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ABSTRACT - This paper presents advanced techniques to determine all 

independent elastic-stiffness coefficients C i j, the associated internal friction Q i j -1, 

and piezoelectric coefficients e i j of monocrystal langasite (La3Ga5SiO14) using a 

single rectangular parallelepiped specimen.  Langasite’s crystal structure belongs 

to the trigonal system with point group 32, thus six independent C i j, two e i j, and two 

dielectric coefficients e i j.  All of the elastic and piezoelectric coefficients affect the 

mechanical resonance frequencies of the solid specimen, and measuring them very 

accurately permits one to determine the C i j and e i j with known density, dimensions, 

and e i j.  We developed a piezoelectric tripod to support the specimen upward and 

measured the free-vibration resonance frequencies with minimum load from its own 

weight.  This weak and stable acoustic coupling ensures high accuracy of the 

frequency measurement better than 10-5, being enough to determine the reliable 

coefficients.  Our C i j fall in the range of results measured with previous 

(conventional) methods.  Our e11 is smaller than the reported values by 1.2-13%, 

and e14 is larger than those by 44-97%.  For the internal friction measurement, we 

used a solenoid coil to vibrate the specimen without any contact.  The 

longitudinal-wave internal friction considerably exceeds the shear-wave internal 

friction, which can be interpreted as phonon-phonon interactions. 
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I. INTRODUCTION 

 

Langasite (La3Ga5SiO14) attracts many researchers because of its large piezoelectric coefficients 

and less-temperature-dependent elastic constants.  These properties are especially suitable for 

surface-acoustic-wave (SAW) filters [1-8] and langasite is replacing quartz in wide variety of electric 

devices.  Langasite belongs to crystals with 32 point-group symmetry that show six independent 

elastic-stiffness coefficients Cij, two piezoelectric coefficients eij, and two dielectric coefficients eij.  

Besides, six independent internal friction Qij-1 will exist.  Optimization of an electric device requires 

a complete set of the material coefficients and significant efforts have been made for measuring them 

[2-8].  The dielectric coefficients are available from low-frequency capacitance measurements [9], 

but measuring all of the elastic and piezoelectric coefficients presents a formidable task as 

demonstrated by Smith and Welsh [10].  Conventional methods used in previous studies [2-9] 

involve many independent measurements on many crystals in many orientations; the pulse-echo 

measurements or rod-resonance measurements coupled with the resonance-antiresonance 

measurements of electric impedance.  Then, one must solve a set of labyrinthine equations.  

Various errors thus easily occur, being associated with the use of different specimens, crystal’s 

misorientation, resonance frequency shifts by attaching electrodes, and so on.  Concerning the 

internal friction tensor Qij-1 of langasite, only one study appears by Ledbetter et al. [11]. 

Here, we propose an advanced methodology that determines all the elastic, anelastic, and 

piezoelectric coefficients from a single rectangular-parallelepiped specimen.  We note that the 

mechanical resonance frequencies of a piezoelectric solid depend on the Cij and eij, and that resonant 

ultrasound spectroscopy (RUS) can detect them, from which an inverse calculation yields the needed 

coefficients.  In the past, this approach was used to determine only the Cij of metals [12-15], 

composites [16-18], intermetallic compounds [19].  For quartz, Ohno [20] determined the Cij, 

neglecting the eij and eij.  For lithium niobate (showing much larger piezoelectric coefficients than 

quartz), Ledbetter and Dunn [21] found that eij and eij considerably affect the resonance frequencies 

and suggested that accurate frequency measurements would deduce the eij as well.  For langasite, 

the eij’s contribution to the frequencies is in the order of 10-2 at most.  To deduce them accurately, 

the resonance- frequency measurements must be done with accuracy of 10-4 or better.  Even more 

important is the mode matching between the observed and calculated resonances.  Mode mismatch 

is fatal to obtain these less contributing coefficients.  Therefore, obtaining the reliable eij along with 
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the Cij requires precise frequency measurements and correct mode identification.  We realize this by 

using a piezoelectric tripod to detect free oscillation of the specimen and by incorporating laser 

interferometry into the resonance measurement to scan the surface displacement for identifying the 

vibrating modes.  For internal friction, we used a contactless free-decay method to deduce Qij-1. 

