<table>
<thead>
<tr>
<th>Title</th>
<th>Dade's conjecture for 2-blocks of symmetric groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>An, Jianbei</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 35(2) P.417-P.437</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8401</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8401</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
DADE’S CONJECTURE FOR 2-BLOCKS
OF SYMMETRIC GROUPS

Jianbei An

(Received March 1, 1996)

0. Introduction

Let G be a finite group, p a prime and B a p-block of G. In [4] Dade conjectured that the number of ordinary irreducible characters of B with a fixed defect can be expressed as an alternating sum of the numbers of ordinary irreducible characters of related defects in related blocks B' of certain local p-subgroups of G. This (ordinary) conjecture has been proved by Olsson and Uno for the symmetric groups when p is odd. In this paper, we prove the (ordinary) conjecture for the symmetric groups G when $p = 2$.

In Section 1 we state the ordinary conjecture and fix some notation. In Section 2 we reduce the family of radical 2-chains $R(G)$ to a G-invariant subfamily $QR(G)$. In Section 3 we first give several more reductions, and then prove the conjecture for $p = 2$ using results of Olsson and Uno [6].

1. Dade’s ordinary conjecture

Throughout this paper we shall follow the notation of Dade [4]. Let C be a p-subgroup chain of a finite group G,

\[(1.1) \quad C : P_0 < P_1 < \cdots < P_w.\]

Then $w = |C|$ is called the length of C,

\[(1.2) \quad N(C) = N_G(C) = N_G(P_0) \cap N_G(P_1) \cap \cdots \cap N_G(P_w)\]

is called the normalizer of C in G, and

\[(1.3) \quad C_k : P_0 < P_1 < \cdots < P_k, \quad 0 \leq k \leq w\]

is called the k-th initial p-subchain of C. In addition, C is called a radical p-chain if it satisfies the following two conditions:

(a) $P_0 = O_p(G)$ and (b) $P_k = O_p(N(C_k))$ for all $1 \leq k \leq w$.

Thus P_{k+1} and P_{k+1}/P_k are radical subgroups of $N(C_k)$ and $N(C_k)/P_k$, respectively for $0 \leq k \leq w - 1$, where a p-subgroup R of G is radical if $R = O_p(N_G(R))$. Let $R = R(G)$ be the set of all radical p-chains of G.
Given $C \in \mathcal{R}$, B a p-block of G and u a non-negative integer, let $k(N(C), B, u)$ be the number of characters of the set

\[(1.4) \quad \text{Irr}(N(C), B, u) = \{ \psi \in \text{Irr}(N(C)) : B(\psi)^G = B, \text{ and } d(\psi) = u \},\]

where $B(\psi)$ is the block of $N(C)$ containing ψ and $d(\psi)$ is the p-defect of ψ (see [4, (5.5)] for the definition). Then the following is Dade’s ordinary conjecture, [4, Conjecture 6.3].

Dade’s ordinary conjecture. If $O_p(G) = 1$ and B is a p-block of G with defect $d(B) > 0$, and if u is a non-negative integer, then

\[(1.5) \quad \sum_{C \in \mathcal{R}/G} (-1)^{|C|} k(N(C), B, u) = 0,\]

where \mathcal{R}/G is a set of representatives for the G-orbits in \mathcal{R}.

2. **The first reduction**

In this section we shall first define a G-invariant subfamily $\mathcal{Q}\mathcal{R}$ of radical 2-chains of a symmetric group and then reduce Dade’s conjecture to the family $\mathcal{Q}\mathcal{R}$. In the rest of the paper we always suppose $p = 2$.

We shall also follow the notation of Alperin and Fong [1]. Given a positive integer n, we denote by $S(n) = S(V)$ the symmetric group of degree n acting on the set V of cardinality n. For each non-negative integer c, let A_c denote the elementary abelian group of order 2^c represented by its regular permutation representation. Thus A_c is embedded uniquely up to conjugacy as a transitive subgroup of $S(2^c)$, $C_{S(2^c)}(A_c) = A_c$, and

\[N_{S(2^c)}(A_c) \simeq A_c \rtimes \text{GL}(c, 2).\]

For a sequence $c = (c_1, c_2, \ldots, c_\ell)$ of non-negative integers, let $|c| = c_1 + \ldots + c_\ell$ and let A_c be the wreath product $A_{c_1} \wr A_{c_2} \wr \ldots \wr A_{c_\ell}$. Then A_c is embedded uniquely up to conjugacy as a transitive subgroup of $S(2^{|c|})$. Moreover,

\[(2.1) \quad N_{S(2^{|c|})}(A_c) = N_{S(2^{c_1})}(A_{c_1}) \otimes N_{S(2^{c_2})}(A_{c_2}) \otimes \ldots \otimes N_{S(2^{c_\ell})}(A_{c_\ell}),\]

\[N_{S(2^{|c'|})}(A_{c'})/A_{c'} \simeq \text{GL}(c_1, 2) \times \text{GL}(c_2, 2) \times \ldots \times \text{GL}(c_\ell, 2),\]

where $c' = (c_2, \ldots, c_\ell)$ and $N_{S(2^{c_1})}(A_{c_1}) \otimes N_{S(2^{c_2})}(A_{c_2}) \otimes \ldots \otimes N_{S(2^{c_\ell})}(A_{c_\ell})$ is the tensor product of the normalizers $N_{S(2^{c_1})}(A_{c_1})$ and $N_{S(2^{c_2})}(A_{c_2})$. Suppose R is a radical 2-subgroup of G. By Alperin and Fong [1, (2A)], there exists a corresponding decomposition

\[(2.2) \quad V = V_0 \cup V_1 \cup \ldots \cup V_\ell, \quad R = R_0 \times R_1 \times \ldots \times R_\ell\]
such that \(R_0 = \langle 1, v_0 \rangle \) and each \(R_i \) for \(i \geq 1 \) is conjugate to some \(A_c \) in \(S(V) \). Let \(A(R) \) be the subgroup generated by all normal abelian subgroups of \(R \), and let \(B(R) = C_{A(R)}([A(R), A(R)]) \), where \([A(R), A(R)]\) is the commutator subgroup of \(A(R) \). Then \(B(R) \) is a characteristic subgroup of \(R \) and \(N_G(R) \leq N_G(B(R)) \). By [2, (2A)],

\[
B(A_c) = \begin{cases}
(A_c)^{2^{[e_i]}} & \text{if } c_1 \neq 1 \text{ or } c_2 \neq 1, \\
(D_8)^{2^{|w|}} & \text{if } c_1 = c_2 = 1,
\end{cases}
\]

where \(D_8 = A_1 \wr A_1 \) is a dihedral group of order 8 and \(w = (c_3, \ldots, c_t) \).

Let \(\Psi = \{ A_c : c = (1, c_2, c_3, \ldots, c_t), c_2 \geq 2 \} \), \(\Psi' = \{ A_c : c = (1, 1, c_3, \ldots, c_t) \} \) and \(\Psi^* = \{ A_c : c = (0) \text{ or } c = (1, 1, \ldots, 1) \} \). A 2-subgroup \(R \) with a decomposition (2.2) is radical in \(G \) if and only if \(m_R(P) \neq 2, 4 \) for all \(P \in \Psi^* \), where \(m_R(P) \) is the multiplicity of the components \(P \) in \(R \).

Let \(S_d \) be a Sylow 2-subgroup of \(N_{S(2^d)}(A_d) \). Then \(S_1 = A_1 \) and \(S_2 = D_8 \). Let \(\Delta(1) = \{ A_1 \wr A_2 \} \), \(\Delta(d) = \{ S_d \wr A_1, S_d \wr A_2, S_d \wr A_1 \wr A_1 \} \) for \(d \geq 2 \).

\[
\Delta^+ = \bigcup_{d \geq 1} \Delta(d) \quad \text{and} \quad \Delta = \Delta(1) \cup \Delta(2).
\]

Suppose \(R \) is a radical subgroup of \(G \) with a decomposition (2.2). Then \(m_R(D_8) \notin \{2, 4\} \), \(m_R(A_1) \neq 2 \) and \(m_R(D_8 \wr A_1) \neq 2 \). So \(B(R) = \prod_{i=1}^t B(R_i) \) is non-radical in \(G \) if and only if \(m_{B(R)}(A_1) = 4 \) or \(m_{B(R)}(D_8) \in \{2, 4\} \), which is equivalent to

(a) \(m_R(A_1 \wr A_2) = 1 \) but \(m_R(P) = 0 \) for \(P \in \Psi \setminus \{ A_1 \wr A_2 \} \), or
(b) \(\text{For } X \in \Delta(2), m_R(X) = 1 \) but \(m_R(P) = 0 \) for all \(P \in \Psi \setminus \{X\} \).

If \(B(R) \) is radical, then define \(K(R) = B(R) \). Suppose \(B(R) \) is non-radical. Define

\[
K(R) = \begin{cases}
A_1 \wr A_2 \times \prod_{R_j \neq A_1 \wr A_2} B(R_j) & \text{if only case (a) occurs,} \\
X \times \prod_{R_j \neq X} B(R_j) & \text{if only case (b) occurs,} \\
A_1 \wr A_2 \times X \times \prod_{R_j \neq A_1 \wr A_2, X} B(R_j) & \text{if both cases (a) and (b) occur.}
\end{cases}
\]

Thus \(K(R) \leq R \), \(K(R) \) is a radical subgroup of \(G \) and

\[
N_G(R) \leq N_G(K(R)) \leq N_G(B(R)).
\]

In addition, if two radical subgroups \(R \) and \(W \) are \(G \)-conjugate, then \(K(R) \) and \(K(W) \) are \(G \)-conjugate, since \(B(R) \) and \(B(W) \) are \(G \)-conjugate. We also need the following lemma to define the chains in \(QR \).

\[(2A). \text{ Given integer } d \geq 1, \text{ let } G = S(2^d) = S(V) \text{ and } N = N(A_d) = N_G(A_d). \]

(a) There exists a bijection between the classes of radical subgroups \(R \) of \(N \) and the compositions \(c = (c_1, c_2, \ldots, c_t) \) of \(d \) such that

\[
N_N(R)/R \simeq \text{GL}(c_1, 2) \times \text{GL}(c_2, 2) \times \cdots \times \text{GL}(c_t, 2).
\]
In particular, the subset \([V, R]\) of \(V\) consisting of all points moved by \(R\) is \(V\) itself.

