

Title	Electrochemical Actions of Flux for Soldering
Author(s)	Okamoto, Ikuo; Onishi, Iwao
Citation	Transactions of JWRI. 1975, 4(1), p. 71-78
Version Type	VoR
URL	https://doi.org/10.18910/8413
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Electrochemical Actions of Flux for Soldering[†]

Ikuo OKAMOTO* and Iwao ONISHI**

Abstract

In order to confirm the electrochemical actions of flux, which contained H^+ and Cl^- ions, for soldering, the spreading test of a low melting point solder on copper base metal and the corrosion potential measurements of the base metal and solder in the studied flux solution were made.

Through the experiments and considerations, a new experimental equation, $\log a_{Cr} = -4.65 + pH$, which defines whether the solder does spread or doesn't, was introduced.

1. Introduction

The actions of flux for soldering and brazing, in general, have been considered to date as follows;

- 1) To dissolve or release any oxides present on the base metal and molten filler alloy surfaces which are to be joined.
- 2) To prevent the oxidation of these surfaces during the joining process.
- 3) To lower the surface tension of the molten filler alloy, namely, the molten flux should be readily displaced by the molten filler alloy, thus promoting the wetting of the base metal by the molten filler alloy.

In these factors, the reports on the dissolution mechanism of the base metal and molten filler alloy oxides are very few in the past literature. The report of M. F. Jordan¹ et al. is one of them. They reported about the electrochemical action of flux for brazing of aluminum and considered about the anodic corrosion reaction of a local cell, which forms between aluminum base metal and aluminum oxide film on the base metal in molten flux used. This theory is apparently a good idea for aluminum, but will not be applied for copper because copper presents in noble side than hydrogen in the ionic series.

The purpose of this paper was to investigate the electrochemical action of flux for soldering of copper. In order to easy the consideration for the results obtained, aqueous solutions of H_2SO_4 , $H_2SO_4 + NaCl$ and HCl were selected as the fluxes, and a low melting point alloy of 47°C was used as the solder. Two experiments were made; ordinary spreading tests and corrosion potential measurements of the base metal and solder in flux solutions used. Both relation was considered under a thermo-dynamical equilibrium condition to clarify the electrochemical actions of H^+ and Cl^- ions present in the flux solutions. This consideration

made it possible to introduce a new experimental equation, which denotes a critical condition of the flux concentration that defines whether the used solder does spread or doesn't on the base metal.

2. Materials, Apparatus and Procedure Used

2.1 Spreading test

The base metal used is pure copper plate, the size of $40 \times 40 \times 0.5$ mm thick. Each surface of the specimen was degreased, electrolytic polished, water washed and dried. The solder used is a low melting point alloy as shown in **Table 1**. This solder was selected to protect the constituent variation of the used flux solution through the spreading test, its test temperature was 60°C and spreading time 60 sec. **Figure 1** shows the experimental apparatus for spreading test. The test was made on the base metal placed

Table 1. Chemical compositions of solder used.

Composition (wt.%)					Melting point (°C)
Cd	Sn	In	Bi	Pb	
5.3	8.3	19.1	44.7	22.6	47

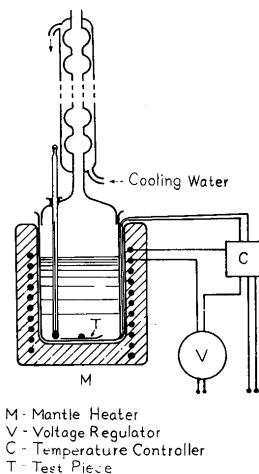


Fig. 1. Schematic diagram of solder-spread test apparatus.

† Received on Jan. 10, 1974

* Professor

** Professor, Iron and Steel, Technical College

horizontally in the glass bottom filled with the flux solution. The bottom of solder, 0.3gr, was placed on the center of the base metal. Through the test, the solution concentration is helded constantly because the vapor generated under the test temperature is condensed by a cooling water tube attached to the bottle. After the spreading was finished, the specimen is removed from the bottle and the spreading area was measured with a planimeter.

Three flux solutions were used; The first is an aqueous solution of H_2SO_4 as flux solution containing H^+ ion only, namely no Cl^- ion. The second is the mixed flux solution which prepared to know the effect of Cl^- ion. This solution contains the required amount of $NaCl$ within aqueous solution of H_2SO_4 of each pH, as shown in Table 2. The H^+ and SO_4^{2-} ion concentrations showed in the table are chemical analysis values. The difference of pH value and this concentration value means the dissociation of water produced essentially by a neutralization method of chemical analysis. $NaCl$ values show the addition content. Γ and μ values indicate total ion concentration and ionic strength of each solution and also a_{Cl^-} , that is activity of Cl^- ion, was calculated from f_{Cl^-} that is activity coefficient of Cl^- ion, which was obtained from Kielland Table²⁾. The third flux solution is an aqueous solution of HCl . An a_{Cl^-} of that solution

of each pH was calculated with the same method under full dissociation condition, to compare with those of the mixed flux solution.

