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ON THE UNIQUENESS FOR THE SOLUTION
OF THE CAUCHY PROBLEM

BY

HITOSHI KUMANO-GO

§ 0. Introduction. We shall consider a linear partial differential
operator L with complex valued coefficients in a neighborhood of the origin
in (v + l)-space (/, x) = (t, xlf •••, * v ) .

In the recent note [4] we have proved the uniqueness of the solution
of the Cauchy problem for the differential equation

Lu = + , δ ^ > ( ' > x) h*? «'-x) = /('> x)

under some conditions for the characteristic roots. On the other hand
S. Mizohata [7] proved the uniqueness of the Cauchy problem for a
parabolic equation

( ^ J _!)«,, x)
(0. 2)

= f{t,x) ( Σ % ( U ) ^ ^8(Σ^) for δ>0)

when the data are prescribed on a piece of a time-like surface, and T.
Shirota [10] and M. H. Protter [9] gave other proofs for this problem
under weaker conditions.

In this note we shall prove a more general uniqueness theorem which
can be applied to the parabolic equation (0. 2).

The differential equation which we shall study is of the form

j g ( f , x)
(0.3)

= f(t,x)

where Lo has the form
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(0.4) Lou= Σ */..(/,

and is called the principal part of L. We prove the uniqueness theorem
when the initial data are given on a surface which meets the plane (t = 0)
only at the origin. If the initial data are given on a plane portion, we
must set the condition: m = mj or m^2mj O" = l, •••, *>) instead of rn^mj
(.7 = 1, •••, *>), which is caused by Holmgren's transformation.

If we set m = m1 = = m v , then (0. 3) takes the same form with (0.1),
and for the parabolic equation (0.2) we get the form (0. 3) by setting
w = m 1 = = m v _ 1 = 2 and mv = l .

The tool used in this note is the singular integral operator of A. P.
Calderόn and A. Zygmund [1]. But we have some difficulties to use this
since the homogeneity of the characteristic roots does not hold. We
define r = r(ξ) for real vector ξ = {ξx> •••, £V)ΦO as the positive root of the
equation

and represent the characteristic roots λ as X = r1/m\ where λ0 are homo-
geneous of order 0 with respect to ξ in some sense, and we define
singular integral operators of type C||J (Definition 1 in § 1) with the sym-
bols λ0.

Although some results are evident from the note [4], we shall mention
them for the .sake of completeness. The author wishes to express his
sincere gratitude to Prof. M. Nagumo for his advices and encouragement.

§ 1. Notations and definitions. We denote a point in (v-t-1 ̂ dimen-
sional Euclidean space R* x Rv by (t, x) = (t, xx, , xv) or (s, y) = (s, yλ, , yv)
and denote a point in the dual space of Rv by ξ = (j£19 •••, §v) or

(m, m) = (m, mly •••, mv) expresses a real vector whose elements are
positive integers (m^mj j = l, •••, *>) and a = (a19 ••-, a^) expresses a real
vector whose elements are non-negative integers.

We use notations:

\a:m\ = ^ - + + ^ , dx* = dxfi
m m
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We shall consider a differential polynomial

(1.1) L(t, x, λ, ξ) = L0(t, x, λ, f)+ Σ iy .(f, *)

./+w|β»:mi^«»»-i

in a open domain in (y + l)-space, where Lo has the form

(1.2) L0(tyx,X,ξ) = Σ a1tΛ(t,

153

and is called the characteristic polynomial of L.
We define for ueL2 the Fourier transform F[u] by

M = β(f) = -Lf \ e-M*u(x)dx
v2τr J

and set

(1.3)

oo

DEFINITION 1. We call H=Y^arhr a singular integral operator of
oo ^

type Q£ with the symbol σ(i/) = Σ #>-(#) ̂ (£) if the following conditions
r = l

are satisfied:

ar(x) e Crx), hr(ξ) e CΓ̂ o) (r = 1, 2, . . .),

and for every Λ and / there exists a positive constant Aal such that

(1.4) = l, 2,

and for every a there exist positive constants Ba and /„ such that

31*1 r n(1.5) (r = 1, 2, •••)

Then, Hu is defined dy

Hu = - ^

or equivalently f/w = yΣiar(x)(hru)(x) where hru are defined by hru =

DEFINITION 2. Let A(f) be infinitely differentiable in ?(φθ), and for

1) ί = v / _ i , without description we use ί in two meanings: a square root of —1 and a
suffix, these distinction will be easily seen case by case.
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every oc there exists a positive constant γα such that

(1.6)

Then, we define a convolution operator Λ by Au(ξ) = A(ξ)u(ξ).
Let r=r(ξ) be a positive root of the equation

(1.7) F(r, f) = Σ £^-2Λwy = 1 for real ξ (=f= 0).

