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Given a commutative ring K, let U(K) be the group of units of K. If G
is an arbitrary group, represented by ring automorphisms of K, let D(K, G) be
the trivial crossed product of K with G, and k be the subring of K consisting
of all elements left fixed by G.

This note is devoted to perform a description of the first cohomology group
H'Y(G, U(K)) as the group of ring automorphisms of D(K, G) leaving K
pointwise fixed, modulo inner ones. This result holds under the assumption
that K is its own centralizer in D(K, G). Traducing this condition in terms of
the G-action on K, the description of H(G, U(K)) mentioned above provides,
in the Galois case, the first four terms of the exact sequence associated to a
Galois extension [2, 5.5, p. 31].

The author would like to thank Professor O. E. Villamayor for many useful
conversations about the subject.

Throughout this paper, all rings will be assumed to have units, and all
modules will be unitary. A subring will contain the unit element of the ring,
and a morphism of rings will preserve unit elements. The general notations
are given below.

Let k be a commutative ring, and K be any k-algebra. A (left) K-module
A, together with a operation (x, y) — x.y, which is associative, with unit element,
and k. 1-bilinear, will be called, for shortness, a k-algebra over K. 'The
definition of morphism of K-algebra over K is obvious.

If G is a group and K is a commutative ring, given a representation of G
by ring automorphisms of K, let D(K, G)=D denote the trivial crossed product
of K with G. This means that D is the free K-module K generated by G,
with multiplication defined by the formula

(aw,)(bw,) = as(b)ws, @, b K and s, teG,

where (w,);ec is the canonical basis of K. If & is the subring K of K
consisting of all elements left fixed by G, and w : G—D is the map s—w;,, then
D is a k-algebra over K and w is a multiplicative morphism. The pair (D, w)
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is characterized by the following universal mapping property: if 4 is any
k-algebra over K and m : G—4 is any multiplicative morphism, there exists
a unique morphism of k-algebras over K @ : D—A4 such that pw=m (¢ is
defined as the K-module morphism wg—m(s), s€G). Note that the ring
structure of D has w, for its identity element, and that the map x—xw, imbeds
K as a subring of D.

Let k be a commutative ring, and 4 be a k-algebra. If M is a two-sided
A-module, “M will denote the k-submodule {x&M; ax=xa, acA}. Note
that if 4 is a subalgebra of a k-algebra B, then “B is just the centralizer of 4 in
B; in particular, 44 is the center of 4. If @ and B are k-algebra endomor
phisms of 4, the two-sided A-module with additive group equal to the additive
group of M and actions axb= a(a)xB(b), a, b€ A and x&M, will be denoted
«Mp. Finally, set 4,(M)=4,M,.

Henceforth, unless otherwise specified, K is a commutative ring, G is a group
represented by ring automorphisms of K, and k=°K.

The following result will be needed for the anounced description of the
first cohomology group.

(1) Proposition. K is its own centralizer in D (i. e. *D=K) if and only
if 9(K)=0, for s€G and s=+1.

Proof. Explicitly, J(K)= {acK; as(x)=xa, xK}.
Sufficiency. Let acD, a=3Ya,w,, commute with all elements of K.
see

Since (w)sec is a basis of D, as a K-module, and (s(x)w,)w,= s(x)w,=w,(xw,),
for s& G and x= K, from the relation

a(xw,) = (xw,)a, xe K,
it follows that
a;s(x) = xa,, s€G and xeK.

Therefore, a,€ J(K), for all s€G, and so, a=aw,.
Necessity. Given s&G, if ac J(K), then

(awS)(xwl) = (xwl)(aws)) xeKk,

and so, aw,ce¥D=K. Hence, if s+1, a=0.
In the rest of the paper, it will be assumed that J(K)=0, for s€G and s+1.
Then,

(2) Corollary. D is a central k-algebra.

Proof. If a is in the center of D, then a=cw,, for some c=K, because K
is its own centralizer in D, But,
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wy(cw,) = (cw,)w;, s€G,
and so,
s(c) = ¢, s€G.
Since c is left fixed by all elements of G, c€k.

If % is a commutative ring, K is a k-algebra and 4 is a k-algebra over K,
Ox(A) will denote the group of (k-algebra over K) automorphisms of 4, and
9x(A) will denote the subgroup of inner automorphisms of 4. If » is a unit
of A, which defines an inner automorphism o of 4, an element x& 4 is left fixed
by o if and only if # commutes with x. Thus, %4, and it is proved the
following

(3) Corollary. If o, is the inner automorphism of D defined by a unit u of
K, x—uxu, then g (D)= {o,; ucU(K)}.

Passing to the cohomological context, if feZ (G, U(K)), let p(f) be the
endomorphism of the K-module structure of D defined by

P(f)ws) = flsyw,, s€G.

Since (f(s)ws)sec is a basis of D, because f(s)eU(K), for all s&€ G, p(f) is a K-
module automorphism of D. The fact that f is a cocycle translates into the
formula

P(f)(wswt) = p(f)(wS)p(f)(wt)’ 5, teG,

and so, p(f)€0Ok(D). An easy computation, using the basis (w;);cs, shows
that the map p:ZY(G, U(K))—>Ok(D) is an injective group morphism.
Moreover, given a € Og(D), from the relation

wy(xw,) = (s(x)w,)w;, s€G and xeKkK,
it follows that
(a(wo)w;)(xw,) = (xw,)(a(w)w:?), s€G and xeK.

