<table>
<thead>
<tr>
<th>Title</th>
<th>Normal embedding of spheres into \mathbb{C}^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Byun, Yanghyun; Yi, Seunghun</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 2003, 40(1), p. 81-86</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8359</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
NORMAL EMBEDDING OF SPHERES INTO \mathbb{C}^n

YANGHYUN BYUN and SEUNGHUN YI

(Received November 29, 2000)

1. Introduction

The notion of normal submanifold was introduced by J.C. Sikorav ([6]) as a weaker version of Lagrangian submanifold.

Polterovich ([5]) showed that if L is a closed normal non-Lagrangian submanifold of a symplectic manifold M and the Euler characteristic of L vanishes then its displacement energy $e(L)$ vanishes.

The basic notions such as ‘normal’, ‘symplectic’, ‘weakly Lagrangian’ etc. are explained in Section 2 below and the definition of the displacement energy is provided in the later part of this section.

It is well known that S^1 and S^3 are totally real submanifolds of \mathbb{C}^1 and \mathbb{C}^3, respectively. L. Polterovich ([5]) showed that if L is a totally real submanifold of a symplectic manifold (V, ω) and L is parallelizable then L is normal. So S^1 and S^3 are normal submanifold of \mathbb{C}^1 and \mathbb{C}^3, respectively. In fact S^1 is a Lagrangian submanifold of \mathbb{C}^1 and it follows that it is a normal submanifold. As for S^3 we consider the standard embedding and explicitly construct in Section 4 below the Lagrangian subbundle of $T\mathbb{C}^3|_{S^3}$ which is transverse to the tangent bundle.

The following two theorems are our main results which respectively answer the two questions: (a) Which S^n admits a normal embedding into \mathbb{C}^n? (b) When the product of spheres admits a normal embedding into the complex Euclidean space?

Theorem 1.1. S^n admits a normal embedding into \mathbb{C}^n if and only if n is 1 or 3.

Theorem 1.2. $S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}, \ n_i \geq 1, \ i = 1, 2, \ldots, k, \ k \geq 2,$ admits a normal embedding into $\mathbb{C}^{n_1+n_2+\cdots+n_k}$ if and only if some n_i is odd.

Note that H. Hofer ([3]) defined the displacement energy of a subset A of a sym-
plectic manifold \(M \) as

\[
\inf \left\{ \max_{M \times I} - \min_{M \times I} | H \in \mathcal{C} \text{ such that } 1 \cap \eta = \emptyset \right\}
\]

where \(\mathcal{C} \) is the set of all smooth real valued functions which attain both maximum and minimum on the product \(M \times I \) of \(M \) with the closed unit interval \(I \) and \(g^1_H \) is the Hamiltonian flow at time 1 determined by \(H \).

The normal embeddings of Theorem 1.2 are not necessarily the product of the standard embeddings (see [7]) and therefore their images may not be contained in a codimension 1 plane. Also the embedding is not Lagrangian unless some \(n_i \) is 1. Even if some \(n_i \) is 1 and the embedding is Lagrangian, we recall the fact that any Lagrangian embedding of a manifold of dimension greater than 1 and with vanishing Euler characteristic can be \(C^l \)-approximated for any \(l \geq 1 \), by non-Lagrangian normal embeddings ([5]). Therefore, Theorem 1.12 in [5] by L. Polterovich implies:

Corollary 1.3. Assume \(k > 1 \). If some \(n_i \), \(i = 1, 2, \ldots, k \), is odd, the product of spheres, \(S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k} \), \(n_i \geq 1 \), \(i = 1, 2, \ldots, k \), \(k \geq 2 \), admits a normal embedding into \(\mathbb{C}^{n_1 + n_2 + \cdots + n_k} \), for which the displacement energy vanishes.

2. Basic notions and facts

A smooth manifold \(M \) is called *symplectic* if there is a nondegenerate closed 2-form \(\omega \) on \(M \). Such a 2-form is called a *symplectic form* or a *symplectic structure* on \(M \). It follows that \(\dim M \) should be even if \(M \) is symplectic.

On the other hand a vector bundle of finite rank is referred to as a *symplectic vector bundle* if it is considered with a fixed symplectic two form. A subbundle \(\eta \) of a symplectic vector bundle \(\xi \) is a *Lagrangian subbundle* if 2 (rank \(\eta \)) = rank \(\xi \) and the restriction of the symplectic form to \(\eta \) is the zero form.

Let \(M \) be a symplectic manifold of dimension \(2n \) with a symplectic structure \(\omega \). Let \(L \) be a smooth manifold of dimension \(n \) and let \(f: L \to M \) be an embedding (resp. immersion). We call \(f \) a *Lagrangian embedding* (resp. immersion) if the tangent bundle \(TL \) of \(L \) is a Lagrangian subbundle of the symplectic vector bundle \(f^*TM \) with the symplectic form \(f^*\omega \). We call \(f \) a *normal embedding* (resp. immersion) if there is a Lagrangian subbundle \(\mathbb{L} \) of \(f^*TM \) which is transverse to \(TL \). Note that every Lagrangian submanifold \(L \) of \(M \) is normal.