As limF(r, £) = «>, limF(r, f)=0 and ^-F(r f) 2 r " 1 Σ

for ? φ θ and r^>0, it follows that its positive root r = r(ξ) is uniquely
determined and infinitely differentiable.

We write for v = (yly - ,

Lo(/, x, λ, /^l^l-1) = Π (λ+λ o / (f, jr, 97)),

then \ι(tfx9η) (l = ly •••, m) are homogeneous of order 0 with respect
to 7̂.

Now we define a mapping £->?; by η5 =ξjr~1/mj (j = l, •••, v) with
r = r{ξ) determined by (1.7), and define a matrix i? by

0

( 1 . 8 ) R = I "•-,

then v=ξR-\
Set

(1.9) L0(t, x, \ iS) = Π (X+X,(t, x, ξ)) •

Remarking | f^-M=l by (1.7) it follows that

L0(t, x, X, iξ) = Σ «,>(*,

= Σ aitΛ(t,

= Π(X+r1<"*XΰΛt,x,ξR-1)),
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hence by (1. 9) we have

(1.10) λ,(f, x, ξ) = r^m\tl{t, x, ξR-1) (I = 1, - , m).

REMARK. \(t, x, η) is infinitely differentiable and homogeneous of
order 0 with respect to η, then, after A. P. Calderόn and A. Zygmund

we may represent it as

where ar(t, x) satisfy (1.4) and hOtr(η) satisfy

-™

Setting hr&^XξR-1) we have \(t, x, f«-1) = Σ3«r(/, x)hr(§).

On the other hand by (2.3) of Lemma 1, we have

Hence it follows that X0(t, xy ξR'1) becomes the symbol of some
operator of type Cδ Similarly we verify that r1/m satisfies (1.6), so we
can define an operator Λ by Au = r1/mu(ξ).

§ 2. Preliminary lemmas. Our main tool is the inequality (3.6)
of Theorem 1. In this section we shall mention some lemmas for the
proof of Theorem 1. All the lemmas except Lemma 1 is essentially the
same with the previous note [4], but we shall give brief proofs to some
of them so that we may be convinced of them.

Lemma 1. Let r = r(ξ) be a positive root of

(2.1) F(r, ξ) = Σ$r- 2 'm j = 1 for real ί + 0.

Then, we have for some constants C0

2) and Ca

(2.2) C*ΎK(ξ)m ^ r(ξ) < i

and

(2.3) i-l«:mi)

Proof. In the previous section we have already studied that r is
uniquely determined and infinitely differentiable.

2) We denote by C (with or without subscript) positive constants.
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From (2.1) we have ^ r ^ ^ - ί for some i and ξ]r~2^3^1 for

every j , hence we get

/ "I \2fW,

K(ξ)2m ^ f Γ « ^ (-i.) r

2

\ V J

and

This shows the inequality (2.2) holds.

Differentiating the both sides of (2.1) with respect to ξt we have

(2.4) (± A- SJr-v j) J , r-ξS-'fi = 0 (i = 1, .-, »).

More generally we have

I

r

= 0 ( | α | > 0 ) .

From (2.1) we have — <: jl — ξ2

}r-2<ms<.l and by the definition (1. 3) of

Hence applying (2.3) for /*,•«<*)> instead of ot, as the assumption of the
induction we have

= CK(ξ)MC1-{«:mι\ Q.E.D.

