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Vibration analysis on electromagnetic-resonance-ultrasound
microscopy (ERUM) for determining localized elastic constants
of solids

Jiayong Tian,a) Hirotsugu Ogi, Toyokazu Tada, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka,
Osaka 560-8531, Japan

~Received 13 June 2003; revised 14 November 2003; accepted 24 November 2003!

In this paper we present a new acoustic-resonance microscopy, Electromagnetic-
Resonance-Ultrasound Microscopy~ERUM!, to measure the localized elastic stiffness of a solid
material. It visualizes the resonance-frequency shift of vibrating piezoelectric crystal~langasite,
La3Ga5SiO14) excited by an electric field from a solenoid coil. The acoustic coupling is made only
at the tip of the crystal touching the specimen surface. Being based on the calibration for the
specimen’s effective stiffness, the local elasticity is determined from the resonance frequencies of
the crystal with the Rayleigh–Ritz method. An approximate model for the specimen’s effective
stiffness predicts the shift of resonance frequencies, for which the conventional Hertz-contact model
is improved. As an illustrating example, the mapping of Young’s modulus of a duplex stainless steel
is presented, which shows good agreement with the existing study. ©2004 Acoustical Society of
America. @DOI: 10.1121/1.1642618#

PACS numbers: 43.35.Yb, 43.58.Wc@RR# Pages: 630–636
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I. INTRODUCTION

Many multiphase composites are emerging and the
derstanding of mechanical properties of the individual pha
become more important. Especially, the local elastic c
stants are indispensable to predict the effective elastic s
ness, the strength, and the degree of degradation of the
terials.

For measuring hardness and evaluating localized ela
constants, the indentation methods are widely used.1 Re-
cently, ultrasonic-atomic-force microscopy~UAFM! has
been developed to measure the elastic properties in m
and nanoscale regions of materials.2–5 It excites a flexural
vibration of a microcantilever by a piezoelectric transduc
The free end of the cantilever touches a specimen sur
with an applied force. The technique is capable of mapp
the elasticity difference within a spatial resolution of le
than 100 nm. However, much research neglected conside
influence of the mounted piezoelectric transducer on the
bration of the cantilever and that of the clamping condition
the fixed end. Particularly, the clamped end is not ideally
rigid end and this uncertain boundary condition prevents
from evaluating of the elastic stiffness.

Here, we present an alternative acoustic microsco
Electromagnetic-Resonance-Ultrasound Microsco
~ERUM!, to quantitatively evaluate the local stiffness of
material. It uses the resonance-frequency shift of
rectangular-parallelepiped piezoelectric probe, made of
gasite (La3Ga5SiO14), touching the specimen only through
tip. Langasite is a piezoelectric crystal and the vibrations
excited by applying dynamic electric fields using a surrou
ing solenoid coil. Thus, neither an electrode nor mechan

a!Electronic mail: JItian@me.es.osaka-u.ac.jp
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contact is required for the acoustic coupling. Such nonc
tact excitation and detection of ultrasonic vibrations elim
nate the measurement errors associated with the contact
pling and the ambiguous boundary condition at the suppo
Such a noncontacting excitation and the detection of vib
tion in a piezoelectric material was first reported by Choi a
Yu,6 then by Johnsonet al.7 Use of the noncontacting
method for scanning the object surface to measure the el
stiffness has not been reported. In this study, we measure
resonance-frequency shift of the probe and provide
elastic-constant distribution in a localized area.

Concerning the vibration analysis, we use Lagrangi
minimization approach with the Rayleigh–Rit
approximation8–11 to calculate the resonance-frequency sh
caused by a contact with the object solid. Because the c
ventional Hertz model does not apply to a dynamic contac12

we use an approximate approach for the dynamic-con
stiffening. Lastly, we apply this new acoustic microscopy
a duplex stainless steel consisting ferritic and austen
phases. Determined Young’s moduli of the two phases w
consistent with the prediction previously reported.