We say that an embedding \(f: L \to M \) is weakly Lagrangian if \(TL \subset f^*TM \) is homotopic through \(n \)-dimensional subbundles to a Lagrangian subbundle ([4]) in \(f^*TM \).

We will consider \(\mathbb{C}^n \) with the usual symplectic structure. A Lagrangian embedding or normal embedding must be understood as ‘into \(\mathbb{C}^n \)’ unless otherwise specified.
3. Proofs

First of all we need the following.

Lemma 3.1. Let f be a normal embedding of a smooth oriented n-dimensional manifold L into a symplectic $2n$-dimensional manifold M. Then

$$TL \cong \nu_f$$

where TL is the tangent bundle of L and ν_f, the normal bundle of f.

Proof. Since f is a normal embedding, there is a Lagrangian subbundle $\mathbb{L}^n \subset f^*TM$ which is transverse to $TL \subset f^*TM$. In particular, we have: $f^*TM = TL + \mathbb{L}$. Since the quotient bundle f^*TM/TL is none other than ν_f, we have $\mathbb{L} \cong \nu_f$.

Now let J be an almost complex structure on M compatible with the symplectic structure. Then we have $TL + \mathbb{L} = f^*TM = J\mathbb{L} + \mathbb{L}$ and it follows that $TL \cong f^*TM/\mathbb{L} \cong J\mathbb{L}$. Thus we conclude that

$$TL \cong J\mathbb{L} \cong \mathbb{L} \cong \nu_f.$$ \hfill \qed

Corollary 3.2. If a smooth oriented closed n-manifold L admits a normal embedding into \mathbb{C}^n, then we have

$$\chi(L) = 0$$

where $\chi(L)$ is the Euler number of L.

Proof. Regard L as a normal submanifold of \mathbb{C}^n and let ν denote the normal bundle. Consider the normal neighborhood N of L. Let $D\nu$ and $S\nu$ denote respectively the disk and the sphere bundles of ν. Then one of the generator U of the integral cohomology group

$$H^n(D\nu, S\nu; \mathbb{Z}) \cong H^n(N, \partial N; \mathbb{Z}) \cong \mathbb{Z}$$

pulled back to $H^n(N; \mathbb{Z}) \cong H^n(L; \mathbb{Z})$ is the Euler class of TL, presuming a suitable orientation of L, since $\nu \cong TL$ by Lemma 3.1 above. The Euler class evaluated at the fundamental class of L is the Euler number of L. However U when pulled back to $H^n(N)$ is the zero element, for we have the following commutative diagram:

$$
\begin{array}{ccc}
H^n(\mathbb{C}^n, \mathbb{C}^n - \text{int}N; \mathbb{Z}) & \longrightarrow & H^n(N, \partial N; \mathbb{Z}) \\
\downarrow & & \downarrow \\
H^n(\mathbb{C}^n; \mathbb{Z}) & \longrightarrow & H^n(N; \mathbb{Z})
\end{array}
$$

where all the arrows come from the inclusions. \hfill \qed
Proof of Theorem 1.1 If \(f : S^n \rightarrow \mathbb{C}^n \) is an embedding, then the normal bundle \(\nu_f \) of \(f \) must be trivial since it is stably trivial and its Euler class vanishes. So by Lemma 3.1 the tangent bundle \(TS^n \) is trivial. Thus if \(n \neq 1, 3, 7 \), \(S^n \) does not admit any normal embedding into \(\mathbb{C}^n \).

On the other hand, \(S^1 \) admits a Lagrangian embedding. Also by applying an observation of Polterovich ([5]), \(S^3 \) has a normal embedding since \(S^3 \) admits totally real embedding and it is parallelizable.

It remains to show that \(S^7 \) does not admit any normal embedding, which is the assertion of Corollary 3.4 below.

The following is needed to show that \(S^7 \) admits no normal embedding into \(\mathbb{C}^7 \), which however seems worth an observation on its own right.

Theorem 3.3. Let \(M \) be a symplectic \(2n \)-manifold and \(L \) be a smooth \(n \)-manifold which admits a normal embedding into \(M \). If \(L \) is parallelizable, then the embedding is weakly Lagrangian.

Proof. We regard \(L \) as a normal submanifold of \(M \). Let \(\mathbb{L} \) be a Lagrangian subbundle of \(TM|_L \) which is transverse to \(TL \subset TM|_L \). Let \(J \) denote an almost complex structure of \(M \) compatible with the symplectic structure.