II. MATERIAL 

 
 We used five oriented rectangular parallelepiped crystals (specimen A to E).  Using 

Archimedes’s method and distilled water as a standard, we determined the mass density r.  Their 

dimensions and mass density are given in Table I.  The material coefficients in contracted notation 

can be written as: 

 

,  

 

, 

and  

. 

 

 

III. MEASUREMENT 

 

A. RUS/Laser technique 

 RUS usually measures mechanical resonance frequencies of a solid specimen by sandwiching 
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it between two piezoelectric transducers for the transmission and detection of acoustic vibration.  

This setup restricts the specimen’s displacements and raises the frequencies from those at ideal free 

vibrations.  To minimize this influence, we use a piezoelectric tripod consisting of two pinducers 

for generation and detection of vibration, and one only for support (Fig. 1).  No external force was 

applied to the specimen, except for the specimen weight, nor any coupling agent was used.  A 

frequency scan detected all the resonance peaks in a frequency band as shown in Fig. 2.  We 

measured them at constant temperature of 30±0.02°C three times for each specimen.  Owing to the 

weak coupling, reproducibility among the independent measurements was better than 10-5.  

 After finishing the series of measurements (including the internal-friction measurement 

described below), we deposited 100-nm aluminum film on a specimen surface for mode 

identification with laser interferometry.  (This deposition was needed because langasite is a 

transparent material.)  A He-Ne laser beam was focused on the vibrating specimen surface with 

15µm focal diameter.  The reflected beam entered the Doppler interferometer, which detected the 

normal component of the velocity at the focal point.  The velocity was easily converted into the 

normal displacement because of harmonic oscillation.  Depositing aluminum shifted so slightly the 

resonance frequencies that the modes are clearly identified after the deposition.  

 

B. Dynamic electromagnetic filed technique 

 Not significant, but the piezoelectric tripod still causes energy leakage into the touching 

pinducers and as-measured internal friction contains a background.  The best way to measure 

internal friction is to introduce vibration sources inside the specimen in a noncontact way using the 

piezoelectric effect of langasite itself.  We used a solenoid coil to excite and detect the free 

vibrations by means of the dynamic electromagnetic field.  Johnson [22] first adopted this approach 

for studying temperature dependence of internal friction of langatate (La3Ga5.5Ta0.5O14), an isomorph 

of langasite, but not for the internal-friction tensor Qij-1.   

Figure 3 shows our measurement setup.  The specimen was inserted in a solenoid coil, which 

was loose and never constrained the specimen.  We put a thin polymer sheet between the specimen 

and coil wires.  The specimen and sheet are in contact at a few points, but because of the large 

acoustic-impedance mismatch and no applied force, they are acoustically noncontacting.  We drove 

the coil with high-power rf bursts to induce oscillating electric field near the specimen surfaces and 

to excite the free vibration through the converse piezoelectric effect.  After the excitation, the same 
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coil received the vibration through the piezoelectric effect.  We processed the received signals with 

an analog superheterodyne spectrometer to extract the signal amplitude at the tone-bursts frequency 

[23].  A frequency scan provided the resonance peaks (Fig. 2).  We obtained the amplitude decay 

of vibration after exciting the coil at a resonance frequency and determined the attenuation 

coefficient a, which leads to internal friction via Q-1=a/pf.  Figure 4 exemplifies the measured 

amplitude decay and a fitted exponential function.  Due to the frequency limit of our instrument, we 

measured internal friction of the smaller specimens A to C. 

We did not utilize this noncontact method to determine the Cij and eij through the resonance 

frequencies because of much fewer peaks than those measured by the piezoelectric tripod.  For 

example, only Ag vibration modes were observed in Fig. 2.  The detectable modes depend on the 

geometrical relationship between the crystal orientation and solenoid coil, that is, on the electric-field 

direction.  Other configurations detected only Bg vibration modes.  But, we failed to detect Au and 

Bu modes with the solenoid coil.  (Mode notation will be shown in the next section.) 