Lemma 2. i) Let P and Q be singular integral operator of type C^
with real valued symbols, then the operator norms

I|PΛ-ΛP*|| ,

are all bounded, where P* and Q* show the adjoint operators of P and
Q respectively.

ii) Let H, Hλ and H2 be singular integral operators of type C$, then
we have for any positive integer p and q the representations
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' (H^HHJA = Hq+Hq

where HPq and Hq are bounded operators together with AiHPqA
j and

AϊH'qA? {O^i+j^Lq) respectively, and H^Hz is an operator of type Cχ£
with the symbol σ{H^) €r{H^.

iii) Let H be a singular integral operator of type Q? such that
l^δ^>0, then there exists positive constant Cε such that

(2. 8) \\HAu\\2 S> (l-S)δ*\\Au\\2-C2\\u\

(In what follows we apply (2.8) setting £=4).

a
By (1. 6) it follows that -^

^ 1 ) , it follows for every k that

if \ξ\^>1 and by

a1*1

^ l ) for sufficiently large ccf so that the operator of type Qί in
Definition 1 and operator Λ in Definition 2 are essentially the same with
those of M. Yamaguti's [11]. Hence we can prove the lemma by the
parallel process, but we omit the proof since it is very troublesome.
The reader may consult [11] for i) and ii), and [8] for iii).

Lemma 3. Let P and Q belong C^ and have real valued symbols.
Then we haue the following representation

(2. 9) i(AQ*P-PAQ)A = HA+H'PA + H" ,

where H belongs to Qj with the symbol

(2.10) σ(H) = g \i^<P)iξ

and H' and H" are bounded operators.

Proof. As a simple case we consider P = ah and Q = bk with
<r{P)=a{x)h{ξ) and <r(Q) = b(x)k(ξ) respectively. Then we can write

(AQ*P-PAQ)A = (Akbah-ahAbk)A

= {((ΛJfe) b-b (Ak)) ah A + b ((A*) a - a (Ak)) hA+abhkA2}

- {a((hA)b-b(hA))(kA)+abhkA2} .

By (2. 6) we have ((Ak)b-b(Ak))ahA=(AQ*-QA)PA=H1PA with a bound-
ed operator i^ .

For a(ξ)£C~(ξ) such that
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cc(ξ) = O on {ξ;\ξ\^l} and a(ξ) = 1 on {t;\ξ\^2}

we consider an operator Λ' defined by A'u=a0AU, then we have

b((Ak)a-a(Ak))hA = b((A'k)a-a(A'k))hA

+b{(A-A')k({ah)A-A{ah))+(A-A')kAah-a{A-A')khA} .

As it is easy to see that the second term is bounded, we may consider
only the first term.

For uG Co(R") we have

{{A'k)a-a(A'k))u = j {{A'k){x-y)a{y)-a{x){A'k)<,x-y))u{y)dy

(in the distribution sense)

= - έ | - β W ((xi-yi)(Λ-'k)(x~y)u(y)dy
i i OX J

Σ (-
ι*ι^ι

Σ \(x~yr(A'k)(x-y)a<,(x,y)u(y)dy.
|=/+1 J

The first term is equal to an operator of type C$ with the symbol

— i Σ ^ - Λ W ^ - (^αΛ) If w e estimate the remaining term for sufficiently
,=i OXi Oζi

large fixed / according to M. Yamaguti [113, we see that it is equal to a
bounded operator H2, together with H2A, applied to u. Hence, we write
ib((Ak)a — a(Ak))hA = H3A.+HA where Hz is an operator of type C£ with
<r(H3) = Yl^—cι{x)^-(kA) and H4 is a bounded operator, and so we have

ί=i OXi θξi

the similar result for ia((hA)b — b(hA))kA. This shows that (2. 9) holds for
the simple case.

For the general case if we estimate the operator norms in detail
using constants AaJ of (1. 4) and BΛ of (1.5) we can (2. 9). Q.E.D.

Lemma 4 Let P(t) and Q{t) be singular integral operators of type
Cm with real valued symbols defined in {x)-space with t as a parameter.

Suppose we can write

with some H' 6 C£ (the condition of M. Matsumura [6]).

Then, for the operator J =^+ (P+iQ)A there exists an positive
at
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constant C depending only on P and Q such that for sufficiently small h,
every Φ and <p = l+t/2h

(2.12) j φ-2n\\Ju\\2dt ^ C \nh~2 j φ-™\\u\\2dtΛ-^ j <p-2n\\PAu\\2dt\

for every ueCo(Bh).

Especially, if the condition | σ ( P ) | ^ δ ^ > 0 is added, then we have for
a positive constant C

\<p-2H\\Ju\\2dt
(2.13) J

^ σ [nh-2 {^--iMiVί+i J ̂ •1"(|§«|Γ+IIΔ»IΓ)Λ}
for every u€CZ(Eh).

