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This study is devoted to deducing exact elastic constants of an anisotropic solid material without
using any advance information on the elastic constants by incorporating a displacement-distribution
measurement into resonant ultrasound spectros¢®WS). The usual RUS method measures
free-vibration resonance frequencies of a solid and compares them with calculations to find the most
suitable set of elastic constants by an inverse calculation. This comparison requires mode
identification for the measured resonance frequencies, which has been difficult and never been free
from ambiguity. This study then adopts a laser-Doppler interferometer to measure the
displacement-distribution patterns on a surface of the vibrating specimen mounted on pinducers;
comparison of the measured displacement distributions with those computed permits us to correctly
identify the measured resonance frequencies, leading to unmistakable determination of elastic
constants. Because the displacement patterns are hardly affected by the elastic constants, an exact
answer is surely obtained even when unreasonable elastic constants are used as initial guesses at the
beginning of the inverse calculation. The usefulness of the present technique is demonstrated with
an aluminum alloy and a langasite crystal. 2002 Acoustical Society of America.
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I. INTRODUCTION correctly. Several efforts have been made to overcome this
difficulty. Ohnd® noted different rates of changes of reso-
Resonant ultrasound spectroscofBUS)* ™ has been nance frequencies when the specimen size varies. Manard
recognized as a useful method for determining all of theswitched assignments of frequencies during the iteration cal-
independent elastic constar@lg of an anisotropic solid in a culation to find the best fit. Miglioriet al” changed the
regular shape such as a sphere, cylinder, or rectangular papecimen orientation relative to the transducers and moni-
allelepiped. TheC;; are determined in two steps. First, a tored the change of signal amplitude. More recently, the
swept-frequency experiment measures many of the fregresent authofs developed an electromagnetic-acoustic
vibration resonance frequencies of the specimen. Two trangechnique to select measurable vibration modes by control-
ducers touch the specimen lightly, one for generation of a cvling the electromagnetic-force direction. These methods are
oscillation and the other for detection of the displacemensometimes useful but still insufficient to mal@mmplete
amplitude. Second, an inverse calculation is performed tenode identification. They require supplementing RUS with
find the best fittingC;; that provide the closest resonance some other methods such as pulse-echo and rod-resonance
frequencies to the measurements. The resonance frequenciesthods.
can be calculated using the specimen dimensions, mass den- In this study, we propose an advanced methodology for
sity, and all of theC;; . this purpose. We adopt a laser-Doppler velocimeter to map a
The successful determination of elastic constants by thdisplacement-distribution pattern of a vibrating specimen.
RUS method relies on exact correspondence between the obhe displacements inside the specimen can be computed.
served and calculated resonance frequencies in the inver§®mparison of the measurements with the computations re-
calculation, that is, correct mode identification. If modes arealizes correct mode identification and then the unmistakable
incorrectly identified, the elastic constants may converge to determination of elastic constants.
false minimum or fail to converge. However, mode identifi-
cation has never been straightforward because the measured

resonance spectrum contains a large number of resonance
peaks, without showing any mode information. On the othef!- DISPLACEMENT MEASUREMENT AT RESONANCE

hand, the calculation identifies the resonance modes. Thus, if Figure 1 shows the measurement setup of the RUS/Laser
one knows beforehand a set of elastic constants close to ﬂ?:%mbination. A rectangular-parallelepiped specimen is put on

true values, the calculation is highly likely to converge o the, pie;gelectric tripod consisting of two pinducers for genera-
correct modes of the specimen. If one begins with very litlle;jo, and detection of vibration, and one for support. A

information about the specimen(;; , it may not converge e_Ne Jaser beam is focused on the specimen suffacel
diameter: 15um) to scan the surface. The reflected beam
3Electronic mail: ogi@me.es.osaka-u.ac.jp enters the Doppler interferometer, which measures the nor-
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|_yvelocity output Ill. CALCULATION OF DISPLACEMENT DISTRIBUTION

No analytical solution exists for the displacements in a
rectangular-parallelepiped solid subjected to a free vibration.
laser-Doppler interferometer Thus, the displacements have been approximated by linear
combinations of basis functions, and the Rayleigh—Ritz ap-
I_J proach has been adopted to determine the accompanying co-
|

efficients. DemareStshowed that use of normalized Leg-
endre functions as basis functions result in an accurate
description of the displacements of a cube specimen with a

