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The exact solution to the Helmholtz equation with a Dirichlet boundary condition is obtained to
study three-dimensional ultrasonic diffraction phenomena and derive the numerical data of
amplitude loss and the phase shift for correcting induced errors. Calculation is made for near-field
diffraction, for the rectangular transducers, and for the transducers with strength distribution on the
radiating area. In the near field, where the wavelength and the propagation distance are comparable
with each other, the longitudinal and shear waves undergo different diffraction. For transducers
having a noncircular shape and a strength distribution on the area, both the amplitude loss and the
phase shift experience different tendencies from the classical work on the circular piston source. Use
of diffraction data specific to each measurement condition is then necessary to correct the errors.
The calculated results are verified for pulse-echo measurements using a shear-wave electromagnetic
acoustic transducer. © 1995 Acoustical Society of America.

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.Rz

INTRODUCTION

An ultrasonic beam radiated from a finite source spreads
laterally during the propagation in the medium, depending on
the frequency, the transducer size, and the propagated dis-
tance. A part of the incident wave energy fails to return to the
transducer aperture, causing amplitude loss and phase shift in
pulse-echo measurements. We must appropriately remove the
involved errors for accurate velocity and attenuation mea-
surements. This phenomena, known as diffraction, has been
investigated by many authors.'~® Seki er al.! studied the ef-
fect for a longitudinal wave from a circular piston transducer
into an isotropic homogeneous material. They gave the fea-
tures for use in correcting the diffraction errors. Following
them, Papadakis“’5 derived the diffraction character in an an-
isotropic material. Beissner® calculated the effect of the dif-
ference of radii of the sending and receiving areas. Tang
et al.” performed a numerical simulation for the diffraction
of longitudinal and shear waves from a circular piston source
in any frequency region.

Most existing work has been focused on the problem of
the ultrasonic wave generated by a circular source with a
uniform strength over it, being based on Rayleigh’s approxi-
mate expression.8 We start with the exact solutions to the
Helmholz equation with a Dirichlet boundary condition for
both longitudinal and shear waves to account for their near-
field behavior. This paper further expands the diffraction
analysis to accommodate the practical cases such as a non-
circular shape and a strength distribution on the area. These
situations are often encountered with the use of electromag-
netic acoustic transducers (EMATSs) and laser ablation exci-
tations. Numerical calculation emphasizes the necessity of
using the correction data specific to each measuring configu-
ration. To illustrate the usefulness, we apply the numerical
result for correcting the attenuation measurement with a
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shear-wave EMAT. The EMAT relies on the Lorentz force
mechanism and operates with a rectangular source area on
the sample surface and a strength distribution over it. After
some simplifications, we calculate the amplitude loss for the
multiple echoes and compare with the pulse-echo experi-
ments using the rf bursts and a steel plate as a sample. The
calculation shows a good agreement with the experiments,
verifying the present analysis.

. THEORY OF DIFFRACTION PHENOMENA
A. Potential field

In a homogeneous isotropic elastic material with no ex-
ternal force acting, the equation of motion in terms of the
displacement u(x,?) is decomposed to the Helmholtz equa-
tions

V2p+kip=0 [ky=w/C., Ci=(\+2m)/p], (1)

V24t k=0 Ci=wulp), )

by use of the scalar potential ¢ and the vector potential ¢,
satisfying®

u=grad ¢+rot . (3)

Here, \ and u are the elastic constants (Lamé constants), o is
the frequency, p is the density of the medium, k is the wave
number, and C is the ultrasonic velocity. The suffix L or T
indicates a longitudinal wave or a shear wave.