2.2 Corrosion potential measurement

Figure 2 is a schematic diagram for measuring of corrosion potential. A reference electrode is a saturated calomel electrode and a reserver filled saturated KCl aqueous solution is inserted to between the reference electrode and a cell contained the test piece, which is either base metal or solder, preventing the dilution of the Cl^- ion concentration in the reference electrode.

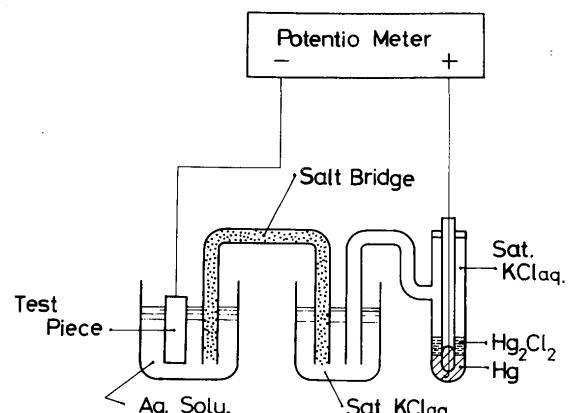


Fig. 2. Circuit diagram for measuring corrosion potential.

Table 2. Calculated a_{Cl^-} values of mixed flux aq. solutions.

pH	H^+ g-ion/1	SO_4^{2-} g-ion/1	$NaCl$ mol/1	$\times 10^2$	Γ $\times 10^2$	f_{Cl^-}	a_{Cl^-} $\times 10^3$	a_{Cl^-} of HCl $\times 10^{-3}$
1	8.20×10^{-1}	4.10×10^{-1}	1×10^{-3}	123	246	0.555	0.565	35.7
			1×10^{-2}	124	248	0.564	15.64	
			3×10^{-2}	126	252	0.563	16.9	
			5×10^{-2}	128	256	0.562	28.1	
			7×10^{-2}	130	260	0.560	39.2	
			9×10^{-2}	132	264	0.558	50.2	
			1×10^{-1}	133	266	0.557	55.7	
2	14.4×10^{-3}	7.20×10^{-3}	1×10^{-3}	2.48	4.48	0.855	0.855	7.00
			5×10^{-3}	2.64	5.28	0.845	4.23	
			1×10^{-2}	3.14	6.28	0.833	8.73	
			3×10^{-2}	5.15	10.3	0.796	23.9	
			5×10^{-2}	7.15	14.3	0.774	38.7	
			1×10^{-1}	14.15	24.3	0.734	73.4	
2.5	2.80×10^{-3}	1.40×10^{-3}	1×10^{-3}	0.52	1.04	0.922	0.922	4.08 (4.40 mol/1)
			2×10^{-3}	0.62	1.24	0.915	1.83	
			3×10^{-3}	0.72	1.44	0.910	2.73	
			4×10^{-3}	0.82	1.64	0.905	3.62	
			5×10^{-3}	0.92	1.84	0.900	4.50	
			1×10^{-2}	1.42	2.84	0.860	8.60	
			4×10^{-2}	4.42	8.84	0.807	32.3	
			5×10^{-2}	5.40	10.8	0.794	39.7	
			1×10^{-1}	10.40	20.80	0.746	74.6	
3.0	7.8×10^{-4}	3.9×10^{-4}	1×10^{-3}	0.217	0.434	0.947	0.947	2.78
			1×10^{-2}	1.11	2.23	0.891	8.91	
			3×10^{-2}	3.11	6.23	0.832	25.0	
			4×10^{-2}	4.16	8.23	0.813	32.5	
			5×10^{-2}	5.10	10.2	0.797	39.9	
			1×10^{-1}	10.10	20.2	0.799	79.9	

The whole surface area, but except for the exposure area of 10×10 mm on one side, of the test piece was insulated with a paint. The exposure part and a tip of the salt bridge were then immersed 5 mm apart in the solution, suspending to 20 mm below the water level. The corrosion potential was measured with a potentiometer.

3. Results and Discussions

3.1 Effects of the concentrations of H^+ and Cl^- ions on the spreading of solder

Figure 3 shows the relation between the spread area of the solder and pH of the used flux solutions. In this experiment, the Cl^- ion concentration of the mixed solution of each pH was adjusted as agree with that of the aqueous solution of HCl of each pH, namely, although both solutions are identical with regard to the concentrations of H^+ and Cl^- ions, but differ in the constituents.

From this result, it is evident that the higher the concentration of H^+ ion in the flux solutions, the better the spread area of solder becomes. On the other hand, both spread areas in the aqueous solutions of HCl and the mixed aqueous solutions at various pH values are about equal. This experimental fact means that both SO_4^{2-} and Na^+ ions haven't the effective action for the spreading of the solder and the fluxing action of Cl^- ion is effective with a decreasing concentration of H^+ ion in these solutions. Accordingly, the fluxing actions of both H^+ and Cl^- ions must be made clear. Moreover, the solder didn't spread in the solutions of pHs 4 and 5.

