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1. Introduction

The Markov partition in dynamical systems suplies us important informa-
tions (for examples, for studies of equilibrium states [5] and zeta functions [24]).

Such a partition was first constructed for Anosov diffeomorphisms by Ja.G.
Sinai [35]. After that, R. Bowen [5] showed the existence of Markov partition
on nonwandering sets of Axiom A4 diffeomorphisms. In these papers the notion
of canonical coordinate play an important role to construct Markov partitions.
K. Hiraide [20], in purely topological setting, proved the existence of Markov
partition for expansive homeomorphisms with POTP by constructing canonical
coordinates. For example, every expansive automorphism of a solenoidal group
has POTP, and hence a cononical coordinate as well as a Markov partition (N.
Aoki [2], [3] and [20]).

However homeomorphisms with Markov partitions do not necessarily have
canonical coordinates. In fact, every pseudo-Anosov map has a Markov partition
and does not have cononical coordinates (see paragraphs 9 and 10 of [17]).

Thus it is natural to ask what kind of expanisive homeomorphisms have
Markov partitions. The purpose of this paper is to give necessary and sufficient
conditions for expansive homeomorphisms to have Markov partitions. More
precisely we can describe our result as follows;

Theorem. Let X be a compact metric space and f be an expansive homeo-
morphism of X with expansive constant c*. Then the following conditions are equi-
valent ;

(I) there exists ¢>0 with 2c<c* such that for every xEX there exists an
n=mn(x)>0 such that {Y (y) N\ B,(x)| yE B,(x)} s finite,

(IT)  there exists ¢<O with 2c<c* such that for every x= X there exists a
8=38(x)>0 such that {Z,(y) N By(x)| yE Bs(x)} is finte,

(III) (X, f) has SPOTP,

(IV) (X, f) has a Markov partition.

The proof will be give in section 3 and the auxiliary results used in the proof
will be prepared in section 2. We shall describe in section 4 some applications
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of our result.

In the remainder of this section, we shall give some definitions which are
used in the proof of our result.

Let X be a compact metric space with metric d, and f be a homeomorphism
of X. For x€X, By(x) will denote the closed &-ball in X centered at .
For x€X and €>0 define subsets Wi(x) and Wi(x) of By(x) by Wi(x)=
Nazof "By(f"x) and Wi(x)= N g0 f "Bo(f"x). Then we have

(1L1) W= CW(fx), fTWix)CW(f %),
(1.2) yeWyx) ifandonlyif xeW(y) (0 =5, u),
and

(1.3) 2E WS 1,(x) whenever y& W1 (x) and z€ W (y) (0 =s,u).

DEerINITION 1. (X, f) is said to be expansive if there exists a constant ¢*>0
such that

&} = Nuez f(Bof"%))  (=Wa(x) N We(x))

for all x€ X, and such a ¢* is said to be an expansive constant for f.
For every €>0 define subsets Y, and Z, of X X X by

Y. = {(x, y)) €XX X | W(x) N Wi(y)=*0}
and
Zy={(x,y)€XXX|(x,y)€Y, and (y,x)EY,}.
For x& X and €>0, subsets Y,(x) and Z,(x) of X are defined by
Y(x) = {yeX|(x,y)EY}
and
Zyx) = {yeX |(x, y)EZ} .

Then we have

(1.4) yEZ(x) if and only if xEZ,(y)
and
(1.5) Wi(x) U Wi(x) CZy(x) C V(%) .

DerINITION 2. Let 9 be a finite partition of X; i.e., a finite family of
subsets of whose elements are muturally disjoint and U pc oD=X. A sequence
{x;};ez of points in X is said to be an a-pseudo orbit with respect to 9 if
d(fx;, %;4,) = ¢ and fx;zx,-ﬂ for all { €Z where Xy denotes that x and y are

in the same element of 9. A sequence {x;};cz of points in X is said to be
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B-traced if N;ezf (Bp(x;))*=0. The following notion was introduced by
Y. Takahashi. (X, f) is said to have special pseudo orbit tracing property (abbrev.
SPOTP) if there exists a finite partition & such that for every 8>0, there is
a>0 such that every a-pseudo orbit with respect to 9 is B-traced. Especially
(X, f) is said to have the pseudo orbit tracing property (abbrev. POTP) if 9
can be chosen so that 9={X}. The notion of SPOTP was firstly used in
M. Yuri [39]. It seems likely that for every homeomorphism of a torus, SPOTP
implies POTP. However the author does not have the proof.

Let us denote As={(x, y)EXXX |d(», y)<8} for §>0. If (X, f) has
POTP, then for every €0 there exists §>0 such that A;C Z,.

