<table>
<thead>
<tr>
<th>Title</th>
<th>Elastic constant C11 of 12C diamond between 10 and 613 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nagakubo, A.; Arita, M.; Ogi, H.; Sumiya, H.; Nakamura, N.; Hirao, M.</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Physics Letters. 108(22) P.221902-1-P.221902-4</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-05-31</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/83929</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1063/1.4952613</td>
</tr>
<tr>
<td>rights</td>
<td>Copyright 2016 Author(s). This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Applied Physics Letters, 108(22), 221902, 2016 and may be found at https://doi.org/10.1063/1.4952613.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
Elastic constant C11 of 12C diamond between 10 and 613K
A. Nagakubo, M. Arita, H. Ogi, H. Sumiya, N. Nakamura, and M. Hirao

View online: http://dx.doi.org/10.1063/1.4952613
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/22?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
First principle study of elastic and thermodynamic properties of FeB4 under high pressure

Ab initio calculations on structural, elastic and dynamic stability of CdO at high pressures

Diamond's elastic stiffnesses from 322 K to 10 K

Elastic constants of monocrystal iron from 3 to 500 K
J. Appl. Phys. 100, 113530 (2006); 10.1063/1.2365714

Low-temperature elastic and piezoelectric constants of paratellurite (α-TeO2)
J. Appl. Phys. 96, 6201 (2004); 10.1063/1.1805717
Elastic constant C_{11} of 12C diamond between 10 and 613 K

A. Nagakubo,$^{1, a}$ M. Arita,1 H. Ogi,1 H. Sumiya,2 N. Nakamura,1 and M. Hirao1

1Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
2Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., Itami, Hyogo 664-0016, Japan

(Received 26 March 2016; accepted 7 May 2016; published online 31 May 2016)

We measured the temperature dependence of the elastic constant C_{11} of a 12C diamond monocrystal using picosecond ultrasonics between 10 and 613 K. We found that C_{11} is almost temperature independent below room temperature; the temperature coefficient around 300 K is -6.6MPa/K. Our results show a significantly higher Einstein temperature than reported values by $\sim 30\%$, indicating that diamond has a larger zero-point energy, which remains dominant around ambient temperature. We also calculated the temperature dependence of the elastic constants using ab-initio methods, resulting in good agreement with measurements. Our study shows that below-ambient-temperature measurements are not sufficient to extract the Debye temperature and the Grüneisen parameter of high-Debye-temperature materials.

Publishing by AIP Publishing.

V_a is the atomic volume. Using Eqs. (1) and (2), we can define the mode Grüneisen parameter, γ_ν, for each $C_\nu(T)$. The temperature dependence of elastic constants at low and high temperatures thus provides the intrinsic thermodynamic properties of a material.

The temperature dependence of the elastic constants of diamond still remains unclear due to measurement and synthesis difficulties. Because diamond has very large sound velocities, conventional ultrasonic methods require large specimens, but synthesis of a large and highly pure diamond is difficult. Moreover, the temperature dependence of elastic constants of diamond is so small that we must measure it over a wide temperature range to extract reliable Θ_E and γ_ν. For example, the lattice constant changes by only 0.6% standard deviation (SD), which exceeds the small stiffness change with temperature. For example, it is reported that C_{11} changes by a factor of -0.1% from 10 to 330 K.8

In this study, we synthesized a highly pure 12C diamond and measured the elastic constant C_{11} between 10 and 613 K using picosecond ultrasonics. Highly pure 12C diamond allows us to evaluate the intrinsic physical properties of diamond without any kind of impurity. 13C can be regarded as an isotopic impurity, which affects physical properties of diamond. Anthony and coauthors reported that thermal

