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Heat conduction possesses (thermal) modes in analogy with acoustics even without oscillation. Here, we
establish thermal mode spectroscopy to measure the thermal diffusivity of small specimens. Local heating
with a light pulse excites such modes that show antinodes at the heating point, and photothermal detection
at another antinode spot allows measuring relaxation behavior of the desired mode selectively: The
relaxation time yields thermal diffusivity. The Ritz method is proposed for arbitrary geometry specimens.
This method is applicable even to a diamond crystal with ∼1 mm dimensions.
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Thermal conductivity κ, the proportionality factor between
the heat flux density and temperature gradient in Fourier’s
law, is an important parameter in condensed matter physics.
Dynamically, it governs heat diffusion behavior based on the
heat equation:

∂T
∂t −

κ

Cρ
∇2T ¼ 0: ð1Þ

Here, T, t, C, and ρ denote the temperature, time, specific
heat, and mass density, respectively. Many methods were
proposed for measuring thermal conductivity. Statically, it
was determined by measuring the temperature gradient in a
specimen with a known power input [1–3]. However, such a
steady-state approach needs sufficiently large specimens. For
smaller specimens, it has been dynamically evaluated using
the heat-transport phenomenon with Eq. (1); heating a
specimen periodically [4–9] or transiently [10–13] and
detecting the temperature change at a specific point, the
thermal diffusivity α ¼ κ=Cρ was extracted by comparing
the measured temperature response with the corresponding
theoretical model, and then κ was obtained from a known
specific heat and mass density.
All the existing dynamic methods use the propagation of

heat and require the condition that the heat diffusive wave-
length must be adequately smaller than the specimen
dimension. This requirement prevents us from determining
thermal conductivity with high accuracy for very small
specimens. The ultrafast pump-probe laser method was
proposed for local thermal diffusivity, but coatings needed
for the heat source and heat detection for transparent
materials highly affected the thermal diffusivity measure-
ment because of a large contribution of the interface
conductance to heat resistance in such a localized region [14].
In this Letter, we propose a very simple but accurate

method for measuring the thermal diffusivity of small solids
based on a new concept, thermal mode in heat conduction.
To understand its essence, it is helpful to compare this
method with acoustic resonance. For measuring the elastic
constants of a solid, one uses the pitch-catch method, for
example, where the traveling time and distance of an elastic
wave are measured to determine the sound velocity and the

corresponding elastic constant with a known mass density.
This method thus uses the propagation of sound and is
therefore inapplicable to small specimens because of the
overlapping of pulse echoes; the specimen must be larger
than the wavelength of the sound. (This limitation is
equivalent to that in the existing dynamic methods for
thermal diffusivity as mentioned above.) An acoustic
resonance method has been alternatively used for such a
tiny specimen: A natural resonance frequency of a solid
provides us with the effective elastic constant with known
dimensions and mass density. Thus, the acoustic resonance
method uses vibrational modes and becomes more effective
for smaller specimens, where acoustic energy is well
confined to excite the modes strongly. Measuring many
resonance frequencies allows us to determine all the inde-
pendent elastic constants of small solids, known as resonant
ultrasound spectroscopy [15,16]. Note that the mode iden-
tification becomes the key for the successful determination
of the elastic constants in the resonancemethod [17,18]. The
proposedmethod in this Letter corresponds to the resonance
method in acoustics; it is effective even for smaller spec-
imens, but correct mode identification is required.
Compared with the damped wave equation, the heat

equation [Eq. (1)] can be regarded as the wave equation
with a quite large damping system, where the inertia term
becomes negligible. (Heat conduction actually behaves like
sound under special conditions, known as the second sound
[19,20], but this is not the present case.) This means the
overdamping of heat vibration, and there are modes for heat
conduction, analogous with acoustic vibrational modes,
even without vibration in the heat flow. Supplemental
Movies 1 and 2 explicitly demonstrate this phenomenon.
[They are calculated with a finite volume method (FVM) as
shown in Supplemental Material [21].] When the heat pulse
is applied at the center point on the shorter edge side of a
rectangular parallelepiped, the temperature increase domi-
nantly occurs along the shorter edge (Movie 1) as if there
were a boundary inside the specimen along the shorter side,
whereas when it is applied on the center, the temperature
preferentially increases in the median zone along the
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shorter edge direction (Movie 2). More importantly, the
relaxation time τ for equilibrium after the excitation is
different from each other; it is longer for the edge-heating
case. Thus, the relaxation time and the temperature dis-
tribution are dependent on the location of the impulsive
heating source, and they correspond to the eigenvalue and
eigenfunction of the thermal mode, respectively, being
analogous to the resonant frequency (eigenvalue) and
vibration pattern (eigenfunction) in acoustics. Because τ
is directly related to α through unambiguous parameters,
we can determine α and then κ by selectively exciting a
single thermal mode and measuring its relaxation time.
Here, we develop a pump-probe laser technique for