He-Ne laser beam

specimen . . .
. minimum number of terms. OhAmpplied a basis of Leg-
pinducers . . .
endre functions to describe the displacements of a
rectangular-parallelepiped specimen and established the cal-
culation of the free-vibration resonance frequencies. We fol-
low them in this study.
The displacement;; along thex; direction can be ap-
proximated as
cw input vibration detection ui(xl'XZ*X3):2k a<k|)\1lf<l)(xl’X21X3)i D
FIG. 1. RUS/Laser measurement setup. 8
W (X ,X0,X3) = \/ ——— P1(2%; /L,)
k 1:722:73 L1L2L3 1 1 1
rna! component of the yelocny aF the focal point. The veloc- XEm(ZXz/Lz)Fn(ZXe,/Ls), )
ity is easily converted into the displacement because of har- =
monic oscillation. in a Cartesian coordinate systeR), denotes the normalized

First, we sweep the driving frequency to obtain the resoLegendre polynomial of degree andL; denotes the edge
nance spectrum as shown in Fig. 2 and measure the restgngth along thex; axis of the rectangular parallelepiped.
nance frequencies by fitting a Lorentzian function around thd-agrangian minimizatioli” determines the free-vibration
peaks. The contact between the specimen and pinducers &sonance frequencies and the coefficieafs. The reso-
weak and stable because only the specimen mass contributéance frequencies have been compared with the measure-
to the acoustic coupling between the pinducers and specfents and the inverse calculation based on a least-squares
men, which ensures high reproducibility in the resonancefitting has inferred theC;; . _ o
frequency measurementéScattering of a measured reso- There are eight vibration groups in th_e free V|brat|0r_1
nance frequency was less than 10 modes of a rectangular parallelepiped with orthorhombic

Second, we drive one of the pinducers at a measure@YMMetry, labeled ady, Aq, Big, Byg, Bsg, Biy, Bau,

. .lo .
resonance frequency while scanning the specimen surfa@¥'dBau by Mochizuki:™ Because the calculation of the reso-

with the laser-Doppler interferometer to acquire the displace[,‘ance frequencies is independently performed for each vibra-

ment distribution. The signal-to-noise ratio can be improveotIon group, we exactly know the group and overtone order of

by Fourier-transforming the output signal from the mterfer-thet'rl](j'.\c/j'(jljt"?II (‘iﬂlculagd tft:eqti(reanﬁs, ;h?; IS, we candcom
ometer to extract the component at the same frequency as tll%e ely identify hem. ©n the other hand, the measured reso
o ) nance frequencies never inform us of the mode information.
driving cw signal. . . :
. . . . Thus, incorrect comparison between the calculations and
This RUS/Laser technique functioned for specimens e e .
: : measurements, or mode misidentification, has easily oc-
with a mass larger than 0.01 g, with a surface area larger than

> mm-bv-2 mm re. and with@-* val maller than curred in the usual RUS method unless excellent initial
by~ square, a @ " value smaller tha guesses are adopted.

5 . . . .
10", Typical time needed to measure and display a dis= —y, pay attention to the coefficiena’ to make correct
placement figure was 1 min. mode identification. They tell us the two-dimensional pattern
of the oscillating specimen surface, which isignatureof

the individual mode. Thus, the correspondence between the

T T T T T T T T T

5 e v measured and computed displacement distributions guaran-
e JJLVJ\ | tees correct mode identification.
"g 250 251 252 253
E | l ‘JJ M[ M L J’ i } IV. RESULTS AND DISCUSSIONS
€l A l .LJLJ T WS I i . .
e T A. Polycrystalline aluminum alloy
100 150 200 250 300 350 400

Frequency (kHz) First, we demonstrate the capability of the present tech-

FIG. 2. Resonance spectrum measured by the pinducers for the aIuminurQ\Ique with a p0|ycry5ta”me aluminum aIon. The Specimen

alloy specimen. Only the specimen mass contributed to the dry acoustifl€asured.;=11.92 mm,LZZ 10.93 mm, and—_3:9-8_6 mm
coupling. and has mass density 2788 kd/mVe assume isotropic elas-
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fneas™ feaic Was 0.2%.

