot , ox
{@ x); S(¢, x)=<0}.
Then u=u(t, x) vanishes identically in a neighborhood of the origin.

)u(t, x)=0 and vanishes on

Proof. For y«{t)€ Cg;, such that

PY(E)=1 for t<2'h,

(4‘ 1) ,\P(t) — 0 fOI' t g 2—(l~1)h .

We consider w(t, x)=v(f)u(f, x), then by the assumption of » w(Z, x)
belongs to Cy(LQ,) for a sufficiently large fixed /. By approximating
w by u,€Cy(Q,) it is easy to see that the inequality (3.6) holds for
w(t, x) € Cy(£2,), so that we have

[ oL, nirdt = ¢, { g wiiat
By (4.1) it follows that Lw=Lu=0 and w=wu for £<27’h, hence we have

S:gf';, P~ || Lw||*dt = C, S: S P |ul|*dt .

é‘z-(l-l'l)h
Remarking ¢ =1+29*» for t =2"'h and @ <(1+2-9+?) for t=<"2-9+bp,
we have

(5m) |, Mirar = |

{ro-ab X ||| |*dt

t<<p—UtD

and letting #—>occ we get # vanishes identically in 0<t<{2-“*“j, This
completes the proof. Q.E.D.
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Next we consider the case when the Cauchy data are given on a
plane portion. In this case we transform the plane portion to a convex
surface by Holmgren’s transformation, and apply Theorem 2. Hence,
for a while we investigate how a differential operator is transformed by
Holmgren’s transformation.

Let (m, m)=(m, m,, ---, m,) satisfy the condition

1

(4'2) m; =m Or m’éfm (j:]_,...,y)_

We consider a differential operator

2 9\ _ 2 9 ostlal
4.3 M(s, ﬁéj) = My(s, . ) o i ) S

in a neighborhood of the origin, where M, is the principal part of M
and of the form

aJ—H‘”
osioy®

o 9

5 3s, ay) s mBtaim (@m(0, 0)=1).

(4.4) M( ;,4(S, ) =

We take Holmgren’s transformation
(4.5) =

Then, as we have

2 _2 2 _

a ’ —4 cee
xi+2xi§ (l _'1’ ’ V),

the associated operator L defined by Lu(f—|x|? x)=Mu(s, y) is of the
form

a?i:(_zgi 9 ... 9 2
(4.6) L(’ % o 8x,> M\t=1215 % 5 5, T2%05 ,axv+2x"8t>.

Remarking (4.2) it is evident that the characteristic polynomial L, of L
is obtained

4.7 Lt 2,0\ E) = M(E—|x|°% x, A, E+2x,6 mi;  Ev+2%0, )

For NME*(j+m|am)| m) 1f we replace one of §; (m;<4m) by A\, then

NE‘” changes to A&, ---&v and for this
Clifi=j
6) 6"’1'_{0 if idej
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«, . m
mv) (j+m|a:m|)+1

GHD+m (e @1
1 7 7

<m+1-2=m—1,
hence L becomes

(4.8) L(t, %, N, &) = L(¢, x, A, 6)+ Z _lb}",,,(t, X)NE?

tmle <
By (4.7), if we write
L,(¢, x, ), f) = M,(¢t—|x|% E)"“ IZ | a;k.m(tv x)k'jéw ’
jtmla:ntl=m

we have a¥ (¢, x)=0(]|x]).

This shows that if the characteristic roots (¢, ¥, ) of M(s, y, in|n| =0
are distict and infinitely differentiable, then those of L, are also distinct
and infinitely differentiable for sufficiently small y.

Theorem 3. Let M= M(s ¥ 3 9 8) be a differential polynomial of

the form (4.3).
Let L=a* (5?5+**> be the associated operator obtained by the trans-
formation (4.6).
kT
Suppose a* 'L = at"‘

u=u(s, y)€Cgs ,, defined in a neighborhood of the origin satisfies the dif-

+** satisfies the conditions of Theorem 1, and

ferential equation M <s ¥, ; aay >u(s ¥)=0 and satisfies the initial con-
ditions

j-1 .
(4.9) O u(0,9) =0 (G=1,-,m).

ot
Then, u(s, y) vanishes identically in a neighborhood of the origin.