II. ELECTROMAGNETIC-RESONANCE-ULTRASOUND
MICROSCOPY

The measurement setup of ERUM is shown in Fig. 1.
oriented rectangular-parallelepiped langasite (La3Ga5SiO14)
crystal stands in a solenoid coil. It measures 10.012 m
(5L1) by 10.043 mm (5L2) by 14.405 mm (5L3), respec-
tively. Three principal crystallographic axesx1 , x2 , andx3

are along the three sidesL1 , L2 , andL3 , respectively. The
mass density is 5731 kg/m3. A spherical bearing of tungste
/115(2)/630/7/$20.00 © 2004 Acoustical Society of America
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chanical contacts with the surroundings and then enhance
sensitivity of resonance-frequency shift.

Langasite is a trigonal-symmetry crystal, whose elas
constantsCi j , piezoelectric coefficientsei j , and dielectric
coefficientse i j are given as11
@Ci j #53
188.5 104.7 96.87 14.11 0 0

188.5 96.87 214.11 0 0

263.11 0 0 0

53.35 0 0

sym. 53.35 14.11

41.9

4 ~GPa!, ~1!

@ei j #5F 20.429 0.429 0 0.193 0 0

0 0 0 0 20.193 0.429

0 0 0 0 0 0
G ~C/m2!, ~2!
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@e i j #5F 19.05 0 0

19.05 0

sym. 50.50
G e0 , ~3!

where e0 denotes the dielectric constant in vacuum. Th
langasite’se11 ande14 are larger in magnitude than quartz
e11 ande14 by factors 2.5 and 4.4, respectively. Such fav
able piezoelectricity allows us to excite the vibration effe
tively without any contacts with a dynamic electric fiel
Furthermore, the elastic constants of langasite show a w
dependence on temperature, of the order of 1025 K21,13

which assures stable resonance frequencies.
We apply high-power rf bursts to the solenoid coil

cause the vibration of the probe by the converse piezoele
effect. Then, the vibration of the probe is received by
same coil with the piezoelectric effect after the excitation11

The received signal is fed to a superheterodyne spectrom
to extract the signal amplitude of the same frequency co
ponent of the driving rf bursts.14 A frequency scan provides
resonance spectrum as the one shown in Fig. 2, comprisi
number of resonance peaks. The Lorentzian-fitting proced

FIG. 1. Setup for ERUM.
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to a peak yields the resonance frequency. We measure
tinuously the resonance frequency during moving theX–Y
stage to map the resonance-frequency shift.

III. VIBRATION ANALYSIS

We develop an approximated model to determine
localized Young’s modulus of the specimen from t
resonance-frequency shift of the probe. A simplified geo
etry of ERUM is shown in Fig. 3, where the tip–samp
contact is equivalent to a support with springs having n
linear spring constantski j . Here, we neglect the effect o
contacts between the three needles and the crystal’s u
surface because of three reasons: First, as shown later
needles contact the nodal points of the out-of-plane displa
ment and affect little the out-of-plane vibrations. Second,
langasite crystal has mirror-finished surfaces, which allo
almost frictionless contacts and then negligible influence
the in-plane displacement. Third, even if frictional and an
node contacts are considered, the contact areas at the n
tip are much smaller than that at the bearing–specimen c
tact and their influence again can be neglected, because
contact influence is enhanced with increasing the con
area, as seen in the Appendix.

The analysis contains two steps. First, we study the
fect of the spring constants on the shift of the probe’s re
nance frequency. Second, we derive the relation between
localized Young’s modulus of the specimen and the spr
constants.

We adopt the Rayleigh–Ritz method for the first ste
For a vibrating piezoelectric crystal with spring supports
the surface, LagrangianP can be expressed as8–11
631Tian et al.: Electromagnetic-resonance-ultrasound microscopy
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1

2 E E E
V

~Si j Ci jkl Skl12Si j ei jkf ,k2f ,ie i j f , j

2rv2uiui !dV1
1

2 E E
G

k̃i j ujui dS, ~4!

whereSi j , r, ui , andf i are the strain tensor, mass densi
displacement, and electric potential, respectively.k̃i j are the
surface distributed spring constants with dimension N/m3. V
and G denote the volume and surface of the piezoelec
crystal, respectively. We assume thatk̃i j 50 for iÞ j . Be-
cause no analytical solutions forui andf exist, we approxi-
mately express the displacement vectorU5@u1 ,u2 ,u3#T and
the electric potentialf in the linear combination of orthogo
nal basis functionsY,

U5Ya, ~5!

f5Yb, ~6!