achieving the mode-selective excitation and detection of
thermal modes. An impulsive and localized heating on a
specimen could excite various thermal modes. Each mode
relaxes with its specific relaxation time (eigenvalue) and
temperature-change pattern (eigenfunction). Mode identi-
fication is therefore important in this process, and we
attained this by excitation and detection at antinodal points
of the desired mode. We confirm this principle with both a
numerical simulation and experiment and demonstrate the
high applicability of the thermalmode spectroscopy to small
specimens with high thermal conductivities, including
monocrystal diamond. Furthermore, the Ritz method analy-
sis has been established for arbitrary geometry specimens.
The thermal modes are analytically calculated for a

rectangular parallelepiped. Because the relaxation time is
much shorter than the time needed for the heat transfer
toward outside through the boundary for small and high
thermal-conductivity materials, the adiabatic boundary
condition is well applicable as will be discussed later.
The general solution of Eq. (1) in this case takes the form

Tðr; tÞ ¼
X

l;m;n≥0
A�
lmn expð�ik · rÞ exp

�
−

t
τlmn

�
: ð2Þ

Here, l, m, and n are integers showing the mode order. k¼
ðkl;km;knÞ¼ðlπ=L1;mπ=L2;nπ=L3Þ denotes the spatial
wave number vector, and Li is the side length along the xi
axis. A�

lmn are amplitudes for individual modes. τlmn repre-
sents the relaxation time of mode ðlmnÞ, and it is given by

τ−1lmn ¼ αðk2l þ k2m þ k2nÞ: ð3Þ
Supplemental Fig. S1 shows the relaxation time for each
mode and corresponding temperature distributions (mode
figures) for the first 12 thermal modes of an aluminum
rectangular parallelepiped. (In this study, we assign themode
number from the longest-relaxation-time mode in order,
except for the zerothmode of the steady state.) The red region
indicates the antinode of the thermal mode, where a large
temperature change occurs. The blue region indicates the
node of the thermal mode, where the minimum temperature
change occurs. Therefore, if we can measure the relaxation
timeof one of them, the thermal diffusivity is simplyobtained
from Eq. (3) with measurable dimensions.
Materials with high thermal conductivities often exhibit

ultrahigh hardness, and it is difficult to machine them into
rectangular parallelepipeds. We, therefore, propose the Ritz

method for analyzing the thermal mode in order to apply
thermal mode spectroscopy to solids with arbitrary shapes.
The temperature in Eq. (1) is expressed by Tðr;tÞ ¼
fðrÞe−t=τ, yielding ½∇2 þ ðταÞ−1�f ¼ 0. Using the func-
tional differential method, we have

δΠ≡
Z

V

�
1

τα
f þ∇2f

�
δfdV

¼ 1

τα

Z

V
f · δfdV −

Z

V
ð∇fÞ · ð∇δfÞdV; ð4Þ

where the adiabatic boundary condition (grad f ¼ 0) was
used at the boundary in performing the partial integral for the
second term. We expand f with many basis functions ϕi as
fðrÞ ¼ P

aiϕiðrÞ with the weighting constants ai, and,
using the variational principle ∂Π=∂ai ¼ 0, an eigenvalue
equation is obtained:�

1

τα
M − Γ

�
a ¼ 0; ð5Þ

where components of thematricesM andΓ are calculated by
the basis functions as

Mij ¼
Z

V
ϕiϕjdV; Γij ¼

Z

V

∂ϕi

∂xk
∂ϕj

∂xk dV: ð6Þ
Therefore, from the eigenvalue in Eq. (5), 1=τα, we obtain
the thermal diffusivity through the measured relaxation
time, and from the eigenvector a we obtain the temperature
distribution of each mode. We used a power series for the
basis functions as ϕi ¼ xp1x

q
2x

r
3, which have been adopted in

calculating resonance frequencies in resonance ultrasound
spectroscopy [15,24].
For checking the accuracy of this algorithm, we calcu-