Diamond is chemically, mechanically, and thermally stable, and it exhibits the highest thermal conductivity,1 hardness,2,3 and stiffness.4 This ultrastable nature allows very small temperature coefficients for the unit-cell dimension5,6 and elastic constants.7,8 These properties are essentially represented by the high Debye characteristic temperature Θ_D and the small Grüneisen parameter γ; Θ_D of typical solids is about 100–600 K (Ref. 9) and that of diamond is 2244 K.8 Θ_D relates to the plateau region of lattice constants and elastic constants at cryogenic temperatures. On the other hand, γ represents the lattice anharmonicity, which relates to the thermal expansion and temperature coefficients of elastic constants at higher temperature. γ typically takes values of 1–3,$^{10-16}$ and that of diamond is roughly unity.8

To describe the temperature dependence of elastic constants C_ν in a wide temperature T range, Einstein-Leibfried-Ludwig-Varshni’s $(E-L-L-V)$ equation is well applicable17

$$ C_\nu(T) = C_0 - \frac{s}{\exp(\Theta_E/T)-1}, \quad (1) $$

where C_0 is the elastic constant at 0 K, and s and Θ_E are a parameter governing the lattice anharmonicity and the Einstein temperature, respectively. Θ_E is proportional to Θ_D,18 and given by $\Theta_E = h\omega_E/k_B$, where h, ω_E, and k_B are the Planck constant, the Einstein frequency, and the Boltzmann constant, respectively. The dependence of $[\exp(\Theta_E/T)-1]^{-1}$ in Eq. (1) is derived from the Planck distribution function, involving the important parameter Θ_E/T, the ratio of vibration energy $h\omega_E$, and thermal energy k_BT. This ratio determines the plateau regions and the contribution of the zero-point vibrational energy at a finite temperature. Therefore, the temperature dependence of elastic constants at cryogenic temperatures allows us to evaluate the contribution of the zero-point vibrational energy. On the other hand, s relates to the temperature coefficients of elastic constants at higher temperature (lattice anharmonicity). For the temperature dependence of bulk modulus, Ledbetter derived a relationship between γ, s, and Θ_E.19

$s = \frac{3k_B\gamma(\gamma+1)\Theta_E}{V_a}$. \quad (2)

aakira.nagakubo@abc.me.es.osaka-u.ac.jp
conductivity of ^{12}C diamond was increased by 50% compared to that of natural-isotope-ratio diamond.21,22 Watanabe et al. reported that the band-gap energy of diamond can be controlled by 15.4 meV by changing the ^{13}C ratio between 0% and 100%.23,24 Although such a significant isotope effect was not reported concerning the lattice parameter, it is necessary to use a highly pure ^{12}C diamond to study the intrinsic elastic properties of diamond. ^{13}C has 8.3% higher mass, which affects the phonon frequency and then the Debye and Einstein temperatures. Therefore, the isotopic impurity of ^{13}C should be removed to evaluate the true nature of diamond.

Highly pure ^{12}C diamond was synthesized by a temperature gradient method under high pressure and high temperature.28,29 The nitrogen and boron concentrations were less than 0.1 ppm (undetectable by optical absorption analysis). The ^{12}C isotope ratio of the diamond was 99.995% (measured by a secondary ion mass spectrometer). Specimen size is about $2.5 \times 2.5 \times 0.6 \text{mm}^3$, and [100] directions lie in the thickness (0.6-mm) direction. To measure C_{11} using picosecond ultrasonics, we deposited a 10-nm Al thin film on a surface as a transducer by the radio-frequency magnetron sputtering method. Picosecond ultrasonics is one of pump-probe ultrasonics, which uses a femtosecond pulsed laser.30,31 The repetition rate, wavelength, and bandwidth of our Ti:sapphire pulsed laser are 80 MHz, 800 nm, and 7.0 nm, respectively. A femtosecond pump light pulse is absorbed in the Al film, leading to a transient thermal expansion and a strain pulse. A time-delayed probe light pulse enters the specimen normal to the incident plane and is diffracted backward by the strain pulse. The diffracted light and reflected probe light at the specimen surface interfere with each other. The amplitude and phase of the interfering light periodically change as the strain pulse propagates. This is called Brillouin oscillation, and its frequency f is given by Bragg’s diffraction law$^{32-34}$

$$f = \frac{2nv}{\lambda}.$$

Here, n and v are refractive index and longitudinal-wave sound velocity of diamond, respectively, and λ is the wavelength of the probe light. We converted λ from 800 nm into 400 nm by a second harmonic generator, and measured the precise wavelength by a spectrometer.35 We can then obtain the elastic constant $C_{11} = \rho v^2$, where ρ is the mass density.