. | TABLE |. Measured (.9 and calculated f(.,) resonance frequencies
(kHz) after convergence for the aluminum alloy rectangular parallelepiped.
Mode notation follows Mochizuki(Ref. 10. The average difference of

-

. ~
!-L

Mode f Diff. (%
(2) A4 (250.98 kHz) (©) B1g-5 (336.65 kHz) e fear 0
A—1 116.716 116.32 0.33
y - A,—2 143.783 143.186 0.41
By,—1 158.081 158.44 —0.22
By,—1 166.5 166.113 0.23
Big—1 169.523 169.338 0.11
Byy—1 177.846 178.36 —0.29
(b) A3 (251.26 kHz) (d) Byy-5 (337.36 kHz) Bau—1 183.875 184.57 ~0.38
Byy—1 186.047 185.078 0.52
FIG. 3. Comparison of the distribution of the normal displacement ampli- Ag—1 190.341 190.206 0.07
-2 197.386 197.692 —0.15

tude between measuremertlsft) and computationgright) for the alumi- lu
num alloy rectangular parallelepiped. Ti¢ and x, axes are along the Ag—2 201.133 201.462 —0.16

horizontal and vertical directions, respectively. The origin is located at the Bgg—2 207.386 207.096 0.14
center of the rectangular parallelepiped. Ag—3 209.836 211 —0.56
Byy—2 214.753 215.613 -0.40
Boy—2 223.548 223.219 0.14
. ) , Bay—2 231.266 230.804 0.20
tic symmetry and two independent elastic const&htsand Bay—3 233538 233.329 0.09
C,4. Figure 2 shows the resonance spectrum measured byBs,,—2 234.717 234.758 —-0.01
the piezoelectric tripod; many peaks appear and some of A;—4 250.98 250.777 0.08
them overlap with each other. Thus, it is very difficult, as A3 251.256 251.038 0.08
usual, to identify the modes without advance knowledge of ;% 252.742 252.303 0.17
» 10 _ _ 9 By,— 256.122 256.849 ~0.28
the elastic constants. Figure 3 shows a comparison betweeng, 3 257.595 258.064 ~0.18
the measured and computed displacement-distribution pat- A,—5 258.118 258.874 —-0.29
terns. The computations used arbitrary elastic constants of Bay—3 259.035 259.203 —0.06
C,,=100 andC,,=20GPa. Bright regions represent high Bi~3 268.54 267.746 0.29
amplitude displacements and dark regions represent low am- 22~ 4 27113 216.736 0.13
np - dISp 9 prese Bo,—4 278.762 279.144 -0.13
plitude displacements; black means zero amplitude, the g, 4 282.311 282.773 —0.16
nodal lines. Typical maximum displacement was a few nmin B;,—5 293.686 293.016 0.22
magnitude.[We call these figuresnodern Chladni figures Boy=o 304.159 304.593 —0.14
after Ernst F. F. Chladni1756-1827, who visualized the =~ Bw=3 304.464 305.316 —0.27
o . By,—6 310.109 309.591 0.16
resonance oscillations of a square brass plate by putting fine g, 316.197 315.775 013
o 19 . . .
sand on itt!] We see very good agreement between the mea- Bag—4 317.392 317.931 ~0.16
surements and computations. The usefulness is remarkableA,—4 326.462 326.556 —-0.02
especially in identifying overlapping modes. For instance, Bs;—4 329.034 329.369 —-0.10
theA,—4 andA,— 3 resonances, indicated by arrows in Fig. %s~® 332.441 332732 ~0.08
2, occur at very close frequenciémly 0.1% differencgand Bau—0 333.304 332271 0.32
“r - ) o Biy—5 336.65 336.218 0.12
it is hard to identify them. But, their displacement patterns g, s 337.359 337.511 ~0.04
are quite different from each othgFigs. 3a) and (b)] and A—T 338.276 337.71 0.16