Let (X, f) be expansive and ¢>0 be a number such that 2c is an expanisve
constant. Then for (x, )€Y, Wi(x)N Wi(y)+0 and the set Wi(x)N Wi(y)
consists only of one point by expansiveness. Therefore we can define the map
[, ]: Y.=»Xby(x,y)—[x,y]€EWix)N Wi(y)((x,y)EY,). Then the follow-
ing statement holds:

(1.6) [%, ] =%,

(1.7) yeWi(x) and z€ Wi(x) imply that (y, 2)€Y, and [y, 2] = x,
(1.8) [x, [y, 2]l = [, 2] if (¥, 2), (%, 2)EY, and (x, [y, 2]))EY,,
(19) [x, 5, 2] = [ 2] i (x,9), (v, )€Y, and ([x, 5], )€ Y.,

and :

(1.10) Wix)NWe(y) = {lx, y]} if (x,y)E€Y, for €=c.

DerFINITION 3. Under the above notations, a subset E of X is said to be a
rectangle if (x, y)€ Y, and [, y]EE for all x, yeE.

DEerFINITION 4. A finite family & of closed rectangles of X is said to be a
Markov partition for (X, f) if P satisfies the following conditions;
1) P=intP for all PELP,
2) UpcgP=X,
3) int PNint Q=@ for all P, QP with P=+Q,
4) for every sequence {P,},c; of elements of P, N,z f " P, consists at
most of one point,

5) f(Wi(x)Nint P)C Wi(fx)Nint O
and
[TA(We(fx)Nint Q)C Wi(x) Nint P

whenever x€int PN f'int Q (P, Qe P),
6) there exists subsets B’ and B* of X such that

fBCB, f?B‘CB*, and B'UB'=Up_q0P.
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Markov partitions are not partitions in strict sense. However we use the
word conventionally.

2. Auxiliary results

In this section fundamental results are described. Throughout, let (X, f)
be as in our theorem, and ¢>0 be a number with 2¢ < c*.

(L. 1) For every p>0 there exists an integer N >0 such that for every x&€X
yENN_yfB(fix) implies yEBy(x).
Proof. See p. 109 of [15].
By (L. 1) the following statement is clear;

(L. 2) For every p>0, there exists an integer N> 0 such that for every x€X
and every n>N

"Wix)CWi(f"x) and f[*Wix)CWi(f *x).
The following statement is clear from (L. 2) and uniform continuity of f.

(L. 3) For every p>0 there exists E>0 such that for every x& X
Wix)NBy(x)CTWy(x) and Wi(x)NBy(x)C Wi(x).
(L.4) Y, Z, Yx)and Z(x) are compact, and [ , ]1is uniformly continuous on Y,.

Proof. For any sequence {(x,, ¥,)},en of points in Y, which converges to
a point (x, y), there is a subsequence {(x,;, ¥,;)} jen such that [x,;, y,,] converges
to z€X. Since [x,;, y,;]€ Wi(x,;) for all €N, we have & f~"B,(f"x) for all
n=0, and so 2€W{(x). Similarly we have z& Wi(y) and hence z=[x, y].
Therefore Y, isclosed and [ , ]iscontinuouson Y,. Since XX X is compact,
Y, is compact and so [ , ] is uniformly continuous on Y,. Since Y, is
compact, Yi={(x, y)e Xx X |(y, x)€ Y} is compact. Thus Z,=Y,NY7/ is
compact. It is clear that Y (x) and Z(x) are compact.

(L. 5) For every >0 there exists p>0 such that Z.N A,C Z,.

Proof. For given £>0, by (L.3) there is a >0 such that W j(x) N By(x)C
Wi(x) and Wi(x) N By(x)C Wi(x) for all x&€X. Since [ , ]is uniformly con-
tinuous on Y, by (L.4), there exists p>>0 such that d([x, y], x)=d([x, ¥], [x, x])
<v and d([x,y], y)=d([x, 5], [y, yD)=<o for all (x,y)€Z,NA,. Therefore
(%, y)EZ.N A, implies (x, y)EZ,. '

(L.6) Let 9 be a finite partition of X. Then every c-pseudo orbit with respect
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to 9 is B-traced if thereis a strictly increasing sequence {M,} ,en of positive integers
such that for every a-pseudo orbit {x;}c, with respect to 9, the following holds :

N5 f Be(x)=0  forall neN.

Proof. Let {x;};c; be an a-pseudo orbit with respect to @ and {M,},en
be a strictly increasing sequence of positive integers. For every nE N define an
a-pseudo orbit {y?},cz with respect to @ by yi=x;_[yn for all i€ Z. ([M]
(M =0) denotes the maximal integer which does not exeed M). By the assump-
tion we have

E, = fonmnn i f~By(yt) % 9

for all nE N, then N ;ezf*Bg(x:)= N yenE,=* 0 since E, are closed and decreas-
ing.

The following (L.7) and (L.8) are general properties of topological spaces
and we omit the proofs since they are easily checked.

(L.7) If A, -, AyC X are closed, then one has

?,:1 int Ai = lnt ( U ’,5_1 A,)
(L.8) If A,, A,C X are closed and A,D A,, then we have

int 4, = int 4,U int (4,\4,) .
(L.9) If (X,f) has a Markov partition, then (X, f) has Markov partitions with

arbitrary small diameters.