We built two vacuum chambers for low-temperature36 and high-temperature37 measurements. The specimens were attached to heat exchangers, and both pump and probe lights were normally incident to them through a 20-times objective lens and a glass window. The chamber pressure during measurement was below 4×10^{-3} Pa. We controlled the temperature of the heat exchangers by liquid He and heaters. The temperature fluctuation during a measurement was less than 0.1 K. At each temperature, we measured f at several different points on the surface. The power of the pump and probe light pulses was 30 and 20 mW, respectively.

Observed Brillouin oscillations and corresponding fast Fourier transform (FFT) spectra are shown in Fig. 1. First, we determined the ambient-temperature value of C_{11} using the refractive index n and the mass density ρ; we measured n of ^{12}C diamonds by ellipsometry38 between 370 and 1000 nm. (For example, $n = 2.4522$ at $\lambda = 400.0 \text{nm}$.) ρ was calculated from the theoretical mass and volume of the unit cell and considered isotope effects for the mass and volume. We averaged reported values of lattice constants of natural-isotope-ratio diamonds.5,6,39,40 and considered the isotope effect.25 Then, we obtained $C_{11} = 1086.7 \pm 1.4 \text{GPa}$, which is 0.8% higher than reported values. The isotope effect on elastic constants was theoretically estimated and a monotonic increase in elastic constant with increasing ^{13}C was predicted. For a 100% ^{13}C diamond, it is predicted that the bulk modulus B increases by 0.18%.41 Although there are some controversial experimental results which suggest that elastic constants of ^{13}C diamond are higher or lower than those of ^{12}C diamond,$^{41-44}$ none predicts that C_{11} of ^{12}C diamond is higher than that of natural-isotope-ratio diamond by a factor of about 1%. Therefore, the 0.8% increase in the pure ^{12}C diamond disagrees with the theory and measurements. We consider that this is not the isotope effect, but caused by ambiguity in mass density since it is difficult to obtain ρ with 0.1% accuracy.

Next, we consider the temperature dependence of n and ρ. Hu and Hess measured n of nanocrystalline diamond films for $\lambda = 400 \text{nm}$ between 300 and 800 K.45 However, they ignored thermal-expansion effects on their analysis. Although they argued that the effects can be neglected, n at 673 K was overestimated by 0.1% without thermal expansion,46 which cannot be neglected in this study. Then, we used the temperature dependence of n reported by Ruf et al.46 Concerning the temperature dependence of ρ, Reeber and Wang evaluated numerous reports and derived a quasiharmonic-model function, which is available between 0 and 2000 K.40 This function was used in this work.

Moreover, adiabaticity must be considered because diamond exhibits a high thermal diffusivity and we observed high-frequency ultrasound. A thermal diffusion length for a period $\tau = 1/f$ is represented by $\sqrt{4D\tau}$ while ultrasound

![FIG. 1. (a) Observed Brillouin oscillations and (b) corresponding FFT spectra at typical temperatures.](image-url)
propagates \(v_t \). Here, \(D = \kappa / \rho C_P \) is thermal diffusivity, where \(\kappa \) and \(C_P \) is thermal conductivity and specific heat at constant pressure, respectively. If ultrasound propagates much faster than heat conduction \((4Df/v^2 \ll 1) \), we obtain the adiabatic sound velocity. On the other hand, we obtain the isothermal sound velocity when \(4Df/v^2 \gg 1 \).\(^{47}\) We calculated the temperature dependence of \(4Df/v^2 \) using the reported temperature dependence of \(\kappa \)\(^{48}\) and \(C_P \),\(^{46,49}\) whereas we considered \(f \) and \(v \) to be constant because their change ratios will not exceed \(0.2\% \) between 10 and 613 K. \(4Df/v^2 \) monotonically decreases as temperature increases above 30 K, and it is larger than unity below 480 K. Even at 613 K, \(4Df/v^2 \approx 0.6 \), indicating that we measured isothermal sound velocity at low temperatures (at 300 K, \(4Df/v^2 = 4.3 \)).