REMARK 1. i) If σ ( P ) = 0 , then it is easy to see that (2.11) is
satisfied with any operator HeC^-

ii) In this paper we treat only the operator P with σ(P)=\(tf x,ξR~x)
where \(t9 x, η) is homogeneous of order 0 with respect to η. Hence,
if | σ - ( P ) | ^ δ > 0 , then, |λo(ί, x, vYΊ^8'1 and λo(/, x9 η)~ι is homogenous

oo ^^

of order 0, so that we can expand \(t9 x>η)~1=yΣlar{t> x)hor(η) by [1].

This shows that if we consider an operator H with <r(H) =

i b - 1 ) , then H is of type Q and (2.11) is satisfied with

this H.
iii) If < P ) is independent of / and σ-(Q)=<r(H0) <r(P) with

then (2.11) holds for HeC% with σ{H) = Σ ( A - ^

REMARK 2. The condition (2.11) has local property in the following
sense:

If there exists a partition of the unity such that ®i(η\v\~ι)€C°°

(^ΦO) (ι = l, - , p), Σi®Kv\v\-1) = l and (2.11) holds only in supp"

ΘiiξR'1) for each i where H may depend on i, then we can get (2.12)
by dividing u according to that partition.

This fact is verified by the same method as in the appendix of the

3) In what follows we shall use n as real number
4) For u=u(x), supp u=closure of {x
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note [ 4 ] , so that we assume that (2.11) holds for every ξ(\ξ|Ξ>1).

Proof of Lemma 4. Set u=φnv for weQ°(H Λ ) , then υeCo(3h) and
φ-nJu={f/ + *QA#) + (n(2hφ)~1v

We have

Γ Λ = J \\(V + i

= J ||ι/ + iQΔι;||2Λ+ J \\n{2hφ)-1vΛ-PAv\\2dt

(2.14) + H^A)- 1 J 9J-1 {(z;7, v) + (t;, ι/)} Λ + in(2k)-1 J ̂ "HCGAi;, v) -(ι;,

+ ( \ {vf + iQAί;, PΛz;) rf/ + f (PΔί;, vf + ίQAί;) ΛJ

5

= Σ
1 = 1

By Schwarz's inequality

Λ ^ J («2(2M

and integrating by parts

/, = n(2hy j φ-1 ί \Wdt = n j (2hφ)-2\Wdt,

hence we have

(2.15) It + It = ^n^(2hφ)-t\Wdt + ̂ \\Phυ\\1dt (n > 1).

Using (2.16) and Schwarz's inequality

(2.16) /4 = in [φhφYXiQA-AQ^v, υ)dt ^ - d » ( (2M~ΊNI2<#

Estimation for 75 is fairly complicated. Integrating by part the
second term we have

h = t {(v'+iQAv, PAv)-(PAv', v)-(PΆv, υ)-{iPv,QAv))dt

= \ {(v'+iQAv, PAv)-((v' + iQAv, AP*v)-(iQAv, AP*v))

-{P'Aυ, v)-(iPAv, QAv)}dt

= j (v' + iQAv, (PA-AP*)v)dt~ \ {{P1 + i{AQ*P-PAQ))Av, υ)dt
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Using (2. 6) we have

/ s ^ - j \\v' + iQAυ\\2dt- \ \\(PA-AP*)v\\2dt

By Lemma 3 and the condition (2.11) we can write

(P'-H(Λρ*P-PΛQ))Λ = H.PA+H,

where Hx and H2 are bounded operators, so that we have

- ~ έ S wpAv\\2dt-c<n J
Hence

(2.17) / , + / . ^ - ^ J ||JPΔn||»Λ- C5n J | | t ; | | 2 ^ .

From (2.14)-(2.17) it follows

if J ( - |

Since IM|2=<P"ΊMI2, 11PAί l|a = ̂ -2iB||.PA«||a and <p-1 = (l + t/2h)'1^±- for

—h, we have (2.12) for sufficiently small h.

Furthermore if | σ - ( P ) | ^ δ > 0 , then | |PΛ^ | | 2 ^-1 δ2||Λ^||2 - C6||w||2 by

(2.8), and since —u=Ju — (P+iQ)Au we have

liar
Hence we have (2.13) for sufficiently small h. Q.E.D.

Lemma 5. Let H^t) ( f = l , •••, £ /or ^ ^ 2 ) belong to Qj defined in
(x)-space with t as a parametery and let \cr(Hi—H:f)\^δ^>0 (iΦj).

