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Surface waves are often excited by interdigitated transducers consisting of many nanostrips attached on a
substrate, and it has been recognized that the mass and stiffness of the attached nanostrips affect surface-wave
resonances to some extent. Here, we reveal the more noticeable influence of the interfacial stiffness between strips
and substrate at high frequencies. This influence is confirmed by exciting and detecting surface-wave resonances
up to ∼ 6 GHz by picosecond ultrasound spectroscopy. The resonance frequency significantly decreases and
attenuation increases as the interfacial stiffness decreases for silicon substrate. However, low-attenuation branches
appear along the Rayleigh-wave-resonance dispersion curve for silica substrate, and the resonance frequencies
remain nearly identical to those of the Rayleigh waves. Previous models fail to reproduce these surface-wave
resonance behaviors. The proposed theoretical model, involving the interfacial stiffness, consistently explained
them, indicating the importance of the interface bond strength in designing surface-wave resonators.

DOI: 10.1103/PhysRevB.93.024112

I. INTRODUCTION

Surface-wave propagation on periodically modified struc-
tures has been intensively studied [1–4] because of its rele-
vance to acoustic resonators, where interdigitated-transducer
electrodes, composed of many metallic nanostrips, are attached
on surfaces to excite and detect surface-wave resonances.
Glass et al. proposed a theoretical model for surface waves
propagating on a grating surface of arbitrary periodic profiles
[5] and expanded its analysis for leaky surface waves [6].
Yantchev et al. [7] theoretically studied interaction between
surface waves and Lamb modes for a plate with metallic strips
on its surface and found the coexistence of two independent
eigenmodes associated by the periodic grating. Maznev and
Every [8] analyzed the periodic mass-loading effect on a soft
thin layer on the substrate surface and found some important
surface-wave propagation behaviors, including a large band
gap inside the Brillouin zone caused by the hybridization of
the Rayleigh and Sezawa modes.

Despite the numerous studies on surface-wave propagation
behaviors, the influence of the bond strength at the interface
between deposited strips and the substrate surface was less
studied, and we here reveal that it significantly affects the
sound velocity and attenuation of leaky surface waves at high
frequencies. Because operating frequencies of surface-wave-
resonator devices are being raised due to lack of a communica-
tion frequency band, this result poses a highly practical impact
as well. Using picosecond ultrasound spectroscopy [9–12],
we measure surface-wave resonance frequencies on substrates
on which copper nanostrips are attached. The surface-wave
resonance frequency is significantly lower than the Rayleigh-
wave resonance frequency on silicon substrate, regardless of
the much smaller thickness of the attached strips than the wave-
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length. On the other hand, it is identical to the Rayleigh-wave
resonance frequency on silica substrate. Previous theoretical
models fail to reproduce these observations, and we propose an
alternative model considering the interfacial stiffness as well
as the mass-loading effect. Our theoretical calculation con-
sistently explains these resonance behaviors, demonstrating
that the bond strength at the interface dominates the resonance
frequency and attenuation of surface waves at high frequencies.

II. THEORY

The two-dimensional space of the x1-x3 plane is considered.
The half space of x3 > 0 defines an isotropic substrate, and
the strips are connected with elastic springs. (We regarded
the Si substrate as an isotropic material for simplicity
and used aggregated elastic constants C11 = 184.5 GPa
and C44 = 66.24 GPa. For silica, we used C11 = 73.8 GPa and
C44 = 25.0 GPa.) The spring constants per unit area along
in-plane and out-of-plane directions are denoted as K1 and
K3, respectively (Fig. 1). Because the surface waves originate
from the strips, displacements in the substrate, u1 and u3,
can be expressed by superimposing partial waves with in-
plane Bloch-harmonics wave numbers kn