(b) Let \(R\) be a radical subgroup of \(N\) and \(Q\) a radical subgroup of \(N_N(R)\). Then \(Q\) is radical in \(N\) and \(N_N(Q) \leq N_N(R)\).

Proof. (a) Since \(R\) is radical in \(N\), \(A_d \leq R\) and \(R/A_d\) is a radical subgroup of \(N/A_d \simeq \text{GL}(d, 2)\). Since \(N_N(R)/A_d \simeq N_N(R/A_d)\), it follows by Borel-Tits theorem \([3]\) that \(R/A_d\) is the unipotent radical of a parabolic subgroup of \(N/A_d\). The classes of parabolic subgroups of \(\text{GL}(d, 2)\) are labelled by compositions of \(d\), and so (a) follows easily.

(b) Suppose \(Q\) is a radical subgroup of \(N_N(R)\). Then \(R \leq Q\), and the proof of (b) is also straightforward by applying the Borel-Tits theorem to \(N_N(R)/A_d\).

Remark. Follow the notation of (2A). Then \(R\) is radical in \(G\) if and only if \(R = A_d\) except when \(d = 2\) and \(c_1 = c_2 = 1\), in which case either \(R = A_d\) or \(R = D_8\). Indeed, we may suppose \(d \geq 2\). Since \(A_d \leq R\), it follows that \(R\) acts transitively on \(V\), and \(R = A_w\) for some sequence \(w = (w_1, \ldots, w_\ell)\) of positive integers with \(|w| = d\). Note that \(A_d \leq A(R)\). If \(w_1 \geq 2\), then each \(A(R)\)-orbit in \(V\) has \(2^{w_1}\) elements, so that \(d = w_1\). If \(w_1 = 1\), then each \(A(R)\)-orbit in \(V\) is contained in some \(A_1 \wr A_w\)-orbit, so that \(w = (1, w_2)\) and \(d = 1 + w_2\). But \(|R/A_d| = 2^{w_2}\) and \(|A_1 \wr A_{w_2}| = 2^{w_2 + w_2}\), so \(2^{w_2} = d = w_2 + 1\) and \(w_2 = 0\) or \(1\). Thus \(w_2 = 1\) and \(R = D_8\).

The radical subgroup \(R\) of \(N_{S(2^d)}(A_d)\) determined by the composition \(c\) in (2A) (a) will be denoted by \(Q_c\) if \(R\) is not a radical subgroup of \(S(2^d)\). This holds in particular if \(d \geq 3\). We set \(B(Q_c) = A_d\). Now we can define the family \(QR\).

Let \(QR = Q(R)(G)\) be the \(G\)-invariant subfamily of \(R\) consisting of radical 2-chains

\[(2.3) \quad C : 1 < P_1 < \cdots < P_w\]

such that \(P_1 = K(P_1)\) and each \(P_i\) has a decomposition \(\prod_{j=1}^{t_i} Q_{i,j}\) with \(Q_{i,j} \in \Delta^+ \cup \{A_d, Q_c, D_8\}\) for all \(i, j\). Let \(M\) be the complement \(R \setminus QR\) of \(QR\) in \(R\), so that

\[R = QR \cup M \quad \text{(disjoint)}.\]

In the following we shall show that Dade's conjecture can be reduced to the family \(QR\). First of all, we consider the structure of the subgroup \(P_2\). By definition, \(P_2\) is a radical subgroup of \(N_G(P_1)\).

Let \(D\) be a radical subgroup of \(G\) such that \(D = K(D)\). Then

\[(2.4) \quad V = V^+ \cup V^* \quad \text{and} \quad D = D^+ \times D^* ,\]
where $D^+ = \prod_{X \in \Delta} (X)^{\alpha_X}$ with $\alpha_X \in \{0, 1\}$, $D^* = (D_8)^{m_2} \times \prod_{d \geq 0} (A_d)^{m_d}$, $V^+ = [V, D^+]$ and $V^* = V \setminus V^+$. Let U_X be the underlying set of $X \in \Delta^+$ such that $U_X = [U_X, X]$, and $N_X = N_{S(U_X)}(X)$. Then

$$N(D) = N_G(D) = N(D)^+ \times N(D)^*,$$

where $N(D)^+ = \prod_{X \in \Delta} (N_X)^{\alpha_X}$ and $N(D)^* = D_8 \times \prod_{d \geq 0} N_{S(2^d)}(A_d) \times S(m_d)$. If $X = A_1 \cap A_2$, then $N_X = A_1 \cap S(4)$ and it has exactly two radical subgroups, $A_{(1,1,1)}$ and $A_1 \cap A_2$ up to conjugacy. Similarly, if $X = D_8 \cap A_2$, then $N_X = D_8 \cap S(4)$ and it has exactly two radical subgroups, $A_{(1,1,1,1)}$ and $D_8 \cap A_2$ up to conjugacy.

(2B). Let D be a subgroup of $G = S(V)$ with a decomposition (2.2) such that $D = B(D)$ and $[V, D] = V$. In addition, let R be a radical subgroup of $N = N(R)$. Suppose $D = D(1) = (A_1)^{m_1}$, $D(2) = (A_2)^{m_2}$ or $D(2)' = (D_8)^{m_2}$. Then R is radical in G and $K(R)$ is radical in N. If $L = N_N(K(R))$, then

$$L = \begin{cases}
(A_1) \cap S(t_1) \times (D_8) \cap S(t_2') \times \prod_{X \in \Delta} (N_X)^{\beta_X} & \text{if } D = D(1), \\
N_{S(4)}(A_2) \cap S(t_2) \times (D_8) \cap S(t_2') \times \prod_{X \in \Delta(2)} (N_X)^{\beta_X} & \text{if } D = D(2), \\
(D_8) \cap S(t_2') \times \prod_{X \in \Delta(2)} (N_X)^{\beta_X} & \text{if } D = D(2)',
\end{cases}$$

where t_1, t_2 and t_2' are some non-negative integers and $\beta_X = 0, 1$. Moreover, $N_N(R) \leq L$.

Proof. Suppose $D = D(1)$, so that $N = A_1 \cap S(m_1)$. It follows by [5, Proposition 4.7] or [6, Proposition 2.3 and the Remark 2.5] that $R = \prod_{i=1}^n R_i$, where $R_i = A_1 \cap R'_i$ with $R'_i \subseteq A_2$. Thus $R_i \subseteq \Psi \cup \Psi'$ and $B(R) = (A_1)^{\alpha} \times (D_8)^\beta$ for some integers $\alpha, \beta \geq 0$. Since $R/D = \prod_{i=1}^n R'_i$ is radical in $S(m_1)$, it follows that $m_{R/D}(A_c) \notin \{2, 4\}$, and hence $m_{R}(A_c) \notin \{2, 4\}$ for all $A_c \in \Psi^*$. Thus R and then $K(R)$ are radical in G, $B(R) = (A_1)^{t_1} \times (D_8)^{t_2}$ with $t_1 + 2t_2 = m_1$ and $N(B(R)) = (A_1) \cap S(t_1) \times D_8 \cap S(t_2')$. Since $N(K(R)) \leq N(B(R)) \leq N$, $K(R)$ is radical in N. If $B(R)$ is radical in G, then $K(R) = B(R)$ and $N(K(R)) = N(B(R))$. Suppose $B(R)$ is non-radical in G. Then

$$K(R) = \begin{cases}
A_1 \cap A_2 \times Y = R & \text{if } t_1 = 4 \text{ and } t'_2 \in \{2, 4\}, \\
(A_1)^{t_1} \times Y & \text{if } t_1 \notin \{2, 4\} \text{ and } t'_2 \in \{2, 4\}, \\
A_1 \cap A_2 \times (D_8)^{t_2'} & \text{if } t_1 = 4 \text{ and } t'_2 \notin \{2, 4\}
\end{cases}$$

for some $Y \in \Delta(2)$. Thus $N_N(K(R))$ is given by (2B). Since $N(R) \leq N(K(R))$, it follows that

$$N_N(R) = N(R) \cap N \leq N(K(R)) \cap N = N_N(K(R)) = L.$$
Suppose \(D = D(2) \), so that \(N = N_{S(4)}(A_2) \wr S(m_2) \). Since \(A_2 \) and \(D_8 \) are the only radical subgroups (up to conjugacy) in \(N_{S(4)}(A_2) \), it follows that \(R = \prod_{i=1}^{n} R_i \), where \(R_i = A_2 \wr R_i' \) or \(D_8 \wr R_i' \) with \(R_i' = A_2 \). Let \(B(R) = (A_2)^{t_2} \times (D_8)^{t_2} \), \(R(2) = \prod_i R_i \) and \(R(2)' = \prod_j R_j \), where \(i \) and \(j \) run over the indices such that \(R_i = A_2 \wr R_i' \) and \(R_j = D_8 \wr R_j' \), respectively. Then \(R(2)'/(A_2)^{t_2} \) is radical in \(GL(2,2) \wr S(t_2') \), since \(R/D \) is radical in \(GL(2,2) \wr S(m_2) \). Thus \(m_{R(2)'}/(D_8)^{t_2'}(A_2) \notin \{2,4\} \) and hence \(m_{R(2)'}(A_2) \notin \{2,4\} \) for each \(A_2 \in \Psi^* \). It follows that \(R \) is radical in \(G \). If \(B(R) \) is non-radical in \(G \), then \(t_2' \in \{2,4\} \) and \(R = R(2) \times Y \) for some \(Y \in \Delta(2) \), and \(K(R) = (A_2)^{t_2} \times Y \). Since \(N(B(R)) = N_{S(4)}(A_2) \wr S(t_2) \times (D_8) \wr S(t_2') \leq N \), it follows that \(N(K(R)) \) is given as (2B) and \(K(R) \) is radical in \(N \). A proof similar to above shows that \(N_{N}(R) \leq L \).

