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Complete mode identification for resonance ultrasound
spectroscopy

Hirotsugu Ogi,a) Keiji Sato, Takeyasu Asada, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka,
Osaka 560-8531, Japan

~Received 22 January 2002; revised 21 June 2002; accepted 9 August 2002!

This study is devoted to deducing exact elastic constants of an anisotropic solid material without
using any advance information on the elastic constants by incorporating a displacement-distribution
measurement into resonant ultrasound spectroscopy~RUS!. The usual RUS method measures
free-vibration resonance frequencies of a solid and compares them with calculations to find the most
suitable set of elastic constants by an inverse calculation. This comparison requires mode
identification for the measured resonance frequencies, which has been difficult and never been free
from ambiguity. This study then adopts a laser-Doppler interferometer to measure the
displacement-distribution patterns on a surface of the vibrating specimen mounted on pinducers;
comparison of the measured displacement distributions with those computed permits us to correctly
identify the measured resonance frequencies, leading to unmistakable determination of elastic
constants. Because the displacement patterns are hardly affected by the elastic constants, an exact
answer is surely obtained even when unreasonable elastic constants are used as initial guesses at the
beginning of the inverse calculation. The usefulness of the present technique is demonstrated with
an aluminum alloy and a langasite crystal. ©2002 Acoustical Society of America.
@DOI: 10.1121/1.1512700#

PACS numbers: 62.20.Dc, 43.20.Ks, 42.79.Qx@SGK#
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I. INTRODUCTION

Resonant ultrasound spectroscopy~RUS!1–5 has been
recognized as a useful method for determining all of
independent elastic constantsCi j of an anisotropic solid in a
regular shape such as a sphere, cylinder, or rectangular
allelepiped. TheCi j are determined in two steps. First,
swept-frequency experiment measures many of the f
vibration resonance frequencies of the specimen. Two tra
ducers touch the specimen lightly, one for generation of a
oscillation and the other for detection of the displacem
amplitude. Second, an inverse calculation is performed
find the best fittingCi j that provide the closest resonan
frequencies to the measurements. The resonance freque
can be calculated using the specimen dimensions, mass
sity, and all of theCi j .

The successful determination of elastic constants by
RUS method relies on exact correspondence between the
served and calculated resonance frequencies in the inv
calculation, that is, correct mode identification. If modes
incorrectly identified, the elastic constants may converge
false minimum or fail to converge. However, mode ident
cation has never been straightforward because the meas
resonance spectrum contains a large number of reson
peaks, without showing any mode information. On the ot
hand, the calculation identifies the resonance modes. Thu
one knows beforehand a set of elastic constants close to
true values, the calculation is highly likely to converge o t
correct modes of the specimen. If one begins with very li
information about the specimen’sCi j , it may not converge

a!Electronic mail: ogi@me.es.osaka-u.ac.jp
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correctly. Several efforts have been made to overcome
difficulty. Ohno2 noted different rates of changes of res
nance frequencies when the specimen size varies. Mayn6

switched assignments of frequencies during the iteration
culation to find the best fit. Miglioriet al.7 changed the
specimen orientation relative to the transducers and m
tored the change of signal amplitude. More recently,
present authors8,9 developed an electromagnetic-acous
technique to select measurable vibration modes by con
ling the electromagnetic-force direction. These methods
sometimes useful but still insufficient to makecomplete
mode identification. They require supplementing RUS w
some other methods such as pulse-echo and rod-reson
methods.

In this study, we propose an advanced methodology
this purpose. We adopt a laser-Doppler velocimeter to ma
displacement-distribution pattern of a vibrating specim
The displacements inside the specimen can be compu
Comparison of the measurements with the computations
alizes correct mode identification and then the unmistaka
determination of elastic constants.

II. DISPLACEMENT MEASUREMENT AT RESONANCE

Figure 1 shows the measurement setup of the RUS/L
combination. A rectangular-parallelepiped specimen is pu
a piezoelectric tripod consisting of two pinducers for gene
tion and detection of vibration, and one for support.
He–Ne laser beam is focused on the specimen surface~focal
diameter: 15mm! to scan the surface. The reflected bea
enters the Doppler interferometer, which measures the
2553553/5/$19.00 © 2002 Acoustical Society of America
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mal component of the velocity at the focal point. The velo
ity is easily converted into the displacement because of
monic oscillation.