lated the relaxation time with the Ritz method from Eq. (5)
and compared it with the exact solution from Eq. (3) for a
rectangular parallelepiped (see Supplemental Material for
the volume integration [21]). By using a sufficiently larger
number of basis functions of pþ qþ r ≤ 10, they showed
excellent agreements within 0.001% differences for the first
ten modes. Figure 1 shows the relaxation time and
corresponding figures on the inclined plane for the alumi-
num triangular pyramid in Table I calculated from Eq. (5).
(Note that an analytical solution is unavailable for this
shape.) Modes 3 and 6 show discriminative temperature
patterns [Figs. 1(d) and 1(g)], and we use them for the
experiment below.
Specimens used in this study are rectangular parallelepi-

peds of aluminum, copper, nickel, andmonocrystal diamond
(type IIa), and the triangular pyramid of aluminum with the
orthogonal apex as illustrated in Fig. 1(a). Their dimensions
are comparable with each other. Concerning the diamond
specimen, we made a black-body thin film around the
heating points and a 300-nm Pt thin film around the
detection points because of its high transparency. They
are so small that conventional methods will fail to measure
their thermal conductivities with high accuracy.
For confirming the mode-selective principle, three-

dimensional numerical simulations based on the FVM
(see Supplemental Material [21]) were performed for the
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aluminum rectangular parallelepiped shown in Fig. S1(a)
under the adiabatic boundary condition. A heat pulse was
locally injected on the top surface, and the temperature
changes on other points were calculated. The results are
shown in Fig. 2. When the heat pulse is applied on the center
edge along the x2 direction [Fig. 2(a)], the temperature at the
same point (point 1) steeply drops and then follows an
exponential function with the relaxation time of 4.18 ms.We
find that the initial steep drop follows the relationΔT ∝ t−1.5,
which agrees with the solution of the bulk diffusion into
infinite space. The exponential decay well agrees with the
relaxation time of the (100) mode (τ100 ¼ 4.20 ms), whose
antinode exists at the excitation and detection point as shown
in Fig. S1(b). The temperature change at point 2, however,
follows the exponential decay with the relaxation time of
mode (200),where the antinodes appear at both the excitation
and detection points [Fig. S1(e)]. (Higher modes, exhibiting
antinodes at excitation points, are excited as well, but they
disappear quickly because of their much shorter relaxation
time and less affect the relaxation behavior of lower modes.)
When the heat pulse is applied on the center [Fig. 2(b)], the
temperature at the same point again initially obeys the t−1.5

law and then follows the exponential decay with the
relaxation time of 1.05 ms, which is identical to τ200,
whose antinode exists at the excitation and detection points
[Fig. S1(e)]. The temperature changes at points 2 and 3 also
show a relaxation time very close to τ200, because their
excitation and detection points are involved in the antinodes
of the (200) mode. Thus, a specific mode will be selectively
measured by applying the heat pulse and detecting the
temperature at antinodes in its mode figure.
Supplemental Fig. S2 shows the optics developed for the

mode-selective thermal mode spectroscopy. We used the
pump light pulse with a 1064 nmwavelength. Its duration is
about 100 μs. The power of the single pulsewas∼3 mJ, and
the repetition rate was 1 Hz. For the detection of the local
temperature change, we used a titanium-sapphire pulse laser
with an 800 nm wavelength and 150 fs duration. The
repetition ratewas 80MHz, which is high enough compared

with the relaxation rate of thermal mode (< ∼8 kHz),
making it possible to monitor the temperature change nearly
continuously through the thermo-optical interaction. Note
that we do not need to measure the absolute temperature
value but the relative temperature change, that is propor-
tional to the reflectivity change ΔR of the probe light, to
obtain the relaxation time. Details appear in Supplemental
Material [21].
Supplemental Fig. S3 shows relaxation curves of the

fundamental mode measured for the rectangular parallel-
epipeds in Table I. The broken lines in Fig. S3(b) show the
relaxation curves calculated with the reported thermal
properties in Table I; they show good agreements with
the experiments. We measured the relaxation curves with
various positions for the excitation and detection for the
aluminum specimen for selectively measuring (100), (010),
and (200) modes as shown in Supplemental Fig. S4, show-
ing good agreements with the theory. Figures 3(a) and 3(b)
also compare the relaxation curves for two different modes
for the aluminum tetrahedron specimen and themonocrystal
diamond specimen. The measurements are again consis-
tently explainedwith theRitzmethod calculation and theory,
respectively. Thus, these results robustly confirm the mode-
selective excitation and detection in thermal mode spec-
troscopy. The error for the relaxation-time measurement
depended on the specimen; it was about 5% for the
aluminum specimen and 14% for the diamond specimen,
for example. Table I shows thermal conductivities deter-
mined from themeasured relaxation curves (κexp), which are
reasonably coincident with the reported values (κrep).