Proof. Let @ be a Markov partition for (X, f). Define "=
{Nicnftint P;| P, P for —n<i=<n} for n=1. Then the maximal diameter
of the elements of £" converges to 0 as n—>oco by condition 4) of the definition
of Markov partitions. We also have that " (r=1) is a Markov partition. In-
deed, we have U pc g"P=X by (L.7). Other properties for 2" to be a Markov
partition for (X, f) is easily checked from the fact that & is a Markov partition.

3. Proof of Theorem

Theorem will be obtained in proving the following claims.

Claim 1 (I) = (II).

Claim 2 (II) = (III).

Claim 3 (III) = (IV).

Claim 4 (IV)= (I).
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Proof of Claim 1 As in condition (I) let 0<c=c*/2 and take n=7x(x) for
x€X. Then there are finite number of subsets Y, :--, Y" of B,(x) such that
for every y& B,(x) there exists 1<i=<n such that Y,(y)NB,(x)=Y*. Put Yi=
{z€ Y| Y(2) N B,(x) = Yi}. Then Z(y)NB,(x)=Y(y)N Ujea ¥’ where
A={1=<i<n|yeY?}. Therefore {Z,(y)N B,(x)| yeB,(x)} is finite.

Proof of Claim 2 'The proof will be done along the following five steps.

Step 2.1. Let c be as in condition (II). Then there exist 8,>0 and a finite
partition 9 such that Xy implies Z,(x) N By (x) C Z ().

Proof. For x&X let §=25(x)>0 be as in condition (II). Since X is
compact, we can find finite points x,, -+, x, X such that

X = Ut int By ;) -

Put R,= By, (%;) for 1I<i<k. By condition (II), for every 1<i<k there exist
finite number of subsets Zi, ---, Z; C R, such that for every yER,, Z,(y) N R,=Z
holds for some 1<j<n;. We can assume that Z}’s are different if j’s are dif-
ferent. Denoting that Zi={x&R;|Z(x)NR;=Z}} for 1<j<n; and 1<i<k,
we have R;=U i, Z} (disjoint union) for 1=<i<k. ForeveryxeX and 1<i<k,
define D;(x)C X by

Dy(x) { Zi with xeZ: if xR,
AX) =
W X\R; if x&ER;.

Put D(x)=N%.1Di(x) for x&€X. Then 9D={D(x)|x*€ X} is a finite partition.
For every x€ X there exists 1<i=<k such that x& By,,,(x;) by the choice of
%y, =+, X, and then we have By (¥) CR; where §,=min,g;g, 8(x;)/2. Since xeZi
for some 1=<i=<mn;, we have ye D(y)=D(x)C Z: for ye X with XY

Let v be a number such that 0<y<<§, and

By(x)C Nioy f'BAf'%) .

It is enough to show that for small B8>0 there exists >0 such that every
a-pseudo orbit with respect to 9 is S-traced.

Let 8>0 be small enough. Then B<«v and Z,NAzcZ, by (L.5).
Similarly there is € with 0<<€<<(3/6 such that Z, N A,,CZg,;. By (L.2) we can
find M €N such that f*Wi(x)C Wi,(f*x) and fMWi(x)C Wi,(f Mx) for all
x€X. Let >0 be a number such that B,(x)C N X, f*Byu(fx) for all x€ X.

By (L.6), it is enough to show that for every a-pseudo orbit {x;};c, with
respect to 9 the following holds:

*) o f TiBg(x,) %0 forall neN.



HOMEOMORPHISMS WITH MARKOV PARTITIONS 417

To prove (*) we shall prepare steps 2.2, 3, 4, and 5. From now on, we
fix any a-pseudo orbit {x;},c, with respect to 9.

Step 2.2. For every 120, 0= j=<M and 0=k M—j,
d(f ¥4, frai, ) <2

Proof. Since {x;};cz is an a-pseudo orbit with respect to 9, by the choice
of o we have

A(f7H (frinin), ) <€[2M
for all j, &k with 0= j+k—I<M. Therefore
d(fi*h;, frae )< e d(fFH (i), 74 0%00) < €2
forall 0<j=<M and 0=<k=<M—j.
Step 2.3.  If ye Wiy(x,), then (f'y, x;;)EZy for all 0 j< M.

Proof. Since y& Wy(x;), we have d(f'y, fix,)< /3 for all j=0. By Step
2.2, we have d(fix;, x;,;)<&/2 for all 0O<j<M. Thus d(f’y, x:+;,)<B/3+E/2<
B/2. TItis clear that (y, x,)EZy. Assume that (f’y, x;,;)EZy for some 0=j =<
M—1. By the choice of v we have that (f/*'y, fx;,;)€Z,. Since fx,~+,-5 Xivjrn
(f*'y, iy j41) € Z, by Step 2.1. Thus the fact d(f'*'y, x;.;.,) <@ implies
(f”‘y, Xiyjr1) E Zy.