 

IV. INVERSE CALCULATION 

 
A. Cij and eij 

 The governing equations showing the interconnection between elastic and electric properties are  

 
 ,                                                    (1) 

 ,                                                     (2) 

,                                                        (3) 

 

where Tij is a component of the stress tensor.  Ei, Di, and ui denote electric field, electric flux density, 

and displacement along the xi axis, respectively.  The electric field can be divided into a rotational 

component and an irrotational component (or quasistatic field).  In the megahertz-frequency region, 

the rotation component is negligible and the quasistatic electric field dominates, which is expressed 

by the electric potential f [24] 

 .                                                          (4) 

(As will be shown in Fig. 6, this quasistatic approximation actually causes trivial errors in the 

resonance frequency calculation.)  Substituting Eqs.(1)-(4) into the equation of motion 
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,                                                        (5) 

with the boundary conditions for the stresses and electric field would lead to the free-vibration 

resonance frequencies w of the system.  However, analytical solutions for the displacements and 

electric potential are unavailable for rectangular-parallelepiped piezoelectric specimens.  Eer Nisse 

[25] then derived the Lagrangian of a vibrating piezoelectric material as 

 

.                  (6) 

 

The stationary point of the Lagrangian gives the resonance modes (dL=0).  Ohno [20] used 

approximation for the displacements and electric potential in terms of linear combinations of the 

basis functions y consisting of the normalized Legendre polynomials: 

 

,                                         (7) 

.                                          (8) 

Here 

.                       (9) 

 
denotes the normalized Legendre polynomial of degree l and Li denotes the edge length along the 

xi axis of the rectangular parallelepiped.  The Lagrangian minimization with a Rayleigh-Ritz 

approach [12, 13] determines the resonance frequencies together with the associated sets of 

expansion coefficients .  An oriented rectangular-parallelepiped crystal with 32 point-group 

symmetry has four vibration groups labeled as Ag, Bg, Au, and Bu, according to the deformation 

symmetry as tabulated by Ohno [20].  Choosing proper combinations of basis functions thus 

reduces the calculation time.  While following Ohno’s calculation (forward calculation), we 

implemented a least-squares-fitting procedure for the calculated and measured resonance frequencies 

to deduce the Cij and eij. 

In this inverse-calculation, comparison of the measurements with the calculations must be made 

on correctly the same resonance mode.  (Otherwise, resultant material coefficients are physically 
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meaningless.)  However, this has never been an easy task and mode mismatches easily occurred 

because nearly one hundred resonance peaks are observed and some of them appear at very close 

frequencies.  To overcome this difficulty, we pay a special attention to the expansion coefficients 

.  They tell us the displacement distribution on a specimen surface, a fingerprint of an individual 

mode.  Thus, comparison between the measured and computed displacement distributions leads us 

to unmistakable mode identification. 

One cannot separately determine the eij and eij from mechanical spectroscopy because their 

ratios affect the resonance frequencies.  Fortunately, the eij can be obtained by the capacitance 

measurements with good accuracy.  Actually, several researchers reached close eij within a 2% 

range, while there are a lot of discrepancies for other coefficients (see Table II).  For this reason, we 

fixed the eij at averaged values over the previous studies.   

 
B. Qij-1 

 We neglect the piezoelectric effect for the calculation of internal friction tensor because their 

contributions to the resonance vibration are much smaller than those of the elastic stiffness 

coefficients.  Internal friction Qij-1 can be considered as the ratio of imaginary-to-real part of the 

complex elastic stiffness [14], or  

.                                                 (10) 

Determination of all independent Cij and their companion internal friction Qij-1 permits one to predict 

unmeasurable mechanical loss of any ultrasonic modes and then to select less-lossy mode, 

propagation direction, and surface orientation for designing acoustic devices.  Calculation of the 

internal-friction tensor is based on a reasonable assumption that the square of the complex frequency 

can be expressed by a linear combination of complex elastic-stiffness coefficients: 

 

,                                     (11) 
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the resonance frequency fp, which is obtainable in the inverse calculation [13].  On the other hand, 

we can define a particular modulus Cp and internal friction Qp-1 constructing the complex resonance 

frequency as 

 

.                            (12) 

Comparison of Eq. (11) with Eq. (12) leads to 

 

 and .                                    (13) 

 

The quantities fp and Qp-1 (peak width) corresponds to the measured resonance frequencies and 

internal friction, respectively, and bpq are obtainable as a result of the inverse calculation.  Then, we 

can deduce the Qq-1 (=Qij-1) with a standard least-squares procedure.  