1 (n = 0, ±1, ±2,...)
[6,8,13]:

u1 =
∑

n

{
Ank
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1 ei(kn
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Here,

kn
1 = k1 + 2πn

d
, (3)

and kLn
3 and kSn

3 are corresponding wave numbers along the x3

direction for longitudinal and shear waves, respectively, given
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FIG. 1. (a) Two-dimensional model with interface spring con-
stants, (b) displacements of nanostrips and those in substrate, and
(c) scanning-electron-microscopy image for nanostrip lines with
period d = 1000 nm fabricated on the silicon substrate.
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CL,S means longitudinal-wave (CL) or shear-wave (CS) veloc-
ity in the substrate. Because the displacements of strip (denoted
by ũ1 and ũ3) arise, responding to the surface deformation, they
are also expanded with Bloch-harmonics terms:

ũ1 =
∑

n

Cnk
n
1 ei(kn

1 x1−ωt), ũ3 =
∑

n

Dnk
n
1 ei(kn

1 x1−ωt). (5)

There are two kinds of boundary conditions. First is the balance
between the stress and spring force on the substrate surface:

ρC2
S

(
∂u1

∂x3
+ ∂u3

∂x1

)
− K1(u1 − ũ1) = 0, (6)

ρ
(
C2

L − 2C2
S

)∂u1

∂x1
+ ρC2

L
∂u3

∂x3
− K3(u3 − ũ3) = 0, (7)

where ρ denotes the mass density of the substrate. Second is
the balance between the inertia force and spring force at the
strip:

ρs(x1)
∂2ũj

∂t2
+ Kj (ũj − uj ), j = 1,3. (8)

Here, ρs(x1) expresses the area mass density for the attached
strips, and it can be expanded with the Bloch-harmonics
components as [7]

ρs(x1) =
∞∑
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Here, h and w are height and width of the strip, respectively.
Substituting the displacements [Eqs. (1), (2), and (5)] and
mass distribution [Eq. (9)] into the boundary conditions
[Eqs. (6)–(8)], we obtain linear equations for individual

n values:(
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For obtaining meaningful solutions for nonzero coefficients
An, Bn, Cn, and Dn, the determinant of the matrix constructed
by the system of equations [Eqs. (11)–(14)] should be zero,
yielding the frequency equation. A careful concern has been
paid for defining the complex wave numbers k

L,Sn
3 in Eq. (4).

Leaky surface waves, possessing positive imaginary parts in
kn

1 [Im(kn
1 ) > 0], radiate bulk waves propagating toward inside

the substrate, whose wave numbers k
L,Sn
3 show positive real

parts. Because the imaginary part of (kL,Sn
3 )2, which equals

−2Re(kn
1 )Im(kn

1 ), must be negative for positive k1 and n

values, imaginary parts of k
L,Sn
3 should be negative, implying

exponentially increasing amplitude with increase in x3. This
is, however, physically correct as discussed previously [6].
The demand Im(kn

1 ) > 0 for leaky surface waves accepts the
infinite surface-wave amplitude at x1 → −∞, and the bulk
wave radiated from the source at x1 → −∞ shows the infinite
amplitude, where x3 becomes infinity at a finite time.

We solved the frequency equation for a given real part of
the surface-wave wave number Re(k1), seeking the frequency
w and the imaginary part of the wave number, the latter
of which corresponds to attenuation of leaky surface waves.
Contributions of partial plane waves becomes less significant
as n and m increase, and we find that involving components up
to 10 gave sufficiently convergent solutions in our experimental
condition. Thus, we involved harmonics up to |n|, |m|=10.

III. EXPERIMENTS

We used the electron-beam-lithography method to fabricate
the copper nanostrips on (001) Si and amorphous SiO2

substrates. 5-nm chromium thin film was first deposited for
making adhesion strength higher, and then 25-nm copper
thin film was deposited. (In the theoretical calculation, we
regarded the strip as composed of only copper because of close
mass density between chromium (7190 kg/m3) and copper
(8940 kg/m3).) After lithographic procedures, 499 strip lines
remained on the surface with a period d. The length, width w,
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FIG. 2. (a) Reflectivity change of probe light pulse observed
for nanostrip specimen with d = 650 nm fabricated on the silicon
substrate and (b) its Fourier spectrum.

and thickness h of a single strip were 5000, 300, and 30 nm,
respectively. We varied the period d between 600 and 1500 nm,
making 17 nanostrip specimens on each substrate. Figure 1(c)
shows a scanning-electron-microscopy image of the fabricated
strip lines with d = 1000 nm.