First, we sweep the driving frequency to obtain the re
nance spectrum as shown in Fig. 2 and measure the r
nance frequencies by fitting a Lorentzian function around
peaks. The contact between the specimen and pinduce
weak and stable because only the specimen mass contri
to the acoustic coupling between the pinducers and sp
men, which ensures high reproducibility in the resonan
frequency measurements.~Scattering of a measured res
nance frequency was less than 1024.)

Second, we drive one of the pinducers at a measu
resonance frequency while scanning the specimen sur
with the laser-Doppler interferometer to acquire the displa
ment distribution. The signal-to-noise ratio can be improv
by Fourier-transforming the output signal from the interfe
ometer to extract the component at the same frequency a
driving cw signal.

This RUS/Laser technique functioned for specime
with a mass larger than 0.01 g, with a surface area larger
2 mm-by-2 mm square, and with aQ21 value smaller than
1023. Typical time needed to measure and display a d
placement figure was 1 min.

FIG. 1. RUS/Laser measurement setup.

FIG. 2. Resonance spectrum measured by the pinducers for the alum
alloy specimen. Only the specimen mass contributed to the dry aco
coupling.
2554 J. Acoust. Soc. Am., Vol. 112, No. 6, December 2002
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III. CALCULATION OF DISPLACEMENT DISTRIBUTION

No analytical solution exists for the displacements in
rectangular-parallelepiped solid subjected to a free vibrat
Thus, the displacements have been approximated by lin
combinations of basis functions, and the Rayleigh–Ritz
proach has been adopted to determine the accompanyin
efficients. Demarest1 showed that use of normalized Leg
endre functions as basis functions result in an accu
description of the displacements of a cube specimen wit
minimum number of terms. Ohno2 applied a basis of Leg-
endre functions to describe the displacements of
rectangular-parallelepiped specimen and established the
culation of the free-vibration resonance frequencies. We
low them in this study.

The displacementui along thexi direction can be ap-
proximated as

ui~x1 ,x2 ,x3!5(
k

ak
~ i !Ck

~ i !~x1 ,x2 ,x3!, ~1!

Ck
~ i !~x1 ,x2 ,x3!5A 8

L1L2L3
P̄1~2x1 /L1!

3 P̄m~2x2 /L2!P̄n~2x3 /L3!, ~2!

in a Cartesian coordinate system.P̄l denotes the normalized
Legendre polynomial of degreel and Li denotes the edge
length along thexi axis of the rectangular parallelepipe
Lagrangian minimization1–7 determines the free-vibration
resonance frequencies and the coefficientsak

( i ) . The reso-
nance frequencies have been compared with the meas
ments and the inverse calculation based on a least-squ
fitting has inferred theCi j .

There are eight vibration groups in the free vibrati
modes of a rectangular parallelepiped with orthorhom
symmetry, labeled asAu , Ag , B1g , B2g , B3g , B1u , B2u ,
andB3u by Mochizuki.10 Because the calculation of the res
nance frequencies is independently performed for each vi
tion group, we exactly know the group and overtone order
the individual calculated frequencies, that is, we can co
pletely identify them. On the other hand, the measured re
nance frequencies never inform us of the mode informati
Thus, incorrect comparison between the calculations
measurements, or mode misidentification, has easily
curred in the usual RUS method unless excellent ini
guesses are adopted.

We pay attention to the coefficientsak
( i ) to make correct

mode identification. They tell us the two-dimensional patte
of the oscillating specimen surface, which is asignatureof
the individual mode. Thus, the correspondence between
measured and computed displacement distributions gua
tees correct mode identification.