 

V. RESULTS 

  

 Figure 5 shows examples of measured and computed displacement figures on a vibrating crystal 

surface.  Excellent agreement allowed us to make unambiguous mode identification.  We 

identified more than sixty peaks for each specimen and entered them into the inverse calculation.  

Figure 6 plots the differences between the measured and calculated resonance frequencies after the 

inverse calculation for all specimens.  It also includes plots from purely elastic calculation 

neglecting eij and eij.  The piezoelectric effect raises the frequencies, that is, piezoelectric stiffening.  

Correlation coefficient between the measurements and calculations was 0.99999 and rms error 

between them was 0.065%.  This agreement indicates the validity of the quasistatic approximation 

made in the analysis.  Table I shows the determined elastic and piezoelectric coefficients.  Despite 

various specimen dimensions, the resulting coefficients are close with each other.  Averages over 

the five specimens are our final results, which are compared with previously reported values in Table 

II.   
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 Figure 7 shows the measured internal friction (Qp-1).  The measurements by the piezoelectric 

tripod exceeded those by the contactless method using the solenoid coil, especially at lower 

frequencies. This implies that the RUS internal friction contains energy loss caused by contacting.  

In Table II, we show the six components of Qij-1, which were deduced from all measurements for the 

three specimens by the solenoid coil. 

 

V. DISCUSSION 

 
A. Cij and eij 

 Possible errors arising in the present method are (i) frequency-measurement error (~0.001%), 

(ii) dimensions and density error (<0.02%), (iii) crystal’s misorientation error (less than 1°), and (iv) 

calculation error (<0.065%).  Among them, we consider that the last issue dominates the accuracy 

of the resulting coefficients.  The calculation error originates from the approximation for the 

displacements and electric potential in the inverse calculation.  (Increasing the number of basis 

functions can reduce this error.)  Therefore, a coefficient that contributes less to the resonance 

frequencies than the calculation error would not be determined on a rigorous basis.  We calculated 

the normalized contributions of the coefficients to the resonance frequencies.  Among all the 

coefficients, e14 showed the smallest contribution, 0.45% on average. (This is probably the main 

reason that previously reported e14 widely ranges.)  However, this is still larger than the calculation 

error by a factor 7, indicating that reliable coefficients are obtainable.  Using the contribution and 

the calculation error for each resonance mode, we estimated possible errors included in the resulting 

coefficients.  The largest error occurs in e14 by 4%, which is smaller than the standard deviation 

among the five specimens (~7%) in Table I.  Thus, differences of the resulting coefficients among 

the five specimens occur due to the difference of the crystal. 

 It has been pointed out that such an inverse calculation is much affected by the initial guess to 

start the iteration calculations, especially when the modes are not identified [12, 13, 15].  However, 

because we can correctly identify the observed modes by referring to the displacement figures, the 

resulting coefficients are insensitive to the initial guess.  Indeed, we always reached exactly the 

same answer from any previously reported values as an initial guess.  Furthermore, the inverse 

calculation provided the correct answer even with an unreasonable initial guess, listed in the caption 

of Fig. 5.  This is because the displacement-distribution patterns were hardly affected by the 
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material coefficients as demonstrated in Fig. 5.  They are unique for individual modes like 

fingerprints.  On the other hand, we failed to obtain the true values without referring to the 

displacement figures, even beginning with a good initial guess by Kaminskii et al.[2].  Thus, the 

correct mode identification is the key for the successful determination of the material coefficients. 