Suppose \(D = D(2)' \), so that \(N = D_8 \wr S(m_2') \). A proof similar to above shows that each component of \(R \) is an element of \(\Psi' \) and \(m_{R}(A_2) \notin \{2,4\} \) for all \(A_2 \in \Psi^* \). It follows that \(R \) is radical in \(G \) and \(B(R) = D \). If \(m_2' \notin \{2,4\} \), then \(K(R) = B(R) \). If \(m_2' = 2 \) or \(4 \), then \(K(R) = R \in \Delta(2) \). This proves (2B).

Given sequences \(c = (c_1, \ldots, c_t) \) and \(z = (z_1, \ldots, z_t) \) of non-negative integers, let \(Q_{c,z} \) be the wreath product \(X \wr A_z \) in \(S(2|c|+|z|) \), where \(X = A_c \) or \(Q_c \). If \(X = A_c \), then \(Q_{c,z} = A_w \) and \(N_{S(2|w|)}(Q_{c,z})/Q_{c,z} \) is given by (2.1) with some obvious modifications, where \(w = (c_1, \ldots, c_t, z_1, \ldots, z_t) \). Suppose \(Q_{c,z} = X \wr A_z \) with \(X = Q_c \). Let \(d = |c| \) and \(M \) the underlying set of \(M \). Then we may suppose \(A_d \leq X \) and \([M,X] = M \). Let \(X_1, X_2, \ldots, X_{2|z|} \) be copies of \(X \), and let \(U_1, U_2, \ldots, U_{2|z|} \) be disjoint underlying sets of \(X_1, X_2, \ldots, X_{2|z|} \). Then \(U = U_1 \cup U_2 \cup \cdots \cup U_{2|z|} \) can be taken as the underlying set of \(X \wr A_z \), and \((\prod_{i=1}^{2|z|} X_i) \times A_z = X \wr A_z \). Let \(W_i \) be a normal subgroup of \(X_i \) isomorphic to \(A_d \). Then \(\{U_1, W_i\} = U_i \) and \(W = \prod_{i=1}^{2|z|} W_i \) is a normal abelian subgroup of \(X \wr A_z \), so that \(W \leq A(Q_{c,z}) \). If \(A \) is a normal abelian subgroup of \(X \), then \(A^{2|z|} \) is a normal abelian subgroup of \(Q_{c,z} \). It follows that \((A)^{2|z|} \leq A(Q_{c,z}) \) and \(\prod_{i=1}^{2|z|} A(X_i) \leq A(Q_{c,z}) \). Since \(Q_c \) is nonabelian, it follows by \([2,2A]\) that each normal abelian subgroup of \(Q_{c,z} \) is a subgroup of \(\prod_{i=1}^{2|z|} X_i \). Thus \(A(Q_{c,z}) \leq \prod_{i=1}^{2|z|} A(X_i) \), so that \(A(Q_{c,z}) = \prod_{i=1}^{2|z|} A(X_i) \) and \(U_1, U_2, \ldots, U_{2|z|} \) are the orbits of \(A(Q_{c,z}) \) in \(U \). Since \(N_{S(2|c|+|z|)}(Q_{c,z}) \) normalizes \(A(Q_{c,z}) \), \(N_{S(2|c|+|z|)}(Q_{c,z}) \) permutes \(U_1, U_2, \ldots, U_{2|z|} \) among themselves, so that

\[
N_{S(2|c|+|z|)}(Q_{c,z}) = N_{S(2|c|)}(Q_c) \otimes N_{S(2|z|)}(A_z).
\]

In particular, \(N_{S(2|c|+|z|)}(Q_{c,z}) \) normalizes the subgroup \(\prod_{i=1}^{2|z|} X_i = (Q_c)^{2|z|} \) of \(Q_{c,z} \).

We claim that

\[
N_{N_{S(2|c|+|z|)}(W)}(Q_{c,z}) \simeq N_{S(2|c|)}(A_{|c|}) \otimes \otimes_{S(2|z|)}(A_z),
\]

where \(W = \prod_{i=1}^{2|z|} W_i \) is a normal abelian subgroup of \(Q_{c,z} \) such that each \(W_i \) is a
normal subgroup of \(X_i \) isomorphic to \(A_{|c|} \). Indeed, let

\[
N = N_{S(2^{|+|})}(Q_{c,x}), \quad H = N_{S(2^{|+|})}(A_{|c|}) \otimes N_{S(2^{|})}(A_x).
\]

If \(g \in N \), then \(g \) normalizes \(Q_{c,x} \), so that by (2.5) \(g = \text{diag} \{g_1, g_2, \cdots, g_2\} \sigma \), where \(g_i \in N_{S(M)}(Q_c) \) and \(\sigma \in N_{S(2^{|})}(A_x) \). Since \(W_i \leq X_i \) and \(g \) normalizes \(W \), it follows that \(g_i \) normalizes \(W_i \) and \(g \in H \). Conversely, if \(g \in H \), then \(g = \text{diag} \{g_1, g_2, \cdots, g_2\} \sigma \), where \(\sigma \in N_{S(2^{|})}(A_x) \) and \(g_i \in N_{S(2^{|})}(Q_c) \). Thus \(g \) normalizes \(Q_{c,x} \) and \(g \in N \), so that \(H = N \).

Let \(R = X \triangleleft A_x \) be a subgroup of \(S(2^{|+|}) \), where \(X = A_c \) or \(Q_c \). If \(R = A_c \triangleleft A_x \), then set \(QB(R) = B(R) \); if \(R = Q_c \triangleleft A_w \), then set \(QB(R) = (Q_c)^2 \) and \(B(R) = (A_{|c|})^2 \). By (2.5)

\[
N_{S(2^{|+|})}(Q_{c,x}) \leq N_{S(2^{|+|})}(QB(Q_{c,x})).
\]

(2C). Let \(G = S(n) = S(V) \), and let \(Q \) decompose as (2.2) with \(Q = B(Q) \) or \(Q = K(Q) \). Suppose \(R \) a radical subgroup of \(N(Q) \). Then there exists a corresponding decomposition

\[
V = M_0 \cup M_1 \cup \cdots \cup M_v, \\
R = R_0 \times R_1 \times \cdots \times R_v
\]

such that \(R_0 = \langle 1, M_0 \rangle \) and \(R_i = Q_{c,x} \leq S(M_i) \) for \(i \geq 1 \).

Proof. By (2B) and the remark before (2B), we may suppose \(Q = \prod_{d \geq 3} (A_d)^{m_d} \) and

\[
N = N(Q) = \prod_{d \geq 3} N_{S(2^d)}(A_d) \triangleleft S(m_d).
\]

By [6, Lemma (2.2)], \(R = \prod_{d \geq 3} R_d \), where \(R_d \) is a radical subgroup of \(N_{S(2^d)}(A_d) \) \(S(m_d) \) for all \(d \geq 3 \). By induction, we may suppose \(N \) acts transitively on \(V \), so that \(Q = (A_d)^{m_d} \). Thus \(R = Z_1 \times Z_2 \times \cdots \times Z_m \) and each \(Z_i = X \triangleleft Y \) for some subgroup \(Y = A_x \) of \(S(m_d) \) and a radical subgroup \(X \) of \(N_{S(2^d)}(A_d) \). By (2A) (a), \(X \in \{A_d, Q_c\} \), where \(c \) is a composition of \(d \). So \(Z_i = Q_{c,x} \) and this proves (2C). \(\square \)

Suppose \(R \) has a decomposition (2.7). Define \(QB(R) = R_0 \times \prod_{i=1}^v QB(R_i) \) and \(B(R) = R_0 \times \prod_{i=1}^v B(R_i) \).

(2D). Let \(R \) be a subgroup of \(G = S(n) = S(V) \) such that \(R \) decomposes as (2.7). Given sequences \(c = (c_1, c_2, \cdots, c_\ell) \), \(z = (z_1, z_2, \cdots, z_u) \), and
\(w = (w_1, w_2, \ldots, w_m)\) of positive integers, let \(M(c) = \bigcup_i M_i\), \(R(c) = \prod_i R_i\), \(M(w, z) = \bigcup_j M_j\), and \(R(w, z) = \prod_j R_j\), where \(i\) and \(j\) run over the indices such that \(R_i = A_c\) and \(R_j = Q_w \upharpoonright A_z\), respectively. Then

\[
N(R) = N_G(R) = S(M_0) \times \prod C(w, z)
\]

Moreover,

\[
S(M(c))(R(c)) \times \prod C(w, z)
\]

where \(M_c\) and \(M_{w, z}\) are the underlying sets of \(A_c\) and \(Q_w \upharpoonright A_z\), respectively, and \(t_c\), \(t_{w, z}\) are the numbers of components \(A_c\) and \(Q_w \upharpoonright A_z\) in \(R(c)\) and \(R(w, z)\), respectively. In particular, if \(D = QB(R)\), then \(N(R) \leq N(D)\).

Proof. Let \(D_i = QB(R_i)\), so that \(D = R_0 \times \prod_{i=1}^v D_i\), where \(v\) is given by the decomposition (2.7). If \(M\) is an \(R\)-orbit with \(|M| \geq 2\), then \(M = M_i\), for some \(i \geq 1\) and \(R_i = \{g \in R : gy = y\ \text{for all} \ y \in V \setminus M_i\}\). Thus \(N(R)\) acts as a permutation group on the set of pairs \((M_i, R_i)\). Suppose a component \(R_i\) is conjugate to a component \(R_j\), where \(1 \leq i, j \leq v\). Then \(|M_i| = |M_j|\), so that \(S(M_i)\) is conjugate to \(S(M_j)\) in \(G\). If \(R_i = A_c\), then \(R_i\) is radical in \(S(M_i)\), so is \(R_j\) in \(S(M_j)\). Thus \(R_j = A_c^e\) for some sequence \(e^c\) of non-negative integers. Since \(|M_i| = |M_j|\), it follows that \(|c| = |e^c|\) and so \(c = e^c\) as shown in the proof of [1, (2B)]. In particular, \(D_i\) is conjugate to \(D_j\). If \(R_i = Q_w \upharpoonright A_z\), then by the remark of (2A), \(R_i\) is non-radical in \(S(M_i)\), so is \(R_j\) in \(S(M_j)\). Thus \(R_j = Q_w \upharpoonright A_z\) for some sequences \(w^c\) and \(z^c\) of non-negative integers. Moreover, \(D_i = (Q_w)^{2|w|}\) and \(D_j = (Q_w)^{2|z|}\).