Therefore, we evaluate the difference between the adiabatic elastic constant \(C_{11}^A \) and the isothermal elastic constant \(C_{11}^I \). The difference is estimated by \(C_{11}^I - C_{11}^A = T(\beta B)^2/C_V \), where \(\beta \) and \(C_V \) are volume thermal expansion and specific heat at constant volume, respectively. Below 480 K, the difference is roughly \(0.1\% \) at most. For example, \(C_{11}^A \) and \(C_{11}^I \) agree within \(0.03\% \) at 300 K, which is less than measurement inaccuracy and therefore can be neglected. The difference reaches \(0.2\% \) at 613 K. However, \(4Df/v^2 \) falls below unity, indicating that we measured \(C_{11}^A \). The measured values, therefore, can be considered to be \(C_{11}^I \).

Obtained and reported temperature dependence of \(C_{11} \) is shown in Fig. 2. We fitted E-L-L-V equation\(^{11}\) to them and determined parameters are listed in Table I. Our results show weaker temperature dependence below room temperature, indicating that diamond has a larger zero-point energy than previously estimated. \(C_{11} \) at 300 K decreases by a factor of 0.04\% from 0 K in our measurements, which is less than a half of previous measurements (\(-0.08\% \) to \(-0.13\% \)).\(^{7,8}\) This finding suggests that physical properties of diamond must be discussed carefully below ambient temperature. The larger zero-point energy is quantitatively represented by \(\Theta_E \), which is higher than previous measurements by 30\%. We believe that our results are more reliable than previous reports because of the wider-temperature range of our measurements. Migliori \textit{et al.} and McSkimin and Andreatch measured the elastic constants only below room temperature, and it is noted that Migliori \textit{et al.} estimated their inaccuracy as \(0.3\% \) for \(C_{11} \).\(^8\) We estimate that our experimental error of \(C_{11} \) is less than \(0.2\% \); The measurement precision is determined by SD of \((f_{\lambda})^2 \), which was 0.12\% at most. The measurement accuracy of \(\lambda \) was within 0.03\%. We measured \(\lambda \) with two different spectrometers, which were corrected using an Hg-Ar calibration source. The measured \(\lambda \) agree with each other to within 0.03\%. The accuracies of \(n \) and \(\rho \) would be on the order of 0.1\%; however, their absolute values do not affect the temperature dependence of \(C_{11} \). Although there is uncertainty due to the adiabaticity, it leads to further smaller temperature dependence of \(C_{11} \) of diamond. We measured \(C_{11}^I \) which is smaller than \(C_{11}^A \), and the difference increases as the temperature increases. Therefore, our measurement results indicate that the adiabatic elastic constants of diamond exhibit much smaller temperature dependence than previously reported.

The anharmonicity of diamond is comparable to previous measurements. The anharmonicity is represented by the mode Gr"uneisen parameter \(\gamma_{11} \). Using the obtained parameters and Eq. (2), we obtained \(\gamma_{11} = 1.5 \), which is comparable to an estimated value of \(\gamma_{11} = 1.3 \) from Migliori \textit{et al.} as shown in Table I. However, the temperature coefficients of \(C_{11} \) of diamond around room temperature are suppressed by the high \(\Theta_E \) and \(\Theta_D \). To discuss the anharmonicity of diamond, our results should be compared to accurate measurements above room temperature.