Figure 4 shows the effects of Cl^- ions concentrations in the mixed solutions on the spreading of solder when the concentration of H^+ ion in the solution is kept about constantly. In this case, since

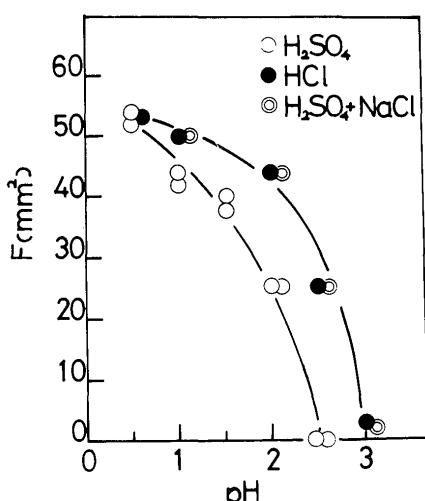


Fig. 3. Spread area of solder on copper base plate in various flux aq. solutions at 60°C.

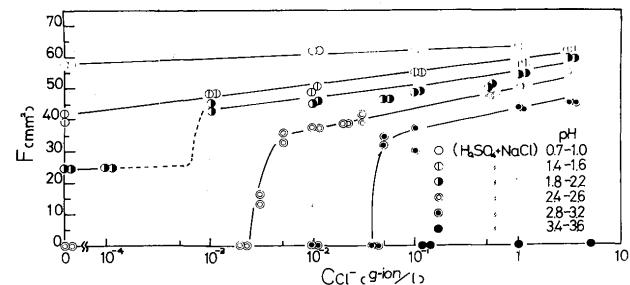


Fig. 4. Relation between spread area of solder and Cl^- ion concentration in mixed flux aq. solution with constant pH.

the excessive addition of NaCl, namely Cl^- ion, into the aqueous solution of H_2SO_4 becomes to increase the pH value of its mixed solution, the spreading test was made at a Cl^- ion concentration zero to 5 g-ion/l in the mixed solution, as shown in the figure. The spread area at each pH, as can be seen in figure, increases slightly with an increasing concentration of Cl^- ion. In addition, the effect of Cl^- ion is remarkable as the pH value of the solution is much, and especially the spread areas of pHs 2.5 and 3.0 increase suddenly at a limiting Cl^- ion concentration, which is 3×10^{-3} g-ion/l for pH 2.5 and 5×10^{-2} g-ion/l for pH 3.0. This limiting concentration shifts to lower Cl^- ion concentration side as the pH value of the solution decreases. In a domain below this limiting concentration the solder did not spread, while in a domain above this limiting concentration the spread was observed, but the spread area was about a constant as far as the pH of the solution was kept constantly. No papers have been published on this limiting concentration in detail.

From this result, we have considered that a mechanism of fluxing action of Cl^- ion present in the solution may be the limiting concentration of Cl^- ion and the mechanism may be predict by a electrochemical reaction taking place at the base metal /the solution interface. In order to confirm the reaction in the solution, the following electrochemical experiment was made.

3.2 Corrosion potential of base metal immersed in flux solution

3.2.1 Changes of potential in an aqueous solution of H_2SO_4

The changes of corrosion potentials of copper specimens in the aqueous solutions of H_2SO_4 at 25°C as a function of the immersion time are shown in Fig. 5. The potentials at pHs 1 and 2 decrease with an increasing of the immersion time, and inversely increase in the case of pHs 4 and 5. In addition the potential at each pH steadies within a few minutes from the initiation of immersion. This steady potential at each pH was replotted in Fig. 6, which is the potential-pH

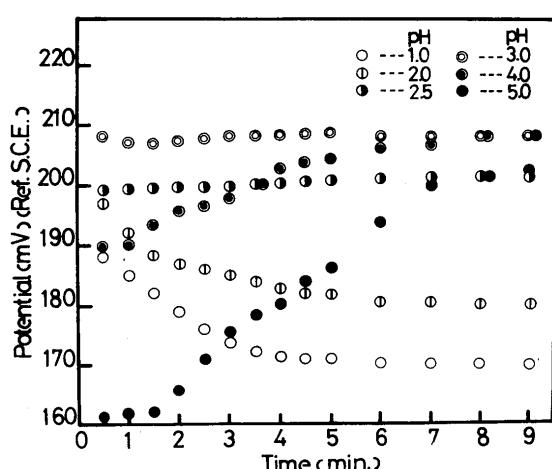


Fig. 5. Variation of corrosion potential on copper in H_2SO_4 aq. solution at 25°C.