As shown in the proof of (2.5), an \(A(R_i^c)\)-orbit of \(M_i\) has \(2|w|\) elements and it is a underlying set of a factor \(Q_w\) of \(D_i\). Since \(A(R_i^c)\) is conjugate to \(A(R_j^c)\), it follows that \(|w| = |w^c|\), so that \(|z| = |z^c|\). Moreover, \(R_i\) induces a permutation group \(A_z\) on the set of \(A(R_i^c)\)-orbits and \(R_j\) induces a permutation group \(A_z^c\) on the set of \(A(R_j^c)\)-orbits. Thus \(z = z^c\) by [1, (2B)]. Let \(W = \prod_{k=1}^{2|w|} W_k\) be a normal subgroup of \(D_i\) such that \(W_k \simeq A_{|w|}\). Then \(W\) is a normal abelian subgroup of \(R_i\) and the underlying set \(U_k\) of \(W_k\) is an \(A(R_i^c)\)-orbit of \(M_i\). Suppose \(\sigma \in N(R)\) such that \(\sigma(M_i) = M_j\) and \(R_j^\sigma = R_j\). Then \(S(M_i)^\sigma = S(M_j)\) and \(A(R_i^c)^\sigma = A(R_j^c)\). Thus \(W^\sigma\) is a normal abelian subgroup of \(R_j\), so that \(W^\sigma \leq A(R_j^c)\). The image of an \(A(R_i)\)-orbit of \(M_i\) is an \(A(R_j)\)-orbit of \(M_j\). In particular, each \(\sigma(U_k)\) is an \(A(R_j)\)-orbit and it is the underlying set of a factor of \(D_j\). Thus \(W^\sigma = \prod_{k=1}^{2|w|} L_k\) is a normal subgroup of \(R_j\) such that \(L_k \simeq A_{|w|}\). So \(\sigma\) induces an isomorphism between \(N_{S(M_i^c)}(W)(R_i)/R_i\) and \(N_{S(M_j^c)}(W^\sigma)(R_j)/R_j\). By (2.6),

\[
N_{S(M_i^c)}(W)(R_i)/R_i \simeq N_{S(2|w|)}(A_{|w|})(Q_w)/Q_w \times N_{S(2|z|)}(A_z)/A_z
\]
It follows that \(w = w' \) as \(|w'| = |w| \). In particular, \(D_i \) is conjugate to \(D_j \). The remaining assertions of (2D) now follows easily.

Suppose \(R = \prod_{i=1}^{\ell} R_i \) is a subgroup of \(G \) with a decomposition (2.7). We define

\[
QK(R) = \prod_i QB(R_i) \times \prod_j R_j,
\]

where \(i \) runs over the indices such that either \(R_i \not\in \Delta^+ \) or \(R_i = S_{d_i} \triangleleft A_{c_i} \in \Delta^+ \) but \(m_{QB(R_i)}(S_{d_i}) \not\in \{2,4\} \), and \(j \) runs over the indices such that \(R_j = S_{d_j} \triangleleft A_{c_j} \in \Delta^+ \) and \(m_{QB(R_j)}(S_{d_j}) \in \{2,4\} \). If \(R \) and \(W \) are subgroups given by (2C) and they are \(G \)-conjugate, then \(QK(R) \) and \(QK(W) \) are also \(G \)-conjugate. Since \(P_2 \) is radical in \(N(P_1) \), it follows that \(P_2 = QK(P_2) \). Next, we study the structure of \(P_i \) for \(i \geq 3 \).

Let \(G = S(n) = S(V) \) and let

\[
(2.8) \quad H = \prod_{X \in \Delta^+} (N_X)^{\alpha_X} \times \prod_{c \in \Omega} N_{S_{|c|}(A_{|c|})}(X_c) \triangleleft S(t_c)
\]

be a subgroup of \(G \), where \(N_X = N_{S(H)}(X) \), \(\alpha_X \) and \(t_c \) are non-negative integers, \(X_c \in \{ A_{|c|}, Q_c, D_8 \} \) and \(\Omega = \Omega(H) = \{ w_1, w_2, \ldots, w_s \} \) is a subset of sequences \(w_i \) of non-negative integers. (It may happen that \(w_i = w_j \) for \(i \neq j \)). In addition, let \(H^+ = \prod_{X \in \Delta^+} (N_X)^{\alpha_X} \), \(H_c = N_{S_{|c|}(A_{|c|})}(X_c) \triangleleft S(t_c) \) and \(H^* = \prod_{c \in \Omega} H_c \).

(2E). Suppose \(W \) is a radical subgroup of \(H \). Then \(W = W^+ \times W^* \) such that \(W^+ = \prod_{Y \in \Delta^+} Y^{\beta_Y} \) and \(W^* = \prod_{c \in \Omega} W_c \), where \(Y \) and \(W_c \) are radical subgroups of \(N_X \) and \(H_c \), respectively and \(\beta_Y \) is a non-negative integer.

(a) Each \(W_c \) has a decomposition (2.7), and if \(|c| \in \{0,1,2\} \), then \(W_c \) is a radical subgroup of \(S(2^{|c|+t_c}) \). Thus \(W \) has a decomposition (2.7).

(b) Let \(QK_H(W) = W^+ \times \prod_{c \in \{0,1,2\}} K(W_c) \times \prod_{|c| \geq 3} QK(W_c) \), where \(c \) runs over \(\Omega \). In addition, let \(Q = QK_H(W) \) and \(L = N_H(Q) \). Then \(Q \) is radical in \(H \) and \(N_H(W) \leq N_H(Q) \). In particular, \(O_2(H) \leq Q \) and \(QK_H(Q) = Q \). Moreover, \(L = L^+ \times L^* \) such that \(L^+ = \prod_{Y \in \Delta^+} (N_Y)^{\delta_Y} \) and

\[
L^* = \prod_{w \in \Omega(L)} N_{S_{|w|}(A_{|w|})}(Y_w) \triangleleft S(t_w),
\]

where \(Y_w \in \{ A_{|w|}, Q_w, D_8 \} \), and \(\delta_Y \) and \(t_w \) are non-negative integers. In particular, \(L \) has a decomposition (2.8).

(c) Let \(R \) be a radical subgroup of \(L = N_H(Q) \). If \(QK_L(R) = Q \), then \(R \) is radical in \(H \) and \(N_H(R) = N_L(R) \).
Proof. The decomposition of \(W \) follows by [6, Lemma 2.2]. We now prove (a) and (b). If \(Y \) is a radical subgroup of \(N_X \) and \(X \in \Delta(d) \) for some \(d \geq 1 \), then \(N_X = N_Y \), or \(Y \in \{ X, S_d \} \), so \(Y \in \{ X, S_d \} \), and \(X \in \Delta(d) \). Thus \(W^+ = \prod_{Y \in \Delta(d)} (Y)^{\beta_Y} \) for some integers \(\beta_Y \).

If \(|c| \in \{ 0, 1, 2 \} \), then by (2B), \(W_c \) is radical in \(S(2|c|+t) \), so that \(K(W_c) \) is a radical subgroup of both \(S(2|c|+t) \) and \(H_c \). In particular, \(W_c \) has a decomposition (2.2). The normalizer \(N_{H_c}(K(W_c)) \) is given by [1, (2B)] or (2B). Suppose \(d = |c| > 3 \). Then \(W_c = W_1 \times \ldots \times W_m \) such that \(W^c = Z_{I_{A}}(A) \), where \(Z_{I_{A}}(A) \) is a radical subgroup of \(N_{S(2|c|+t)}(A) \). By (2B) (a), \(Z_{I_{A}}(A) = Z_{I_{A}}(A) \). Thus \(W^c = \Pi_v (Y^v) \), where \(Y^v \) is an integer and \(\beta^v = 0, 1 \).

If \(Z_{I_{A}}(A) \) is not a Sylow 2-subgroup of \(N_{S(2|c|+t)}(A) \), then \(Z_{I_{A}}(A) \) is not a self-normalizer. If \(Z_{I_{A}}(A) \) is a Sylow 2-subgroup of \(N_{S(2|c|+t)}(A) \), then \(\beta^v = 0, 1 \). It follows that \(Z_{I_{A}}(A) = Z_{I_{A}}(A) \), and so \(Z_{I_{A}}(A) \) is well-defined. By induction, we may suppose \(\Omega = \{ c \} \) and \(d = |c| \). Thus \(W = W_c \) and \(H = H_c \). Suppose \(m_Q(B(W))(S_d) \in \{ 2,4 \} \). Since \(V_F \) is radical in \(H \), it follows that \(m_Q(B(W))(S_d) \in \{ 2,4 \} \). If \(m_Q(B(W))(S_d) = 2 \), then \(\pi_2(W) = 1 \). If \(m_Q(B(W))(S_d) = 4 \), then \(\pi_2(W) = 1 \) for one \(E \in \{ S_d, M_2, S_d, M_2 \} \). It follows that \(\pi_2(W) = 1 \) for one \(E \in \{ S_d, M_2, S_d, M_2 \} \). Thus \(m_2(W) = 1 \).

(c) In the notation above, \(Q = \prod_{E \in \Delta} \prod_{c \in \Omega} Q(E) \), where \(Y \) and \(Q(E) \) are radical subgroups of \(N_X \) and \(H_c \), respectively. In addition, \(Q(E) = \prod_{Z \in \Delta} (Z)^{\gamma_Z} \prod_{w \in W} Z \) for some \(\gamma_Z = 0, 1 \). Since \(R \) is radical in \(L \), it follows that \(R = \prod_{E \in \Delta} (E)^{\epsilon_E} \prod_{c \in \Omega} R_c \), where \(E \) and \(R_c \) are radical subgroups of \(N_Y \) and \(L_c = N_{H_c}(Q(E)) \), respectively. But \(K(R)(R) = Q \), so \(E = Y \) and \(\epsilon_E = \beta_Y \). By induction, we may suppose \(\Omega = \{ c \} \) and \(Q = Q(E) \).