Our measurement results are supported by \textit{ab-initio} calculation. We calculated the temperature dependence of elastic constants by the Vienna \textit{ab-initio} simulation package (VASP),\(^{50}\) using generalized gradient approximation (GGA)\(^{51}\) as the exchange correlation potential. The cutoff energy of plane wave and the \(k \)-point mesh are 1300 eV and \(10 \times 10 \times 10 \), respectively. Calculated lattice constant and elastic constants agree with experimental values within

<table>
<thead>
<tr>
<th>References</th>
<th>(C_0) (GPa)</th>
<th>(s) (GPa)</th>
<th>(\Theta_E) (K)</th>
<th>(\gamma_{11})</th>
<th>(dc_{11}/dT) (MPa/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12} \text{C}) (this work)</td>
<td>1087.3</td>
<td>33.0</td>
<td>1263</td>
<td>1.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Theory (this work)</td>
<td>1051.2</td>
<td>50.0</td>
<td>1439</td>
<td>1.7</td>
<td>6.7</td>
</tr>
<tr>
<td>McSkimin and Andreatch</td>
<td>1080.8</td>
<td>36.3</td>
<td>986</td>
<td>1.8</td>
<td>16.0</td>
</tr>
<tr>
<td>Migliori \textit{et al.}</td>
<td>1079.3</td>
<td>22.0</td>
<td>996</td>
<td>1.3</td>
<td>9.5</td>
</tr>
</tbody>
</table>

TABLE I. For \(C_{11} \), determined fitting parameters \(C_0, s, \) and \(\Theta_E \) in Eq. (1), and obtained mode Gr"uneisen parameter \(\gamma_{11} \) and temperature coefficient of \(C_{11} \) around ambient temperature. Reference data are from McSkimin and Andreatch\(^7\) and Migliori \textit{et al.}\(^8\).
0.1\% and 3\%, respectively. To calculate the elastic constants between 10 and 613 K, we changed the initial cell size on the basis of the reported thermal expansion, and applied ±1\% strains to the cell. The calculated temperature dependence of C_{11} with fitted E-L-L-V equation is shown in Fig. 2(b), which well agrees with that of the present measurements (12C diamond) between 10 and 400 K. Note that our theoretical calculation fails to reproduce the previous measurements as shown in Fig. 2.

The agreement between the measurements and calculations allows us to estimate the Grüneisen parameter from the calculated temperature dependence of the bulk modulus $B(T)$; from Eqs. (1) and (2), we obtained $\gamma = 1.21$. Moreover, by assuming the Debye model, $B(T)$ at cryogenic temperatures can be expressed by the following T^4 law:

$$B(T) = B_0 - \frac{3\pi^4 k_B \Theta_D (\gamma - 1)}{5V_a} \left(\frac{T}{\Theta_D}\right)^4. \tag{4}$$

Because Eq. (4) is only applicable at low temperatures where only long-wavelength phonons are excited, we fitted Eq. (4) for the calculated $B(T)$ below $\Theta_D/10 \approx 220 K$, leading to $\gamma = 1.32$. Note that we obtained $\gamma = 0.81$ using Eq. (4) and calculated $B(T)$ between 0 and 613 K. Migliori et al. reported $\gamma = 1.26$ from their measurements and Eq. (4), and $\gamma = 1.10$ from the lattice specific heat ($\gamma = BB/C_V$). Our calculation provides us with comparable Grüneisen parameters to experimental values.

In conclusion, we have measured the temperature dependence of C_{11} and evaluated harmonic and anharmonic properties for highly isotopically pure 12C diamond. Our results show smaller temperature dependence below room temperature, which indicates that the zero-point vibrational energy of diamond is still dominant at room temperature, suggesting that the Debye temperature of diamond is higher than previously reported values ($\sim 2200 K$). The mode Grüneisen parameter γ_{11} is 1.5, which is comparable to a previous measurement. We also calculated the temperature dependence of the elastic constants by ab-initio calculation considering lattice expansion. Calculation results agree well with our measurements. From the calculated temperature dependence of B, we estimated the Grüneisen parameter $\gamma = 1.2$–1.3 using the Debye model and E-L-L-V equation.