We first consider a longitudinal wave (=0). In Fig. 1, a
sending plane transducer is simulated by the area Dy at z=0
and vibrates in the z direction with a strength distribution
over it. With the local coordinate r'(x’,y’,0) on Dy, the
scalar potential ¢ on the plane of z=0 is given by

B =0=po(x",y" el @ k| _, 4)

(kT= w/CT,
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FIG. 1. Ultrasonic radiation from a finite transducer.

where ¢y(x',y") assigns the strength distribution. The exact
solution of Eq. (1) with the boundary condition (4) can be
obtained by introducing Green’s function that satisfies Eq.
(4) and becomes zero on the bounda:y,10 that is,

ejwt z
o(r)= o fD d’o(l")‘ =

+ jky ey pe T 457 5)
JKL Ir_rrlz Ts

where dS} is a small element on Dr. The potential ¢(r)
integrates the contributions from all the elements on the ra-
diating area to give the acoustic field at a point r in the
medium.

For a shear wave, we assume the propagation in the z
direction and the polarization in the x direction, that is,

\Iixlz=0:\pz|z=0':0s

j(wi=kge (6)
'\Ifylz=0:\I}O(x”y’)ej(wl—kp)|z=0.

A similar approach leads to the vector potential at a point r,

B —ejwz f - . z
y(r)_ 27 Jo, ofr lr_l_/|3
: & —jkge=r'| gg!
+]k7- FT,P e dST, (7)

with the prescribed strength distribution Wo(x",y").

B. The amplitude loss and phase shift due to
diffraction

Substituting solution (5) or (7) into Eq. (3), we obtain
the displacement at any point in the medium and then
stresses. The amplitude loss and phase shift can be reduced
from the comparison of the total stress field over the radiat-
ing area with that in a receiving one.! We consider the case
in which the longitudinal wave from Dy is received on an
area Dy, being parallel to Dy and located at a distance z
from D, (Fig. 1). Using Hooke’s law represented by
0;;=2p€;+tN6;j€, which expresses the linear relation be-
tween the stress tensor o;; and the strain tensor €;, the total
received pressure Py is given by integrating o, on Dpg,
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where r’(x",y",z) is the local coordinate on Dy and dS risa
small element on it. We also obtain the total input pressure
P; on Dy from Eq. (4) as

Pr=—k; . {(N+2p) do(x',y")e @49}, _ 1 dST.
T
)

The ratio of their absolute values | P7|/|Pg| gives the ampli-
tude loss Ly due to the diffraction; the phase shift y; is
given by the phase difference between the received wave and
the plane wave that would propagate the distance z without
suffering from the diffraction, that is,

Lgig=|Pgl/| Pz (10)
y =arg(Pg)—(wt—k;2). (11)

For the shear-wave case, the analogous process yields
the total shearing forces F; and Fy on the radiating and
receiving areas, respectively, as

Fr= L {kK2uYo(x',y Ve dST. (12)
T

Fg= f A dsy 13)

R~ DR,U~ Il 922 sy R> (

and we have the amplitude loss and phase shift due to the
shear-wave diffraction using a formula similar to Egs. (10)
and (11).

Il. NUMERICAL METHOD FOR SOLVING POTENTIAL
FIELDS

We carry out the numerical integration in Egs. (5) and
(7). The calculation consists of four steps: (i) dividing Dr
and Dy, into many small elements (about 3000 elements for
each), (ii) calculation of the potential field generated by each
element of D, assuming that the boundary condition (4) is
satisfied on it, (iii) integration of the contributions from all
the elements of D at an element of D and the integration
once more of such results over Dy, and (iv) the calculation
of the whole stresses on both D and Dy to be substituted in
Egs. (10) and (11).

We begin with the longitudinal wave. Supposing that the
ith element of Dy, whose area is A; and whose strength has
a constant value ¢ over it, is located at position
r/(x/,y!,0) as shown in Fig. 2. The boundary condition (4)
becomes

Bl,=0= pie? @RI . (14)

From Eqgs. (5) and (14), we obtain the total potential at r by
summing up the potentials from all elements on D,

B(r)=2

A,-QS,- < Z ‘(wt—kL|r—r/\)
= 27 \|r—1]]? )

+j i
e =)

(15)
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FIG. 2. Numerical integration of the acoustic field on D radiated from all
elements on Dr.