Hence, a(w,)w;"' commutes with K (elementwise), for all s& G. Now, applying
(1), for each s G there is an element f(s)E K, uniquely determined, such that
a(ws)w; =f(s)w,; but f(s) e U(K), since a(w,)w;'€U(D). A simple calculation
shows that f is a cocycle, and so, p(f)=a. Therefore, p isa surjective map.
Finally, given ueU(K), if f, is the coboundary defined by u (i. e.f,(s)=
us(u)”?, s€G), then p(f,)=0, Hence, applying (3),

P(BY(G, U(K))) = dx(D),
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and it is proved the following

(4) Theorem. The map p : Z{(G, U(K))—>Ox(D) is a group isomorphism,
and p(B(G, U(K)))=Ix(D).

(5) Corollary. Og(D) is an abelian group, and H'(G, U(K))=0Ox(D)/
9 (D).

(6) Corollary. If U(K)—>Ok(D) and U(K)—BYG, U(K)) are the maps

u—a, and u— f,, respectively, then the following diagram is commutative and exact:

1
U(k) 1 1
1 = Y(k) —> U(K) ———— Og(D) ———> Ox(D)/9x(D) —> 1

o-1

1— BY(G, U(K)) — ZY(G, U(K)) — HY(G, UK))—> 1

1 1 1
Hence, the following diagram is commutative and exact:
1 1
1 — U(k) —> U(K) — Z(G, U(K))— H(G, U(K)) — 1

14
1 — Y(k) —> U(K) ————> Ox(D) —> Ox(D)/Ix(D)—> 1

1 1

Finally, it will be shown that the description of H(G, U(K)) given in (5)
yields, in the Galois case, the first four terms of the exact sequence of a Galois
extension [2, 5.5, p. 31]. The key result is the Rosenberg-Zelinsky generalization
of the Skolem-Noether theorem [4, 3.7, p. 1112]:

Let k be a commutative ring, and P(k) be the projective class group of k. If
A is an Azumaya (i. e. central, separable) k-algebra, the map A : O (A)—P(k),
arcls(9,(A4)), is a group morphism, Ker A= 9,(A4), and Im A= {cls(P); AQsP
=/, as left A-modules}.

Since Ok (D) N (D)= Ix(D), the inclusion of Ox(D) in O(D) induces a
group monomorphism O g(D)/dg(D)—OD)/I«D), and so, (5) provides a
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group monomorphism HY(G, U(K))—OxD)/dD). '
Now, it will be assumed that G is a finite group, and that K is a Galois
extension of % (relative to G), in the sense of Auslander-Goldman [1, Appendix,
p. 396]. The last requirement holds if and only if K is a separable k-algebra,
and 4,(K)=0, for s&€ G and s==1 (that is, the general hypothesis of this paper)
[3, prop. 2, p. 344]. The assumption that K is a Galois extension of £k
guarantees that D is an Azumaya k-algebra (cf. (2) and [1, 5.1, p. 380]), and so,
the Rosenberg-Zelinsky theorem yields a group monomorphism A : H(G, U(K))
—=P(k), frocls (Ju (D). If € : P(k)—=H(G, P(K)) is the group morphism
cls (P)—cls (KQ®4P), then Imn = Ker &= {cls(P); K @,P~=K, as K-modules}.
C. Given a€O(D), a general result [5, 3.4, pp. 1111-2] guarantees that
the map p : D®pJ(D)—,D,, *Q@a—a.x, is an isomorphism of two-sided
D-modules. Supposing that a € Og(D), it follows that J,(D)c¥D=K. Thus,
if ¢ : KQpIo(D)>DRrIu(D) is the K-module morphism deduced from the
imbedding of K into D, u¢ induces a K-module morphism » : KQyJ,(D)—K.
It is clear that v is a monomorphism, because x and ¢ are monomorphisms.

Moreover, given x< K, it can be written in the form x=>" a,x,, with @, J (D)
1<igsn

and x;& D, 1<i<n, since y is an epimorphism (that is, D=9 ,(D). D). Hence,
if o;= S x, w,, with x;,€K, 1<i<n and s&G, then x= > ax;,€9,D). K;
=3 1<R

and so, » is an epimorphism.

D. Let P be a finitely generated, projective k-module, of rank one, such
that K® P=K, as K-modules. If f is such an isomorphism, the map ¢ : DQ,P
—D, defined by ¢p(w,Qx)=1f(1Qx)w,, s€G and x=P, is a K-module isomor-
phism (note that w,®x, with s&€G and x<P, are generators of D®,P, asa
K-module). Moreover, since o((w,Qx)w,)=f(1Qx)w,;=p(w,Qx)w,, s, tCG
and x P, @ is an isomorphism of right D-modules. Therefore, the argument
of [4, 3.7 (proof), p. 1113] provides a k-algebra automorphism of D, say «, as
follows: If g is a free generator of D®,P, as a right D-module, for each x&D
there is an element a(x)eD, uniquely determined, such that xg=ga(x). It
can be assumed that g (K ®,P); for example, take g=¢ *(w,), and apply the
commutativity of the diagram

KQ2P —1 > K

Thus, xg=gx, for all x K, since K is contained in the centralizer of (K& .P)
in DQ.P. Hence, a=Ok(D), and it is proved the following
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(7) Proposition. Let G be a finite group. If K is a separable k-algebra
(equivalently, K is a Galois extension of k, relative to G), then the sequence

1— HYG, U(K)) —— P(k) —— H(G, P(K))
is exact.
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