we can straightforwardly distinguish between them. Thus, by
identifying all the observed modémore than 80 noyy we
determined th&C;; via the inverse calculation. Table | shows C;; . Despite the quite differen€;;, elastic symmetry, and
the measured and calculated resonance frequencies after catcordingly resonance frequencies, the resemblance among
vergence. Owing to the complete mode identification, therehe resultant patterns is striking, especially for the fundamen-
are no missed or extra modes in the measurementeXaet tal modes of the eight vibration groups. After all, such an
elastic constants ar€,,;=109.26 andC,,=26.72 GPa. We oscillation pattern, or Chladni figure, is governed by the de-
tried to deduce th&€;; using the usual RUS approach with formation symmetry allowed in the specimen. In the Au-
the initial set ofC;; used to compute the displacements ingroup vibrations, for example, the component of displace-
Fig. 3, and pairing the closest resonance frequencies from thment, u;, occurs only when it is an odd function &f and
measurements and calculations. The inverse calculatio,.? Therefore, the Chladni figures on thg face of this
failed to converge, indicating that the usual RUS method iggroup always contain odd numbers of nodal lines running
sensitive to the initial guesses. along each of the; and x, axes. The fundamental mode,
Particularly significant is that the displacement- therefore, contains the cross-shaped node signature for every
distribution patterns are insensitive to the elastic constantsase. As for thé;4 group,u; must be an even function &f
In Fig. 4, we show the computed patterns for three ca$es; and an odd function ok,, so that the fundamental-mode
isotropic symmetry with the exa@;; ; (Il) isotropic symme-  Chladni figure shows one center nodal line alongxhexis;
try with the C;; far away from the exact values; arfll)  and so forth on. Thus, a Chladni figure is not directly related
orthorhombic symmetry with arbitrary nine components ofto the elastic constants. Note that the overtone order is not
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I

Ay-1(116.3 kHz) Ag-1(190.2 kHz) Byo-1 (158.4 kHz)  Bsg-1 (185.1 kHz) Ag-3 (211.0 kHz)

(a) casel ! L

( '

Aw-1(159.1 kHz)  Ag-1(260.4 kHz) By-1 (218.0 kHz) Bsg-1(253.3 kHz) A3 (288.9 kHz)
(b) case II

Ay-1(129.3 kHz)  A,-1 (177.6 kHz) By,-1 (149.5 kHz) Bse-1 (163.8 kHz) A4 (309.5 kHz)
(c) case 11

Au-6 (367.1 kHz ) Ag-7(364.9kHz ) Bu-4 (289.0 kHz ) Bg-27 (676.5 kHz)

FIG. 5. Comparison of the displacement-distribution patterns omn4liace

of the monocrystal langasite between measurem@mge) and computa-
tions (below). The x; and x, axes are along the horizontal and vertical
directions, respectively. The origin is located at the center of the rectangular

FIG. 4. Displacement-distribution patterns on fheace for three casesa) parallelepiped.

isotropic symmetry withC,;=109.26 andC,,=26.72 GPa;(b) isotropic
symmetry withC,, =300 andC,,=50 GPa; andc) orthorhombic symmetry  each group. Thus, the determination of all the material coef-

with C14=100, Cp=150, C33=200, C1p=70, C15=60, Cp3=50, Cpy g . . . .
—20, Cer—30, andCqe—40 GPa. Thex, andx, axes are along the hori- ficients may be possible and we intend to report on this effort

zontal and vertical directions, respectively. The origin is located at the centell nNear future.
of the rectangular parallelepiped.

necessarily the same because @ affects the resonance V. CONCLUSIONS

frequencies to a large extent; for example, the Chladni figure  We reached the following conclusions from this study.
for the third overtone of\y group (A;—3) in cases | and |l (1) The RUS/Laser method presented here enables us to
appears at the fourth overtone in case(siée Fig. 4. identify all observed vibration modes of a rectangular paral-
The mode-identification procedure thus becomes an easglepiped. This leads us to the exact elastic constants, remov-
task with this technique. Indeed, even unrealistic initial Va|-ing the uncertainty in mode identification that has always
ues of C1;=300 andC,,=50 GPa allowed us to make the troubled us.
complete mode identification and to reach the correct answer.  (2) The displacement-distribution patterns are hardly af-
fected by the elastic constants and elastic symmetry. There-
B. Monocrystal langasite  (La;GasSiOq4) fore, by comparing the measured and computed displace-
ment patterns, we can obtain exact elastic constants with

We applied this method to a transparent material, "~ >
monocrystal langasite, by depositing a reflective thin film on|n|t|aI guesses far away from the truth. Even the initial values
nore than 200% different from the correct values resulted in

the surface. Langasite is a candidate material for surfacel

acoustic-wave filters owing to its large piezoelectric coeffi—the e;(ac_;lfhanswer. hni | i
cients e;; and nearly temperature-independent elastic con- (3) The present technique also applies to a transparent

stants. The langasite’s crystal structure belongs to thQmaterial with a reflective thin film deposited on the specimen

trigonal system with point group 32, thus involving six inde- surf_ace. This was demonstrated using a monocrystal lan-
pendenC;; , two g;;, and two dielectric coefficients;; . All gasite.
of them affect the free vibration, which means tlegt and
f;” can be determined by the RUS method together with the\ckNOWLEDGMENTS
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