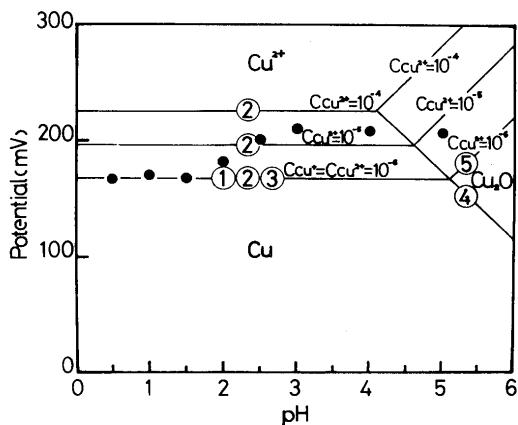
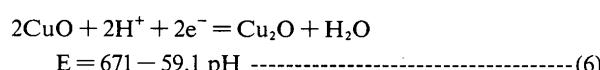
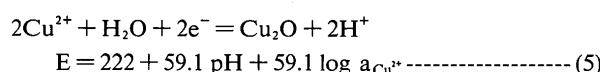
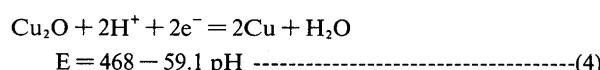
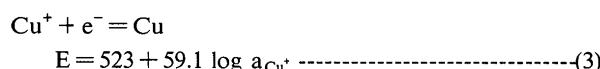
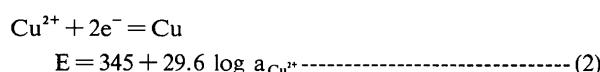
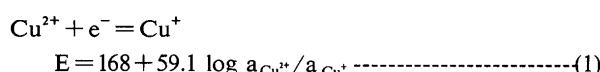
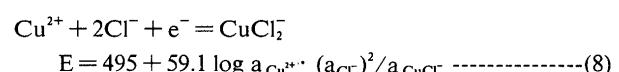
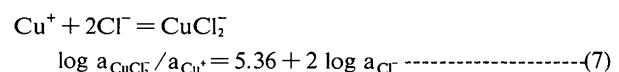








Fig. 6. Potential-pH equilibrium diagram for Cu-H₂O system and corrosion potentials indicated in Fig. 5.

diagram for the stable equilibria of the system Cu-H₂O at 25°C. In this system a number of electrode reactions³ to be considered, in general, are as follows (in mV);

A number on each line corresponds to that of each equation, and these lines were drawn for the potential obtained from the calculation, which was made sub-

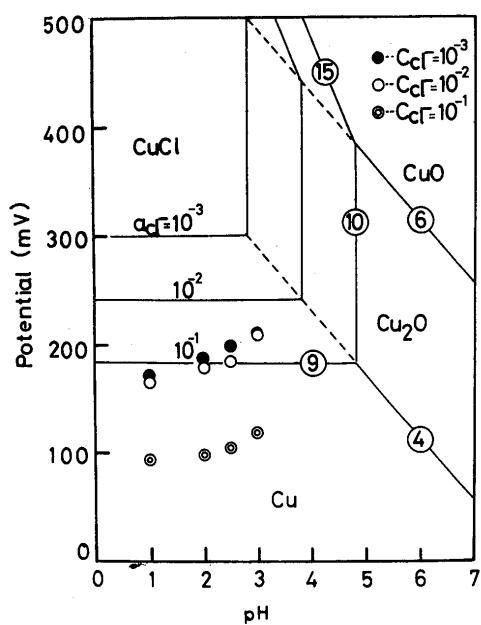
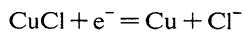


stituting $C_{\text{Cu}^{2+}} = 10^{-4}$, 10^{-5} and 10^{-6} , and $C_{\text{Cu}^+} = 10^{-6}$ g-ion/l for the activity of logarithm term of the corresponding equation (i. e.: assume that concentration equals activity). These lines form the boundaries of three domains, within which metallic Cu, Cu_2O and Cu^+ is absolutely stable, and the steady potential at pH 5 exists in the domain of the Cu_2O , accordingly, it is believed that the reaction of equations (5) proceeds to the right side, so that the resultant product of Cu_2O on the base metal becomes more stable. The steady potentials at pHs 4, 3 and 2 decrease in order of its description, and all exist in the domain of the unstable Cu_2O , accordingly, it is believed that the reaction of equation (4) proceeds to the right side, so that the potential migrates with an increasing concentration of H^+ ion in the solution to the domain of the more stable metallic Cu, and also coincides with the line, at which the concentrations of Cu^+ and Cu^{2+} respectively are 10^{-6} g-ion/l, whose value is the well known, thermodynamically, limitation concentration that denotes whether corrosion does or doesn't take place.