If \(|c| = 0 \), then \(H = S(t_c) \), \(Q = Q^* \times Q^* \) with \(Q = Q(K) \) and \(R \) is given by (2C), where \(Q^+ = \prod_{Z \in \Delta} Z^{\gamma_Z} \) with \(\gamma_Z = 0, 1 \) and \(Q^* = (D_8)^{m_2} \times \prod_{d \geq 0} (A_d)^{m_2} \). Thus \(L = L^* \times L^* \) and \(R = R^* \times R^* \), so \(L^* = D_8 \times S(m_2) \times \prod_{d \geq 0} N_{S(2d)}(A_d) \), \(R^* = D_8 \times \prod_{d \geq 0} R_d \). So \(E \) is a radical subgroup of \(N_Z \), \(R^2 \) is a radical subgroup of \(D_8 \times S(m_2) \) and \(R_d \) is a radical subgroup of \(N_{S(2d)}(A_d) \). Since \(Q(K_L)(R) = Q \), it follows that \(E = Z \) and \(\epsilon_E = \gamma_Z \), so that \(R^+ = Q^+ \). By (2B), \(R_d \) and \(R^2 \) are radical in \(S(2d+m^2) \) and \(S(2d+m^2) \), respectively, where \(d = 1, 2 \). By definition,

\[
Q = Q(K_L)(R) = Q^+ \times Q(K(R_d^2)) \times \prod_{d = 0, 1, 2} K(R_d) \times \prod_{d \geq 3} Q(K(R_d)).
\]

Thus \(R_0 = (A_0)^{m_0} \), \(K(R_1) = (A_1)^{m_1} \), \(K(R_2) = (D_8)^{m_2} \), \(K(R_2) = (A_2)^{m_2} \), and \(m_1, m_2 \notin \{ 2, 4 \} \), since \(Q \) is radical in \(H \). By definition, \(K(R_d^2) = B(R_d^2) \) and \(K(R_d) = B(R_d) \) for \(d = 1, 2 \). Similarly, since \(Q(K(R_d)) = (A_d)^{m_4} \), it follows that
R_d has a decomposition (2.2) and $\text{QK}(R_d) = \text{QB}(R_d) = \text{B}(R_d)$ for $d \geq 3$. If $\gamma_Z = 1$ for some $Z \in \Delta$, then $Z = A_1 \updownarrow A_2$ or $Z \in \Delta(2)$. In the former case $m_{B(Q)}(A_1) = 4$, since $Q = \text{QK}_H(Q) = K(Q)$. So $m_1 = 0$ and $R_1 = 1$. In the latter cases $m_{B(Q)}(D_8) \in \{2, 4\}$, so that $m_q' = 0$ and $R_q' = 1$. In particular, $m_{R^*}(Z) = 0$. Since R is radical in L, it follows that R is radical in G and $\text{QK}_L(R) = K(R) = Q$. Thus $N_H(R) \leq N_H(Q) = L$ and $N_L(R) = N_H(R)$.

If $|c| = 1$, then $H = A_1 \updownarrow S(t_c)$ and $Q = Q^+ \times Q^*$, where $Q^+ = \prod_{Z \in \Delta(d)}(Z)^{\gamma_Z}$ with $\gamma_Z = 0, 1$ and $Q^* = (A_d)^{t_1} \times (D_8)^{t_2}$. If $|c| = 2$, then $H = \text{NS}_4(X_c) \updownarrow S(t_c)$ and $Q = Z^* \times Q^*$, where $Z \in \Delta(2)$, $\gamma_Z = 0, 1$ and $Q^* = (A_2)^{t_2} \times (D_8)^{t_2}$ or $(D_8)^{t_2}$ according as $X_c = A_2$ or D_8. The same proof as above shows that $K(R) = Q$, $N_H(R) = N_L(R)$ and R is radical in H.

\textbf{Remark.} In the notation of (2E), suppose $O_2(H) = \prod_{X \in \Delta^+}X^{\alpha_X} \times \prod_{c \in \Omega}(X_c)^{t_c}$. Then N_X, α_X, H_c and t_c are determined uniquely by H. In particular, $\text{QK}_H(R)$ is independent of the choice of decompositions of H. Indeed, the underlying set U of H_c and U_X are H-orbits of V, and $N_X = \{y \in H : gy = y \}$ for all $y \in V \setminus U_X$ and $H_c = \{y \in H : gy = y \}$ for all $y \in V \setminus U$. Thus H_c and N_X are determined by H. In addition, $X = O_2(N_X) \in \Delta^+$, $(X_c)^{t_c} = O_2(H_c) \notin \Delta^+$ and $\alpha_X = m_{Q^*}(S_d)$.

Let $G = S(n) = S(V)$ and let $C \in \mathcal{Q}_R$ be the chain given by (2.3) with $w \geq 1$. In addition, let R be a radical subgroup of $N(C)$. Then R has a decomposition (2.7). If $D = \text{QK}_N(C)(R)$, then D is radical in $N(C)$, $P_w \leq D$, and $N_{N(C)}(R) = N_{N(C)}(D)$. In addition, if $P_w \neq D$ and $C' = P_0 < P_1 < \cdots < P_w < D$,
then \(C' \in QR \), \(R \) is radical in \(N(C') \), and \(N_{N(C')}(R) = N_{N(C)}(R) \). If \(P_w = D \), then \(R \) is radical in \(N(C_{w-1}) \) and \(N_{N(C_{w-1})}(R) = N_{N(C)}(R) \).

Proof. Since \(P_1 \) is radical in \(G \) and \(QK_G(P_1) = K(P_1) = P_1 \), it follows that \(N(C_1) = N(P_1) \) has a decomposition (2.8) and \(P_2 \) is radical in \(N(C_1) \) with \(QK_{N(C_1)}(P_2) = P_2 \). By (2E) (b), \(N(C_2) = N_{N(C_1)}(P_2) \) has a decomposition (2.8) and by induction, \(N(C) \) has a decomposition (2.8). Thus \(R \) decomposes as (2.7) and \(D = QK_{N(C)}(R) \) is well-defined. By (2E) (b) again, \(D \) is radical in \(N(C) \) and moreover, \(N_{N(C)}(R) \leq N_{N(C)}(D) \). Thus \(N_{N(C)}(R) \leq N(C) \) and \(N_{N(C)}(R) = N_{N(C)}(R) \). If \(P_w = D \), then apply (2E) (c) to \(H = N(C_{w-1}) \) and \(Q = P_w \). Thus \(R \) is radical in \(N(C_{w-1}) \) and \(N_{N(C_{w-1})}(R) = N_{N(C)}(R) \). This proves (2F).

We can now prove the main result of this section.

(2G). Let \(G = S(n) = S(V) \) with \(O_2(G) = \{1_V\} \), and let \(B \) be a positive defect 2-block of \(G \) and \(u \) an integer. Then

\[
\sum_{C \in QR/G} (-1)^{|C|} k(N(C), B, u) = \sum_{C \in QR/G} (-1)^{|C|} k(N(C), B, u)
\]

where \(QR/G \) is a set of representatives for the \(G \)-orbits in \(QR \).

Proof. It suffices to show that

(2.9) \[
\sum_{C \in \mathcal{M}/G} (-1)^{|C|} k(N(C), B, u) = 0,
\]

where \(\mathcal{M} = R \setminus QR \). Suppose \(C \in \mathcal{M} \) is given by (1.1). Then \(C_0 \in QR \) and \(C = C_w \not\in QR \), so that there must be some minimal \(m = m(C) \in \{0, 1, \ldots, w - 1\} \) such that \(C_m \in QR \) and \(C_{m+1} \not\in QR \). Since \(P_{m+1} \) is radical in \(N(C_m) \), \(P_{m+1} \) has a decomposition (2.7). We can apply (2F) to \(C_m \). If \(D = QK_{N(C_m)}(P_{m+1}) \), then \(D \neq P_{m+1} \), \(D \) is radical in \(N(C_m) \) and \(N_{N(C_m)}(P_{m+1}) \leq N_{N(C_m)}(D) \), so that \(P_m \leq D \). Moreover, if \(P_m = D \), then \(P_{m+1} \) is radical in \(N(C_{m-1}) \) and \(N_{N(C_{m-1})}(P_{m+1}) = N_{N(C_m)}(P_{m+1}) \).

Define

\[
\varphi(C) : \begin{cases}
1 < P_1 < \ldots < P_{m-1} < P_m < P_{m+1} < \ldots < P_w & \text{if } P_m = D, \\
1 < P_1 < \ldots < P_m < D < P_{m+1} < \ldots < P_w & \text{if } P_m < D.
\end{cases}
\]

Then \(\varphi(C) \in \mathcal{M} \) and \(N(C) = N(\varphi(C)) \). Moreover, \(\varphi(\varphi(C)) = C \) and \(|\varphi(C)| = |C| \pm 1 \). Thus \(\varphi \) is a bijection from \(\mathcal{M} \) to itself. This implies (2.9).

\(\square \)
3. More reductions and the proof of the conjecture

In this section we shall follow the notation of Sections 1 and 2. Let QR^0 be the G-invariant subfamily of QR consisting of chains C given by (2.3) such that $m_{P_t}(S_d \cdot D_8) = 0$ for all $d \geq 1$ except when $d = 1$, in which case if $m_{P_t}(A_1 \cdot D_8) \neq 0$, then $(A_2)^2$ is a component of some P_k for $k < i$, and $[V, (A_2)^2] = [V, D_8 \cdot A_1]$ and $(A_2)^2 \leq D_8 \cdot A_1 = A_1 \cdot D_8$. If $QR^1 = QR \setminus QR^0$, then

$$QR = QR^0 \cup QR^1 \quad \text{(disjoint)}.$$

We shall first reduce Dade’s conjecture to the family QR^0.