As for the picosecond ultrasound spectroscopy, we used a
mode-locking titanium-sapphire pulse laser with 200-fs pulse
width. The pump (800 nm, 50 pJ) and probe (400 nm, 50 pJ)
light pulses are applied normally at the center area of the
nanostrip lines. Diameters of the light pulses are about 80 μm,
indicating that nearly 80 strips are excited simultaneously to
generate surface waves through the transient thermal expan-
sion, which interfere with each other to cause the standing
wave with wavelength close to the strip-line period. The
surface-wave resonance is detected by the probe light pulse
through its reflectivity change. Details of our optics appear
elsewhere [14]. Figure 2(a) shows the typical reflectivity
change observed for the nanostrip-attached specimen with
d = 650 nm on the silicon substrate, which clearly shows the
resonance peak near 6 GHz in its Fourier spectrum [Fig. 2(b)].

IV. RESULTS AND DISCUSSION

Figure 3 shows main results in this study. The reso-
nance frequencies were measured with standard deviations
smaller than 1% among five independent measurements for
all specimens. The measured frequencies (solid circle plots)
are significantly lower than the Rayleigh-wave resonance
frequencies (frequencies of Rayleigh wave with wavelength
d) on the nanostrip-attached silicon at high frequencies, as
shown in Fig. 3(a). One may attribute this to the mass-loading
effect, because as the period decreases, the volume fraction of
the heavier strip increases. For investigating this, we calculated
the resonance frequencies based on the mass-loading model
proposed previously, where the mass distribution in Eqs. (9)
and (10) was considered in the boundary condition for the
balance between inertia force caused by the mass and the
surface stress [8]. The result is shown with the black solid line.
Involving the mass-loading effect, the resonance frequency is
lowered, but it is still insufficient to explain the significant
frequency decrease at a high-frequency region; the measured
frequency is lower by 20% for the smallest-period specimen.
More importantly, the resonance frequencies are identical
to those of the Rayleigh-wave resonance in the case of the
silica substrate [Fig. 3(b)]. In this case, the mass-loading
effect should be more noticeable because of lighter substrate.
However, the measured resonance frequencies remain nearly

FIG. 3. Relationship between surface-wave resonance frequency
and reciprocal period. Solid circles are experiments, and solid black
and red lines are calculations with the mass-loading model and the
interface-stiffness model in this study, respectively. Broken lines
are Rayleigh-wave resonance frequency and shear-wave resonance
frequency. (a) Results for silicon substrate. Numbers indicate the p

value. (b) Results for silica substrate with p = 0.01.

unchanged from the Rayleigh-wave resonance frequencies of
the substrate.

Previous studies with finite element methods indicated
that the geometrical effect of the strip line could cause
significant difference to the mass-loading calculation [15–17],
and we investigate its contribution to our experimental results.
The duty cycle w/d (or filling fraction) of our specimen
is between 0.2 and 0.5, and it increases as the reciprocal
period increases. The geometrical effect in this duty-cycle
region would increase the frequencies of eigenmodes [15],
which fails to explain more significant frequency decrease
on the strip-attached silicon than the mass-loading effect
[Fig. 3(a)]; the frequency decrease becomes remarkable as the
reciprocal period increases. Sadhu et al. [16] also indicated that
the geometrical effect produced the eigenmode frequencies
higher than the mass-loading model, which cannot explain
the significant downward shift in Fig. 3(a). (Their calculation
always predicted higher frequencies than the mass-loading
effect.) The geometrical effect will thus fail to explain both
the significant downward frequency shift for the silicon
substrate and unchanged frequency for the glass substrate
simultaneously. Thus, the previous models cannot reproduce
highly decreased frequencies on silicon substrate and nearly
unchanged frequencies on silica substrate.