 Concerning the elastic-stiffness coefficients, our results fall within the previous error limits.  

For the piezoelectric coefficients, however, our results considerably differ from the widely ranging 

previous results; e11 is smaller by 1.2-13% and e14 is larger by 44-97% than the existing results.  We 

are confident about our results, because we removed the error sources of the conventional 

measurements; (i) coupling agent and excess load for transduction, (ii) electrodes on the specimen 

surfaces, and (iii) use of many specimens oriented in various directions.  Moreover, the pulse-echo 

measurements are vulnerable to noises and waveform change caused by many factors.  

 
B. Qij-1 

 Obviously, Q11-1 and Q33-1 exceed Q44-1 and Q66-1 by a factor about 5.  We repeated the 

determination of Qij-1 three times and found that they varied by 20% at most.  Thus, this difference 

is meaningful and indicates that longitudinal-wave attenuation is larger than shear-wave attenuation, 

a contrary trend to metals where dislocations’ anelastic movement causes larger shear-wave Q-1 [14, 

15].   

 Possible origin of internal friction of such a brittle material is phonon-phonon interactions.  

Acoustic waves break an equilibrium state of phonons due to the lattice anharmonicity.  The 

scattered thermal-mode phonons subsequently equilibrate by interacting with a low-frequency-mode 

(acoustic) phonon and other thermal-mode phonons, during which energy loss arises.  Such energy 

loss can be expressed by the relaxation time t of an acoustic phonon to relax to a thermal phonon 

with angular frequency of the acoustic wave w (Akhieser result) [26].  At room temperature and in 

the kilohertz frequency region (wt<<1), it reduces 

,                                                (14) 

where C is a constant depending on the mass density, sound velocity, and the lattice anharmonicity.  

This theory agreed with measurements of germanium, quartz, and silicon as summarized in Mason’s 

thesis [26].  Especially, germanium shows the longitudinal/shear-modes internal-friction ratio about 

5, very close to ours on langasite.  Usually, the thermal relaxation time for longitudinal waves is 

wt=- const.1
phonQ
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about twice that for shear waves because of the difference of the associated volume change [26].  

Our Qij
-1 then can be interpreted as phonon-phonon interactions. 

 

5. CONCLUSIONS 

 
(1) We developed the RUS/Laser hybrid technique to perform the simultaneous determination of the 

elastic and piezoelectric coefficients of langasite from a single specimen.  Accuracy of the 

frequency measurement was better than 0.001%.  We succeeded in correctly identifying all of 

the observed resonance peaks by measuring the displacement distributions on a surface using 

laser-Doppler interferometry.  The measured coefficients are independent of the specimen 

dimensions. 

(2) Our elastic coefficients are consistent with those reported previously using conventional 

measurement methods.  Our piezoelectric coefficients were considerably different from those 

reported in the past. 

(3) Our elastic and piezoelectric coefficients are insensitive to the initial guess for iteration owing to 

exact mode identification.  

(4) We measured internal friction using a contactless free-decay method and deduced the internal 

friction tensor.  Longitudinal-wave internal friction was larger than shear-wave internal friction 

by a factor about 5, which was interpreted as phonon-phonon interactions. 
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Table Captions 
 
Table I  Dimensions Li (mm), mass density r (103 kg/m3), elastic-stiffness coefficients Cij (GPa), 
and piezoelectric coefficients eij (C/m2) of the five specimen crystals.  

 
Table II  Elastic-stiffness coefficients (GPa), piezoelectric coefficients (C/m2), dielectric 
coefficients normalized by that in vacuum, and the internal friction tensor. 
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Table I 
Dimensions Li (mm), mass density r (103 kg/m3), elastic-stiffness coefficients Cij (GPa), 
and piezoelectric coefficients eij (C/m2) of the five specimen crystals.  
 