FIG. 2. Free-vibration resonance spectrum of a langasite probe measur
exiting the solenoid coil.

FIG. 3. Contact model of the tip.
632 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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where a and b are unknown coefficient vectors. We sele
Legendre polynomialsPk as the orthogonal base, which
given as

Y~p!~x1 ,x2 ,x3!5
1

AL1L2L3

A2k11

2
A2m11

2

3A2n11

2
PkS x1

L1
D PmS x2

L2
D PnS x3

L3
D .

~7!

Note that the base functionsY show the orthogonality rela
tionship:

E E E
V

Y~p!Y~p8!dV5dkk8dmm8dnn8 , ~8!

whered i j denotes Kronecker’s delta function. The substi
tion of Eqs.~5! and ~6! into Eq. ~4! yields

) 5
1

2
aTKa1bTK1a2

1

2
bTK2b2

1

2
v2aTMa

1
1

2
aTK3a, ~9!

where Kpp85***VSi j (Y
(p))Ci jkl Skl(Y

(p8))dV, K1pp8
5***VY,i

(p)eiklSkl(Y
(p8))dV,

K2pp85E E E
V

Y,i
~p!e i j Y, j

~p8! dV,

K3pp85E E E
G

Yi
~p!k̃i j Yj

~p8!dS, and Mi j 5rd i j .

Applying the variational principle that implies the min
mization of Eq.~9! with respect toa andb, we obtain

Ka1K1
Tb1K3a2v2Ma50, ~10!

K2b2K1a50. ~11!

Substituting Eq.~11! into Eq. ~10!, we obtain the character
istic equation for resonance frequencies,

uK1K1
TK2

21K11K32v2M u50, ~12!

as well as the corresponding eigenvectors.
Langasite belongs to the trigonal system with po

group 32. Free vibrations of an oriented rectangular para
epiped of such a material fall into four groups labeled A
Au, Bg, and Bu,11 whose displacement symmetry is given
Table I.

For the second step, we consider a simplification for
tip–sample contact. Figure 4 shows the detailed geometr
the tip. The tip consists of a steel base and the spher
tungsten–carbide bearing with 0.35 mm radius. The bea
can rotate, contacting the specimen. The steel base is bo
to the center of the crystal’s bottom surface with the cont
area of 0.6 mm radius.

The previous UFAM studies used the simple Her
contact model as summarized in the Appendix to calcu

by
Tian et al.: Electromagnetic-resonance-ultrasound microscopy
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the effective contact stiffness. However, this model fails
explain the resonance-frequency shift as shown later in
7 and as discussed elsewhere.12 We then seek a relationshi
between the specimen Young’s modulus and resona
frequency shift with an empirical rule as follows.

According to the Hertzian-contact theory,15 the effective
spring stiffnesses are expressed by a power law of
equivalent Young’s modulusE* or shear modulusG* ,

k335AE* d1, ~13!

k115k225BE* d2G* d3, ~14!

where 1/E* 5(12n1
2)/E11(12n2

2)/E2 and 1/G* 5(2
2n1)/G11(22n2)/G2 ; E, G, andn are Young’s modulus,
shear modulus, and Poisson’s ratio. The subscripts 1 a
indicate the bearing and the specimen, respectively.d1 , d2 ,
andd3 denote power factors. CoefficientsA andB depend on
the applied biasing force and shape of contacting eleme
The analytical solution for contact problem is limited to
few simple cases: For example,d152/3, A5A3 6RF0, and
d2521/3, d351, B5A3 128RF0 for a normal contact of two
elastic spheres without slip~a frictional contact!. ~When the
specimen surface is well flat~mirror finish!, the tangential
spring constants can be negligible.! Thus, assuming that th
normal spring stiffness and tangential spring stiffness sh
similar exponential dependences onE* and G* as in Eqs.
~13! and ~14!, we determine the unknown coefficients a
power factors through calibration measurements.