We therefore propose the alternative model involving the
interface stiffness. The key is the spring-constant value at
the interface [K1 and K3 in Fig. 1(a)]. The interatomic bond
inside crystalline material is fairly strong compared with the
interface bond, and the spring constants per unit area can be
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estimated by shear modulus and Young’s modulus divided by
height of the material for in-plane and out-of-plane directions,
respectively. These values are KCu

1 = 1.5 × 1018J/m4 and
KCu

3 = 4.2 × 1018J/m4 inside the 30-nm-thick copper nanos-
trip. The interface spring constant must be much smaller than
these values, although they are highly ambiguous. We refer
to the bond strength at the grain boundary of polycrystalline
material for this, because the grain boundary shows weaker
interatomic bonds than the inside crystal [18,19]. Zhang et al.
[20] calculated the grain-boundary stiffness using a molecular
dynamic calculation, from which we estimated the spring
constant at the grain boundary to be about 0.4 ×1015J/m4, and
from the calculation by Foiles and Hoyt [21], it is estimated to
be ∼ 5 × 1015J/m4. These values are much smaller than those
inside crystal, although their calculations were performed at
high temperatures (>∼ 1000 K) and they could be at least
one-order higher at room temperature. Then, we introduce a
parameter p showing the bond strength at the interface defined
as K1=pKCu

1 and K3=pKCu
3 and investigated the surface-

wave propagation behavior for p � 0.01. (We assumed the
same p value for the two direction stiffness for simplicity,
because we find that the contributions on K1 and K3 are nearly
identical, and this assumption does not affect the principal
results in this study.)

Figure 4 shows dispersion relationships for surface waves
on the Si substrate with nanostrips of d = 600 and 1000 nm
when p = 0.4. The frequency decreases from that of the
Rayleigh wave as the in-plane wave number increases, and
this trend becomes more remarkable for smaller d. For
d = 600 nm, the dispersion relationship shows band gaps not
only at the Brillouin-zone boundary at k1=kB(=π/d), but also
inside the Brillouin zone. Figure 5 shows attenuation changes
along the branches indicated by arrows in Fig. 4. Surface-wave
attenuation increases as the wave number moves toward
the � point [Re(k1) = 2kB]; this trend becomes remarkable
as the strip period becomes smaller. Figure 6 displays the
detailed relationship between the dispersion curves and the
corresponding attenuation. Very high attenuation occurs near
the crossing points with the dispersion lines of bulk waves for
the grating with d = 600 nm (indicated by arrows), indicating
that highly leaky surface waves appear near those points
because of the mode coupling into bulk waves.

Because we measure the standing surface-wave resonances,
we focus on the �-point frequencies for comparing our theory
with experiments. Figure 7 shows the relationships between
the �-point frequency and the reciprocal period with various p

values for the Si substrate. It is clearly shown that the resonance
frequency significantly decreases and attenuation increases
at the high-frequency region as the interface bond weakens.
Thus, the high impact of the interfacial stiffness appears in the
surface-wave resonance behavior; a drastic frequency decrease
could be caused by lowered interface bonds.

As for the silica grass substrate, we assumed a very low
interfacial stiffness with p = 0.01. This is acceptable because
of the lower thermal expansion coefficient of silica, which
causes large residual stress at the interface with the metallic
(high-thermal-expansion material) strips and induces interfa-
cial defects, leading to highly reduced interfacial stiffness.
Actually, this was easily confirmed with ultrasonication of
the specimen inside water; ultrasonic irradiation easily caused

FIG. 4. Dispersion curves calculated for nanostrip specimens
with d = 600 and 1000 nm on silicon substrate for p = 0.4. Broken
lines are dispersion curves for Rayleigh wave (RW), longitudinal
wave (LW), and shear wave (SW).

detachment of the strips from the silica substrate, even with an
ultrasonic power, with which strips remained attached on the
silicon substrate.

FIG. 5. Attenuation changes along the second branches indicated
by arrows in Fig. 4.
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FIG. 6. Dispersion curves with attenuation color gauge for Fig. 4.
The white broken lines are dispersion lines for longitudinal wave
(LW) and shear wave (SW). Arrows indicate the crossing points
between dispersion curves for surface waves and bulk waves, at which
highly leaky surface waves occur.