Substituting Eq. (15) into Eq. (8) and taking the real part, the
local pressure p, operating at a receiving element A; on Dg
is expressed as

l¢l
Pr=A kE [Ak: cos(wt—ky|ryl)

—k By sin(wt—kg|rg)], (16a)
where
A~ki=()"+2ﬂ’)Aki+)\Cki+)\Eki’
v (16b)
Byi=(N+2u)By+ADy+NFy;,
_15z3 9z N 2( 3z 613)
i |rkil7 |l'ki|5 e |rki|3 lrkils’
_1523 9z kizz’
- |1'ki|6 |1'ki|4 |rki‘4’
18x0 & 3 ( 1 6xf,.)]
& +iH -5 |
B ‘|rk1|7 Irki|5 . lrki[3 Irkils
16¢
3 t5x7 3 kexs, (162
k= |rkil6 |l'ki|4 |rki|4
15y5 3 ( 1 6yi,)l
N
k |rki|7 Irkils |1'kz|3 |l'k,|5
F,o— 15)’%;‘ 3 kLykt
ST Tl Tl Tl
and ry; = rj — r;. We modify Eq. (16a) to
kaAkE Py; cos(wt—kpz+ ay,)
=Ak[(2 P,; cos aki)cos(wt—kLz)
_(2, I;ki sin aki)sin(a)t—kLz)j
=P, cos(wt—k.z+ By, (17a)

where
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’¢l V(A )2+ (k Bi)?

KBy

1

o=k (z—|ry]) +tan”

e ) (17v)

ki

2 2
Pk:Ak J(E Pki COS ay; =+ 2 ﬁki sin ak,-) 5
i i

! (17¢)
2 Py, sin ay;
Bk=tan_1(———' ) .

> Py; cos ay;
1

P « is the local amplitude on the kth receiving element and S;
is the phase. The total pressure over the receiving area is then

PRzE ﬁk Cos(wt'—kLZ‘i‘Bk):_‘ﬁR COS(wt—kLZ+'yL),
k
(18a)
with

2 5
(2 13k cos By| + E ﬁk sin ,Bk) A
% k

. (18b)
A %‘,Pk sin B
yp=m+tan | ——

%f’k cos By

representing the amplitude and phase on the whole receiving
area. On the other hand, the total pressure on the source area
is given by the real part of Eq. (9),

Py= _ﬁr cos(wt—k;z)|,=o>
) (19)
BPr=2 K2\ +2u)¢A,

Finally, we obtain the amplitude loss from |P /| P7| and the
phase shift from 7; .

For the case of the shear wave, we have similar results
by substituting the following equations for Eq. (16b):

Ap=(—Au+Cuu,

> 20
By;=(—Byi+Dy)p. (20)

lil. RESULTS OF NUMERICAL COMPUTATION

We suppose the same transducer for the generation and
reception throughout the calculation, because many ultra-
sonic measurements are conducted using a transducer in the
reflection mode and the ultrasonic wave launched from a
transducer is received by the same one after reflections. We
calculate the amplitude loss and phase shift for the three
cases: (i) the near field, where the wavelength is not neces-
sarily small relative to the propagation distance, (ii) a rect-
angular transducer shape, and (iii) a circular transducer with
a strength distribution. A set of numerals used is taken for
steel: C;=5900 m/s, C+=3200 m/s, p=7850 kg/m®, A\=117
GPa, and ©=80.0 GPa.

A. Effects of the near field

For the far-field receiving, the propagation distance z is
large enough relative to the wavelength A, that is, k[r[>1
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and |r|~z. The first terms in the integrands in Egs. (5) and
(7) can then be neglected relative to the second terms. The
potential ¢ is then approximated by the expression

o= ikilr=r]

T 45T 1)