Step 2.4. For n=0 and y& Wj(x,y),

(™, Xrnm) € Zgys -

Proof. By Step 2.3 we have (f™y, x,+yu)EZy. By the choice of M,
My e Wip(fMx,). Since d(fY%,10, Xarnu)<&/2 by Step 2.2, we have that
d(f"y, xurpu) 2 € and so (fMy, Xeusnu) € Zpss.

Put y,=x, and y,=[%,u, [¥y.-,] for n=1 (Remark that [x,s, [*y,_,] is
always defined by Step 2.4).

Step 2.5. For every v=0 and w=0,

Yo a EWea() -

Proof. Take and fix any v=0 and w=0. Since ¥,4,E Wei(f” Yorw-1)s it
is easily checked that f™™y,., & W*)(y,1y-1). Thus the fact y,i,1 E Wiy

(f™¥s+u-2) implies
F™Y0rn€ W erap18(f™ Yorw-2) CWE(f MY ti0-2) »

from which f "My, , € Wi(Yp+u-2). Repeating this procedure, we get the con-
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clusion.

Take and fix any n<0. Put y=f""y,. For 0<i<nM—1 there exist
0<j=n—1 and 0=<k=< M—1 such that i=jM-+k. By Step 2.5 we have
FyEWen(f*¥y;41), and by the fact that y;., € Wi(fMy;), f*9,€ Wes(f* ™ 3 41)-
Since y,E Wps(x;u), we have f¥y, € W3 ,(f*x;y) by (1.1). Similarly d(f*x;yy,
X;p44)<E[2 by Step 2.2 and f*y E Bgsyon(#:) C Bg(x;). Therefore (*) is proved.

Proof of Claim 3. Let 9 be a finite partition in the definition of SPOTP

and ¢<0 be a number such that 2c < c¢*. Take 0<B8<¢/2 so small that
(%, ¥)EZ.N Ap implies (fx, fy), (f 'x, f'y)EZ, (such a B exists by (L.5)).
Let >0 be a number such that every a-pseudo orbit with respect to @ is B/2-
traced. Take 0<y<a/2 such that d(x, y)<v implies d(fx, fy)<a/2. Since 9
is finite, we can find a finite set T={t, ---, £,} C X such that for every x& X
there exists #;& T such that X t;, fxE ft;, and d(x, £,)<<y.

For every v& T we denote by v; the i-th component of v. Let us put

S(T) = {veT?| {v;} ez is an a-pseudo orbit with respect to D} .
Since @ is an expansive constant, we can define 8: 3(7')—X by

0(v)E Niezf " Bgp(vi) forall v&3(T).

For every x& X and neZ, take v,& T such that f"xE ‘v,,,f”“xbafv,, and
d(f"x,v,)<vv. Then we have v=(v,),ezE3(T") and §(v)=x. Thus 0 is sur-
jective. It is easy to check that fod=@oo where o: 3(T)—>3(T) is the shift
automorphism, i.e., o/(v),=v,,, for all s€Z and v=3(T).

For 1=:1=7, put cyl(t;))={ve3(T)|v,=t} and T;=0(cyl(t;)). Then
diam T;=<8 and U}.; T;=X. Since f is expansive, § is continuous by (L.1)
and so T; (1=i=<r) is closed. For every v, we3(T) with v,=w,, we can define
[v, wleZ(T) by [v, w],=v, for n=0 and [v, w],=w, for n=<0. Then it is easy
to check that (6(v), (w)) € Y and 0([v, w])=[0(2), O(w)].

To prove Claim 3, we shall prepare steps that will lead us to this end goal.

Step 3.1. Ts are closed rectangles.

Proof. It was already shown that T’s are closed. Thus it is only to show
that T’s are rectangles. 'Take any 1</=<r and any x, y7,;. Then there exist
vE67Y(x) and wef7Y(y) with v,=w,=t#;. Since 6([v, w])=[0(v), §(w)]=[x, ¥]
and [v, w],=t; , we have [x, y]& T; and hence T; is a rectangle.

Step 3.2. For ve3(T), we have the following ;

(1) for every y & Wi(0(v)) N O(cyl(vy)) there exists we 67 (y) such that
w,=7, for all n=0,

(2) for every ye W¥0(v))N0O(cyl(v,)) there exists we 07'(y) such that
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w,=v, for all n=<0.

Proof. For ye& Wi(0(v))NO(cyl(2,)), there exists v’ 07(y) such that
v{=v,. Therefore we can define w=[v,v']€Z(T") and O(w)=0([v,v'])=
[6(),y]=y. Then we6'(y) and w,=v, for all #=0. Thus (1) of Step 3.2
holds. Similarly we have (2).

Step 3.3. For every x&€X and T; (1=i=r) with x&€T,; we have
Wix)NT,CcWpg(x)  for o=s,u.