TABLE I. Vibration modes of piezoelectric crystal with trigonal symmet
of elastic constants. O and E represent odd and even functions, respec

k m1n k m1n k m1n k m1n

u1 O E u1 E E u1 E O u1 O O
u2 E O u2 O O u2 O E u2 E E
u3 E O u3 O O u3 O E u3 E E
f O E f E E f E O f O O

Ag Au Bg Bu

FIG. 4. Close-up of the tip for ERUM.
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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IV. RESULT AND DISCUSSION

To study the effect of the normal spring constantk33

independently, we calculated the dependence of reson
frequencies of Ag and Bu modes onk33 using Eq.~12! with
k115k2250. The result is shown in Fig. 5. Figure 5 als
shows corresponding distributions of normal displacem
u3 at the probe’s upper surface, which are calculated fr
eigenvectors associated with Eq.~12! for free vibrations. Be-
cause Au and Bg modes show a nodal line foru3 passing the
center of the bottom surface, where the tip is attached,
normal spring constantk33 has no influence on these mode
Shifts of resonance frequencies of Ag and Bu modes incre
with increasingk33. They increase with high sensitivity fo
k335107– 109 N/m and show saturation with largerk33 val-
ues. Whenk33 is smaller than 108 N/m, Ag-3, Ag-15, Bu-4,
and Bu-11 modes show larger sensitivity tok33 than others.
Figure 5 predicts the largest sensitivity of Ag-3 mode to t
specimen modulus~or k33), but we failed to observe this
mode because of the limited frequency range of the mea
ing instrument we used. Also, we failed to detect Bu mod
with the solenoid coil we used. Hence, we use the Ag
mode as a most suitable mode for the present ERUM m
surements because~i! this mode has relatively high sensitiv
ity to the material stiffness~Fig. 5!; ~ii ! it demonstrates a
good spectral lineshape~see Fig. 2! and no mode overlap
ping occurs at its frequency; and~iii ! the resonance fre
quency shows a small normalized temperature derivative

ely.

FIG. 5. Influence of the normal stiffnessk33 on resonance frequencies fo
Ag and Bu groups.
633Tian et al.: Electromagnetic-resonance-ultrasound microscopy



h

ic

s
-
n-

-15

ar-

he
ic-

s a

at-
ion

b-
teel
e

he

ci-
-

or

of
2.331025 K21 for the 25 °C–35 °C range, which is muc
smaller than that of common metals; and~iv! this mode
shows nodal points for the in-plane displacementsu1 andu2

at the center of the bottom surface, as shown in Fig. 6, wh
allows us to neglect the tangential spring constantsk11 and
k22 to make the problem much simpler.@Indeed, we calcu-

FIG. 6. The modal profile of Ag-15 resonance at the upper surface
langasite probe.
634 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
h

lated the effectk11(5k22) on the Ag-15 mode and verified it
negligible contribution.# Thus, only the normal spring con
stant k33 affects the Ag-15 resonance frequency with u
known coefficientsd1 andA.

We measured the resonance frequency of the Ag
mode by making the probe contact acrylic resin,~001! sur-
face of monocrystal silicon, and polycrystalline tungsten c
bide with a static force ofF050.4151 N. We then inversely
determined the unknown coefficients as A
5168.12 N0.66m0.22 and d150.44 by a least-square fitting
with Eq. ~13!. Figure 7 shows the comparison between t
fitting function and the measurements along with a pred
tion by the classical Hertz theory. The Hertz model give
similar dependence of the frequency shift onE* , but the
magnitude is only one-fourth of that of observations, indic
ing that the model is inapplicable to a quantitative evaluat
of specimen’s modulus.