(15 jwt
om=it, 2o |

The same expression holds for the shear wave with ¢ re-
placed by ¢, and k; replaced by k. Equation (21) was de-
rived by Ra'yleigh8 and has been the basis of the previous
work on the diffraction calculation. It represents the acoustic
potential in the medium, which is obtained by integrating the
radiation from the elements on D vibrating with the con-
stant strength ¢,. Each radiation decays at a rate propor-
tional to the wavelength times the propagation distance and
possesses the phase of (wt—ky|r—r'|) plus a constant ad-
vance of 77/2. Figure 3 compares the exact solutions [Egs. (5)
and (7)] and the Rayleigh integral [Eq. (21)] for the circular
transducer with a uniform strength over the aperture. The
horizontal —axis S=(Az)/a2 is the nondimensional
parameter,1 which governs the diffraction phenomena; a is
the transducer radius and z the propagation distance. When
A/z<<1, the exact solutions yield practically the same diffrac-
tion loss for the longitudinal and shear waves, which are well
approximated by Eq. (21). However, if A and z are compa-
rable with each other, the longitudinal and shear waves un-
dergo different diffraction loss, which Eq. (21) fails to de-
scribe. Rayleigh’s approximate expression is, of course,
inapplicable for discussing such a near-field diffraction be-
havior and we have to deal with the longitudinal and shear
waves separately, relying on Egs. (5) and (7). We see no
significant difference on the phase shift, which is asymptotic
to 7/2 as S increases in all cases.

The far field is not clearly bounded from the near field
because the diffraction nature changes gradually from one
extreme to another. The present calculations indicate that the
far field is found in the order of A/z<107".

B. Effects of transducer geometry

When the transducer has a noncircular shape, the ampli-
tude loss will be larger than the circular case, since the trans-
ducer is more likely to miss the reflected echoes. We con-
sider rectangular transducers having the various ratios of the
width and the height (w/h) with a uniform strength. In Fig.
4, the horizontal axis S is defined by using the equivalent
radius whose circular area equals the rectangular one (a
= \Jwh/m). For comparison purposes, it contains the Seki
et al. result for the circular case. Since we performed the
calculations in the far field, we have the same results for
longitudinal and shear waves. For the square transducer (w/
h=1), both loss and phase shift are almost the same as the
circular case. But, as the shape is apart from being circular,
the effects are progressively enhanced in magnitude. Espe-
cially in the region of w/h>1.5, they show a significant dif-
ference from the circular case, indicating that the result of
Seki ef al. is no longer useful for the diffraction correction
even if the equivalent area is involved. We have to use the
diffraction data specific to each transducer geometry.
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FIG. 3. Comparison of the diffraction effects among longitudinal waves,
shear waves, and classical solution in the near fields. Classical solution is
based on Rayleigh’s approximate integration. The horizontal axis is a non-
dimensional distance parameter; A is the wavelength, z the propagation
distance, and a the transducer radius.

C. Effects of strength distribution on the radiating
area

We calculated the diffraction effect for the circular trans-
ducer in the far field [Eq. (21)], but with a strength distribu-
tion on both D and Dy . The distributions considered are the
Gaussian profile and a parabolic profile, in which the inten-
sities along the edges are a part of tenth of the maxima at the
centers. The maximum sensitivity at the center of Dy is de-
termined so that the amplitude loss becomes zero at S=0,
which is a natural consequence of the diffraction effect. Fig-
ure 5 presents the results along with the classical solution’
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FIG. 4. Diffraction effects for rectangular transducers. a is the transducer

radius for the circle case and equals \'wh/ for the rectangular cases; w and
h are width and height of the transducer area.

for the uniform strength over the area.

Such a centered strength of transduction alters the re-
ceived amplitude in a peculiar way through two conflicting
mechanisms. On the sending side, the acoustic field is mainly
radiated by the center part. Even if the ultrasonic beam
spreads, the receiving transducer will detect the major part of
it, inducing less diffraction loss than the uniform strength.
On the receiving side, however, the transducer is insensitive
to the waves impinging the edge part. This situation is
equivalent to receiving the wave with a small transducer and
then more diffraction loss arises. These positive and negative
effects are present in Fig. 5(a). When S is small enough, the
wave field does not diffract wide before arriving at the re-
ceiver and the positive effect dominates the negative one.
When S is large and the transducers are separated, the dif-
fraction occurs to a substantial extent and the transducer
picks up only the middle part, decreasing the received am-
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FIG. 5. Diffraction effects for a transducer having the Gaussian or a para-
bolic distribution on the radiation and receiving areas. g is the transducer
radius.