Proof. For yeWi(x)NT; and n=0, there exists T; (1=<j=r) such that
[y, f"*T; by Step 3.2. Since diam T;<8, we have d(f"x, f"y)<g for all
n=0 and so yeWj(x). Therefore Wi(x)NT,C W}(x). Similarly we have
Wix) N T; C Wi(x).

For x€ X, define subsets A(x), A*(x), and A“(x) of {1, ---, 7} by

Ax) = {1Zi=r|xT},

A'(x) = U jern {1Si<r| TN TN Wi(x)* 6} ,
and

A (%) = Uienn {ISIiSr| TN TN Wi(x) =0} .

Step 3.4.  For every i€ A°(x) (c=s, u) there exists j & A(x) such that T;NT;
N Wi(x)=+=0.

Proof. We give the proof for =s. For i€ A*(x) there exists j € A(x) such
that T;NT;NWi(x)+@. Take ye T;NT;NWi(x). By Step 3.3 we have
yEWg(x). Thus T;NT; N Wy(x)=+0.

Step 3.5. A’(x) N A*(x)=A(x) for all x€ X.

Proof. It is clear from definition that A(x)CA’(x) N A“(x) for all x€X.
To prove that A’(x) N A“(x) C A(x), we use Step 3.4. Indeed, for every
1€ A’(x) U A*(x) there exists ye T;C Wj(x) and 2 T; N Wi(x). Sincey, z€ T},
we have [y, 2]€ T;. Therefore [y, 2] € Wi(y) N Wi(z) C Wig(x) N Wig(x).
Since 28<c and 2c is an expansive constant, we have x=[y, 2]€T;. Thus
1€ A(x).

For x€ X, put L(x)={ye X|A°(y)=A°(x) for o=s, u}. Clearly
x€ L(x) for all x€ X, and ye L(x) implies L(y)=L(x). Put L={L(x)|x€X}.
Then L is a finite partition. For L& _L, denote A(L)=A(x), A’(L)=A’(x), and
A*(L)=A"(x) for xe L. Notice that A(L), A’(L), and A*(L) are independent of
the choice of x& L.

Step 3.6. Every Le_L is a rectangle.
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Proof. For x,yEL, [x, y] is defined and [x, y]€ T; for all i€ A(L) since
x,ye T; for all i€ A(L). Therefore we have A([x,y]) C A(L). For every
1€ A°(L) there exists j&€ A(x) such that T;NT,; N Wj(x)=+0 by Step 3.4. Since
A(x)=A(L)C A([x, ]), we have jEA(([x,y]). Since x€ Wy([x,y]), T:NT;N
Wi([x, y])*0 and so i€A’([x,y]). Thus A’([x, y])DA’(L). Conversely for
every i€ A’([x,y]) there exists jEA([x,y]) such that T;NT;N W([x,y])+0
For every k€ A(x), we have [x,y]€T,NT;N W(x) since A([x, y])DA(x), and
so jE€A(x)=A’(L). Similarly j&A*L). We obtain j&A(L) by Step 3.5.
Since [x, y]€ W§(x), we have T; N T; N Wi(x)*=0. Hence i€ A’(L). Therefore
A([x, y])=A’(L). Similarly we have A*([x, y])=A"(L).

Step 3.7. For every x€ X,

f(Wi(x) N L(x))c Wi(fx) N L(fx)
and
FIWe(fx) N L(fx))c Wi(x) N L(x) .

Proof. Takeanyye Wi(x)N L(x). For anyic A*(fx) there exist j € A(fx)
and € T;N T;N Wy(fx) by Step 3.4. Take v€07'(x) such that v,=t;. Let
1<k=<r be the number such that v,=t,. Since z&Wj(fx)NT;, we have
fz€T, by Step 3.2 (2). It is clear that ye T, N W(x), and fyeT; by Step
3.2 (1). Since fy,2€T;, we have [z, fy]€T;. Since z&T,;, there exists
wef7(2) such that w,=t;. Let 1<I<r be the number such that w_,=¢,.
Since f'ze T;N T, N W(x), we have /e A"(x) and so /€A“(y). By the fact
that I A*(x) N A*(y), we have [f'z,y]€T,. Thus f[f ', y]=[3, fy]€T; by
Step 3.2 (1). Hence [z, fy]eT;NT;N Wy(fy), and so i€ A*(fy). Therefore
A*(fy)CA*(fx). Since x&€ Wi(y)N L(y), by symmetry A“(fy)CA*(fx). Thus
A“(fy)=A"(fx), and similarly A°(fy)=A’(fx). Since fWi(x)C W:(fx), we have
SfWix)N L(x))C Wi(fx)N L(fx). Similarly we see that f~}(Wi(fx) N L(fx))C
We(x) N L(x).

Step 3.8. For every x&X there exists a neighborhood U of x such that
A(x)DA(y) for all ye U.