Set J^-^HA (ί = l, - , *), and let Jiχ*Ji2 Jik_x ( ι ' v Φι μ for v

be the product operators for the permutation from Jly J2f •••, and Jk.

Then, we have for positive constants C and C
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(2. 18)

Σ HA
tϊ, \ t k _ 1

II <-±i || 2

i+j=k-ι\\dΐt II o
«eCo-(B»).

Proof is omitted since it is quite the same as that of Lemma 4 of
the note [4].

Lemma 6. Let Hi(t) = Pi(t) + iQi(t) (ί = l, •••,&) belong to C£
in (x)-space with t as a parameter and let \o\Hi — i f y ) | ^ δ ^ > 0 '

Suppose each pair P, and Q£ (i = l, •••, k) satisfies the condition (2.11).

w have for the operator A =Jτ JkSetJ^+HA (ι = l, ...,*),

a constant C

(2.19)
J

C^i I I 2

I H *•
sufficiently small h.

Especially, if furthermore we have

(2.20) \φ-2"\\Au\\2dt^C'± Σ A-2C*-T) J <P"2

Proof, (a) The proof of (2.19). For the case k = l the proof is
trivial from (2.12) of Lemma 4.

For the general case k~^2, the proof is performed by the induction
method.

Hence, using (2. 7) we can write

where fΓ and H" belong to C^ and H'" is a bounded operator together
with AiH/f/Aj (p^i+j<^k). Using the above equality in succession we
have
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(2.26)
Σ [i^-T' • | |Λ/< 2 Jiku\ή

From (2.19), (2. 21), (2.25) and (2.26)

+ n

Hence we have (2. 20) for sufficiently small h and every n(^ 1). Q.E.D.

§ 3. A priori inequality. We shall consider a differential poly-
nomial L = L(t, xy λ, ξ) in a neighborhood of the origin in (v + l)-space.

Let

(3.1) aJa(t,x)\'ξΛ (amt0(t, x) = 1)

be a characteristic polynomial of L with infinitely differentiate coefficients.
Now we resolve L0(t, x, λ, iv\v\~1) into the form

, x, λ,(3.2)

and L0(ί, ΛΓ, λ, t?) into the form

#(f, x, v))mτί
ii

(3. 3) L0(t, x, λ, iξ) = Π
i

/, x, ξ))ίl{\+\f{t, x, ξ))
yi

(3.4)

and we write

Λ>j \t, x, ζ) == Pj \ty x, ζj^ΓiQ) \tf xy b) \J = 1> '"y rn fe).

Theorem 1. Let L(t, xy λ, S) = L0(ty xy λ, £) + . Σ bjtΛ{f, x)\jξ*

be a differential polynomial of order m with bounded measurable bjtjjt, x).
Suppose λ#j (ί = l , —, *) and λ^2} (y = l , •••, m — k) in (3.2) #re distinct

respectively ( λ $ ^wrf λ^2} wwy coincide at some i and j) and infinitely

differentiate, and suppose each pp (ί = l , •••,&) ι« (3.4) rfoβί wo/ vanish
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ίμ for , consequently

(Z. Zl) \\Au\\ ^ C2 2-1 WJix Jiku\\ ~

Applying (2.12) to the operators Jiχ

(2.21) it follows that

3i

J{k=Jfl (/, 2 /,*) and using

(2.22)
J φ-2n\\Au\\dt

^Ctnh'2Έ U-ΊI/, 2 Uu

By the assumption of the induction

(2.23)

Considering (2.22)+^A"2x(2.23) for sufficiently small £(>0) it follows
that

\φ-2n\\Au\\2dt^C7nh-2 Σ

(2.24) +Can Σ

-c. j Ψ~ dt.

Applying (2.18) of Lemma 5 to the first term of the right hand side in
(2.24), we have (2.19) for sufficiently small h and every « ^ 1 .

(b) The proof of (2.20). By the assumption we can apply (2.13)
of Lemma 4 to Jh /,„=/,•, (/,-2 Jik) and get

(2.25)
\ψ-2n\\Ji Jiku\ dt

Estimating commutators y— Jiz Jik - Jh Jik — ) u and

(Λ/, 2 Jik—Ji2 Jik^)u by (2.7), and using (2.18) of Lemma 5 we
have
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for £ φ θ and each pair pψ and qψ (.7 = 1, •••, m — k) in (3.4) satisfies the
condition

3 /,(2)

-p}

j

Then, there exists a positive constant C such that

(3.6) U - 2 " | \Lu\ \'dt ^ C Σ /Γ2CIW-

(φ = i+t/2h) if u

for sufficiently small h and every n (^1) .