plitude. The difference in the phase shift [Fig. 5(b)] can be
explained by approximating the transducer by the point
source and the point receiver. In this case, r’ in the integrand
of Eq. (21) becomes zero and ¢(r) has a phase of (wf—kz
+/2), that is, the maximum possible phase change of /2
relative to the plane wave. The centered strength then in-
duces a larger phase shift than the even strength. It is clear
that these tendencies are more remarkable for the Gaussian
profile than for the parabolic profile, because the Gaussian
profile has a sharper concentration of the intensity around the
center. .

IV. APPLICATION TO THE EMAT EXPERIMENT
A. Modeling for the EMAT
We applied the calculated results to the diffraction phe-

nomena observed with a shear-wave electromagnetic acous-
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tic transducer (EMAT). The EMAT is schematically sketched
in Fig. 6, whose active area is a rectangular shape of 14X20
mm?. The EMAT consists of a pair of permanent magnets,
which have the opposite magnetization directions normal to
the sample surfaces, and a flat elongated coil. When the coil
is placed near the surface of a conducting material and is
driven by an rf burst, eddy currents are induced in the near
surface region of the sample. These currents interact with the
static magnetic field applied by the magnets and generate the
Lorentz forces upon electrons carrying the eddy currents.
Through the collision with ions and other transformation
mechanisms, the Lorentz forces are coupled to the mechani-
cal body forces and generate a shear wave traveling in the
depth direction.

The Lorentz force has a three-dimensional distribution
in the sample in general. With the help of the exact distribu-
tion available from the nonlinear FEM computation,“ here
we simplify the distribution to be two dimensional on the
sample surface, which is characterized by a pair of parabolic
curves (Fig. 7). (The eddy current by the coil and the static
magnetic field due to the permanent magnets are separately
calculated to obtain the Lorentz force in the surface region.)
This simplification is allowable when the sample has a good
electric conductivity and a high permeability because such a
material has a very small electromagnetic skin depth, confin-
ing the Lorentz forces in the surface region.
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FIG. 8. Change of the active area by shielding a half of the EMAT face with
a copper sheet.

B. Isolation of diffraction effect

When the EMAT is used, the ultrasonic wave loses the
energy through three possible processes: (i) attenuation
within the sample, (ii) diffraction loss, and (iii) electromag-
netic energy loss. The third one refers to the energy transfer
from the mechanical (elastic wave) to electrical (eddy cur-
rent) through the inverse Lorentz. force mechanism.> The
loss on reflecting at the free surfaces is neglected owing
partly to the weak coupling of the EMAT. Although the at-
tenuation depends only on the sample material, the electro-
magnetic energy loss depends not only on the material prop-
erty but also on the static magnetic field. To isolate the
diffraction effect and verify the numerical calculation, we
produced two different radiating geometries by shielding half
of the EMAT face with a copper sheet (0.045 mm thick) in
two ways, thereby suppressing the eddy currents there to
make this part inactive. The sample was unchanged. We
compared the received echo amplitudes for these transducer
geometries in the reflection experiments. Case I has an active
area of 7X20 mm? with double parabolic profiles and case I
has a 14X10 mm? area with a single parabolic profile, as
illustrated in Fig. 8. Both cases contain the same static mag-
netic field so that the same amount of the electromagnetic
loss ‘will occur. The amplitude losses calculated for the two
cases are presented in Fig. 9 together with the unshielded
response.