Then we have that \(TL \cong TM|_L/\mathbb{L} \) and \(J\mathbb{L} \cong TM|_L/\mathbb{L} \) (See the proof of Lemma 3.1). Thus we have: \(TL \cong J\mathbb{L} \cong \mathbb{L} \).

In particular, \(\mathbb{L} \) is trivial.

Let \(\{e_1, e_2, \ldots, e_n\} \) and \(\{f_1, f_2, \ldots, f_n\} \) be global frames respectively of \(TL \) and \(\mathbb{L} \). Then define a homotopy \(\gamma_t \), \(0 \leq t \leq 1 \), in \(TM|_L \) from \(TL \) to \(\mathbb{L} \) by defining \(\mathbb{L}_t \) as the subbundle generated by the frame:

\[
\{\gamma_1(t), \gamma_2(t), \ldots, \gamma_n(t)\}, \quad \gamma_i(t) = (1-t)e_i + tf_i, i = 1, 2, \ldots, n.
\]

It is straightforward to see that \(\{\gamma_1(t), \gamma_2(t), \ldots, \gamma_n(t)\} \) is indeed a frame, that is, \(\gamma_1(t), \gamma_2(t), \ldots, \gamma_n(t) \) are linearly independent at any point of \(L \) for all \(t \in [0, 1] \).

Corollary 3.4. \(S^7 \) does not admit any normal embedding into \(\mathbb{C}^7 \).

Proof. Assume that \(S^7 \) admits a normal embedding into \(\mathbb{C}^7 \). Then, since \(S^7 \) is parallelizable, the normal embedding is weakly Lagrangian by Theorem 3.3 above. But according to Kawashima ([4]), \(S^0 \) admits a weakly Lagrangian embedding if and only if \(n = 1, 3 \). This means that \(S^7 \) does not admit any normal embedding.

Remark. (i) A totally real submanifold \(L \) of a symplectic manifold which is parallelizable is normal according to Polterovich. Theorem 3.3 further means that \(L \) is weakly Lagrangian.
(ii) Note that Theorem 3.3 together with our explicit construction in the next section of the Lagrangian subbundle transverse to $\mathcal{T}\mathcal{S}^3$ for the standard embedding of \mathcal{S}^3 into \mathbb{C}^3 proves that the standard embedding is weakly Lagrangian (cf. [4]).

Proof of Theorem 1.2. We prove the case when $k = 2$ and the general case follows by an inductive argument.

If both m and n are even, then $\chi(S^m \times S^n) \neq 0$, by Corollary 3.2, $S^m \times S^n$ does not admit any normal embedding.

If m or n is odd, then $S^m \times S^n$ admits a totally real embedding into \mathbb{C}^{m+n} (cf. Example 1, [7]) and $S^m \times S^n$ is parallelizable. Therefore, according to Polterovich ([5]), $S^m \times S^n$ admits a normal embedding into \mathbb{C}^{m+n}.

4. A Lagrangian subbundle transverse to the tangent bundle of \mathcal{S}^3

Three linearly independent tangent vector fields X_1, X_2, X_3 of

$$\mathcal{S}^3 = \{(x_1, x_2, x_3, x_4, 0, 0) \in \mathbb{C}^3 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

are defined as follows:

$$X_1(x) = (-x_2, x_1, -x_3, x_4, 0, 0)$$
$$X_2(x) = (-x_3, x_4, x_1, -x_2, 0, 0)$$
$$X_3(x) = (-x_4, -x_3, x_2, x_1, 0, 0) \ .$$

Now the three linearly independent normal vector fields on \mathcal{S}^3 are defined as follows:

$$N_1(x) = (x_1, x_2, x_3, x_4, 0, 0)$$
$$N_2(x) = (-x_1 - x_4, -x_2 - x_3, x_2 - x_3, x_1 - x_4, 1, 0)$$
$$N_3(x) = (-x_1 + x_3, -x_2 - x_4, -x_1 - x_3, x_2 - x_4, 0, 1) \ .$$

Then clearly N_1, N_2, N_3 are not in the tangent space $T_x\mathcal{S}^3$. In fact, we have that the determinant of the matrix $(X_1, X_2, X_3, N_1, N_2, N_3)$ is -1 and the standard symplectic form vanishes on the subspace generated by N_1, N_2, N_3. Thus the subbundle of $T\mathbb{C}^3|_{\mathcal{S}^3}$ generated by N_1, N_2, N_3 is a Lagrangian subbundle transverse to the tangent bundle.

References

Yanghyun Byun
Department of Mathematics
Hanyang University
Sungdong-gu, Seoul 133-791, Korea
e-mail: yhbyun@hanyang.ac.kr

Seunghun Yi
Liberal Arts and Science (Mathematics)
Youngdong University
Youngdong, Chungbuk, 370-701, Korea
e-mail: seunghun@youngdong.ac.kr