•Mat

REMARK. In Theorem 1, if we omit the condition "
are distinct", we can derive the inequalities

£j O' = l, •-, k)

n Σ
(3. 7)

if «eCo"(ΩA o)

for sufficiently small fixed A0(>0), and

i ll ? ) « " + l α ι II 2

\ξ—-au\dt<
_ ||3Γ3# II

if ueCo(Ωh)

for sufficiently small h(<ίh0) depending on n, where φo = l + t/2ho and

Λo is a convolution operator defined by A.ou(ξ) = K(ξ)u(ξ).
These inequalities are applicable to the existence theorem and to the

propagation of regularity of the solutions. The proof has been given in
[5], but recently L. Hormander [3] has already derived a similar ine-
quality to (3.7) by another method for the case my = m (y = l, •••, ̂ ).

Furthermore we remark the following: Let Hk be a class a tem-

perate distributions in (#)-space such that \ (lJrK(ξ))2k\u(ξ)\2dξ<^°° for

u€Hk. Setting

5) In what follows Ωh means the set { ( ί , x) ;t2 + K(,x)2<h2}.
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we define a convolution operator ψζs by ψs,su(ξ)=ψ2s(ξ)u(ξ). Then, by
a similar method to L. Hormander [2] pp. 142, we can prove for

^-^\\ψsu\\2dβ^\\u\\2

k for ueHk

and \\(ΨAo-\φ*)u\\2^C'R\\ψji\\2 for ueH-s+1. This shows that the
inequality (3. 7) holds even for ψ2 su for sufficiently large n.

If we multiply a2^-^-1 to the both sides of (3.7) for ψ2su instead
of u and integrate it with respect to 8 setting n=— <zlog£ + / ( # > 0 ; /,
sufficiently large), then we have

dt

<C jlllΛllivctt+ftΛ+Cβ^^Σ 2 j β Λ ^ Γ 2 ct,+b+8

dt

for arbitrary small δ (>0) with £(/) = log(l + f/2A0); see [3] pp. 359.

Proof of Theorem 1. By (1.10) we can write

Y P \ — r 1 / ^ ( 1 ) / / r / : / ? ~ 1 ^ (i — 1 ••• b\

λ f (ί, jt:, f) = r^λ^jCΛ *, li?-1) (i = 1,

where r and R are defined by (1. 7) and (1. 8) respectively.
Since λ^(ί, #, 77) and λ£2}(£, jtr, 77) are infinitely differentiate, by the

remark at the end of §1, X^t, x,ξR~λ) and λ$(*, xy ξR-1) become the
symbols of some operators of type Qj.

Now we consider singular integral operators H™ (ι = l, ••-,*) and
If f (y = 1> ...̂  m _ ^ w i t h t h e s y m bols λ $ (/, ΛΓ, ̂ i?-1) and λ^2j (ί, ΛT, ̂ i?"1)

respectively, and consider a convolution operator Λ defined by Au = r1/mu(ξ).
Set

then, by the assumption of the theorem we can apply (2. 20) to Ax and
(2.19) to A2 respectively. Applying (2. 20) to A1 we have

φ~2n\ |Λ (i4a«)| |2Λ ^ c - ί
Tl

dt.

Estimating the commutators ( —l-A.jA2—A2—*-&)u by (2.7) and apply-
\di* or I

ing (2.19) to A2 we have
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lla/
Remarking m—^ — τ ' ^ 1 for τ '^m—k—1 and

we have

—1 for

(3.10)

for sufficiently small h.
On the other hand estimating the commutators by (2. 7) we have

(3.11)

where Hj belong CZ and Hu are bounded operators. From (3.1), (3. 3)
and (3.8) we have σ{Hj)r1-j/m= Σ αj *{fjc)(iξ)°, hence we have

m\Λ m\=mj

and consequently we have by (3.11)

(3.12)

From (3.10) and (3.12) it follows that

(3.13) [φ-2n\\LQu\\2dt^C6 Σ
J

for sufficiently small A.
As \ξj\^K(gym/m*^C1r

ι'mj by (1.3) and (2.2), we have

u =

On the other hand, using Fourier transform we have for M6C0°° (ΩA)

fr*a-ι>>\\Alu\\2^Ca\\Aa

0u\\2<C'a\\ra/ma\\2 (0<b^a) where Λg is denned by

A%u{ξ)=K{ξ)aU{ξ).