Fix integer $d \geq 1$. Let $X \in \{S_d \cdot A_2, S_d \cdot D_8\}$, and let $X \times Q$ be a subgroup of $G = S(n) = S(V)$ with a decomposition (2.7). If $U_X = [V, X]$ and $U_Q = V \setminus U_X$, then $V = U_X \cup U_Q$. Suppose $C(0) \in QR^0$ is a fixed radical chain with $|C(0)| = s$. Let $QR(C(0), X \times Q)$ be the subfamily of QR consisting of all chains C given by (2.3) such that its s-th subchain C_s is $C(0)$ and its $(s + 1)$-st subgroup P_{s+1} is $X \times Q$ up to conjugacy in G. Since $X \in \Delta^+$ and $N(C_{s+1})$ has a decomposition (2.8), it follows that $N(C_{s+1}) = N_X \times N(s+1)$, where $N_X = N_{G(U_X)}(X)$ and $N(s+1) \leq S(U_Q)$. Let P_t be the t-th subgroup of C with $t \geq s + 1$. Then $P_t = Y(t) \times Z(t)$, where $Y(t) \in \{X, S_d \cdot A_1 \cdot A_1\}$ and $Z(t) \leq N(s+1)$. Note that $QR(C(0), S_d \cdot D_8 \times Q) \subseteq QR^1$ whenever $d \geq 2$.

Let $M = M(C(0), S_d \cdot A_2 \times Q)$ be the subset of $QR(C(0), S_d \cdot A_2 \times Q)$ consisting of all chains C such that $Y(t) = S_d \cdot D_8$, that is, $P_t = S_d \cdot D_8 \times Z(t)$ (up to conjugacy) for some $t \geq s + 2$. In particular, $M(C(0), S_d \cdot A_2 \times Q) \subseteq QR^1$ and

$$QR^1 = \bigcup_{C(0), S_d \cdot A_2 \times Q} S(C(0), S_d \cdot A_2 \times Q) \quad \text{(disjoint),}$$

where $S(C(0), S_d \cdot A_2 \times Q) = M(C(0), S_d \cdot A_2 \times Q) \cup (QR(C(0), S_d \cdot D_8 \times Q) \cap QR^1)$, $C(0)$ runs over QR^0 and $S_d \cdot A_2 \times Q$ runs over subgroup of G with a decomposition (2.7).

For $C \in M$, denote by $m = m(C)$ the smallest integer such that $P_m = S_d \cdot D_8 \times Z(m)$, so that $Q \leq Z(m)$. Let M_0 and M_+ be the subsets of M consisting of all chains C such that $Z(m) = Q$ and $Z(m) \neq Q$, respectively.

(3A). In the notation above, suppose $S = S(C(0), S_d \cdot A_2 \times Q)$. Then

$$\sum_{C \in S/G} (-1)^{|C|} k(N(C), B, u) = 0$$

for all 2-blocks B and integers $u \geq 0$.

Proof. Set $X = S_d \cdot A_2$. Suppose $C \in M_+$ is given by (2.3). Then $m = m(C) \geq s + 2$ and $P_{m-1} = X \times Z(m - 1)$. So $Z(m - 1) \leq Z(m)$ and $N(C_t) = N_X \times N(t)$.
for \(s + 1 \leq t \leq m - 1\). In particular, \(Z(m - 1)\) is a radical subgroup of \(N(m - 2)\) and moreover, if \(m = s + 2\), then \(Q = Z(m - 1) < Z(m)\). Define a map \(\varphi\) such that

\[
\varphi(C) : \begin{cases}
1 < P_1 < \ldots < P_{m-2} < P_m < \ldots < P_w & \text{if } Z(m-1) = Z(m), \\
1 < P_1 < \ldots < P_{m-1} < X \times Z(m) < P_m < \ldots < P_w & \text{if } Z(m-1) < Z(m).
\end{cases}
\]

Then \(\varphi(C) \in M_+\), \(N(C) = N(\varphi(C))\), \(\varphi(\varphi(C)) = C\) and \(|\varphi(C)| = |C| \pm 1\). Thus

\[
\sum_{C \in (M_+)/G} (-1)^{|C|} k(N(C), B, u) = 0.
\]

Suppose \(C \in M_0\) is given by (2.3). Since \(X\) and \(S_d \wr D_8\) are the only two radical subgroups of \(N_X = S_d \wr (4)\) up to conjugacy containing \((S_d)^4\), it follows that \(m(C) = s + 2\), that is, \(P_{s+2} = S_d \wr D_8 \times Q\). Thus

\[
g(C) : 1 < P_1 < \ldots < P_s < P_{s+2} < \ldots < P_w
\]

is a chain of \(Q\mathcal{R}(C(0), S_d \wr D_8 \times Q) \cap Q\mathcal{R}^1\) and \(N(C) = N(g(C))\). Conversely, suppose

\[
C' : 1 < P'_1 < \ldots < P'_s < P'_{s+1} < \ldots < P'_{w'}
\]

is a chain of \(Q\mathcal{R}(C(0), S_d \wr D_8 \times Q) \cap Q\mathcal{R}^1\), then \(P'_{s+1} = S_d \wr D_8 \times Q\) and

\[
h(C') : 1 < P'_1 < \ldots < P'_s < X \times Q < P'_{s+1} < \ldots < P'_{w'}
\]

is a chain of \(M_0\). It is clear that \(g(h(C')) = C'\), \(h(g(C)) = C\) and \(|g(C)| = |C| - 1\). Thus

\[
\sum_{C \in (M_0 \cup (Q\mathcal{R}(C(0), S_d \wr D_8 \times Q) \cap Q\mathcal{R}^1))}/G (-1)^{|C|} k(N(C), B, u) = 0.
\]

This proves (3A).

\[\square\]

It follows by (3A) that Dade's conjecture can be reduced to the family \(Q\mathcal{R}^0\). Let \(Z = (A_1)^{m_1}\) be a radical subgroup of \(S(2^{m_1}) = S(U_Z)\), and \(W \neq Z\) a radical subgroup of \(N_Z = N_{S(U_Z)}(Z)\) such that \(K(W) = W\). As shown in the proof of (2B)

\[
W \in \Phi = \{D_8 \wr A_2 \times A_1 \wr A_2, D_8 \wr A_2 \times (A_1)^{t_1}, A_1 \wr A_2 \times (D_8)^{t_2}, (A_1)^{t_1} \times (D_8)^{t_2}\},
\]

where \(t_1 \notin \{2, 4\}\). If \(W = A_1 \wr A_2 \times (D_8)^{t_2}\), then \(t_2 \neq 0\), since \(Z\) is radical in \(S(U_Z)\). Similarly, if \(W = (A_1)^{t_1} \times (D_8)^{t_2}\) and \(t_1 = 0\), then \(t_2 \neq 1\). Thus \(N_{N_{S(U_Z)}(Z)}(W) = \)
Let $\mathcal{Q}(C(0), Z \times Q) = \mathcal{Q}(C(0), Z \times Q) \cap \mathcal{Q}(C(0), Z \times Q, W)$ be the subset of $\mathcal{Q}(C(0), Z \times Q)$ consisting of chains C given by (2.3) such that $P_m = W \times Z(m)$ (up to conjugacy) for some $m \geq s + 2$ and $P_t = Z \times Z(t)$ for $s + 1 \leq t \leq m$, where $\mathcal{Q}(C(0), Z \times Q)$ is defined as in (3A) and $Z(t) \leq S(U_Q)$.

(3B). In the notation above, let $S = \mathcal{M}(C(0), Z \times Q, W) \cup \mathcal{Q}(C(0), W \times Q)$, where $W \in \Phi$. Then (3.1) holds for S.

Proof. Replacing $X = S_d \cap A_2$ by Z, $S_d \cap D_8$ by W and some obvious modifications in the proof of (3A), we have (3B).

Let $\mathcal{Q}^+\hat{\mathcal{R}}$ be the complement of $\bigcup_{C(0), Z, W, Q}(\mathcal{M}(C(0), Z \times Q, W) \cup \mathcal{Q}(C(0), W \times Q))$ in \mathcal{Q}, where $C(0)$ runs over $\mathcal{Q}(0)$, $Z = (A_1)^{m_1}$ with $m_1 \notin \{2, 4\}$, W runs over Φ, and Q runs over subgroups of $S(U_Q)$ with a decomposition (2.7). It follows by (3A) and (3B) that

$$\sum_{C \in \mathcal{Q}^+/G} (-1)^{|C|} k(N(C), B, u) = \sum_{C \in \mathcal{Q}/G} (-1)^{|C|} k(N(C), B, u).$$

Let $D = P_1$ be the first non-trivial subgroup of $C \in \mathcal{Q}^+\hat{\mathcal{R}}$. Then $D = K(D)$ and $D = D^+ \times D^\ast$ decomposes as (2.4). Now

$$\Delta = \{A_1 \mid A_2, D_8 \mid A_1, D_8 \mid A_2, D_8 \mid D_8\}.$$

By (3A), $m_D(A_1 \mid A_2) = 0$. Since $D_8 \mid A_2 \in \Phi$, it follows by (3B) that $m_D(D_8 \mid A_2) = 0$. Similarly, $m_D(D_8) = 0$ and $m_Q(A_1 \mid A_2) = 0, 1$. If $m_D(D_8 \mid A_1) \neq 0$, then D is not the first non-trivial subgroup of any chain in \mathcal{Q}. Suppose $m_D(A_1 \mid A_2) \neq 0$. Since $A_1 \mid A_2 \times (D_8)^{t_2} \in \Phi$ for $t_2 \geq 1$, it follows by (3B) that $m_D(D_8) = 0$. But $K(D) = D$, so $m_B(A_1) = 4$ and $m_B(D^+) = 1$. Similarly, if $m_D(D_8) \neq 0$, then $m_D(A_1 \mid A_2) = m_D(A_1) = 0$. Thus

$$(3.2) \quad D = D(0) \times X \times \prod_{d \geq 2} D(d),$$

where $D(d) = (A_d)^{m_d}$ for $d \neq 1$ and $X \leq S(2^{m_1})$ such that

$$X = \begin{cases} D_8 & \text{if } m_1 = 2, \\ A_1 \mid A_2 & \text{if } m_1 = 4, \\ (A_1)^{m_1} & \text{if } m_1 \notin \{2, 4\}. \end{cases}$$

For simplicity, we denote by $D(1)$ the subgroup X. Thus $N(D) = \prod_{d \geq 0} N(D_d)$ such that $N(D_d) = N_{S(2^d)}(A_d) \mid S(m_d)$.