Proof. For x€ X, put U=X\UeaTi- Then U is open, x€ U and
A(y)C A(x) for ye U.

By Step 3.8, the following is clear.

Step 3.9. Let o=s,uand Le L. For every x& X with A°(x)DA°(L) there
exists a neighborhood U of x such that A°(y)DA°(L) for all ye U.

Step 3.10. Upepint L = X.
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Proof. For Le £, define L(L)={M & L|A°(M)DA°(L) for o=s, u} and
L*=UM_re@)M. Then L* is closed by Step 3.9. Since ULerL*=ULerL
=X, we have U e _pint L¥=X by (L.7). Therefore it is sufficient to show that
int M¥C Upe_rint L for all M e L.

Put Li={Le L| L(L)y={L}}and L,={LeL|Mc_L,_, forall Me _L(L)\
{L}} (n=1) inductively. If M e_[,, then it is trivial that int M’ *—int MC
Urerint L. Assume that int M*C Upe_pint L for all Me _L,.,. For
Me L, put A =M* and 4,= U Nne_poupnimy N*. By (L.8), we have

int M* = int M U int U ye_qoann{ay V* -
By (L.7),

intU Ne_aqmnimy N* = UnNe oongpy int N*,
and so

int M* = int MU(UNE_L'(M)\{M} int N*¥).

Since L(IMN\{M}c_L,_,, we have int M*C Uy _rintL for all M L,. By
the fact that every M € _L satisfies M _L, for some n=0, we get the proof.

Step 3.11. Let E be a rectangle. Then x<int E if and only if there exists
a neighborhood U of x such that U U Wi(x)CE for o=s, u.

Proof. Suppose that there is a neighborhood U of x such that U N Wi(x)CE
for o=s,u. By Step 3.8, there is an neighborhood V" of x such that A(y)C A(x)
for all yeV. Then for yeV and i€ A(y), we have x, yE T}, and so (x, y)EZ,.
Since x=[x, x]and [ , ]is continuous, there exists a neighborhood W C ¥ such
that [x,y]eUNWi(x) and [y, x]€ U N Wi(x) for all yeW. Then we have
y=[[y, %], [x, yY]]EE for all y&W. Therefore xint E. The “only if” part is
clear and so we omit the proof.

Step 3.12. For every Le_L, int L is a rectangle.

Proof. For x, yeintL, it is clear that [x, y]J€ L. By Step 3.8, there exists
a neighborhood U of [x, y] such that A([x, y]) D A() for all z&U. Take z€U
and 1€A(2). Then i€ A([x, y])=A(x) (=A(L)). Thus we have x,z€ T;.
Therefore we can define [z, x] for all z=U. Notice that[ , ] is continuous.
Since ¥ =[[x, v], ] and x=int L, there exists a neighborhood V' C U of [x, y]
such that [z, ] €L for all z€V. Hence for 2NV N W¥([x, y]) we have z=
[z, x], [, y]]€L. Similarly there exists a neighborhood ¥’ of [x, y] such that
ze L for all ze V'NWi([x, ¥]). Thus WNW7([x,y])CL (c=s, u) where
W=V NV'. Therefore [x y]€int L by Step 3.11.

We prove that P={int L|int L*@, L&_L} is a Markov partition. Ob-
viously UpegeP=X (by Step 3.10) and intP=P for all Pe€P. Since
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diam P < B for P, we have 4) in the definition of Markov partitions. Since
int L (LE.L) is a rectangle by Step 3.12, so is int L by (L.4). Therefore P con-
sists of closed rectangles. We remark that int LNint L'=¢ for L, L'e_L with
L#L’'. Then for any PE P, there is a unique LE.L such that P=int L and
so we write L(P) for such the L. For P, QP with P+, we have int L(P)N
int L(Q)=@ and so P N has no interior. Therefore int P Nint @=0.

Step 3.13. For every x€int LN f'int M (L, M L),
f(Wi(x)Nint LYC Wi(fx) Nint M

and
(Wi fx)Nint M)C W¥(x)Nint L .

Proof. Take yeWi(x)NintL. Then fyeM by Step 3.7 and there exists
a neighborhood U of fy such that A(2)CA(M) for all z€U by Step 3.8. For
ze U and i€ A(z), we have fx, ze T, and so (fx, )€ Z,. Since fxsint M and
Sfx=[fy, fx], there exists a neighborhood V' C U of fy such that [z, fx] €M and
[fx, z]l€M for all z€V N f(intL). Thus z=[[z, fx], [f*, z]]eM for all z&
VN f(int L), and so fy€int M. Clearly fye Wi(fx). Hence f(Wi(x)NintL)C
Wi(fx)Nint M. Similarly we have f~(W¥(fx) Nint M)C Wi(x)Nint L.

Step 3.14. intP N flint@=int L(P)N f'int L(Q) for all P, Q= P.