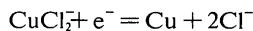
From above mentioned considerations it may be expected that the spreading of the solder in the aqueous solution of H_2SO_4 shown in Fig. 3 depends on the stability of Cu_2O formed on the base metal, of course, since the stability increases as the pH of solution is increased, the spread area decreases. Moreover, the formation of CuO , especially $\text{Cu}(\text{OH})_2$, referring to equation (6), would not so much affected against the potential investigated, because the used aqueous solution of H_2SO_4 belongs to an acid, medium. We therefore omitted it.

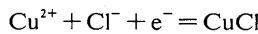
3.2.2 Effect of Cl^- ion on the corrosion potential of base metal

When the additive contents of Cl^- ions to the aqueous solution of H_2SO_4 , whose pH is 1, 2 and 3, are 10^{-1} , 10^{-2} and 10^{-3} g-ion/l, the relation between the corrosion potential of copper specimen and the pH of the mixed solution is shown in Fig. 7. As compared with the result of no Cl^- ion, which is Fig. 6, the potential lowers remarkably by the addition of 10^{-1} g-ion/l Cl^- ion, although the potentials in the extents of 10^{-2} or 10^{-3} g-ion/l are similar.

In the ternary system Cu-Cl-H₂O, a number of electrode reactions³ to be considered, in general, are as follows, together with the former equations (in mV):

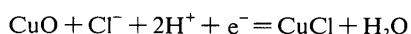




Fig. 7. Potential-pH equilibrium diagram for Cu-Cl-H₂O system and corrosion potentials of copper immersed in mixed flux aq. solutions.


$$E = 124 - 59.1 \log a_{\text{Cl}^-} \quad (9)$$

$$\log a_{\text{Cl}^-} = -5.82 + \text{pH} \quad (10)$$

$$E = 194 + 59.1 \log a_{\text{CuCl}_2^-} / (a_{\text{Cl}^-})^2 \quad (11)$$


$$E = 566 + 59.1 \log (a_{\text{Cu}^{2+}})(a_{\text{Cl}^-}) \quad (12)$$

$$\log a_{\text{CuCl}_2^-} = -1.19 + \log a_{\text{Cl}^-} \quad (13)$$

$$\log a_{\text{Cu}^+} = -6.74 - \log a_{\text{Cl}^-} \quad (14)$$

$$E = 1016 - 118.2 \text{ pH} + 59.1 \log a_{\text{Cl}^-} \quad (15)$$

In Fig. 7, the full lines based on equations (4), (6), (9), (10) and (15) show the domains of stability of Cu, Cu₂O, CuO and CuCl at Cl⁻ ion activities equal to 10⁻¹, 10⁻² and 10⁻³, and refer to the reactions between solid phases in the mixed solution. The additions of Cl⁻ ions enlarge the domain of predominance of CuCl, inversely, the domain of Cu₂O becomes narrower. These signify also that the reaction of equation (9) proceeds to the left side, and the resultant product, that is CuCl, on the base metal is stabilized. But this is incompatible with that the measured potentials in the case of 10⁻¹ g-ion/l Cl⁻ ions are recognizable in the domain of predominance of metallic Cu. The phenomena of the potential depression resulted from the

addition of Cl⁻ ions, accordingly, can't be explained by the reactions between the solid phases only in the mixed solution. Then, two solid phases Cu, CuCl and three solutes Cu⁺, Cu²⁺ and CuCl₂⁻ as complex ion in the mixed solution were examined in further consideration. Figure 8 shows the effect of the potential on equilibrium activities of Cu⁺, Cu²⁺ and CuCl₂⁻ in contact with Cu and CuCl, when the Cl⁻ ion activity is 3.2 × 10⁻² as one example.

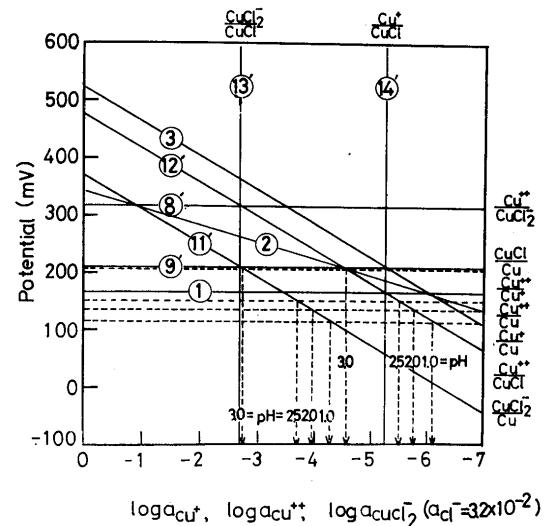


Fig. 8. Effect of potential on activity of Cu⁺, Cu²⁺ and CuCl₂⁻ ion in contact with Cu and CuCl.