IV. RESULTS AND DISCUSSIONS

A. Polycrystalline aluminum alloy

First, we demonstrate the capability of the present te
nique with a polycrystalline aluminum alloy. The specim
measuresL1511.92 mm,L2510.93 mm, andL359.86 mm
and has mass density 2788 kg/m3. We assume isotropic elas

um
tic
Ogi et al.: RUS/Laser method for elastic constants
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tic symmetry and two independent elastic constantsC11 and
C44. Figure 2 shows the resonance spectrum measure
the piezoelectric tripod; many peaks appear and some
them overlap with each other. Thus, it is very difficult,
usual, to identify the modes without advance knowledge
the elastic constants. Figure 3 shows a comparison betw
the measured and computed displacement-distribution
terns. The computations used arbitrary elastic constant
C115100 andC44520 GPa. Bright regions represent hig
amplitude displacements and dark regions represent low
plitude displacements; black means zero amplitude,
nodal lines. Typical maximum displacement was a few nm
magnitude.@We call these figuresmodern Chladni figures
after Ernst F. F. Chladni~1756–1827!, who visualized the
resonance oscillations of a square brass plate by putting
sand on it.11# We see very good agreement between the m
surements and computations. The usefulness is remark
especially in identifying overlapping modes. For instan
theAg24 andAu23 resonances, indicated by arrows in F
2, occur at very close frequencies~only 0.1% difference! and
it is hard to identify them. But, their displacement patter
are quite different from each other@Figs. 3~a! and ~b!# and
we can straightforwardly distinguish between them. Thus,
identifying all the observed modes~more than 80 now!, we
determined theCi j via the inverse calculation. Table I show
the measured and calculated resonance frequencies after
vergence. Owing to the complete mode identification, th
are no missed or extra modes in the measurement. Theexact
elastic constants areC115109.26 andC44526.72 GPa. We
tried to deduce theCi j using the usual RUS approach wi
the initial set ofCi j used to compute the displacements
Fig. 3, and pairing the closest resonance frequencies from
measurements and calculations. The inverse calcula
failed to converge, indicating that the usual RUS method
sensitive to the initial guesses.

Particularly significant is that the displacemen
distribution patterns are insensitive to the elastic consta
In Fig. 4, we show the computed patterns for three cases~I!
isotropic symmetry with the exactCi j ; ~II ! isotropic symme-
try with the Ci j far away from the exact values; and~III !
orthorhombic symmetry with arbitrary nine components

FIG. 3. Comparison of the distribution of the normal displacement am
tude between measurements~left! and computations~right! for the alumi-
num alloy rectangular parallelepiped. Thex1 and x2 axes are along the
horizontal and vertical directions, respectively. The origin is located at
center of the rectangular parallelepiped.
J. Acoust. Soc. Am., Vol. 112, No. 6, December 2002
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Ci j . Despite the quite differentCi j , elastic symmetry, and
accordingly resonance frequencies, the resemblance am
the resultant patterns is striking, especially for the fundam
tal modes of the eight vibration groups. After all, such
oscillation pattern, or Chladni figure, is governed by the d
formation symmetry allowed in the specimen. In the A
group vibrations, for example, thex3 component of displace
ment,u3 , occurs only when it is an odd function ofx1 and
x2 .2 Therefore, the Chladni figures on thex3 face of this
group always contain odd numbers of nodal lines runn
along each of thex1 and x2 axes. The fundamental mode
therefore, contains the cross-shaped node signature for e
case. As for theB3g group,u3 must be an even function ofx1

and an odd function ofx2 , so that the fundamental-mod
Chladni figure shows one center nodal line along thex1 axis;
and so forth on. Thus, a Chladni figure is not directly rela
to the elastic constants. Note that the overtone order is

-

e

TABLE I. Measured (f meas) and calculated (f calc) resonance frequencie
~kHz! after convergence for the aluminum alloy rectangular parallelepip
Mode notation follows Mochizuki~Ref. 10!. The average difference o
f meas2 f calc was 0.2%.

Mode f meas f calc Diff. ~%!