Proof. If we set U(s, y)=u(s, y) for s=0, and U(s, y)=0 for s<0,
then U(s, )€ C ,, and MU=0 in a neighborhood of the origin.

Now we take Holmgren’s transformation (4.5), then U=U(¢t — x|}, x) =0
on {(t,x); t<|x|%} and &* 'LU{¢— |x|? x)=0.

Here we remark that a*=M,(t—|x|% x,1, 22,0, s ") 22,05 u,) DY
(4.7), and |a*| =% for sufficiently small # and x as a,, (0, 0)=1. Hence,
for the operator a* 'L we can apply Theorem 2 and get that U(s, y)=
U(t— | x|?% x) vanishes identically in a neighborhood of the origin, so that
u(s, y)=U(s, y)=0 for s(=0), so we get u(s, y)=0 for s<0. This com-
pletes the proof. Q.E.D.
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ExampLE. i) Consider a parabolic polynomial

M, = ¥+2(31ai(s, DEN+ 3 ay(s, EE—b(s, E,  (b+0)
where

(4.10) x2+2(§a§,.)x+_”_z;:: a5, =30+ gfg) (6>>0).

Setting Az(sza,-m) and B= f}i a;,-n,-n,-—(Z_l am;)?+1ibn,|n| we have
i= ii= i=1

MO(S; Y, 7\‘, iﬂl”l_l) = {7\:+>\-0’1(S, Yy, 77)} {>“+7\'0,2(s’ Y, 7/)}
= A+ 19 "GA+B} {M+ 9] '((A-B)},

and S aymm—(Sam) =Z8n|° (3,>0) from (4.10). In this case

(m, m)=(2, 2, -, 2, 1) satisfies (4.2), and X,, and A,, are distinct and
the real parts of these roots do not vanish. Hence for this operator or
the product operator of two such parabolic operators the uniqueness
theorem holds when the initial values are prescribed on a plane portion.

9 0 .

2, 55) of (4.4), if the
equation M,(s, ¥, A, i7|7]|~")=0 has distinct roots whose real parts do not
vanish, then for this operator the same proposition as the above case
holds.

ii) Consider M=M,+ N b; (s, y)NME® with (m, m) satisfying

jEmia i< m-1

4. 2). .

If we assume that the coefficients of M(¢, x, i\, i€) are real and the
characteristic roots of M,(¢, x, A, in|y|~)=0 are distinct, then, the as-
sociated characteristic polynomial L, of (4.7) has distinct roots which are
purely imaginary or have non vanishing real parts because L, (¢, x, i\, i€)
has real coefficients. Hence, for such operator M, or more generaly for
the product operator M,V the uniqueness theorem holds, where M, is
an operator whose characteristic polynomial has distinct roots with non
vanishing real parts. A non-trivial example is made by the following
way. Set

F(s, 9,0,8) =
g C;(0—a,K(E)™) - «(0—a;- K(E)™) (0 —a; 1, K(E)™)e -« (0 —a, K(E)™)

More generally for the operator M, (s, ¥,

(aj:aj(sr y) (j=1) RE) l), 0<a1<"'<al > 122; C;>0 (j:]_, "'71)’ ECJZI)
with K(£) of (1.3). Then the equation F(s, y, 6, £)=0 has distinct positive
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roots since sign F(s, y, a,K(§)™, §)=sign(—1)'"7 (j=1, -, ).

Hence, if we set M,(s, y, A, £)=F(s, y, (1\)*", i€), then M,(s, y, I\, if)
is of order 2(/—1)m and has real coefficients, and the equation
M,(s, y, N, in|5|~)=0 has distinct roots. This shows that the uniqueness
holds for the operator

aj+l0’l

ch 2):M< 9 2) . o
M<s, ¥ 55" By o\ ¥ 550 5y +jmm:m,‘g‘za_m_lb,,a(s, y)as,-ay,,.
OsakA UNIVERSITY
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