The dotted number shows that the Cl⁻ ion activity of equation corresponded to the number is 3.2 × 10⁻². The broken lines show the potential values measured in the mixed solution of each pH with Cl⁻ ion activity of 3.2 × 10⁻², and the ordinates of these lines were drawn for convenience of illustration. The straight lines ⑫' and ②, ⑬' and ⑪', and ⑭' and ③ respectively intersect at a point of ordinate 212 mV: this is the standard potential for the CuCl/Cu equilibrium showed as the straight line ⑨'. Also, the straight lines ② and ⑪' intersect at a point of ordinate 319 mV: this is the standard potential for the Cu²⁺/CuCl₂⁻ equilibrium showed as the straight line ⑧', at which the concentrations of both ions are equal, and below which the complex ion CuCl₂⁻ is predominant. Each measured value belongs in this domain, furthermore except for the measured value of pH 3 all values lie below the straight line ①: this is the standard potential for the Cu²⁺/Cu⁺ equilibrium. These discussions, in conjunction with those given previously, made it possible to consider that the copper base metal in the mixed solution of pH 1 to 2.5 produced the complex ion CuCl₂⁻ owing to the left side proceeding reaction of equation (11). Figure 9 shows a detail relation between the corrosion potential shown in Fig. 7 and

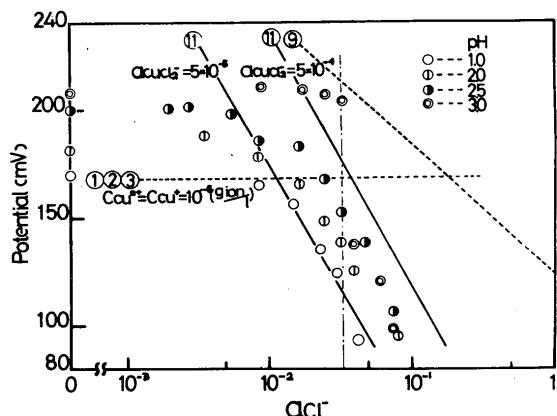


Fig. 9. Relation between corrosion potential of copper and activity of Cl^- ion in mixed flux aq. solution.

the activity of Cl^- ion in the mixed solution. The broken line with a dot shows the position of $a_{\text{Cl}^-} = 3.2 \times 10^{-2}$ utilized in Fig. 8. The potentials of pH 3 at this position are uncontinuous. As can be seen in Fig. 8, the straight lines ⑪' and ⑪ intersect at a point of ordinate 212 mV, which approximately coincides with the measured potential (that is 210 mV) of noble side on the uncontinuous curve. On the other hand, in Fig. 8, the straight lines ⑪' and ⑪ intersect at a point of ordinate 168 mV, which fairly coincides with the measured potential (that is 158 mV) of base side on the uncontinuous curve. This situation made it possible to consider that the uncontinuous phenomenon depended on the reaction of equation (13), which is independent of an electromotive reaction. It has been already described, as to the aqueous solution of H_2SO_4 of pH 3, that the Cu_2O on the copper base metal will be formed by the right side proceeding reaction of equation (5). This Cu_2O , in the presence of Cl^- ion in the mixed solution, will be transformed to the CuCl owing to the right side proceeding reaction of equation (10), and in addition the CuCl_2^- will be formed from the CuCl owing to the right side proceeding reaction of equation (13).

As can be seen in Fig. 9, when the activity of Cl^-

ion is more larger than about 10^{-2} , the potential of pH 1 decreases along a theoretical line of ⑪, at which the value of $a_{\text{CuCl}_2^-}$ is 5×10^{-5} . From this fact, the $a_{\text{CuCl}_2^-}$ values at each pH were calculated, inversely, by substituting the measured potential values for "E" of equation (11). The bottom side of Table 3 shows those values, and the top side shows the corresponding results obtained by using a graphical method in Fig. 8. The method is as follows: The first, in the diagram, a vertical broken line was drawn through a point, at which the line of ⑪' and the broken line represented a measured potential value intersect. Consequently, the vertical line divides an axis of abscissa, as shown by an arrow, and a $\log a_{\text{CuCl}_2^-}$ value to be desired can be obtained on this axis. As can be seen in the table, both values of pH 3 are very different. As mentioned already, the value obtained from Fig. 8 means the varying process from the reaction of equation (9) to one of equation (11). The value obtained from Fig. 9 means the varying process from the reaction of equation (1) to one of equation (11). Moreover, the table shows that the $a_{\text{CuCl}_2^-}$ values increase with an increasing of the pH value. This phenomenon can be attributed to the fact that $a_{\text{CuCl}_2^-}$ of equation (13) increases as pH of equation (10) increases.

Table 4 shows activity of Cu^{2+} ion at each pH solution. Top side values are calculation values obtained from the measured values of Fig. 6 and "E" of equation (2). Bottom side values were obtained with the graphical method in Fig. 8, in which since the line of ⑪' and the broken line denoted the measured value intersect, a $\log a_{\text{Cu}^{2+}}$ can be obtained on the axis with the method mentioned already. From these values in the table, the effect of Cl^- ion on activity of Cu^{2+} ion in the mixed solution is believed to be considerably small. On the other hand, the activity of Cu^+ ion is also possible to neglect because a_{Cu^+} is about one over three hundred and eighty of $a_{\text{CuCl}_2^-}$, which can be calculated by substituting $a_{\text{Cl}^-} = 3.2 \times 10^{-2}$ for equation (7).