Hence, we have
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(3.14) ;<V.Σ2

for sufficiently small A.

From (3.13) and (3.14) we have (3.6) for sufficiently small h. Q.E.D.

§4. Uniqueness. We are concerned with the uniqueness for the
solution of the Cauchy problem. Let S(t, x) be a continuous real valued
function defined in a neighborhood of the origin such that the set
{(t, x); S(t, x)^0} lies in the half space t^O and meets the plane /=0
only at the origin, then we have the following.

Theorem 2. Let L be a differential polynomial which satisfies the
condition of Theorem 1.

Suppose u=u(t, jcJζQ",) defined in a neighborhood of the origin satis-
t,xy7— —)u(t, x) = 0 and vanishes on

at > OX I

{(t,x); S(t,x)<0}.
Then u=u(t, x) vanishes identically in a neighborhood of the origin.

Proof. For ψ(t) e C^ such that

l for t^2"h,
( ' } ψ(t) = 0 for t^2-cι-»h.

We consider w(t, x)=ψ(t)u(t9 x)9 then by the assumption of u w(tyx)
belongs to C™(£lh) for a sufficiently large fixed /. By approximating
w by une Co (ΩΛ) it is easy to see that the inequality (3.6) holds for
w(ty x)e QΓ(ΩΛ), so that we have

ty X)\\2dt ^ Cx j φ-2n\\w\\2dt .

By (4.1) it follows that Lw = Lu = 0 and w = u for t^2~1hy hence we have

\ φ-2n\\Lw\\2dt^cΛ \φ-2»\\u\\2dt.

Remarking ^ ^ l + 2 ~ c / + 1 ) for t^2~ιh and ^ < ( l + 2"c/+2)) for
we liave

/ I _L O-C/+2)V 2ft Λ

and letting w-^co we get u vanishes identically in 0<I/<^2~c/+1)A. This
completes the proof. Q.E.D.
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Next we consider the case when the Cauchy data are given on a
plane portion. In this case we transform the plane portion to a convex
surface by Holmgren's transformation, and apply Theorem 2. Hence,
for a while we investigate how a differential operator is transformed by
Holmgren's transformation.

Let (m, m)=(w, m19 •••, wv) satisfy the condition

(4.2) mj = m or m^-^-m (j = 1, •••, v).

We consider a differential operator

< 4 3>
in a neighborhood of the origin, where Mo is the principal part of M

and of the form

(4.4) Mo (s, y, JL( | ) % M | Σ ,_*,..(». JO J £ £ (^.(0, 0) = 1).

We take Holmgren's transformation

(4.5)

Then, as we have

the associated operator L defined by Lu(t— \x\2, x)=Mu(s9 y) is of the

form

<4 6>
Remarking (4.2) it is evident that the characteristic polynomial Lo of L
is obtained

(4. 7) Lo(*, Λ, λ, ξ) = M0(t-\x\\ x, λ, £X J1

For XjξΛ(j + m\a:m\ =nή if we replace one of ξj (mj<ί%m) by λ, then
7Jξ* changes to λ/+1f1

Λi.-fjij-1 . f?v and for this

i f f"= j
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\m1 nij m

<Lm + l-2 = m-\y

hence L becomes

(4.8) L(t, xy λ, ξ) = L0(t, x, λ, f ) +

By (4. 7), if we write

L0(t, x, λ, ξ) = M 0 ( ί - | * | 2 , λ,

we have afta(t,x) =

This shows that if the characteristic roots λo(£, x, η) of M0(ί, yy iy\η\ ~1) = 0

are distict and infinitely differentiable, then those of Lo are also distinct

and infinitely differentiable for sufficiently small y.

5, j , —-, — ) 6^ ^ differential polynomial of

όs όyj

the form (4. 3).