To demonstrate the applicability of our method, we o
tained the elastic-constant image of a duplex stainless s
~JIS-SCS14A!.16 The material consists of 25.8% volum
fraction of a ~ferrite! phase and 74.2% volume fractiong
~austenite! phase. Figure 8 shows the microstructure. T
g-phase particles are precipitated in thea-phase matrix. Fig-
ure 9~a! is the ERUM image obtained by scanning the spe
men surface at every 5mm. A line trace of resonance
frequency shift is given in Fig. 9~b!. We observe the
resonance-frequency shift of the order of 1024. A larger shift
occurs for theg phase. Using a plausible value of 0.25 f

a

FIG. 7. A comparison between the fitting curve and Hertz theory (f 0 : free
vibration frequency of Ag-15!.

FIG. 8. Optical microstructure of a duplex stainless steel~JIS-SCS14A!.
Tian et al.: Electromagnetic-resonance-ultrasound microscopy
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Poisson’s ratio, the fitting curve in Fig. 7 gives the gra
average Young’s moduli of two phases asEg5219 GPa and
Ea5128 GPa.@Note that the specimen’s Poisson ratio has
insignificant influence on the effective Young’s modulusE*
because (12n2) affects the modulus.# Young’s modulus ofg
phase agrees with that of austenitic stainless steelsEg

5215 GPa in Ref. 15!. Young’s modulusEa is, however,
considerably small compared with that of ferritic steels (Ea

5212 GPa in Ref. 15!. This is possible, considering the fa
that large concentration of Cr in thea phase elongates th
atomic distance. The lattice parameter of thea phase mea-
sured for the same material is 2.93 Å,16 which is fairly larger
than that of standard ferritic steels~2.87 Å!. Thus, the elastic
constants can reduce because of the lattice’s anharmoni
fect. Taneet al.16 estimated thea-phase Young’s modulus o
the same material using a micromechanics calculation,
they gave 158 GPa, which is actually much smaller than
of standard ferritic steel by 34% and closer to our value.

V. CONCLUSION

Being based on the vibration of langasite crystal m
sured by the noncontacting electromagnetic-acous
resonance technique, ERUM shows high potential of mea
ing the local elastic constant of solids. The Ag-15-mode
selected for the operating mode of ERUM because of
high sensitivity to specimen modulus and the stability
temperature change. The approximate contact model is
posed by improving the basis of the conventional He
model. We find that the proposed approach is suitable fo
quantitative evaluation of the localized modulus. The te

FIG. 9. ~a! ERUM image of the surface of duplex stainless steel and~b! the
line trace of the resonance-frequency shift, as indicated in~a!.
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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nique was applied to measure the Young-modulus distri
tion on a duplex stainless steel. The results show favora
agreement with the previous reports.
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APPENDIX: HERTZ MODEL OF TIP–SAMPLE
CONTACT

According to Hertz theory,15 the contact radiusa and
indentation depthd of the sphere under a normal forceF can
be written as

a5A3 3FR

4E*
and d5A3 9F2

16E* 2R
,

whereR is the radius of the tip. The initial indentation dep
d0 can be expressed as

d05A3 9F0
2

16E* 2R
.

The vertical displacement at a contact point for a vibrat
probe is then written as

uzuB5d2d05A3 3F0
2

16E* R
2A3 3F0

2

16E* R
.

Because the vibration amplitudes of ERUM are of very sm
magnitude andF0 is much greater thanuF2F0u, the vertical
displacement at a contact point can be approximated to

uzuB'
~F2F0!

k33
,

by a Taylor expansion. Herek335A3 6E* 2RF0 is the effective
normal-contact spring stiffness of the tip–sample contact

If the tangential forceQx and Qy act and induce the
elastic deformation without slip, the relative displaceme
between the sample and the tip can be expressed as

ux5
Qx

k11
and uy5

Qy

k22
,

where k115k2258aG* is the effective tangential-contac
spring stiffness of the tip–sample contact.
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