Table 3. Activity of CuCl_2^- ion.

pH	1.0	2.0	2.5	3.0
$a_{\text{CuCl}_2^-}$ obtained from Fig. 8	2.6×10^{-5}	1.0×10^{-4}	2.0×10^{-4}	2.0×10^{-3}
$a_{\text{CuCl}_2^-}$ obtained from Fig. 9	5.0×10^{-5}	1.0×10^{-4}	2.0×10^{-4}	2.0×10^{-4}

Table 4. Activity of Cu^{2+} ion.

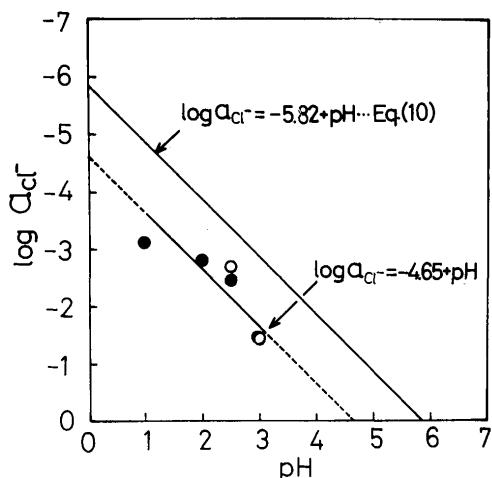
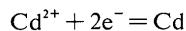
pH	1.0	2.0	2.5	3.0
$a_{\text{Cu}^{2+}}$ obtained from Fig. 6	1.0×10^{-6}	1.5×10^{-6}	1.2×10^{-5}	3.1×10^{-5}
$a_{\text{Cu}^{2+}}$ obtained from Fig. 8	7.9×10^{-7}	1.5×10^{-6}	3.1×10^{-6}	2.5×10^{-5}

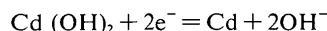
3.2.3 Relation between $\log a_{Cl^-}$ and pH of the mixed solution

We had reported in above paragraph that the uncontinuous phenomenon in the mixed solution of pH 3 (See Fig. 4) may be attributed to the reaction of equation (10). The relation between $\log a_{Cl^-}$ and pH of this equation is thus as shown in Fig. 10. In the figure, the unblank marks are the calculated $\log a_{Cl^-}$ that obtained by substituting the a_{CuCl_2} values of top side in Table 3 for equation (13). The blank marks are the values of the limiting Cl^- ion concentration observed in Fig. 4, whose values were converted justly to $\log a_{Cl^-}$. Through these marks, a line parallel to the straight line equation (10) can be drawn as shown in the figure. This line means a limit whether the solder does spread or doesn't, namely, the spreading is possible in the domain below this line and is impossible in the domain above this line. The equilibrium constant of this line can be obtained graphically as follows;

$$\log a_{Cl^-} = -4.65 + pH \quad (\text{where } 1 < pH < 3)$$

On the other hand, the equilibrium constant of equation (10) is -5.82 . This discrepancy may be attributed to the fact that the system hasn't the $CuCl$ at the initiation of immersion, and is unequilibrium. Now, when the pH of some flux solution is given, the minimum Cl^- ion content necessary to spread the solder can be calculated from this equation. The broken line within the pH 2 curve in Fig. 4 shows the result that obtained by this equation. For the pH 1 curve also the limiting Cl^- ion content can be obtained similarly, whereas the spread area of solder is about constant for Cl^- ion concentration, and such suddenly increasing phenomenon does not produced in Fig. 4. From this fact it is believed that the Cu_2O , which prevents for spreading of solder and varies to $CuCl$ by adding Cl^- ion, is not existent on the surface of base metal in the pH 1 solution.


Fig. 10. Relation between $\log a_{Cl^-}$ and pH of flux aq. solution used.

3.3 Corrosion potential of solder in flux solution studied

The corrosion potential of solder in an aqueous solution of H_2SO_4 of each pH is shown in Fig. 11. Two dotted lines show the calculated values which obtained by substituting $C_{Cd^{2+}} = 10^{-3}, 10^{-4}$ (where an activate coefficient assumes as one) for the logarithm term of equation (16)³. A full line shows equation (17)³.

$$E = -402 + 29.5 \log a_{Cd^{2+}} \quad \dots \dots \dots (16)$$

$$E = 19.3 - 59.1 \text{ pH} \quad \dots \dots \dots (17)$$

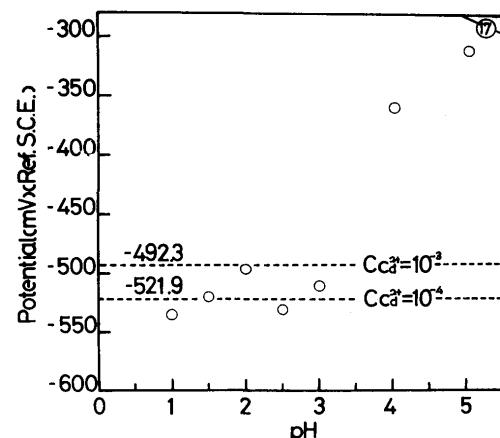


Fig. 11. Corrosion potential of solder in H_2SO_4 aq. solutions at 25°C.