As shown in Fig. 8, the relationship between the �-
point frequency and the reciprocal period becomes more
complicated for the silica substrate. However, we find that
many low-attenuation branches appear along the Rayleigh-
wave-resonance line, indicating that the resonance frequencies
can be identical to those of the Rayleigh-wave resonance.
This trend remains unchanged for other smaller p values (i.e.,
p = 0.01 is not a special case.).

FIG. 7. Relationship between the �-point frequency and recip-
rocal period with attenuation color gauge for silicon substrate with
p values between 0.1 and 5.0. The white broken line indicates the
Rayleigh-wave resonance.

FIG. 8. Relationship between the �-point frequency and re-
ciprocal period with attenuation color gauge for silica substrate
with p = 0.01. The white broken line indicates the Rayleigh-wave
resonance.

These calculation results are compared with the experi-
ments in Fig. 3 with solid red lines. For the silicon substrate,
our model with p = 0.4 explains the depression of the
resonance frequency at the high-frequency region, and for
the silica substrate, the low interfacial stiffness reproduces the
frequencies identical to those of the Rayleigh-wave resonance.
Narrow gaps appear in our model [red curves in Fig. 3(b)] and
some experimental points lie close to these gaps. However, they
are so narrow that the resonance modes on the nearest-neighbor
branches will be excited because of certain ambiguity in the
strip periods. The low attenuation near the small gaps will also
allow the excitation of a nearest-neighbor branch mode.

The essence of these phenomena can be understood with
a simple mass-spring oscillator. Consider a series of two
mass-spring systems, where a large mass (M) is connected
with a rigid wall with a strong spring (spring constant K),
and a small mass (m) is connected with the large mass
with a soft spring (spring constant k). The large mass and
strong spring components correspond to the substrate (the
principal oscillator), and the small mass and soft spring
components correspond to the added strip with the interface
spring in our model. This vibrational system has two resonance
frequencies (ωL and ωH ), and they are easily calculated.
Figure 9 shows their changes for various k values. When
the interface stiffness k is sufficiently large, the original
resonance frequency (=√

K/M), which corresponds to the
Rayleigh-wave resonance frequency in our model, decreases
to

√
K/(M + m), indicating the mass-loading effect. This

phenomenon can be confirmed in our model in Fig. 3(a),
where as the p value increases the resonance frequency value
approaches the prediction by the mass-loading model. As
the interface stiffness k decreases, the frequency becomes
significantly lower than

√
K/(M + m) because the overall

stiffness decreases; for example, ω can be lower than the
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FIG. 9. Resonance frequencies of a two-mass-spring oscillator
versus interfacial spring constant k for K = 1, M = 1, and m = 0.1.

original frequency by 20% at k/K = 0.1. This corresponds
to the case for the silicon substrate. When the interfacial
stiffness k becomes very low, for example, k/K = 0.01, the
principal frequency becomes nearly the same as the original

frequency, while the low-frequency mode appears at a very
low frequency (ω ∼ √

k/m). This case will be equivalent to
the silica-substrate case, where the system is less sensitive to
the added mass because of the very low interfacial stiffness.
Low-frequency branches near 1.7 GHz in Fig. 3(b) thus
correspond to the low-frequency modes localized at the strips.

V. CONCLUSION

Surface-wave resonances on substrates with periodically
aligned nanostrips are systematically studied with picosecond
ultrasonic spectroscopy. The strip thickness is only 5% or less
than the surface-wave wavelength, but it significantly affects
the resonance frequency on the Si substrate; the mass-loading
model fails to explain the depression. The frequency decrease
was, however, absent on the silica substrate despite a lighter
material. The proposed model here, involving the interfacial
stiffness between strips and substrate, consistently reproduced
these experimental results. Our theoretical model shows that
the resonance frequency and attenuation of the surface-wave
resonance on strip-attached substrates are highly dependent
on the interface bond strength, indicating the necessity of
considering the interface stiffness in designing high-frequency
surface-wave acoustic resonators.
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