In the pulse-echo measurement for case I, the ratio of the
amplitude A, of the nth echo to Ai of the ith echo (n>1i) is
written as ' ‘

Al=Ag A =Dl e Nt e, (22)

‘where « is the attenuation coefficient, e, the electromagnetic

energy loss, and L the sample thickness. Because D!, solely

Ogi et al.: Diffraction from transducer 1196
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FIG. 9. Amplitude losses due to the diffraction for unshielded EMAT, case
I, and case II.

represents the diffraction loss during the propagation over
the length of 2L(n—1), it satisfies

20 log(D%)=F(S4;)— F(San)s (23)

where F(S) is the amplitude loss as a function of Seki pa-
rameter S as given in Fig. 9; S,4; corresponds to S at the
distance 2Li and S, to 2Ln for case I. We can discuss the
relative diffraction loss by measuring the similar amplitude
ratio éﬁ, with case II, because «, L, and a, are common to
both EMAT geometries for the same i and n. The ratio A’
differs from the counterpart B’ because of the dissimilar
transducer geometry with other parameters unchanged; we
have the following relation:

20 log(B}/A}) ={F(S)—G(S)}—{F(S,) = G(S,)},
(24)
where the function G(S) is the amplitude loss calculated for
case II. Namely, the quantity in Eq. (24) depends only on the
propagation geometry in the sample, isolating the diffraction
effect.

C. Experimental result

The sample was a plate of fine-grained alloy steel 25
mm thick (100°X100%x25%). The echo amplitudes, up to
the 15th reflection, were measured by driving the EMAT
(case I, case II, and unshielded) with high-power rf bursts of
5-us duration, employing the superheterodyne process for
the received echo signals, and integrating the outputs with an
integrator gate 10 us wide.'® The operation frequencies were
3 and 6 MHz. The echo amplitudes were normalized by the
second echo amplitude, that is, i =2. The first echo was use-
less since it was partially overlapped by the tail of the excit-
ing signal.

Figure 10 shows the normalized amplitudes for the three
cases. At the 6-MHz measurements, the amplitude ratios for
case II are larger than those for the unshielded case in spite
of the smaller area (or larger Seki parameter). This occurs
because the geometry for case II has a strength concentration
around the centerline, which decreases the diffraction loss as
discussed above. Figure 11 summarizes the relative diffrac-
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FIG. 10. Normalized amplitude by the second echo amplitude for each of
unshielded EMAT, case I, and case II.

tion loss between cases I and II from Eq. (24). The solid line
is obtained from the nusnerical data for these geometries. The
measurements at the frequency of 6 MHz are very favorably
compared with the calculation. But the comparison is not so
good for 3 MHz. This discrepancy can be ascribed to a
thicker electromagnetic skin depth associated with lower fre-
quencies, which makes the Lorentz force excitation deeper
from the sample surface. For the lower frequencies, the sim-
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FIG. 11. Comparison of the relative amplitude loss between the calculation
and the experiments. a = wh/r, where w and h are width and height of
the active area of the EMAT.
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plification of the two-dimensional strength distribution is no
longer valid and then we have to consider the three-
dimensional case.

V. CONCLUSION

Three-dimensional ultrasonic diffraction has been inves-
tigated on the basis of the exact solution of the Helmholtz
equation and a Dirichlet boundary condition. The amplitude
loss and phase shift are numerically calculated by dividing
the transducer face to small elements and integrating the po-
tential fields over the receiving area. While the exact solu-
tions, both for the longitudinal and shear waves, approxi-
mately equal the classical solution obtainable from
Rayleigh’s integral for a circular transducer in the far field,
they demonstrate different tendencies for more general cases.
In particular, in cases of the near field, a noncircular trans-
ducer, and a transducer with a nonuniform strength over the
aperture, the diffraction correction requires calculated data
for the individual situation. The solution by Seki et al. is
limited to use in far-field diffraction from a circular source
with a uniform strength.

The calculated diffraction loss was compared with the
measurements of echo amplitudes using the shear-wave
EMAT. A single EMAT was used, making the two different
apertures by masking the front area with a copper sheet.
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Although the measurement was a relative one, the amplitude
loss showed a good agreement with the calculation. With the
diffraction data thus calculated, one can easily correct the
diffraction errors even if the transducer has a complex geom-
etry like EMATSs. The present method of diffraction analysis
is useful for many practical measurements of ultrasonic ve-
locities and attenuation, especially when the high accuracy is
required.
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