Let L=a*(^—iί: + **) be the associated operator obtained by the trans-
\ot I

formation (4. 6).
Suppose a*~xL = ^τ^ + ** satisfies the conditions of Theorem 1, and

at
u = u(s, y)eC™ty) defined in a neighborhood of the origin satisfies the dif-

5, y> ̂ -, —-)w(5, ̂ ) = 0 ^wrf satisfies the initial con-
as oyl

ditions

(4.9) ^l

,̂ jv) vanishes identically in a neighborhood of the origin.

Proof. If we set U(s, y)=u(s, y) for s ^ O , and U(sy y) = 0 for 5 ^ 0 ,
then U(s,y)eC%ty) and MU=0 in a neighborhood of the origin.

Now we take Holmgren's transformation (4.5), then U=U(t — \x\2, x) = 0
on {{tyx)\ t^\x\2} and a^λLU{t- \x\\ x) = 0.

Here we remark that a*=M0(t- \x\2, x, 1, 2x1Smmi, •••, 2xβmmJ by

(4.7), and |<z*|2>^ for sufficiently small t and x as am0(0> 0) = l . Hence,
for the operator a*~xL we can apply Theorem 2 and get that U(s,y) =
U(t— \x\2, x) vanishes identically in a neighborhood of the origin, so that
u(s, y) = U(sy y) = 0 for s(2^0), so we get u(syy) = 0 for s<^0. This com-
pletes the proof. Q.E.D.
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EXAMPLE, i) Consider a parabolic polynomial

Mo = λ 2 +2(Σ a4(s, y)ξ{)X+ Σ M*> yMj-b(s, y)ξv (ft Φ 0)
ί=i ί,i=i

where

(Σ *&)λ+ Σ *,££, ^ δ(λ2+ Σ
ί=i »,y=i ί=i

t = l

(4.10) λ2+2(Σ *&)λ+ Σ *,££, ^ δ(λ2+ Σ fj) (δ > 0).
ί=i »,y=i ί=i

Setting A = (Σaiyi) and β = Έ ^ijViVj-(Σ^iVi)2jribη^\v\ we have
=1 ίi=l t=l

and Σ % ^ - ( Σ ^ * ) 2 ^ δ i M 2 (δi>0) from (4.10). In this case
f,y=i ί=i

(m, m)=(2, 2, •••, 2,1) satisfies (4.2), and λ01 and λ0 2 are distinct and
the real parts of these roots do not vanish. Hence for this operator or
the product operator of two such parabolic operators the uniqueness
theorem holds when the initial values are prescribed on a plane portion.

More generally for the operator Mo (s, y, —, —) of (4.4), if the
\ os όxj

equation M0(s, y, λ, /^|^|"1) = 0 has distinct roots whose real parts do not
vanish, then for this operator the same proposition as the above case
holds.

ii) Consider M=MQΛ- Σ b; Λ{s> y)\jξ* with (m, m) satisfying
j + m\Λ:γa\^rn-\ '

(4. 2).
If we assume that the coefficients of Mo(/, x, i\ iξ) are real and the

characteristic roots of M0(ί, x, λ, iη\y\~1) = 0 are distinct, then, the as-
sociated characteristic polynomial Lo of (4. 7) has distinct roots which are
purely imaginary or have non vanishing real parts because L0(t, x9 ίλ, iξ)
has real coefficients. Hence, for such operator M, or more generaly for
the product operator M1M the uniqueness theorem holds, where Mx is
an operator whose characteristic polynomial has distinct roots with non
vanishing real parts. A non-trivial example is made by the following
way. Set

F(s,y,θ;ξ) =

Σ C5{β-aλK(f)-) (θ-a^mΓ) (θ-aj+1K(ϊΓ) {β-atK{ξ>Γ)
ii

{μi=aJ{sty)U=l, -,I)l 0 < e , < - < e / ; 1^2; C, > 0 (/=1, ,/

with /f(f) of (1.3). Then the equation F(s, y, θ,ξ)=O has distinct positive
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roots since signF(s, y, ajK(ξ)2m,ξ) = sign(-l)ι-j (/ = 1, •••,/).
Hence, if we set M0(s, y, λ, ξ)=F(s, y, (/λ)2W, iξ), then M0(s, y, ίλ, iξ)

is of order 2{l—l)m and has real coefficients, and the equation
Mo (s, y,\iy\v\~1) = Q has distinct roots. This shows that the uniqueness
holds for the operator

Mis> y> is' | ) = M ° ( < > * i i y ^ r S
OSAKA UNIVERSITY
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