Specimen A Specimen B Specimen C Specimen D Specimen E average
L 1 2.966 2.97 8.032 10.024 9.965 ¾
L 2 3.745 5.768 9.814 10.043 10.048 ¾
L 3 4.012 4.012 6.022 13.764 14.406 ¾
r 5.723 5.730 5.713 5.731 5.723 5.724±0.007

C 11 189.4 190.6 190.4 188.7 188.7 189.5±0.9
C 33 261.0 262.8 263.3 263.2 262.6 262.6±0.9
C 44 53.35 53.95 53.37 53.50 53.33 53.50±0.26

C 66
* 42.10 42.28 42.10 42.05 41.94 42.09±0.12

C 12 105.2 106.0 106.2 104.6 104.8 105.4±0.7
C 13 96.80 97.12 98.28 96.77 96.83 97.16±0.64
C 14 14.19 14.47 14.28 14.18 14.11 14.25±0.14

e 11 -0.389 -0.387 -0.384 -0.405 -0.422 -0.397±0.02
e 14 0.183 0.208 0.22 0.209 0.194 0.203±0.01

* C 66=(C 11 -C 12 )/2
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Table II 

Elastic-stiffness coefficients (GPa), piezoelectric coefficients (C/m2), dielectric coefficients 
normalized by that in vacuum, and the internal friction tensor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

present Malocha
et al. (2000)

Bungo
et al. (1999)

Inoue &
Sato(1998)

Sakharov
et al. (1995)

Sil'vestrova
 et al. (1986)

Ilyaev
et al. (1986)

Kaminskii
et al. (1983)

present
Qij

-1 (10-4)

C 11 189.5 188.5 189 189.5 189.3 190.2 188.9 190.9 1.73
C 33 262.6 261.7 268 259.9 262.4 262.1 262.2 261.9 0.95
C 44 53.5 53.71 53.3 53.91 53.84 53.82 53.9 52.4 0.26
C 66 42.09 42.21 42.4 42.4 42.16 42 42.2 43.2 0.27
C 13 97.16 96.88 102 97.86 95.28 91.9 96.8 104.2 1.65
C 14 14.25 14.15 14.4 14.64 14.93 14.7 14.3 15.2 0.16

e 11 -0.397 -0.402 -0.438 -0.428 -0.431 ¾ -0.44 -0.45 ¾
e 14 0.203 0.13 0.104 0.114 0.108 ¾ 0.07 0.077 ¾

e 11 19.04a) 19.62 19.06 19.07 18.97 ¾ 18.86 18.99 ¾
e 33 50.51a) 49.41 51.06 50.3 52 49 49.1 49.32 ¾

a) Averages of the previously reported values.
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Figure Captions 
 

Fig. 1.  Measurement setup of the RUS/Laser combination. 

 

Fig. 2.  Resonance spectrum of Specimen B measured by the piezoelectric tripod and 

solenoid coil. 

 

Fig. 3. Measurement setup of the dynamic electromagnetic-field technique.   

  

Fig. 4. Free decay of the reverberating amplitude after the excitation.  Open circles 

denote measurements and solid line denotes the fitted exponential function. 

 

Fig. 5. Measured (left) and computed (middle and right) displacement figures on the x 

face of Specimen E.  The frequencies shown in parentheses are measured ones.  Bright 

area implies large displacement amplitude and black area zero amplitude, that is, nodal 

lines.  The maximum displacement amplitude was about 1nm.  In the computations, we 

used the coefficients taken from Kaminskii et al. [2] (middle) and C11=200, C33=220, 

C12=70, C13=80, C44=47, and C14=20 GPa; e11=-0.5, e22=0.01 C/m2 (right), which are far 

away from the true values. 

 

Fig. 6. Differences between the measured (fm) and calculated (fc) resonance frequencies of 

the five specimens.  Taking the piezoelectric effect into consideration, the calculations 
agree with the measurements with 0.065% on average.  (!"A, #$B, %&C, '(D, )*E) 

 

Fig. 7. Internal friction measured by the contactless free-decay method.  Open circles 

denotes the peak-width measurements by the piezoelectric tripod. 
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Fig. 2 
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(b) Au-6 (240 kHz) 

(c) Bu-12 (321 kHz) 

(d) Bg-12 (345 kHz) 

(a) Ag-4 (195 kHz) 

Fig. 5 
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Fig. 7 
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