Au21 116.716 116.32 0.33
Au22 143.783 143.186 0.41
B1u21 158.081 158.44 20.22
B2u21 166.5 166.113 0.23
B1g21 169.523 169.338 0.11
B2g21 177.846 178.36 20.29
B3u21 183.875 184.57 20.38
B3g21 186.047 185.078 0.52
Ag21 190.341 190.206 0.07
B1u22 197.386 197.692 20.15
Ag22 201.133 201.462 20.16
B3g22 207.386 207.096 0.14
Ag23 209.836 211 20.56
B2g22 214.753 215.613 20.40
B2u22 223.548 223.219 0.14
B3u22 231.266 230.804 0.20
B3g23 233.538 233.329 0.09
B1g22 234.717 234.758 20.01
Ag24 250.98 250.777 0.08
Au23 251.256 251.038 0.08
B2g23 252.742 252.303 0.17
B1u23 256.122 256.849 20.28
B3u23 257.595 258.064 20.18
Ag25 258.118 258.874 20.29
B2u23 259.035 259.203 20.06
B1g23 268.54 267.746 0.29
B2u24 277.113 276.736 0.13
B3u24 278.762 279.144 20.13
B1u24 282.311 282.773 20.16
B3u25 293.686 293.016 0.22
B2u25 304.159 304.593 20.14
B1u25 304.464 305.316 20.27
B1u26 310.109 309.591 0.16
B1g24 316.197 315.775 0.13
B2g24 317.392 317.931 20.16
Au24 326.462 326.556 20.02
B3g24 329.034 329.369 20.10
Ag26 332.441 332.732 20.08
B2u26 333.364 332.271 0.32
B1g25 336.65 336.218 0.12
B2g25 337.359 337.511 20.04
Ag27 338.276 337.71 0.16
2555Ogi et al.: RUS/Laser method for elastic constants
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necessarily the same because theCi j affects the resonanc
frequencies to a large extent; for example, the Chladni fig
for the third overtone ofAg group (Ag23) in cases I and II
appears at the fourth overtone in case III~see Fig. 4!.

The mode-identification procedure thus becomes an e
task with this technique. Indeed, even unrealistic initial v
ues ofC115300 andC44550 GPa allowed us to make th
complete mode identification and to reach the correct ans

B. Monocrystal langasite „La3Ga5SiO14…

We applied this method to a transparent mater
monocrystal langasite, by depositing a reflective thin film
the surface. Langasite is a candidate material for surfa
acoustic-wave filters owing to its large piezoelectric coe
cients ei j and nearly temperature-independent elastic c
stants. The langasite’s crystal structure belongs to
trigonal system with point group 32, thus involving six ind
pendentCi j , two ei j , and two dielectric coefficientsk i j . All
of them affect the free vibration, which means thatei j and
k i j can be determined by the RUS method together with
Ci j .

We used a rectangular parallelepiped crystal with dim
sions of L158.027 mm, L259.804 mm, and L3

56.029 mm. The mass density was 5725 kg/m3. We depos-
ited a 100-nm-thick aluminum film on the surface normal
the x3 axis ~the three-fold axis of the trigonal system!. The
free-vibration modes for trigonal symmetry fall into the fo
groups ofAu , Ag , Bu , andBg .10 The Legendre basis func
tions in Eq.~2! are again available not only to describe t
displacements but also to describe the electric potential.
detailed calculation procedure has been given by Ohno.12

We see excellent agreement between the measured
computed Chladni figures~Fig. 5!. The crystal’s elastic an
isotropy causes asymmetric patterns about thex1 axis ~the
two-fold axis!. We could identify more than 80 observe
resonance peaks, that is, up to more than 20 overtone

FIG. 4. Displacement-distribution patterns on thex3 face for three cases:~a!
isotropic symmetry withC115109.26 andC44526.72 GPa;~b! isotropic
symmetry withC115300 andC44550 GPa; and~c! orthorhombic symmetry
with C115100, C225150, C335200, C12570, C13560, C23550, C44

520, C55530, andC66540 GPa. Thex1 and x2 axes are along the hori
zontal and vertical directions, respectively. The origin is located at the ce
of the rectangular parallelepiped.
2556 J. Acoust. Soc. Am., Vol. 112, No. 6, December 2002
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each group. Thus, the determination of all the material co
ficients may be possible and we intend to report on this ef
in near future.

V. CONCLUSIONS

We reached the following conclusions from this study
~1! The RUS/Laser method presented here enables u

identify all observed vibration modes of a rectangular par
lelepiped. This leads us to the exact elastic constants, rem
ing the uncertainty in mode identification that has alwa
troubled us.

~2! The displacement-distribution patterns are hardly
fected by the elastic constants and elastic symmetry. Th
fore, by comparing the measured and computed displa
ment patterns, we can obtain exact elastic constants
initial guesses far away from the truth. Even the initial valu
more than 200% different from the correct values resulted
the exact answer.

~3! The present technique also applies to a transpa
material with a reflective thin film deposited on the specim
surface. This was demonstrated using a monocrystal
gasite.
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