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Supplement to my Paper

“On the Homogeneous Linear Partial
Difi erential Equatiorn of the First Order”

By Takashi Kasuca

In our paper [2] above-mentioned (in the following, we shall cite
it as “H”), we treated the following homogeneous partial differential
equation

oz “ oz
8—95+ FZ::lfF-(x’ yl) ’yn)aﬁ—‘o (7[21)

without the usual condition of the total differentiability on the solution

2(%, Yi5 o0ty Yo
Here we remark that we can treat the non-homogeneous linear

partial differential equation of a rather general type

oz, & oz
ErRa P LCAE R ,yn)éﬁ=h(x, Yo V) 2R, 3y 05 D)
in a similar way by the use of Theorem 1 of “H”.

1. We shall use the same notations and abbreviations as explained
in §1.1 of “H”. We add only a new abbreviation for points in R"*:
(X535 2) = 3,5 Yus 2.

In the following, we shall denote by G a fixed open set in R,
by h(x; ), k(x; y and fi(x; 3y (A=1,---, n) n+2 fixed continuous func-
tions defined on G which have continuous 94/9y., 9k/Oyu, If\/Yu
n, p=1, -, n.

Under the above conditions, we shall consider the partial differential
equation

%4— MZ:‘if,L(x;y)%zh(x;y)z+k(x;y)- (1)

With (1), we shall associate the simultaneous ordinary differential
equations

& )
“—=h(x; yz+k(x; ).
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We denote by G, the open set in R™* defined by
x; 9;2: (x: DEG +o0 >z >—o00.

Then the continuous curves in R™? representing the solutions of (2)
which are prolonged as far as possible on both sides in G, will be called
characteristic curves of (2) in G. Through any point ¢; 7; ¢) in G,
there passes one and only one characteristic curve of (2) in G°. We
represent it by C(E; 5; £).

A continuous function z(x; y) defined on G will be called a quasi-
solution of (1) on G, if it has 9z/0x, 9z/9y, (A=1, ---, n) except at most
at the points of an enumerable set in G and satisfies (1) almost every-
where in G. Here 9z/9x, 9z/9y, need not necessarily be continuous.

On the other hand, a continuous function z(x; y) defined on G will
be called a solution of (1) in G in the ordinary semse, if it is totally
differentiable and satisfies (1) everywhere in G.

We consider also the homogeneous partial differential equation

oz & .20z
87x+‘§1fp'(x’ y)aﬁ—o (3)

which was treated in “H”. We define the characteristic curve C&; 5| G)
of (3) passing through the point (£; %) of G, quasi-solutions of (3), and
solutions of (3) in the ordinary sense as in “H”.

For the proof of Theorem 1, we shall also consider the non-
homogeneous partial differential equation

a n
8;’;Jr‘glf“(x;y)%:/ux;y>. (4)

We represent the characteristic curve of (4) in G which passes through
the point (§; 5; &) of G by C*E; #; £).
We shall prove the following theorem.

Theorem 1. Let S be a hypersurface in R™? representing a quasi-
solution z=2z(x; y) of (1) on G and (£; n; £)€ S, then CE; n; £)CS.

By Theorem 1, we can easily prove, as Theorem 2 of “H”, the
following :

Theorem 2. If for a fixed number &, the family of all the
characteristic curves C(E; 5|G) of (3) such that € G[E®] covers G and
r(n) is a totally differentiable function defined on G[E], then there is

1) cf. Kamke [1] §16, Nr. 79, Satz 4.
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one and only one quasi-solution of (1) on G such that z2(E®; n)=(y) on
G[£“] and this quasi-solution z(x; y) is also a solution of (1) on G in
the ordinary sense.

The proof of this theorem goes in a similar way as in “H”. Thus
we shall omit it.

2. Proof of Theorem 1.

Let (€; 4/ ; ¢’) be any point which C(€; »; ¢) has in common with
S. Then

CE; n; 0=CE #5¢) and ¢=2E; ). (5)
We represent the characteristic curve C(¢; 4’| G) of (3) by

= Pa(x) A=1,--,n)
B >x>a. (6)

Then C(#; +; £ —a) where a is a positive number, can be represented
in the form

= Pa r=1,-,
{y Pr(x) ( ") (7

2 = Yr(x) B >x>a.

Also C*(¢#; % ; log @) can be represented in the form
{yx=%(x) A=1--,m
2z = YP¥(x) B>x>«.

Then by the well known theory of the characteristics”, there is a
solution 2=2(x; » of (1) in the ordinary sense defined in a neighbour-
hood of (§'; %) such that

(8)

2E; o) =¢—a (9)
and
2(x; @x) = P (10)

in a neighbourhood of &'.
Also there is a solution z=2*(x; y) of (4) in the ordinary sense defined
in a neighbourhood of (¢/; #’) such that

25 ; o) =loga 11)
and

Z¥ (x5 p(x)) = PE(x) (12)

in a neighbourhood of &'

2) cf. Kamke [1] §32, Nr. 171, Satz 1 and §32, Nr. 173, Satz 4.
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If we put
z(x; y) =log {z(x; »)—2(x; »}—2*x; »), (13)
then by an easy calculation we can prove that z,(x; ¥) is a quasi-solution
of (3) in a neighbourhood of (£§; 7). Also by (5), (9) and (11)
2,(E; 7)=0.
Hence by Theorem 1 of “H”,
z(x; ) =0

in a neighbourhood of &.
Therefore by (10), (12) and (13)
0=2(x; o) =log {2(x; px)—2(x; p(x)} —2*(x; @(x))
= log {z(x; @(x))—V(x)} —P*(x)

and so

z2(x; p(x)) = Y(x) +exp Y*(x) (14)

in a neighbourhood of &.
Hence, by the definition of «:b(x) and *(x), z(x; @(x)) is differenti-
able and
a ), dy* )
dx dx dx
= h(x; P)V@)+kx; ¢®)+h(x; @) exp ¥*(x)
= h(x; ) ((x)+exp ¥*(x) +k(x; @)

and so by (14)

2(x; px)) = exp ¥ (x)

%z(x o) = h(x; @) 2(x; p@) +kx; 9)

in a neighbourhood of &. ,
Therefore by the definition of @,(x) and of C(&; #; ¢'), considering

(5), it follows that S contains the portion of C(& ; ;&) (=CE; n; &)
in a neighbourhood of (¢'; 4 ; ¢').
We can represent C(£; 5; &) in the form

{ Y= pr(x) =1, -, n)
z = Yr(x) a<lx<B.

We have shown above that the set E of points x in the interval
a<x<_B such that z(x; @(x)) =+r(x), is open in the interval a< x<_p.
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Also by the continuity of @,(x), Y(x) and z(x; y), E is closed in the
interval a<_x<_B. Furthermore E is not empty since £€ E. " Hence E
is identical with the interval a< x<B. This completes the proof of

Theorem 1.
(Received March 28, 1956)
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