FIG. 1. Thermal modes of the aluminum triangular pyramid.
The Ritz method was used to calculate the relaxation time and
corresponding temperature distribution of the tetrahedron with
the dimensions in Table I. (a) Schematic of the specimen shape.
Dimensions a, b, and c are shown in Table I. (b)–(i) Distributions
of the absolute value of the temperature change on the inclined
plane from modes 1 to 8.

FIG. 2. Numerical simulation of a surface-temperature change
caused by a heat pulse. The heat pulse is applied (a) on the center
of the edge side along the x2 axis and (b) on the surface center,
and temperature evolutions at characteristic points (shown in the
upper illustrations with red circles) are shown. The green broken
lines indicate the solution of the bulk diffusion. The relaxation-
time values determined by fitting the exponential function to the
simulated data are shown. The mode figures are also shown.
ΔTðtÞ ¼ TðtÞ − Tð0Þ denotes the temperature change.
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A successful observation of the thermal mode requires a
high adiabatic degree at the boundary; the heat conduction
within the specimen should dominate the relaxation phe-
nomenon compared with the heat leakage outside. This can
be evaluated by comparing the relaxation time for heat
conduction inside the specimen and that for the heat transfer
to outside. The heat flow across the boundary with area A is
expressed by hAðTs − ToÞ with the heat transfer coefficient
h, where Ts and To denote the surface temperature and the
constant outside temperature, respectively. The relative sur-
face temperature ~Ts ≡ Ts − To changeswith time, following
the heat balance equation: ρCVðd ~Ts=dtÞ ¼ −hA ~Ts with
volume V. Thus, the relaxation time τh, due to the heat
transfer to outside, is estimated by τh ¼ ρCL=h, where L
denotes the representative specimen length (¼ L3).
Assuming a typical value of h ¼ 10 W=m2 K for the natural
convection of air, the ratio τ100=τh is calculated in Table I,
which is of the order of 10−5 or less. [This ratio is propor-
tional to the so-calledBiot number (¼ hL=κ).] Therefore, the
heat transfer to outside canbenegligible during the relaxation
of thermal modes.
The specimens used here are fairly small, and a very high

modulation frequency ω would be needed to evaluate their

thermal conductivities with the existing methods. The
validity of the modulation frequency has been evaluated
by the thermal-diffusivity wavelength λð¼ ffiffiffiffiffiffiffiffiffi

α=ω
p Þ; the

minimum modulation frequency fmin was estimated by
substituting the minimum dimension for λ. However, we
insist that this evaluation is inappropriate for a specimen
with smaller in-plane dimensions: Most previous experi-
ments had been performed on the center surface region
by applying heat sources. In this situation, the higher
thermal modes would be excited. [For example, the (200)
mode shows the antinode on the center region as seen in
Fig. S1(e).] Therefore, the modulation frequency must be
significantly higher than the relaxation rate of the (200)
mode, f200 ¼ 1=τ200; otherwise, the measurements will feel
the boundary, and the one- or two-dimensional models for
the infinity half spacewould fail. As shown in Table I, f200 is
much higher than fmin, and measurements based on fmin
could be unreliable. For example, the thermal conductivity
of diamond was evaluated by the 3ω method with a
modulation frequency higher than ∼50 Hz [7]. The τ200
value for their specimen is, however, estimated to be
∼0.3 ms, resulting in f200 ∼ 3000 Hz. Thus, themodulation
frequency could be significantly lower than or comparable to
the relaxation rate, and the measurement might have been
affected by the thermal mode.
We investigated the effects of the added thin film and the

interface conductance at the film-specimen interface on the
relaxation time. Our numerical calculation reveals that they
hardly affect the relaxation time when the thickness ratio
between the film and specimen is smaller than ∼1% as
shown in Supplemental Fig. S5, which is well satisfied in
the experiments (the thickness ratio between the Pt thin film
and diamond is about 0.06%).
It is important to note that the thermal mode spectroscopy

is little affected by the temperature variation inside the
specimen. For example, in the rectangular parallelepiped
aluminum specimen in Table I, the final temperature
increase [ΔTð∞Þ] of the specimen is estimated to be only
0.017Kwith a 3mJ excitation pulse and a reflectance of 0.95
at 1064 nmwavelength. As shown in Fig. 2, the temperature
increase inside the specimen ΔTðtÞ remains smaller than
2ΔTð∞Þ during relaxation procedures. The local and