The measured values in range from pH 1 to 3 lie between two dotted lines and in the case of pHs 4 and 5 approach to the line of equation (17). From these results it was considered that the corrosion reaction at pHs 1, 2 and 3 depends to the equation of (16) and at pHs 4 and 5 depends to the equation of (17). The former is called a hydrogen evolution type corrosion and the latter an oxygen consumption type corrosion. Accordingly, the cathode face on the solder surface is covered with $Cd(OH)_2$ and the Cd^{2+} ion concentration front the anode face increases and the metal potential becomes to rise. The noble potential means that the solder is covered with thicker $Cd(OH)_2$ and is passivated. This passivative state of solder may be considered as the reason that the spread area of solder at pHs 4 and 5 shown in Fig. 3 does not occurred. The limitation of this passivation is considered to be pH 3 from the figure. The other hand, the effect of the oxide, Cu_2O , on the surface of base metal for the spreading of solder, as mentioned already, becomes remarkably at H^+ ion concentration lower than pH 1. It is concluded accordingly that the spreading of solder

studied depends on the surface condition of base metal, although the solder has a possibility to spread in the flux solution.

Figure 12 shows the effect of Cl^- ion added to the pH 2.5 solution as one example on the corrosion potential of solder. The potential decreases with an increasing of Cl^- ion concentration. This phenomenon agrees with the result in Fig. 9, but the mechanic of depression is not evident as that of Fig. 9, because thermodynamical data of CdCl_2 are little. Anyhow, it would be true that CdCl_2 or $\text{Cd}(\text{OH})_2$ dissolves to the solution containing Cl^- ion and the solder is stable in the solution.

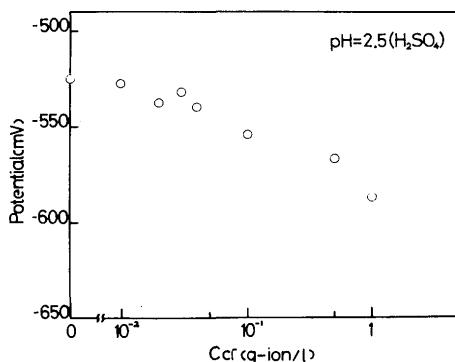


Fig. 12. Relation between corrosion potential of solder and concentration of Cl^- ion in mixed flux aq. solution.

4. Conclusions

The conclusions obtained through the experiments and considerations are as follows:

- 1) The flux actions of H^+ and Cl^- ions for spreading of solder used on copper base metal have been considered electrochemically.
- 2) The flux action of H^+ ion is exhibited by the reaction of equation (4), and the spread area of solder increases with an increasing of H^+ ion concentration in the solution used. The oxide, Cu_2O , formed on the surface of base metal prevents for spreading of the solder.

3) The flux action of Cl^- ion is given by the reactions of equations (10) and (13), namely, the Cu_2O is chloridized to CuCl and moreover is complex-ionized to CuCl_2^- ion. Accordingly, the spreading of solder occurs suddenly at some Cl^- ion concentration (See Fig. 4).

4) A quantitative relation, which denotes a critical condition whether the solder does spread or doesn't, between Cl^- ion and H^+ ion in the flux solution was obtained experimentally as follows:

$$\log a_{\text{cr}} = -4.65 + \text{pH} \quad (\text{where } 1 < \text{pH} < 3)$$

When pH is given, the Cl^- ion concentration higher than that is obtained from above equation is necessary for spreading of solder used.

5) The spreading of solder was considered to be depended rather the surface condition of base metal than that of solder affected by the flux solution containing Cl^- and H^+ ions.

Acknowledgement

The authors wish to thank Mr. Tunehumi Matunaga of Mitui shipbuilding Co. Ltd., Mr. Junichiro Morisawa and Mr. Masayuki Nagai of Hidachi Ltd. for their assistance in the experimental performance.

References

- 1) M. F. Jordan, D. R. Milner, "The Removal of Oxide from Aluminum by Brazing Fluxes", *J. Inst. of Metals*, Vol. 85 (1956-57), 33-40.
- 2) S. Koga, "pH-Introduction", Kyoritu printing Co., (1958), 46 (in Japanese).
- 3) M. J. N. Pourbaix, "Thermodynamics of Dilute Aqueous Solutions", Edward Arnold & Co., (1949), 53.