Suppose \(Q = P_2 \) is the second subgroup of \(C \). Then \(Q \) is a radical subgroup of \(N(D) \), so that \(Q = \prod_{d \geq 0} Q_d \), where \(Q_d \) is a radical subgroup of \(N(D)_d \). Thus \(Q_0 \) is of form (3.2). It follows by (3B) that \(Q_1 = D(1) \). In general, if \(W = P_i \) is the \(i \)-th subgroup of \(C \) for \(i \geq 1 \), then \(W = \prod_{d \geq 0} W_d \) with \(W_1 = D(1) \) and \(W_d \leq N(D)_d \) for all \(d \geq 1 \). By (3B) again, if \(m_W(D(\ell A_2)) = 0 \), then there is some \(1 \leq k \leq i - 1 \) such that \((A_2)^4 \) is a component of \(P_k \), \([V, (A_2)^4] = [V, (D(8) \ell A_2)] \) and \((A_2)^4 \leq (D(8) \ell A_2) \).

Let \(\Delta' = \{D_8, A_1 \ell A_2\} \) and let

\[
P = \prod_{X \in \Delta'} (X)^{\alpha_X} \times \prod_{d=0}^s (A_d)^{m_d},
\]

be a subgroup of \(G \), where \(\alpha_X \) and \(m_d \) are non-negative integers. Set \(P^+ = \prod_{X \in \Delta'} (X)^{\alpha_X} \) and \(P^* = \prod_{d=0}^s (A_d)^{m_d} \). Let \(U_X \) be the underlying set of \(X \in \Delta' \) such that \(U_X = [U_X, X] \), and \(N_X = N_{S(U_X)}(X) \).

Suppose \(C \in \mathcal{QR}^+ \) is given by (2.3). Denote by \(C_V(C) \) the fixed-point set \(C_V(P_w) \) of the final subgroup \(P_w \) of \(C \). Let \(\ell = \ell(C) \) be the largest integer such that \(P_\ell \) has a decomposition (3.3), and let \(\mathcal{QR}^+(P) \) be the subset of \(\mathcal{QR}^+ \) consisting of all chains \(C \) given by (2.3) such that \(P_\ell = P \). Then \(\mathcal{QR}^+ = \bigcup_P \mathcal{QR}^+(P) \) (disjoint),

where \(P \) runs over subgroups of \(G \) with a decomposition (3.3). Thus

\[
(3.4) \quad N(C_\ell) \simeq S(V(0)) \times \prod_{X \in \Delta'} (N_X)^{\alpha_X} \times \prod_{d=1}^s \left(\prod_{j=1}^{h_d} N_{S(2^d)}(A_d) \ell S(\lambda_{d,j}) \right),
\]

where \((\lambda_{d,1}, \ldots, \lambda_{d,h_d}) \) is a partition of \(m_d \) and \(V(0) = C_V(P) \).

Fix partitions \(\lambda_d = (\lambda_{d,1}, \ldots, \lambda_{d,h_d}) \) of \(m_d \), and set \(\lambda = (\lambda_1, \ldots, \lambda_s) \). Let \(\mathcal{QR}^+(P, \lambda) \) be the subset of \(\mathcal{QR}^+(P) \) consisting of all chains \(C \) such that \(N(C_\ell) \) is given by (3.4). Then \(\mathcal{QR}^+(P) = \bigcup_\lambda \mathcal{QR}^+(P, \lambda) \) (disjoint),

where \(\lambda \) runs over all \(s \)-tuple partitions \(\lambda_d \) of \(m_d \).

Suppose \(W \) is a \(G \)-conjugate of \(P \). Then \(W^g = P \) for some \(g \in G \), and \(C^g \in \mathcal{QR}^+(P) \) for each \(C \in \mathcal{QR}^+(W) \). Thus a set of representatives for the \(N(P) \)-conjugacy classes of \(\mathcal{QR}^+(P) \) can be regarded as a set of representatives for the \(G \)-conjugacy classes of the \(G \)-orbit containing \(\mathcal{QR}^+(P) \). It is clear that \(\mathcal{QR}^+(P) \) and \(\mathcal{QR}^+(P, \lambda) \) both are \(N(P) \)-invariant.

Let \(\mathcal{QR}'(P, \lambda) = \{C \in \mathcal{QR}^+(P, \lambda) : C_V(C) = C_V(P)\} \), and let \(\mathcal{QR}''(P, \lambda) \) be the complement of \(\mathcal{QR}'(P, \lambda) \) in \(\mathcal{QR}^+(P, \lambda) \).
(3C). In the notation above,

$$\sum_{C \in \mathcal{QR}^+(P, \lambda)/N(P)} (-1)^{|C|} k(N(C), B, u) = 0$$

for all 2-blocks B and integers $u \geq 0$.

Proof. Let $C : 1 < P_1 < \ldots < P_\ell = P < P_{\ell+1} < \ldots < P_w$ be a chain of $M = \mathcal{QR}''(P, \lambda)$. Then $C_V(P_w) \neq C_V(P)$. Let $m = m(C)$ be the smallest integer such that $C_V(P_m) \neq C_V(P) = V(0)$. Then $\ell + 1 \leq m \leq w$.

Let $V(+) = \{V, P\}$ and $P(+) = P^+ \times \prod_{d \geq 1} (A_d)^{m_d},$ where P^+ is defined after (3.3). Then $P = P(0) \times P(\cdot)$ and $N(P) = S(V(0)) \times N(P)(\cdot)$, where $P(0) = \langle 1_{V(0)} \rangle$ and $N(P)(\cdot) = N_S(V(\cdot))(P(\cdot))$. Thus $N(C_{m-1}) = S(V(0)) \times N(C_{m-1})(\cdot)$, where $N(C_{m-1})(\cdot) \leq S(V(\cdot))$. So $W = P_m$ decomposes as $W = W_0 \times W_+$, where W_0 is a radical subgroup of $S(V(0))$ and $W_+ \leq S(V(\cdot))$. In particular, W_0 is a non-trivial subgroup with a decomposition (3.3). By definition, P_m has no decompositions as that of (3.3), so that $m_{W_+}(Z) \neq 0$ for some $Z \in \{Q_\varepsilon, S_d \cdot A_1, S_d \cdot A_2\}$, where $d \geq 2$ and ε is a sequence of positive integers. Let $D = \langle 1_{V(0)} \rangle \times W_+$ and $R = P_{m-1}$. Then $D < P_m$, $R = R(0) \times R(\cdot) \leq D$, and D is radical in $N(C_{m-1})$, where $R(0) = \langle 1_{V(0)} \rangle$ and $R(\cdot) = O_2(N(C_{m-1})(\cdot))$. If $R(\cdot) = W_+$, then $m \geq \ell + 2$ and $P_m = W_0 \times W_+$ is radical in $N(C_{m-2})$. Let $\varphi(C) \in \mathcal{QR}^+$ such that

$$\varphi(C) : \begin{cases} 1 < P_1 < \ldots < P_{m-2} < P_m < \ldots < P_w & \text{if } P_{m-1} = D, \\ 1 < P_1 < \ldots < P_{m-1} < D < P_m < \ldots < P_w & \text{if } P_{m-1} < D. \end{cases}$$

Then $\varphi(C) \in M$, $N(C) = N(\varphi(C))$, $|\varphi(C)| = |C| \pm 1$ and $\varphi(\varphi(C)) = C$. Thus φ is a permutation of M and preserves $N(P)$-classes in M. This implies (3C).

Let $\mathcal{QR}'_1(P, \lambda)$ be the subset of $\mathcal{QR}'(P, \lambda)$ consisting of all the chains whose final subgroup is P. For any $C(0) \in \mathcal{QR}'_1(P, \lambda)$ with length $|C(0)| = \ell$, let $\mathcal{QR}'(C(0), \lambda)$ denote the subset of $\mathcal{QR}'(P, \lambda)$ consisting of all the chains C such that $C_\ell = C(0)$. Thus

$$\mathcal{QR}'(P, \lambda) = \bigcup_{C(0) \in \mathcal{QR}'_1(P, \lambda)} \mathcal{QR}'(C(0), \lambda) \quad \text{(disjoint)}.$$

In addition, two chains $C(0)$ and $C(0)'$ of $\mathcal{QR}'_1(P, \lambda)$ are $N(P)$-conjugate if and only if $\mathcal{QR}'(C(0), \lambda)$ and $\mathcal{QR}'(C(0)', \lambda)$ are $N(P)$-conjugate.

Now we can prove the main result of this paper.

(3D). Dade's ordinary conjecture holds for any positive defect 2-block of the symmetric groups $S(n)$ with $O_2(S(n)) = 1$.

Proof. (1) First of all, we show that if \(m_P(A_d) \neq 0 \) for some \(d \geq 2 \), then

\[
\sum_{C \in \mathcal{QR}'(C(0), \lambda)/N(C(0))} (-1)^{|C|} k(N(C), B, u) = 0
\]

for all 2-blocks \(B \) and integers \(u \geq 0 \).

Let \(K = \prod_{d=2}^s \prod_{j=1}^{h_d} \text{GL}(d, 2)^{\lambda_{d,j}} \) and let \(\mathcal{R}(K) \) be the set of all radical 2-chains of \(K \). In addition, let \(\mathcal{S} = S(C(0), \lambda) \) be the set of all chains

\[
C : 1 < P_1 < \ldots < P_\ell = P < P_{\ell+1} < \ldots < P_w
\]

of \(G \) such that \(C_\ell = C(0) \) and \(C/P : P_\ell/P < P_{\ell+1}/P < \ldots < P_w/P \) is a chain of \(\mathcal{R}(K) \). The map \(\varphi : \mathcal{S}(C(0), \lambda) \to \mathcal{R}(K) \) given by \(\varphi(C) = C/P \) is a bijection (see [6, (5.7)]).

The same proof as that after (5.7) of [6] shows that

\[
\sum_{C \in \mathcal{S}(C(0), \lambda)/N(C(0))} (-1)^{|C|} k(N(C), B, u) = 0.
\]

It suffices to show that there exists a bijective map \(\psi \) from \(\mathcal{QR}'(C(0), \lambda) \) to \(S(C(0), \lambda) \) such that \(N(C) = N(\psi(C)) \).