Proof. We have int ANint B=int (4 N B) for open sets A and B. There-
fore int ANint B=ANB for open sets A and B. Put A=int L(P) and B=
flint L(Q). Then

int PN flintQ = int L(P)N f~'int L(Q) .

Step 3.15. For every xint PN f'int @,

fWixNP)CWi(fx)NQ
and
W fx)NQ)C Wix)NP.

Proof. If xintP N f~'int@, by Step 3.14 there exists a sequence {x,} ,ex
of points in int L(P) N f~'int L(Q) such that x,—x as n—>oo. Forye Wi(x)CP,
there exists a sequence {y,},ey of the points in int L(P) such that y,—y as
n—oco. Since x, and y, are in a rectangle int L(P), we have that [x,,y,]E€
Wi(x,) Nint L(P) for all e N. Then by Step 3.13, we have that f[x,, y,]€
Wi(fx,)Nint L(Q) for allneN. Since[ , ]is continuous, [#,, ¥,]—[x, y]=y as
n—oo. Thus fye Wi(fx)Nint L(Q)=W3(fx) N Q and so f(Wi(x) N P)C Wi(fx)
NQ. Similarly, we obtain that f~(W(fx) N Q) Wi(x) N P.
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Step 3.16. For every x€int PN f~'int @,

FW(x) Nint Py W(fx) Nint Q
and
(Wi fx)Nint Q)C Wi(x)Nint P.

Proof. For yeW;(x)Nint P, int P is a neighborhood of y and so f(int P)
is a neighborhood of fy. By the choice of B, we have f(Wi(x) Nint P)=f(W:(y)
Nint P)D Wy(fy) N f(int P). By (L.3) there exists a neighborhood V' C f(int P)
of fy such that VN Wi(fy)CTWy(fy). Thus Wi(fy)NV C f(Wi(x)Nint P)CQ
by Step 3.15. Since fye@Q, there exists a neighborhood W of fy such that
A(R)CA(fy)=A(fx) (=A(L(Q)) for all z&W by Step 3.8. For z&W and
i€ A(2), we have 2, fx&T; and so (2, fx)eZ,. Since fxcint@ and [fy, fx]=fx,
there exists a neighborhood W’ C W of fy such that [z, fx]€Q. For z& Wi(fy)
NW' we have 2=[[z, fx], fy]€Q. Put U=V NW’, then Wi(fy)NUCQ for
o=s,u and so fy€int@ by Step 3.11. Thus f(Wi(x)Nint P)C Wi(fx)NintQ
by Step 3.15. Similarly we have f~}(W¥(fx) NintQ)C W¥(x) Nint P.

To show that P is a Markov partition, it remains only to show that &P
has 6) in the definition of Markov partitions.
For PP, define

P ={xcP|PDWix)NU for all neighborhoods U of x}
and
9P = {xcP|PDW;x)NU for all neighborhoods U of «}.

Then we have dP=09°P U9“P by Step 3.11. Put B°=U pcp0°P for a=s, u.
Then U pe@dP=B'UB*. Thus the conclusion of Claim 3 is followed by the
following Step.

Step 3.17. fB°CB’ and f'B*C B*.

Proof. For x&B’ there exists P € P such that x€ 3'P. By (L.7) we
have

Upeeint (PN f7Q) =int(Ugea(PNfTQ)).

Therefore Ugegint PN f'int@=int P=P, and so there exists QEP such
that xint P N f'int Q. Assume that fxeQ\9°Q. Then there exists a
neighborhood U of fx such that U N W%(fx)cQ. Clearly f7'U is a neighbor-
hood of ». By Step 3.15, f'U N Wi(x)C f~Y(U N Wi(fx))cP. By (L.3) there
exists a neighborhood V of x such that Wi(x) NV C Wi(x). Thus (V'NfU)N
Wi(x)CP and so x€9°P. This is a contradiction. So we have fx€3°QC B’
and fB°C B*. Similarly we have f™'B“C B*.
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Proof of Claim 4. Let ¢>0 be a number such that 2¢ is an expansive con-
stant for f and P be a Markov partition for (X, f). By (L.9) we can assume
that max {diam P |PeP} < /2. It is easy to check that Wi(x) NP C W7 ,(x)
for all x&€ P (€P) and for a=s, u. Thus Wip(x)N\ Wip(y)=+0 for all x,yesP
(). Fix x&X and define

T(x) = {PEP|P N W :p(x)+0}
and
Y¥(x) = {yeX|W:p(y) NP+ for some PeT"(x).

It is easily checked that Y,,(x)C Y*(x)C Y () for all x& X. Since P is finite,
so is {I¥(x)|x€X}. It is clear that Y*(x)=Y*(y) whenever I'(x)=T"(y).
Therefore {Y*(x)|x< X} is finite. By (L.5), there exists >0 such that
A,NY, Y, Then Y (y)NB,(x)=Y,(y) NB,(x) for all x&€ X and all
yEB,(x). Clearly we have Y,(y)NB,(x)=Y ¥(y)NB,(x) for all x&X and all
y &€ B,(x). Therefore {Y (y)NB,(x)| y € B,(x)} ={Y*(y) N B,(x)| yE B,(x)} is
finite for all x€ X.