TABLE I. Dimensions Li along the xi axis (mm), mass density ρ (g=cm3), specific heat capacity C (J=kgK), the relaxation-time ratio
τ100=τh, minimum modulation frequency fmin (Hz), inverse relaxation time for the (200) mode f200 (Hz), thermal conductivity
determined here κexp (W=mK), and that reported previously κrep (W=mK). (a) From Ref. [25].(b) From Ref. [10]. (c) Taken from
Ref. [26] at 273 K. (d) From Ref. [27]. (e) From Ref. [28]. (f) From Ref. [29]. (g) Calculated from thermal diffusivity data in Ref. [30]
with the mass density and specific heat capacity in Table I. (h) From Ref. [31]. (i) From Ref. [32]. (j) Side dimensions a, b, and c of the
tetrahedron in Fig. 1(a), respectively.

Materials L1 L2 L3 ρ C τ100=τhð10−5Þ fmin f200 κexp κrep

Al 1.985 1.491 1.236 2.70 902a 1.4 10 982 240� 12 222b, 235c

Al(tetra.) 1.898j 1.918j 3.858j 1.8 4 350 247� 13
Cu 1.504 0.981 0.626 8.94 385d 0.9 47 2020 386� 18 398e, 410b

Ni 1.551 0.953 0.629 8.91 451f 5.8 8 368 75.0� 5.4 67b, 84g

Diamond 2.464 2.444 0.549 3.51 510h 0.5 370 7940 1905� 266 2180i
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FIG. 3. Mode-selective measurements. (a) Relaxation curves for
mode 3 and mode 6 of the aluminum tetrahedron in Table I. Broken
lines are relaxation curves calculated by the Ritz method. (b) Com-
parisonbetweenmeasured (solid lines)and theoretical (broken lines)
relaxation curves of the τ100 and τ200 modes for the monocrystal
diamond inTable I.Themode figures for the temperaturechangeand
excitation and detection points are illustrated. The oscillations in the
relaxation curves are background signals caused by the laser-power
fluctuation in the probe light, which appeared irregularly.
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transient temperature increase at the excitation point fails to
affect the relaxation constant, becausewe do not use the data
just after the excitation. Therefore, the measurable thermal
diffusivity is almost equivalent to that at the base temper-
ature before the heat-pulse excitation, Tð0Þ, because of the
low excitation energy. On the other hand, the base temper-
ature Tð0Þ can be controlled through heat transfer or heat
radiation, which, however, do not affect the relaxation time
of thermal modes as discussed above.
We finally discuss the applicability of our analysis for

ultrasmall specimens. When the specimen dimension is
comparable to or smaller than the phonon mean free path,
Fourier’s law fails to explain the relaxation phenomenon and
the ballistic conduction becomes dominant [33], where
alternative (or extended) basic equations should be consid-
ered [34,35]. The incorporation of the ballistic conduction
will apparently decrease the thermal diffusivity, leading to a
longer relaxation time. Our analysis becomes inapplicable
for such an ultrasmall specimen, and we need to perform the
mode analysis in the extended equations, which will be our
future work.
In summary, we established a very simple but accurate

method for evaluating the thermal conductivity of small
solids using the thermal mode, whose importance has been
unnoticed. The mode-control measurement is the key, and
this was achieved by applying a heat pulse and detecting
the temperature change at the antinodal points. Even a
higher mode with a shorter relaxation time (∼100 μs) of the
diamond specimen was clearly observed [Fig. 3(b)], indi-
cating the applicability of this method to small and high
thermal conductivity solids like diamonds. It is also
applicable to thermally anisotropic materials by measuring
multiple relaxation curves, so that anisotropic thermal
conductivities will be determined from a single small
specimen (Supplemental Material [21]). Furthermore, the
thermal mode will give an unambiguous definition for the
thermal diffusivity of composite materials. Whereas ther-
mal diffusivity evaluated by a propagation-based method
will correspond to the group velocity in acoustics, that
evaluated by the thermal mode will yield an intrinsic
thermal diffusivity like the phase velocity in acoustics.
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