Let \(C \) be a chain of \(\mathcal{QR}'(C(0), \lambda) \) given by (2.3) and let \(N_i = N(C_i) \) for \(0 \leq i \leq w \). If \(D = P_t \) is the \(t \)-th subgroup of \(C \), then

\[
D = D(0) \times D(1) \times \prod_{d \geq 2} [(S_d \cap A_1)^{\alpha_d} \times (S_d \cap A_2)^{\beta_d} \times D(d)],
\]

such that \(D(0) = (A_0)^{m_0} \), \(D(1) = (D_8)^{\alpha_1} \times (A_1 \cap A_2)^{\beta_1} \times (A_1)^{t_1} \) and \(D(d) = \prod_{c} (X_c)^{t_c} \) with \(|c| = d \), where \(X_c \in \{A_d, S_2 = D_8, Q_c\} \), and \(\alpha_i, \beta_i, t_1 \) and \(t_c \) are non-negative integers. Let

\[
\psi(D) = D(0) \times D(1) \times \prod_{d \geq 2} [(S_d)^{2\alpha_d} \times (S_d)^{4\beta_d} \times D(d)].
\]

Equivalently, if \(D = \prod_i D_i \) such that \(D_i \in \Delta^+ \) or \(D_i \in \{A_d, D_8, Q_c\} \), then \(\psi(D) = \prod_k QB(D_k) \times (A_1 \cap A_2)^{\beta_1} \), where \(\beta_1 = m_D(A_1 \cap A_2) \) and \(k \) runs over the indices such that \(D_k \neq A_1 \cap A_2 \). Define

\[
\psi(C) : 1 < \psi(P_1) < \psi(P_2) < \ldots < \psi(P_w).
\]

Then \(\psi(C_\ell) = \psi(C) \) for \(1 \leq t \leq w \). We shall show that \(\psi(C) \in \mathcal{S} \) and \(\psi \) is a bijection satisfying \(N(C) = N(\psi(C)) \). If \(\alpha_d = \beta_d = 0 \) for \(d \geq 2 \), then \(\psi(D) = D \). In particular, \(\psi(P_t) = P_t, \psi(C_\ell) = C_\ell = C(0) \) and \(N_G(C_t) = N_G(\psi(C_t)) \) for \(1 \leq t \leq \ell \).
Suppose $\psi(C_t) \in S$ for some $t \geq \ell$. Then N_t is of the form (2.8), and moreover, if $V(0) = C_V(P_t) = C_V(P)$, then

$$(3.7) \quad N_t = S(V(0)) \times N_t(1) \times \prod_{d \geq 2} \left[(S_d \wr A_1)^{\alpha_d} \times (S_d \wr S(4))^{\beta_d} \times N_t(d) \right],$$

where $N_t(1) = (D_8)^{\alpha_1} \times (A_1 \wr S(4))^{\beta_1} \times A_1 \wr S(t_1)$ and

$$N_t(d) = \prod_{|c| = d} N_{N_{B(2d)}(A_d)}(X_c) \wr S(t_c).$$

Since P_{t+1} is radical subgroup of N_t and $C \in \mathcal{QR}'(C(0), \lambda)$, it follows that

$$P_{t+1} = D(0) \times D(1) \times \prod_{d \geq 2} \left[(S_d \wr A_1)^{\alpha_d} \times (S_d \wr A_2)^{\beta_d} \times W(d) \right],$$

where $W(d) = \prod_{|c| = d} W_c$ such that W_c is radical in $H_c = N_{N_{B(2d)}(A_d)}(X_c) \wr S(t_c)$. As shown in the proof of (2E) (c) $W_c = \prod_w (Y_w)^{\eta w} \times (S_d)^{\gamma w}$, where the w's are sequences of positive integers such that $|w| = |c| = d$, $Z \in \{S_d \wr A_1, S_d \wr A_2\}$, $Y_w \in \{A_d, D_8, Q_w\}$ and $\gamma Z = 0, 1$. Moreover, $X_c \leq Y_w$ and $(Z)^{\gamma w} = S_d \wr A_1 \text{ or } S_d \wr A_2$ according as $m_{QB(W_c)}(S_d) = 2 \text{ or } 4$. So $QB(W_c) = \prod_w (Y_w)^{\eta w} \times (S_d)^{\gamma w}$ and $(X_c)^{\eta w} \leq QB(W_c)$, where $\eta = 2 \text{ or } 4$ according as $(Z)^{\gamma w} = S_d \wr A_1 \text{ or } S_d \wr A_2$. In particular, $N_{H_c}(W_c) = N_{H_c}(QB(W_c))$, and $QB(W_c)/(A_d)^{\eta w} = \prod_w (Y_w/A_d)^{\eta w} \times (S_d/A_d)^{\gamma w}$ is a radical subgroup of $GL(d,2)^{\eta w}$. By definition,

$$\psi(P_{t+1}) = D(0) \times D(1) \times \prod_{d \geq 2} \left[(S_d)^{2\alpha_d} \times (S_d)^{4\beta_d} \times QB(W(d)) \right],$$

so that $N_{N_t}(\psi(P_{t+1})) = N_{t+1}$. By (3.6), $\psi(P_t) \subseteq \psi(P_{t+1})$ and $\psi(P_{t+1})/P$ is a radical subgroup of K. Thus $\psi(C_t)/P \in \mathcal{R}(K)$, and by induction, $\psi(C)/P \in \mathcal{R}(K)$, so that $\psi(C) \in S$. Since $N_t = N(C_t) = N(\psi(C_t))$ for $t \geq 1$, it follows that $P_t = O_{2}(N(\psi(C_t)))$, so that C is determined uniquely by $\psi(C)$. Thus ψ is a bijection if and only if it is onto.

Let $C' : 1 < P'_1 < \ldots < P'_w$ be a chain in S, and let C be the chain of length w such that its t-th non-trivial subgroup P_t is $O_2(N(C'_t))$. Since $C'_t = C(0)$ is radical, it follows that $C_t = C(0)$, and so $\psi(C_t) = C'_t$ for $0 \leq t \leq \ell$. Suppose $\psi(C_t) = C'_t$ and $C_t \in \mathcal{QR}'(C(0), \lambda)$ for some $\ell \leq t \leq w$. Then $N_t = N(C_t) = N(C'_t)$ is given by (3.7). Since C_t is a radical chain and $P_t = O_2(N_t)$, it follows that $P_t = D$ is given by (3.5) and $P'_t = \psi(D)$ is given by (3.6). Since $P'_t \leq P'_{t+1} \leq N_t$ and P'_{t+1}/P is radical in K, it follows that

$$P'_{t+1} = D(0) \times D(1) \times \prod_{d \geq 2} \left[(S_d)^{2\alpha_d} \times (S_d)^{4\beta_d} \times T(d) \right]$$

such that $T(d) = \prod_{|c| = d} T_c$, where $T_c/(A_d)^{\lambda c}$ is a radical subgroup of $GL(d,2)^{\lambda c}$.

\textit{Dade's Conjecture 435}
By (2A) (b), \(T_c = \prod_w (Y_w)^{m_w} \), where \(|w| = |c| = d\) and \(Y_w \in \{ A_d, D_8, Q_w \} \). Thus

\[
N_{H_c}(T_c) = \prod_w N_{N_{S(2d)}(A_d)}(Y_w) \lhd S(m_w).
\]

Since \(Y_w \) is self-normalizing if and only if \(Y_w = S_d \), it follows that \(O_2(N_{H_c}(T_c)) = T_c \) except when \(m_{T_c}(S_d) \in \{2, 4\} \), in which case \(O_2(N_{H_c}(T_c)) = \prod_{Y_w \neq S_d} (Y_w)^{m_w} \times Z \), where \(Z = S_d \lhd A_1 \) or \(S_d \lhd A_2 \) according as \(m_{T_c}(S_d) = 2 \) or \(4 \). Thus \(\psi(O_2(N_{H_c}(T_c))) = T_c \) and \(\psi(P_{t+1}) = P_{t+1}' \). By induction, \(\psi(C) = C' \) and \(\psi \) is onto. Thus \(\psi \) is a bijection.

(2) In order to complete the proof, it suffices to consider chains \(C \in Q\mathcal{R}'(P, \lambda) \) such that

\[
(3.8) \quad P = (A_0)^{m_0} \times (D_8)^{\alpha} \times (A_1 \lhd A_2)^{\beta} \times (A_1)^{m_1},
\]

where \(\alpha, \beta, m_0 \) and \(m_1 \) are non-negative integers. It follows by (3B) and (3C) that \(P \) is the final subgroup for each chain \(C \in Q\mathcal{R}'(P, \lambda) \). Let \(Q\mathcal{R}^*(G) = \cup_{P, \lambda} Q\mathcal{R}'(P, \lambda) \), where \(P \) runs over subgroups of form (3.8) and \(\lambda \) runs over partitions of \(m_1 \). It suffices to show that

\[
(3.9) \quad \sum_{C \in Q\mathcal{R}^*(G)/G} (-1)^{|C|} k(N(C), B, u) = 0
\]

for all positive defect 2-blocks \(B \) and integers \(u \geq 0 \).

Now each subgroup of a chain \(C \in Q\mathcal{R}^*(G) \) is of the form (3.8). Let \(\phi(P) = (A_0)^{m_0 \times (A_1)^{2\alpha} \times (A_1)^{4\beta} \times (A_1)^{m_1}} \) and let

\[
\phi(C) : 1 < \phi(P_1) < \phi(P_2) < \ldots < \phi(P_w)
\]

for chain \(C \in Q\mathcal{R}^*(G) \) given by (2.3). In addition, let \(S(G) = \{ \phi(C) : C \in Q\mathcal{R}^*(G) \} \). A proof similar to that of (1) above shows that \(\phi \) is a bijection between \(Q\mathcal{R}^*(G) \) and \(S(G) \), and \(N(C) = N(\phi(C)) \).

The same proof as that of [6, Proposition (6.1)] shows that

\[
\sum_{C \in S(G)/G} (-1)^{|C|} k(N(C), B, u) = 0,
\]

which implies (3.9). This completes the proof.

Acknowledgment. The author would like to thank the referee for several useful suggestions.
References

Department of Mathematics
University of Auckland
Auckland, New Zealand