4. Applications
This section contains some applications of our theorem.

Let S be a finite set, and o be the shift automorphism of SZ. The usual
product topology is given to SZ and elements of SZ will be written as x=(x,),ez-
Let = be a o-invariant closed subset of SZ. A system (=, o) is said to be a
subshift. A subshift (3, o) is said to be of finite type is there exist n€N and
a subset B of S” such that

S ={xeS8%|(x;, Xiry, s Xiyu)EB foralliceZ} .

A subshift (=, o) is said to be sofic if there exists a subshift (3, ¢') of finite type
such that (3, o) is a factor of (', '), i.e., there exists a continuous surjective
map ¢: 3'—3, such that cop=¢pos’. Remark that a sofic subshift does not have
POTP unless it is of finite type ([37]).

Application 1. A4 subshift (2, o) of (S%, o) has Markov partitions if and
only if it is sofic.

Proof. If (2, o) of (S%, o) has Markov partitions, then (=, o) is a factor of
a subshift of finite type (c.f., see [15]), and so (2, o) is sofic. Conversely, let
(=, o) be sofic and W be the set of words which occur in =. For we W, define
Fw)={w'eW|ww & W}. Since (T, 0) is sofic, {F(w)|we W} is finite, i.e.,
(%, o) is F-finitary ([38]). For x=(%,)iczE=, F,=F(x_,, X_(4p), **, %) (n=0)
is a decreasing sequence of W. Since {F(w)|we& W} is finite, there exists N=0
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such that F,=F, for all n=N. Put F(x) =Fy. Clearly {F(x) lxeZ}c
{F(w)|lweW}. Let G(x)={yeXZ|(y, ---,y,,)eﬁ‘(x) for all n=1} for x 3.
For x, yEZ3, define 2=(2;);cz; € S% by 2;=x; for i<0 and 2;,=y; fori=1. Then
ze3, if and only if y=G(x). It is clear that {G(x)|x=3} is finite. Define the
metric on 3 by d(x, y)=max;cz 8(x;, y;)/2""! for x,yEZ, where §(x;,y;)=0 if
x;=y; and 1 if x;%y;. Put¢=1/3. Then 2¢ is an expansive constant and for

a,

Wix) = {ye=|y, =x  forall i=—1}
Wix) ={yesS|y; =«  forall i<1}.

Therefore we have that Y (x)={ye3|yeG(x), y,=x, and y_,=x_,} for all
xeX. Since {G(x)|x*&Z} is finite and S is finite, we obtain that {Y (x)|xE 3}
is finite. This shows that (3, o) satisfies condition (I) of our theorem and so
(=, o) has Markov partitions.

Let f be an expansive homeomorphism of a compact metric space X, and
¢>0 be a number such that 2c is an expansive constant for f. A point x&€X
is said to be a singular point if there exists a sequence {x,},cn such that x,—x
as n—oo and xé€int Y (x,) for all n€N. There are no singular points if (X, f)
has POTP.

Application 2. Pseudo-Anosov maps (for the definition, see [18]) have
Markov partitions, but not have POTP.

Proof. It is sketched in [17] that pseudo-Anosov maps have Markov
partitions. But this is easily obtained by our theorem. For, from the defini-
tion pseudo-Anosov maps are expansive and have condition (I) of our theorem.
Pseudo-Anosov maps do not have POTP since they have singular points by
definition.

Let f be a hyperbolic automorphism of r-dimentional torus 7. It is
known that (77, f) is expansive and has POTP. It is known also that for every
fixed point p& T" of f, there is a point p’(= p) T such that f"p’—p as n— 4 oo.

Application 3. Let f be a hyperbolic automorphism of T™ with fixed points
p and q. Let X be the quotient space of T induced by identifying p with q, and
g be the homeomorphism of X induced from f. Then (X, g) has Markov partitions,
but it does not have POTP.

Proof. Clearly (X, g) is expansive and has condition (I) of our theorem,
and so it has Markov partitions. Since p (=¢) is singular point in X, (X,g)
does not have POTP.
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In Applications 2 and 3, the number of singular points are finite. How-
ever we can consider the case with infinite number of singular points as fol-
lows;

Application 4. Let f be a hyperbolic automorphism of T" with fixed points p
and q, and p' (Fp)E T" be a point such that f"p’'— p as n—>-+4oco. Let X be the
quotient space of T induced by identifying p with q and f"p’ with f"p'+(qg—p)
(neZ), and g be the homeomorphism of X induced from f. Then (X, g) has Markov
partitions and has infinite number of singular points.

Proof. It is easy to check that (X, g) is expansive. (X, g) has Markov
partitions as in the proof of Application 3. Since f"p”’s are different singular
points, the conclusion is obtained.
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